
A library for generfor generf ating PDF on the fly

Reference Manual

VersionVersion V 3.02

www.pdflib.com

PDFlib GmbH München, Germany

http://www.pdflib.com
How to view this manual
You can view this manual one page at a time by clicking the tiny page icon in Acrobat's status line (close to the page size display at the bottom of the Acrobat window) and choosing "Single Page"

Copyright © 1997–2000 PDFlib GmbH and Thomas Merz. All rights reserved.

PDFlib GmbH
Tal 40, 80331 München, Germany
http://www.pdflib.com

phone +49 • 89 • 29 16 46 87
fax +49 • 89 • 29 16 46 86

If you have questions check the PDFlib mailing list and archive at http://www.egroups.com/group/pdflib

Licensing contact: sales@pdflib.com
Support for commercial PDFlib licensees: support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

Adobe, Acrobat, and PostScript are trademarks of Adobe Systems Incorporated. ActiveX, Microsoft, Win-
dows, and Windows NT are trademarks of Microsoft Corporation. Macintosh and TrueType are trademarks
of Apple Computer. Unicode and the Unicode logo are registered trademarks of Unicode, Incorporated.
Unix is a trademark of Unix System Laboratories, Incorporated. Java is a trademark of Sun Microsystems,
Incorporated. All other products or name brands are trademarks of their respective holders.

Some versions of the PDFlib software contain implementations of the PNG image reference library (libpng),
the Zlib compression library, and the TIFFlib image library. TIFFlib contains the following copyright notice:
Copyright (c) 1988-1997 Sam Leffler, Copyright (c) 1991-1997 Silicon Graphics, Inc.

Author: Thomas Merz
Design and illustrations: Alessio Leonardi
Quality control (manual): Katja Karsunke, Petra Porst
Quality control (software): a cast of thousands

Revision history of this manual (version information on PDFlib can be found in the source distribution.)

Date Changes
August 08, 2000 > Delphi documentation and minor additions for PDFlib 3.02
July 01, 2000 > Additions and clarifications for PDFlib 3.01
Feb. 20, 2000 > Changes for PDFlib 3.0
Aug. 2, 1999 > Minor changes and additions for PDFlib 2.01
June 29, 1999 > Separate sections for the individual language bindings

> Extensions for PDFlib 2.0
Feb. 01, 1999 > Minor changes for PDFlib 1.0 (not publicly released)
Aug. 10, 1998 > Extensions for PDFlib 0.7 (only for a single customer)
July 08, 1998 > First attempt at describing PDFlib scripting support in PDFlib 0.6
Feb. 25, 1998 > Slightly expanded the manual to cover PDFlib 0.5
Sept. 22, 1997 > First public release of PDFlib 0.4 and this manual

http://www.egroups.com/group/pdflib
http://www.pdflib.com
mailto:sales@pdflib.com
mailto:support@pdflib.com

Contents 3

Contents
1 Introduction 7

1.1 PDFlib Programming 7

1.2 PDFlib Features 9

1.3 PDFlib Output and Compatibility 10

2 PDFlib Language Bindings 12

2.1 Overview of the PDFlib Language Bindings 12
2.1.1 What’s all the Fuss about Language Bindings? 12
2.1.2 Availability and Special Considerations 13
2.1.3 The »Hello world« Example 14
2.1.4 Error Handling 14
2.1.5 Version Control 14
2.1.6 Unicode Support 14
2.1.7 Summary of the Language Bindings 15

2.2 ActiveX/COM Binding 15
2.2.1 How does the ActiveX/COM Binding work? 15
2.2.2 Availability and Special Considerations for ActiveX 16
2.2.3 Error Handling in ActiveX 18
2.2.4 Version Control in ActiveX 19
2.2.5 Unicode Support in ActiveX 19
2.2.6 Using PDFlib with Active Server Pages 19
2.2.7 Using PDFlib with Visual Basic 23
2.2.8 Using PDFlib with Windows Script Host 25
2.2.9 Using PDFlib with Borland Delphi 26

2.3 C Binding 27
2.3.1 How does the C Binding work? 27
2.3.2 Availability and Special Considerations for C 28
2.3.3 The »Hello world« Example in C 28
2.3.4 Error Handling in C 28
2.3.5 Version Control in C 30
2.3.6 Unicode Support in C 30

2.4 C++ Binding 30
2.4.1 How does the C++ Binding work? 30
2.4.2 Availability and Special Considerations for C++ 30
2.4.3 The »Hello world« Example in C++ 31
2.4.4 Error Handling in C++ 31
2.4.5 Version Control in C++ 32
2.4.6 Unicode Support in C++ 32

2.5 Java Binding 32
2.5.1 How does the Java Binding work? 32
2.5.2 Availability and Special Considerations for Java 33
2.5.3 The »Hello world« Example in Java 34
2.5.4 Error Handling in Java 35

4 Contents

2.5.5 Version Control in Java 35
2.5.6 Unicode Support in Java 36

2.6 Perl Binding 36
2.6.1 How does the Perl Binding work? 36
2.6.2 Availability and Special Considerations for Perl 36
2.6.3 The »Hello world« Example in Perl 37
2.6.4 Error Handling in Perl 38
2.6.5 Version Control in Perl 38
2.6.6 Unicode Support in Perl 38

2.7 Python Binding 38
2.7.1 How does the Python Binding work? 38
2.7.2 Availability and Special Considerations for Python 38
2.7.3 The »Hello world« Example in Python 39
2.7.4 Error Handling in Python 39
2.7.5 Version Control in Python 40
2.7.6 Unicode Support in Python 40

2.8 Tcl Binding 40
2.8.1 How does the Tcl Binding work? 40
2.8.2 Availability and Special Considerations for Tcl 40
2.8.3 The »Hello world« Example in Tcl 41
2.8.4 Error Handling in Tcl 42
2.8.5 Version Control in Tcl 42
2.8.6 Unicode Support in Tcl 42

3 PDFlib Programming Concepts 43

3.1 General Programming Issues 43
3.1.1 PDFlib Program Structure 43
3.1.2 Memory Management 43
3.1.3 Generating PDF Documents directly in Memory 44
3.1.4 Error Handling 45

3.2 Page Descriptions 47
3.2.1 Coordinate Systems 47
3.2.2 Paths and Color 48
3.2.3 Ordering constraints 49

3.3 Text Handling 49
3.3.1 The PDF Core Fonts 49
3.3.2 Builtin and External 8-Bit Encodings 50
3.3.3 Custom Encoding Files for 8-Bit Encodings 52
3.3.4 Hypertext Encoding 53
3.3.5 Font Outline and Metrics Files 54
3.3.6 Resource Configuration and the UPR Resource File 56
3.3.7 CID Font Support for Japanese, Chinese, and Korean Text 59
3.3.8 Unicode Support 62
3.3.9 Text Metrics, Text Variations, and Text Box Formatting 65

3.4 Image Handling 68
3.4.1 Supported Image File Formats 68

Contents 5

3.4.2 Embedding and Scaling Images 70
3.4.3 Re-using Image Data 71
3.4.4 Memory Images and External Image References 72
3.4.5 Image Masks and Transparency 72
3.4.6 Multi-Page Image Files 74

4 PDFlib API Reference 75

4.1 Data Types and Naming Conventions 75

4.2 General Functions 76
4.2.1 Setup 76
4.2.2 Document and Page 78
4.2.3 Parameter Handling 80

4.3 Text Functions 80
4.3.1 Font Handling 80
4.3.2 Text Output 82

4.4 Graphics Functions 85
4.4.1 General Graphics State 85
4.4.2 Special Graphics State 86
4.4.3 Path Segments 88
4.4.4 Path Painting and Clipping 89

4.5 Color Functions 90

4.6 Image Functions 90

4.7 Hypertext Functions 94
4.7.1 Document Open Action and Open Mode 94
4.7.2 Bookmarks 94
4.7.3 Document Information Fields 95
4.7.4 Page Transitions 95
4.7.5 File Attachments 96
4.7.6 Note Annotations 96
4.7.7 Links 97

4.8 Page Size Formats 98

5 The PDFlib License 99

5.1 The »Aladdin Free Public License« 99

5.2 The Commercial PDFlib License 99

6 References 100

A Shared Libraries and DLLs 101

B Summary of PDFlib Functions 104

Index 107

1.1 PDFlib Programming 7

1 Introduction

1.1 PDFlib Programming
What is PDFlib? PDFlib is a library which allows you to generate files in Adobe’s Porta-
ble Document Format (PDF). PDFlib acts as a backend to your own programs. While you
(the programmer) are responsible for retrieving or maintaining the data to be pro-
cessed, PDFlib takes over the task of generating the PDF code which graphically repre-
sents your data. While you must still format and arrange your text and graphical ob-
jects, PDFlib frees you from the internals and intricacies of PDF. PDFlib offers many
useful functions for creating text, graphics, images and hypertext elements in PDF files.

How can I use PDFlib? PDFlib is available on a variety of platforms, including Unix,
Windows, MacOS, and EBCDIC-based systems such as IBM AS/400 and S/390. Although
PDFlib itself is written in the C language, its functions can be accessed from several oth-
er languages and programming environments which are called language bindings. The

PDF_circle()

PDF_setfont()
PDF_arc()

PDF_show()

PD
F_

lin
et

o(
)

ActiveX

C++
Java

CPython

Tcl

Perl

Fig. 1.1. The inner workings of PDFlib

8 Chapter 1: Introduction

PDFlib language bindings cover all major Web application languages currently in use.
The Application Programming Interface (API) is easy to learn, and is identical for all
bindings. Currently the following bindings are supported:
> Active X/COM, providing access from Visual Basic, Windows Script Host, Active Ser-

ver Pages with VBScript or JScript, Delphi, and many other environments
> ANSI C
> ANSI C++
> Java, including Servlets
> Python
> Perl
> Tcl

What can I use PDFlib for? PDFlib’s primary target is creating dynamic PDF within
your own software, on the World Wide Web. Similar to HTML pages dynamically gener-
ated on the Web server, you can use a PDFlib program for dynamically generating PDF
reflecting user input or some other dynamic data, e.g. data retrieved from the Web serv-
er’s database. The PDFlib approach offers several advantages:
> PDFlib can be integrated directly in the application generating the data, eliminating

the convoluted creation path application–PostScript–Acrobat Distiller–PDF.
> As an implication of this straightforward process, PDFlib is the fastest PDF-generat-

ing method, making it perfectly suited for the Web.
> PDFlib’s thread-safety as well as its robust memory and error handling support the

implementation of high-performance server applications.
> PDFlib is available for a variety of operating systems and development environ-

ments.

However, PDFlib is not restricted to dynamic PDF on the Web. Equally important are all
kinds of converters from X to PDF, where X represents any text or graphics file format.
Again, this replaces the sequence X–PostScript–PDF with simply X–PDF, which offers
many advantages for some common graphics file formats like TIFF, GIF, PNG or JPEG.
Using such a PDF converter, batch converting lots of text or graphics files is much easier
than using the Adobe Acrobat suite of programs.

Requirements for using PDFlib. PDFlib makes PDF generation possible without wading
through the 500+ page PDF specification. While PDFlib tries to hide technical PDF de-
tails from the user, a general understanding of PDF is useful. In order to make the best
use of PDFlib, application programmers should ideally be familiar with the basic graph-
ics model of PostScript (and therefore PDF). However, a reasonably experienced applica-
tion programmer who has dealt with any graphics API for screen display or printing
shouldn’t have much trouble adapting to the PDFlib API as described in this manual.

About this manual. This manual describes the API implemented in PDFlib. It does not
describe the process of building the library binaries on specific platforms. The function
interfaces described in this manual are believed to remain unchanged during future
PDFlib development. Functions not described in this manual are unsupported, and
should not be used. This manual does not attempt to explain Acrobat/PDF features or
internals. Please refer to the Acrobat product literature, and the material cited at the
end of this manual for further reference.

1.2 PDFlib Features 9

1.2 PDFlib Features
Table 1.1 lists the major PDFlib API features for generating PDF documents.

Table 1.1. PDFlib features for generating PDF

topic features
PDF
Documents

> PDF documents of arbitrary length, directly in memory (for Web servers) or on disk file
> Arbitrary page size–each page may have a different size
> Compression for text, vector graphics, image data, and file attachments
> Strict Acrobat 3 / PDF 1.2 mode optionally available

Vector
graphics

> Common vector graphics primitives: lines, curves, arcs, rectangles, etc.
> Vector paths for stroking, filling, and clipping
> RGB color for stroking and filling objects

Fonts > Text output in different fonts
> Text column formatting
> Underlined, overlined, and strikeout text
> Built-in font metrics for PDF’s 14 base fonts
> PostScript font support (PFB and PFA file formats) with or without font embedding
> Support for AFM and PFM font metrics files
> Library clients can retrieve character metrics for exact formatting
> Flexible font and metrics file configuration

Hypertext > Page transition effects such as shades and mosaic
> Nested bookmarks
> PDF links, launch links (other document types), and Web links
> Document information: four standard fields (Title, Subject, Author, Keywords) plus user-

defined info field (e.g., part number)
> File attachments and note annotations

Internatio-
nalization

> Unicode support (see below)
> Support for a variety of encodings (both built-in and user-defined)
> CID font and CMap support for Chinese, Japanese, and Korean text
> Support for the Euro character
> Support for international standards, e.g., ISO 8859-2

Unicode > Unicode support for hypertext features: bookmarks, contents and title of text annota-
tions, document information fields, attachment description, and author name

> Unicode encoding for Japanese, Chinese, and Korean text
Images > Embed images in GIF, PNG, TIFF, JPEG, or CCITT file formats

> Images constructed by the client directly in memory
> Efficiently re-use image data, e.g., for repeated logos on each page
> Transparent (masked) images

Pro-
gramming

> Language bindings for ActiveX, C, C++, Java (including servlets), Perl, Python, Tcl
> Transparent Unicode handling for ActiveX, Java, and Tcl
> Thread-safe for deployment in multi-threaded server applications
> Configurable error handler and memory management for C and C++
> Exception handling integrated with the host language’s native exception handling

10 Chapter 1: Introduction

Table 1.2 lists PDF features which are currently not implemented in PDFlib.

1.3 PDFlib Output and Compatibility
PDFlib output. PDFlib generates binary PDF output (although most items can also be
generated in ASCII mode for debugging purposes). If the Zlib compression library is
available (this is the case for all binary PDFlib distributions), the PDF output will be com-
pressed with the Flate (also known as ZIP) compression algorithm. The compression can
also be deactivated. Compression applies to potentially large items, such as raster image
data and file attachments, as well as text and vector operators on page descriptions. The
compression speed/output size trade-off can be controlled with a PDFlib parameter.

Acrobat 4 features. Generally, we strive to produce PDF documents which may be
used with a wide variety of PDF consumers. PDFlib generates output compatible with
Acrobat 3 and higher.

However, certain features either require Acrobat 4, or don’t work in Acrobat Reader
but only the full Acrobat product. Table 1.3 lists those features. More details can be
found at the respective function descriptions.

Table 1.2. Features which are currently not implemented in PDFlib

topic remarks
dealing with
existing PDFs

PDFlib generates new PDF documents, but doesn’t integrate or manipulate existing PDF
content. Embedding existing PDF contents will be supported in the future.

encryption Encryption requires all page contents to be cryptographically processed.
thumbnails Thumbnails require a rasterizer for the page contents.
linearization Linearization (Web optimization) requires a complex rewrite of the PDF file.
EPS
embedding

Embedding EPS graphics requires a PostScript interpreter which would slow down
operation. Instead, we wil support PDF embedding in the future.

font
subsetting

Font subsetting requires extended font processing.

TrueType
fonts

PDFlib currently doesn’t support any kind of TrueType embedding.

Table 1.3. PDFlib features which require Acrobat 4

topic remarks
hypertext > File attachments are not recognized in Acrobat 3 (require full Acrobat 4)

> Different icons for notes are not recognized in Acrobat 3
page size > Acrobat 4 extends the limits for acceptable PDF page sizes
Unicode > Unicode hypertext doesn’t work in Acrobat 3
font > The Euro symbol is not supported in Acrobat 3

> CID fonts for Chinese, Japanese, and Korean require Acrobat 3J or Acrobat 4
transparency > Transparency information is ignored in Acrobat 3
JPEG images > Acrobat 3 supports only baseline JPEG images, but not the progressive flavor
external
images

> Acrobat 4 (but not the free Acrobat Reader) support external image references via URL.
Acrobat 3 (Reader and Exchange) is unable to display such referenced images.

1.3 PDFlib Output and Compatibility 11

Acrobat 3 compatibility mode. Basically, if you don’t use the above-mentioned Acro-
bat 4 features, the generated PDF files will be compatible to Acrobat 3 and 4. However,
due to a very subtle compatibility issue with certain output devices, PDFlib also offers a
strict Acrobat 3 compatibility mode. In order to understand the problem, we must dis-
tinguish between the actual Acrobat viewer version required by a certain PDF file, and
the very first line in the file which may read %PDF-1.2 or %PDF-1.3 for Acrobat 3 and Acro-
bat 4-generated files, respectively. It’s important to know that Acrobat 3 viewers open
files starting with the %PDF-1.3 line without any problem, provided the file doesn’t use
any Acrobat 4 feature. This is the basis of PDFlib’s dual-version compatibility approach.

However, some PDF consumers other than Acrobat implement a much stricter way
of version control: they simply reject all files starting with the %PDF-1.3 line, regardless
of whether the actual content requires a PDF 1.2 or PDF 1.3 interpreter. For example,
some EfI RIPs for high-speed digital printing machines are known to (mis-)behave in
this manner. In order to work around this problem, PDFlib offers a strict Acrobat 3 com-
patibility mode in which a %PDF-1.2 header is emitted, and Acrobat 4 features are dis-
abled.

Note again that it is not necessary to use PDFlib’s strict Acrobat 3 compatibility mode
only to make sure the PDF files can be read with Acrobat 3 – this will automatically be
the case if you refrain from using the above-mentioned Acrobat 4 features. The strict
mode is only required for those rare situations where you have to deal with one of those
broken PDF-enabled RIPs.

12 Chapter 2: PDFlib Language Bindings

2 PDFlib Language Bindings
This chapter is meant to give you a jump start to programming PDFlib in one or more of
the supported languages. The first section gives a general overview, while each of the
following sections will cover a particular language binding. The suggested reading order
is to take a look at Section 2.1, »Overview of the PDFlib Language Bindings«, and subse-
quently pick the section(s) describing your favorite language binding(s).

2.1 Overview of the PDFlib Language Bindings
2.1.1 What’s all the Fuss about Language Bindings?

While the C programming language has been one of the cornerstones of systems and
applications software development for decades, a whole slew of other languages have
been around for quite some time which are either related to new programming para-
digms (such as C++), open the door to powerful platform-independent scripting capabil-
ities (such as Perl, Tcl, and Python), promise a new quality in software portability (such
as Java), or provide the glue among many different technologies while being completely
operating system specific (such as ActiveX/COM).

It is our firm believe that a generic library such as PDFlib benefits very much from
supporting a wide range of programming environments, thereby enlarging the poten-
tial user base, while giving everyone the freedom to pick his or her favorite language for
solving the particular problems at hand. This means you can call PDFlib routines with-
out any C programming skills by simply writing a couple of script language instruc-
tions. PDFlib scripting greatly simplifies small to medium programming tasks, and is
appropriate in many application areas in which the development, build, and debug
overhead of C is considered too high.

This goal gives rise to quite a new issue in software portability. Instead of porting a
given program in a given language to many different platforms, we are trying to main-
tain a coherent programming interface across many different languages! Keeping this
in mind is very important when dealing with the PDFlib API. The goal of multi-language
portability also explains some properties of the interface which may be considered
quirky in a pure C environment. In case you wonder about a particular interface feature,
or some »obvious« enhancement to the interface comes to your mind, please take into a
account the compatibility of your proposed enhancement to all supported environ-
ments.

Naturally, the question arises how to support so many languages with a single li-
brary. Fortunately, all modern language environments are extensible in some way or
another. This includes support for extensions written in the C language in all cases.
Looking closer, each environment has its own restrictions and requirements regarding
the implementation of extensions. The facilities provided for extension developers are
numerous, and differ significantly among the languages. Given the amount of changes
occurring in actively developed software, and the number of supported languages, this
may quickly result in a maintenance nightmare, especially when we take into account
the number of supported platforms.

Fortunately enough, the task of writing language wrappers has been facilitated by a
cute program called SWIG1 (Simplified Wrapper and Interface Generator), written by
Dave Beazley. SWIG is brilliant in design and implementation. With the help of SWIG,

2.1 Overview of the PDFlib Language Bindings 13

early PDFlib versions could easily be integrated into the Perl, Tcl, and Python scripting
languages. However, over time the requirements for the PDFlib language wrappers
grew, until finally it was necessary to manually fine-tune or partially rewrite the SWIG-
generated wrapper code. For this reason the language wrappers are no longer generated
automatically using SWIG. By the way, SWIG support for PDFlib was suggested and in its
first incarnation implemented by Rainer Schaaf <Rainer.Schaaf@t-online.de>1.

For other language bindings not supported by SWIG it is either rather obvious what
to do (such as C++), or a matter of digging through the relevant interface specifications
and implementing the necessary wrapper manually (such as ActiveX/COM).

PDFlib scripting API. In order to avoid duplicating the PDFlib API reference manual for
all supported languages, this manual is considered authoritative not only for the C
binding but also for all other languages. Of course, the script programmer has to men-
tally adapt certain conventions and syntactical issues from C to the relevant language.
However, translating C API calls to, say, Perl calls is a straightforward process. Alas, we
were able to translate a PDFlib application from C to Perl by simply deleting the include
directives and adding a bunch of dollar signs to the variable names!

2.1.2 Availability and Special Considerations
Given the broad range of platforms and languages (let alone different versions of both)
supported by PDFlib, it shouldn’t be much of a surprise that not all combinations of
platforms, languages, and versions thereof can be tested. However, we strive to make
PDFlib work with the latest available versions of the respective environments. Table 2.1
lists the language/platform combinations we used for testing.

1. More information on SWIG can be found at http://www.swig.org
1. On a totally unrelated note, Rainer and his wonderful family live in a nice house close to the Alps – definitely a great place
for biking!

Table 2.1. Tested language and platform combinations

language Unix (Linux and others) Windows MacOS
ActiveX/
COM

– ASP (PWS, IIS 4 and 5);
WSH (VBScript 5, JScript 5);
Visual Basic 6.0
Borland Delphi 5

–

ANSI C gcc
and other ANSI C compilers

Microsoft Visual C++ 6.0
Metrowerks CodeWarrior 5.3
Borland C++ Builder 5

Metrowerks CodeWarrior 5.3

ANSI C++ gcc Microsoft Visual C++ 6.0
Metrowerks CodeWarrior 5.3

Metrowerks CodeWarrior 5.3

Java Sun JDK 1.2.2
IBM JDK 1.1.8
Inprise JBuilder 3.5
Kaffe OpenVM 1.0.5

Sun JDK 1.1.8, 1.2.2, and 1.3
Inprise JBuilder 3.5
Allaire JRun

MRJ 2.2, based on JDK 1.1.8

Perl Perl 5.005 and 5.6 ActivePerl 5.005 and 5.6 MacPerl 5.2.0r4, based on
Perl 5.004

Python Python 1.5.2 Python 1.5.2 Python 1.5.2
Tcl Tcl 8.3.1 Tcl 8.3.1 Tcl 8.3.0

http://www.swig.org
mailto:Rainer.Schaaf@t-online.de

14 Chapter 2: PDFlib Language Bindings

2.1.3 The »Hello world« Example
Being a well-known classic, the »Hello, world!« example will be used for the first PDFlib
program. It uses PDFlib to generate a one-page PDF file with some text on the page. In
the following sections, the »Hello, world!« sample will be shown for all supported lan-
guage bindings. The code for all language samples is contained in the PDFlib distri-
bution.

2.1.4 Error Handling
PDFlib provides sophisticated means for dealing with different kinds of programming
and runtime errors. In order to allow for smooth integration to the respective language
environment, PDFlib’s error handling is integrated into the language’s native way of
dealing with exceptions. Basically, C and C++ clients can install custom code which is
called when an error occurs. Other language bindings use the existing exception ma-
chinery provided by all modern languages. More details on PDFlib’s exception handling
can be found in Section 3.1.4, »Error Handling«. The sections on error handling in this
chapter cover the language-specific details for the supported environments.

2.1.5 Version Control
Taking into account the rapid development cycles of software in general, and Internet-
related software in particular, it is important to allow for future improvements without
breaking existing clients. In order to achieve compatibility across multiple versions of
the library, PDFlib supports several version control schemes depending on the respec-
tive language. If the language supports a native versioning mechanism, PDFlib seam-
lessly integrates it so the client doesn’t have to worry about versioning issues except
making use of the language-supplied facilities. In other cases, when the language
doesn’t support a suitable versioning scheme, PDFlib supplies its own major and minor
version number at the interface level. These may be used by the client in order to decide
whether the given PDFlib implementation can be accepted, or should be rejected be-
cause a newer version is required.

2.1.6 Unicode Support
PDFlib supports Unicode for a variety of features (see Section 3.3.8, »Unicode Support«
for details). The language bindings, however, differ in their native support for Unicode.
If a given language binding supports Unicode strings, the respective PDFlib language
wrapper is aware of the fact, and automatically deals with Unicode strings in the correct
way.

2.2 ActiveX/COM Binding 15

2.1.7 Summary of the Language Bindings
For easy reference, Table 2.2 summarizes important features of the PDFlib language
bindings. More details can be found in the respective section of this manual

2.2 ActiveX/COM Binding
2.2.1 How does the ActiveX/COM Binding work?

COM (Component Object Model)1, developed by Microsoft, is a powerful mechanism for
reusing software components regardless of the programming language on the client
side (the user of the component) or the server side (the actual implementation of a com-
ponent). In theory, COM is even a platform-independent binary standard which allows
clients to communicate with servers within the same process, on the same machine, or
a networked machine. In practice, however, COM is basically a standard for the Win-
dows environment (although attempts have been made to port COM to other plat-
forms).

ActiveX is built on Microsoft’s COM technology, and used primarily to develop inter-
active content for the World Wide Web, although it can be used in desktop and other ap-
plications. The reusable software components are called ActiveX controls (formerly
known as OLE controls or OCX). Although ActiveX burdens the developer with a variety
of specific technologies, terms, and troublesome issues (such as type libraries, registra-
tion, an assortment of threading models, historical jettison, to name but a few), ActiveX
users are rewarded with tight integration and almost universal usability (if you happen
to live in the Windows universe).

Since PDFlib is pure component-ware, the library naturally lends itself to an ActiveX
implementation for Windows deployment. The ActiveX implementation of PDFlib is
built as a wrapper DLL around the core PDFlib DLL. The wrapper DLL calls the PDFlib core
functions and is responsible for communicating with the underlying COM machinery,
registration and type library issues, COM exception handling, memory management,
and Unicode string conversions. This parallels other PDFlib bindings where we strive to
make a strict distinction between core functionality and the language wrapper. The

Table 2.2. Summary of the language bindings

language custom
error handling

automatic
Unicode conversion

version
control

thread-safe

COM/ActiveX COM exceptions yes Class ID and ProgID yes (both-threading)
C client-supplied

error handler
– manually yes

C++ client-supplied
error handler

– manually yes

Java Java exceptions yes automatically yes
Perl Perl exceptions – via package

mechanism
–

Python Python exceptions – manually –
Tcl Tcl exceptions yes (Tcl 8.2 or above) via package

mechanism
yes

1. See http://www.microsoft.com/com for more information about COM and ActiveX

http://www.microsoft.com/com

16 Chapter 2: PDFlib Language Bindings

PDFlib ActiveX wrapper can technically be characterized by as follows (don’t worry if
you don’t understand all of these terms – they are not required for using PDFlib):
> PDFlib acts as a Win32 in-process ActiveX server component (also known as an auto-

mation server) without any user interface.
> PDFlib supports is a »both-threaded« component, i.e., it is treated as both an apart-

ment-threaded as well as a free-threaded component. In addition, PDFlib aggregates
a free-threaded marshaler. In simple terms, clients can use the PDFlib object directly
(instead of going through a proxy/stub pair) which boosts performance.

> PDFlib is fully Unicode-aware.
> The PDFlib binary pdflib_com.dll is a self-registering DLL with a type library.
> PDFlib is stateless, i.e., method parameters are used instead of properties.
> PDFlib’s dual interface supports both early and late binding.
> PDFlib supports rich error information.

Note PDFlib is currently not MTS-aware (Microsoft Transaction Server).

2.2.2 Availability and Special Considerations for ActiveX
PDFlib can be deployed in all environments that support ActiveX components. We will
demonstrate our examples in several specific environments:
> Visual Basic1

> Active Server Pages (ASP)2 with JScript3

> Windows Script Host (WSH) with Visual Basic Scripting Edition (VBScript)4

> Borland Delphi

Active Server Pages and Windows Script Host both support JScript and VBScript. Since
the scripts are nearly identical, however, we do not demonstrate all combinations here.
In addition, there are many other ActiveX-aware development environments available
– Java, Microsoft Visual C++, Borland C++ Builder, PowerBuilder, to name but a few.
PDFlib also works in Visual Basic for Applications (VBA).

What the PDFlib ActiveX installer does. The installation program supplied for the
PDFlib ActiveX component automatically takes care of all issues related to using PDFlib
with ActiveX. For the sake of completeness, the following describes the runtime envi-
ronment required for using PDFlib (this is taken care of by the installation routine):
> The PDFlib core and auxiliary DLLs are copied to the installation directory.
> The PDFlib ActiveX DLL must be registered with the Windows registry. The installer

uses the self-registering PDFlib DLL to achieve the registration.
> If a licensed version of PDFlib is installed, the serial number is entered in the system.

While the »Runtime« installation option performs the above steps, the »Full« installa-
tion option additionally copies documentation and sample files to the installation di-
rectory.

1. Visual Basic is a commercial product of Microsoft. For more information see http://msdn.microsoft.com/vbasic/prodinfo.
2. Active Server Pages is a technology for executing server-side scripts in a variety of languages. It is available with Microsoft
Web servers, and several other server products. More information about ASP can be found at
http://msdn.microsoft.com/workshop/server/default.asp.
3. JScript is an extension of ECMAScript (see http://www.ecma.ch/stand/ecma-262.htm) which in turn is based on
Netscape’s JavaScript. For more information on JScript see http://msdn.microsoft.com/scripting/jscript/default.htm.
4. WSH is available in command-line (cscript.exe) and windowing flavors (wscript.exe). WSH is included in Microsoft Inter-
net Explorer 5, Windows 98, and Windows 2000. For more information see http://msdn.microsoft.com/scripting.

http://msdn.microsoft.com/vbasic/prodinfo
http://msdn.microsoft.com/workshop/server/default.asp
http://msdn.microsoft.com/scripting/
http://www.ecma.ch/stand/ecma-262.htm
http://msdn.microsoft.com/scripting/jscript/default.htm

2.2 ActiveX/COM Binding 17

Note When the PDFlib registry entries do not contain a valid serial string, PDFlib will work, but will
stamp the generated pages with diagonal text (the »nagger«). Companies seriously interested
in PDFlib licensing who wish to get rid of the nagger during the evaluation phase or for proto-
type demos can submit their company and project details to sales@pdflib.com, and request a
temporary serial string.

Redistributing the PDFlib ActiveX component. Developers who obtained a redistribut-
able runtime license and wish to redistribute the PDFlib ActiveX component along with
their own product must either ship the complete PDFlib installation and run the PDFlib
installer as part of their product’s setup process, or do all of the following:
> Integrate the files of the PDFlib »Runtime« installation option in their own installa-

tion (see also »Silent install« below). The list of files required by PDFlib can easily be
determined by looking at the PDFlib installation directory, since this is the only
place where the PDFlib installer places any files. Shipping the supplied AFM files is
only required if the core 14 fonts are intended to be used with encodings other than
winansi, or builtin in the case of the Symbol and ZapfDingbats fonts (see Section 3.3.1,
»The PDF Core Fonts«).

> Take care of the necessary PDFlib registry keys. This can be accomplished by com-
pleting the entries in the supplied registration file template pdflib.reg, and using it
during the installation process of your own product. In addition, pdflib_com.dll must
be called for self-registration (e.g., using the regsvr32 utility).

> Supply your serial number at runtime using PDFlib’s set_parameter() function, sup-
plying serial as first parameter, and the actual serial string as second parameter.

Silent install. When PDFlib must be redistributed as part of another software package,
or must be deployed on a large number of machines which are administered by tools
such as SMS, manually installing PDFlib on each machine may be cumbersome. In such
cases PDFlib can also be installed automatically without any user intervention.

The PDFlib installer has been created with InstallShield, and supports InstallShield’s
»silent install« feature. A normal (non-silent) installation receives the necessary input
from the user in dialog boxes. A silent installation, however, doesn’t prompt the user
for input. Instead, it gets its input from a special file called the InstallShield silent re-
sponse (.iss) file. A response file is a text file containing information similar to what a
user would enter as responses to dialog boxes when running a normal setup. The re-
sponse file can most easily be prepared by running an interactive installation once,
with the installer recording all responses.

Proceed as follows for a silent (non-interactive) installation of PDFlib:
> Use WinZip to unpack the PDFlib ActiveX installer files into a directory;
> Run setup -r from this directory, and fill out all dialog boxes with the exact entries

you wish to use later in the silent installation;
> Locate the response file setup.iss in your Windows directory, and copy it to the direc-

tory containing the installer files. You can adjust some of the values in the response
file with a text editor if required.

> To do a silent install run install -s in the directory containing the installer files.

18 Chapter 2: PDFlib Language Bindings

Deploying the PDFlib ActiveX on an ISP’s server. Installing software on a server hosted
by an Internet Service Provider (ISP) is usually more difficult than on a local machine,
since ISPs are often very reluctant when customers wish to install some new software.
PDFlib is very ISP-friendly since it doesn’t pollute neither the Windows directory nor
the registry:
> Only a single DLL is required, which may live in an arbitrary directory as long as it is

properly registered using the regsvr32 utility.
> By default only a few private registry entries are created which are located under the

HKEY_LOCAL_MACHINE\SOFTWARE\PDFlib registry hive. These entries can be manually
created if required (see above).

> If so desired, PDFlib may even be used without any private registry entries. The user
must compensate for the entries by using appropriate calls to the set_parameter()
function for setting the prefix, resourcefile, and serial parameters.

2.2.3 Error Handling in ActiveX
Error handling for the PDFlib Active component is done according to COM conventions:
when a PDFlib-internal exception occurs, a COM exception is raised and furnished with
the PDFlib error code and a clear-text description of the error. In addition, PDF_delete()
is called internally. Table 2.3 lists all COM errors thrown by PDFlib along with the corre-
sponding PDFlib exceptions. The COM exception may be caught and handled in the
PDFlib client in whichever way the client environment supports for handling COM er-
rors.

The error codes used in COM are 32-bit values with the highest bit set, which makes
them look like very large negative numbers. PDFlib conforms to the COM conventions,
and returns error codes in the range which is reserved for application-defined errors.
More specifically, the error codes are constructed as follows:

COM error code = 0x80040000 + 0x200 + (PDFlib error code)

(The first hexadecimal number is equal to Visual Basic’s vbObjectError constant, the sec-
ond is the Microsoft-suggested offset for component-specific errors.)

Table 2.3. COM error codes raised by PDFlib

PDFlib error name decimal
value

hexadecimal
value

explanation

MemoryError -2147220991 &H80040201 not enough memory
IOError -2147220990 &H80040202 input/output error, e.g. disk full
RuntimeError -2147220989 &H80040203 wrong order of PDFlib function calls
IndexError -2147220988 &H80040204 array index error
TypeError -2147220987 &H80040205 argument type error
DivisionByZero -2147220986 &H80040206 division by zero
OverflowError -2147220985 &H80040207 arithmetic overflow
SyntaxError -2147220984 &H80040208 syntactical error
ValueError -2147220983 &H80040209 a value supplied as argument to PDFlib is

invalid
SystemError -2147220982 &H8004020A PDFlib internal error
NonfatalError -2147220981 &H8004020B a non-fatal problem was detected
UnknownError -2147220980 &H8004020C other error

2.2 ActiveX/COM Binding 19

Table 2.3 lists all PDFlib error names along with the decimal and hexadecimal error
codes. A more detailed discussion of PDFlib’s exception mechanism can be found in Sec-
tion 3.1.4, »Error Handling«). Fortunately, ActiveX programmers need not deal with
these error numbers directly since the PDFlib_com type library provides symbolic con-
stants in the PDFlib_com.Errors class.

2.2.4 Version Control in ActiveX
Instead of simple major and minor version numbers, COM implements the concept of a
globally unique identifier (GUID) for a class ID which uniquely describes a particular
programming interface. Instead of messing around with different version numbers, a
new software release may decide whether or not to actually support a certain interface
identified via its GUID.

PDFlib_com, being an ActiveX component, makes use of the class ID mechanism. The
GUID for PDFlib_com is contained in its type library (which in turn is contained in pdflib_
com.dll), and in the Windows registry. Since PDFlib is registered under both the generic
program identifier (ProgID) PDFlib_com.PDF, as well as a version-specific ProgID, users
will rarely have to deal with the GUID directly.

2.2.5 Unicode Support in ActiveX
32-bit versions of ActiveX/COM support Unicode natively. The ActiveX language wrap-
per automatically converts all COM strings to Unicode or ISO Latin 1 (PDFDocEncoding),
as appropriate. ActiveX’s Unicode-awareness, however, may lead to subtle problems re-
garding 8-bit encodings (such as winansi) and Unicode characters in literal strings. More
details on this issue can be found in Section 3.3.8, »Unicode Support«. If you want to use
PDFlib’s unicode support with ActiveX you must enable unicode mode by setting the
nativeunicode parameter to true (see examples in the next sections).

2.2.6 Using PDFlib with Active Server Pages

Special considerations for Active Server Pages. When using external files (such as im-
age files) ASP’s MapPath facility must be used in order to map path names on the local
disk to paths which can be used within ASP scripts. Take a look at the ASP samples sup-
plied with PDFlib, and the ASP documentation if you are not familiar with MapPath.
Don’t use absolute path names in ASP scripts since these may not work without Map-
Path.

The directory containing your ASP script must have execute permission, and also
write permission unless the in-core method for generating PDF is used (the supplied
ASP/JScript samples use in-core PDF generation).

You can improve the performance of COM objects such as PDFlib_com on Active Serv-
er Pages by instantiating the object outside the actual script code on the ASP page, effec-
tively giving the object session scope instead of page scope. More specifically, instead of
using CreateObject (as shown in the example in the next section)

<%@ LANGUAGE = "JavaScript" %>
<%

var oPDF;
oPDF = Server.CreateObject("PDFlib_com.PDF");
if (oPDF.open_file("file.pdf") == -1)

...

20 Chapter 2: PDFlib Language Bindings

use the OBJECT tag with the RUNAT, ID, and ProgID attributes to create the PDFlib_com
object:

<OBJECT RUNAT=Server ID=oPDF ProgID="PDFlib_com.PDF"> </OBJECT>

<%@ LANGUAGE = "JavaScript" %>
<%

if (oPDF.open_file("file.pdf") == -1)
...

You can boost performance even more by applying this technique to the global.asa file,
and using the Scope=Application attribute, thereby giving the object application scope.
Additional examples can be found in the PDFlib distribution.

The »Hello world« example for Active Server Pages (ASP) with JScript. Unlike the oth-
er examples we do not create a PDF output file in the ASP examples. Instead, we gener-
ate the PDF data in memory and directly send it to the client via HTTP. This technique is
much more appropriate for a Web server environment.

<%@ LANGUAGE = "JavaScript" %>
<%
// hello.js.asp
//
// PDFlib client: hello example for ActiveX with Active Server Pages and JScript
// Requires the PDFlib ActiveX component
//

var font;
var oPDF;

oPDF = Server.CreateObject("PDFlib_com.PDF");

if (oPDF == null) {
Response.write("Couldn't create PDFlib object!");
Response.end();

}

// Open new PDF file
oPDF.open_file("");

oPDF.set_info("Creator", "hello.js.asp");
oPDF.set_info("Author", "Thomas Merz");
oPDF.set_info("Title", "Hello, world (ActiveX/ASP/JScript)!");

// start a new page
oPDF.begin_page(595, 842);

font = oPDF.findfont("Helvetica-Bold", "winansi", 0);

oPDF.setfont(font, 24);

oPDF.set_text_pos(50, 700);
oPDF.show("Hello, world!");
oPDF.continue_text("(says ActiveX/ASP/JScript)");

oPDF.end_page();
oPDF.close();

2.2 ActiveX/COM Binding 21

Response.Expires = 0;
Response.Buffer = true;
Response.ContentType = "application/pdf";
Response.Addheader("Content-Disposition", "inline; filename=" +

"hello.js.asp.pdf");

Response.BinaryWrite(oPDF.get_buffer());
Response.End();

%>

The »Hello world« example for Active Server Pages (ASP) with VBScript.

<%@ LANGUAGE = VBScript %>
<%
' hello.vbs.asp
'
' PDFlib client: hello example for ActiveX with Active Server Pages and VBScript
' Requires the PDFlib ActiveX component
'

Option Explicit

Dim font
Dim oPDF
Dim buf

Set oPDF = Server.CreateObject("PDFlib_com.PDF")

if not isObject(oPDF) Then
Response.write "Couldn't create PDFlib object!"
Response.end

End If

' Open new PDF file
oPDF.open_file ""

oPDF.set_info "Creator", "hello.vbs.asp"
oPDF.set_info "Author", "Thomas Merz"
oPDF.set_info "Title", "Hello, world (Active X/ASP/VBScript)!"

' start a new page
oPDF.begin_page 595, 842

font = oPDF.findfont("Helvetica-Bold", "winansi", 0)

oPDF.setfont font, 24

oPDF.set_text_pos 50, 700
oPDF.show "Hello, world!"
oPDF.continue_text "(says ActiveX/ASP/VBScript)"

oPDF.end_page
oPDF.close

buf = oPDF.get_buffer()

Response.Expires = 0
Response.Buffer = true
Response.ContentType = "application/pdf"

22 Chapter 2: PDFlib Language Bindings

Response.Addheader "Content-Disposition", "inline; filename=" &
"hello.vbs.asp.pdf"

Response.Addheader "Content-Length", LenB(buf)
Response.BinaryWrite(buf)
Response.End()
Set oPDF = nothing

%>

Error handling in JScript. JScript 5.01 adds structured exception handling to the lan-
guage which looks similar to C++ or Java, with the difference that JScript exceptions can-
not be typed, and only a single clause can deal with an exception. Detecting an excep-
tion and acting upon it is achieved with a try ... catch clause:

try {
...some PDFlib instructions...

} catch (exc) {
Response.write("Error " + exc.number + ": " + exc.description);
Response.end();

}

Note Due to some problem with JScript’s integer handling it’s impossible to directly compare excep-
tion numbers with hexadecimal values. Comparison with decimal values, however, works fine.

Error handling in VBScript. Unfortunately, VBScript doesn’t have any means for catch-
ing errors, but only for ignoring them. For this reason one has to periodically check the
ERR object in order to see whether something went wrong in one of the previous calls to
the ActiveX component. VBScript’s missing On Error GoTo clause has the major drawback
that the script code is either cluttered with calls to the error checking routine, or subse-
quent errors may happen between the first error and the next invocation of the error
checking routine:

On Error Resume Next
Err.Clear

...some PDFlib instructions...

CheckPDFError

...more PDFlib instructions...

Sub CheckPDFError()
If Err.number <> 0 then

WScript.Echo "Error " & Hex(Err.number) & ": " & Err.description
Err.Clear

End If
end Sub

Unicode support in JScript. JScript supports Unicode internally. Unicode characters
can be written directly into string literals using a Unicode-aware text editor; entered
with an escape sequence such as

oPDF.set_parameter("nativeunicode", "true");
Unicodetext = "\u039B\u039F\u0393\u039F\u03A3";

1. JScript 5.0 is available with Microsoft Internet Explorer 5.0 and Microsoft Internet Information Services 5.0

2.2 ActiveX/COM Binding 23

or constructed from numerical values using the String.fromCharCode method:

Unicodetext = String.fromCharCode(0x39B, 0x39F, 0x393, 0x39F, 0x3A3);

Unicode support in VBScript. VBScript supports Unicode internally. Similar to Visual
Basic, Unicode strings can be constructed from numerical values using the ChrW func-
tion:

oPDF.set_parameter "nativeunicode", "true"
Unicodetext = ChrW(&H39B) & ChrW(&H39F) & ChrW(&H393) & ChrW(&H39F) & ChrW(&H3A3)

2.2.7 Using PDFlib with Visual Basic

Special considerations for Visual Basic. When it comes to leveraging external ActiveX
components, Visual Basic supports both early (compile-time) and late (run-time) bind-
ing. Although both types of bindings are possible with PDFlib, early binding is heavily
recommended. It is achieved by performing the following steps:
> Create a reference from your VB project to PDFlib via »Project«, »References...«, and

select the pdflib_com control.
> Declare object variables of type PDFlib_com.PDF instead of the generic type Object:

Dim oPDF As PDFlib_com.PDF

Set oPDF = CreateObject("PDFlib_com.PDF") ’ or: Set oPDF = New PDFlib_com.PDF

Creating a reference and using early binding has several advantages:
> VB can check the code for spelling errors.
> IntelliSense (automatic statement completion) and context-sensitive help are avail-

able.
> The VB object browser shows all PDFlib methods along with their parameters and a

short description.
> VB programs run much faster with early binding than with late binding.

PDFlib programming in Visual Basic is straightforward, with one exception. Due to a Mi-
crosoft-confirmed bug (pardon: an »issue«) in Visual Basic 6 several PDFlib functions
cannot be used directly since VB erroneously overrides PDFlib method names with
some built-in methods of VB. For example, the following cannot be successfully com-
piled in VB 6:

oPDF.circle 10, 10, 30

In order to work around this problem, Microsoft technical support came up with the fol-
lowing suggestion:

oPDF.[circle] 10, 10, 30

Putting the critical method name in brackets seems to do the trick. From all PDFlib func-
tions only the following seem to be affected by this problem:

circle
scale

The data type integer, as used in the PDFlib ActiveX component, is a signed 32-bit quan-
tity. In Visual Basic this corresponds to the long data type. Therefore, when the PDFlib

24 Chapter 2: PDFlib Language Bindings

API reference calls for an int type argument, Visual Basic programmers should translate
this to long (although VB will correctly translate if int values are supplied).

The »Hello world« example in Visual Basic.

Attribute VB_Name = "hello"
' hello.bas
'
' PDFlib client: hello example in Visual Basic via ActiveX
' Important: the PDFlib ActiveX component must be referenced
' via "Project", "References..."!

Option Explicit

Sub main()
 Dim ret As Long, font As Long
 Dim oPDF As PDFlib_com.PDF

Set oPDF = New PDFlib_com.PDF

 ' Open new PDF file
 ret = oPDF.open_file("hello_ax_vb.pdf")
 If (ret = -1) Then
 MsgBox "Couldn't open PDF file!"
 End
 End If

 oPDF.set_info "Creator", "hello.bas"
 oPDF.set_info "Author", "Thomas Merz"
 oPDF.set_info "Title", "Hello, world (ActiveX/VB)!"

 ' start a new page
 oPDF.begin_page 595, 842

 font = oPDF.findfont("Helvetica-Bold", "winansi", 0)

 oPDF.setfont font, 24

 oPDF.set_text_pos 50, 700
 oPDF.show "Hello, world!"
 oPDF.continue_text "(says ActiveX/VB)"

 oPDF.end_page ' finish page
 oPDF.close ' close PDF document

set oPDF = Nothing
End Sub

Error handling in Visual Basic. A Visual Basic program can detect when an error hap-
pens, and react upon the error. Catching Exceptions in Visual Basic is achieved with an
On Error GoTo clause:

Sub main()
Dim oPDF As PDFlib_com.PDF
On Error GoTo ErrExit

...some PDFlib instructions...

2.2 ActiveX/COM Binding 25

End

ErrExit:
MsgBox Hex(Err.Number) & ": " & Err.Description

End Sub

Note You can disable error handling in VBScript with the undocumented On Error GoTo 0 statement
(i.e., using zero as address for the GoTo statement).

Unicode support in Visual Basic. Visual Basic supports Unicode internally. (VB’s pro-
gram editor, however, doesn’t seem to be fully Unicode-aware). Unicode strings can be
constructed from numerical values using the ChrW function:

oPDF.set_info "nativeunicode", "true"
Unicodetext = ChrW(&H39B) & ChrW(&H39F) & ChrW(&H393) & ChrW(&H39F) & ChrW(&H3A3)

2.2.8 Using PDFlib with Windows Script Host
Windows Script Host supports JScript and VBScript, the details of which have already
been discussed in Section 2.2.6, »Using PDFlib with Active Server Pages«. For this reason,
we will only present the hello example for VBScript here.

The »Hello world« example for Windows Script Host (WSH) with VBScript.

' hello.vbs
'
' PDFlib client: hello example for ActiveX with Windows Script Host and VBS
' Requires the PDFlib ActiveX component
'
Option Explicit
On Error Resume Next

Dim font
Dim oPDF

Set oPDF = CreateObject("PDFlib_com.PDF")

' Open new PDF file
if (oPDF.open_file("hello_ax_vbs.pdf") = -1) then

WScript.Echo "Couldn't open PDF file!"
WScript.Quit(1)

end if

oPDF.set_info "Creator", "hello.asp"
oPDF.set_info "Author", "Thomas Merz"
oPDF.set_info "Title", "Hello, world (Active X/VBS)!"

' start a new page
oPDF.begin_page 595, 842

font = oPDF.findfont("Helvetica-Bold", "winansi", 0)

oPDF.setfont font, 24

oPDF.set_text_pos 50, 700
oPDF.show "Hello, world!"
oPDF.continue_text "(says ActiveX/VBS)"

26 Chapter 2: PDFlib Language Bindings

oPDF.end_page
oPDF.close
set oPDF = Nothing

2.2.9 Using PDFlib with Borland Delphi

Special considerations for Borland Delphi. In order to use PDFlib with Delphi you must
reference the PDFlib type library in your project as follows: In »Project«, »Import Type
Library...«, choose the installation path to PDFlib_com.dll, choose PDFlib from the list,
and pick an arbitrary entry in »Palette page«, and »Install...«. This must only be done
once for each Delphi installation, not once for each project.

The »Hello world« example for Borland Delphi.

{
 hello.pas
 Copyright (C) 2000 PDFlib GmbH. All rights reserved.

 PDFlib client: hello example for ActiveX with Delphi
}

unit hello;

interface

uses Windows, Classes, Forms, Dialogs, ExtCtrls, Controls, StdCtrls,
 PDFlib_com_TLB, OleServer;

type
 TForm1 = class(TForm)
 Panel1: TPanel;
 InsertBtn: TButton;
 pdf: TPDF;
 procedure InsertBtnClick(Sender: TObject);
 end;

var
 Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.InsertBtnClick(Sender: TObject);
var
 f: Integer;
begin
 if pdf.open_file('hello_delphi.pdf') = -1 then begin
 ShowMessage('Couldn´t open hello_delphi.pdf!');
 Exit;
 end;

 pdf.set_info('Creator', 'hello.pas');
 pdf.set_info('Author', 'Rainer Schaaf');
 pdf.set_info('Title', 'Hello World (Delphi)');

 pdf.begin_page(595,842);

2.3 C Binding 27

f := pdf.findfont('Helvetica-Bold', 'host', 0);

 pdf.setfont(f, 18.0);
 pdf.set_text_pos(50, 700);
 pdf.show('Hello World');
 pdf.continue_text('(says Delphi)');
 pdf.end_page;
 pdf.close;
end;

end.

Error handling in Borland Delphi. Delphi supports modern exception handling which
can be used for dealing with exceptions thrown from OLE objects such as PDFlib. In or-
der to catch PDFlib exceptions from your Delphi code use the following basic structure:

uses SysUtils;

...

try
 ...some PDFlib instructions...
except
 On E: Exception do begin
 ShowMessage(E.Message);

end;
end;

Unicode support in Borland Delphi. Delphi supports Unicode natively with its Wide-
String data type. If you want to leverage PDFlib’s Unicode support from Delphi you
must use your strings of type WideString:

unicodetext: WideString;
...
pdf.set_parameter('nativeunicode', 'true');
unicodetext := #$039B;

2.3 C Binding
2.3.1 How does the C Binding work?

In order to use the PDFlib C binding, you need to build a static or shared library (DLL on
Windows), and you need the central PDFlib include file pdflib.h for inclusion in your
PDFlib client source modules. The PDFlib distribution is prepared for building both stat-
ic or dynamic versions of the library.

On Windows, using DLLs involves some issues related to the function calling conven-
tions and export or import of DLL functions. The pdflib.h header file deals with these is-
sues by defining appropriate macros for both the library itself as well as for PDFlib cli-
ents. This macro system is set up in a way that PDFlib clients don’t need to take any
special measures in order to get the required import statements from the header file.
However, if you are using function pointers for accessing PDFlib functions (instead of
direct calls) you must make sure that your function pointers are declared using the
same calling conventions as dictated by pdflib.h (depending on whether the static or
shared library is used), since otherwise your program will immediately crash.

28 Chapter 2: PDFlib Language Bindings

2.3.2 Availability and Special Considerations for C
PDFlib itself is written in the ANSI C language, and assumes ANSI C clients as well as 32-
bit platforms (at least). No provisions have been made to make PDFlib compatible with
older C compilers, or 16-bit platforms.

2.3.3 The »Hello world« Example in C
/* hello.c
 *
 * PDFlib client: hello example in C
 *
 */

#include <stdio.h>
#include <stdlib.h>

#include "pdflib.h"

int
main(void)
{
 PDF *p;
 int font;

p = PDF_new();

/* open new PDF file */
if (PDF_open_file(p, "hello_c.pdf") == -1) {

fprintf(stderr, "Error: couldn’t open PDF file.\n");
exit(2);

}

 PDF_set_info(p, "Creator", "hello.c");
 PDF_set_info(p, "Author", "Thomas Merz");
 PDF_set_info(p, "Title", "Hello, world (C)!");

 PDF_begin_page(p, a4_width, a4_height); /* start a new page */

 font = PDF_findfont(p, "Helvetica-Bold", "host", 0);

 PDF_setfont(p, font, 24);
 PDF_set_text_pos(p, 50, 700);
 PDF_show(p, "Hello, world!");
 PDF_continue_text(p, "(says C)");
 PDF_end_page(p); /* close page */

 PDF_close(p); /* close PDF document */
PDF_delete(p); /* delete the PDF "object" */

 exit(0);
}

2.3.4 Error Handling in C
C or C++ clients can install a custom error handler routine with PDF_new2(). In case of an
error this routine will be called with a pointer to the PDF structure, the error type and a

2.3 C Binding 29

descriptive string as arguments. A list of PDFlib error types can be found in Section 3.1.4,
»Error Handling«. Macro definitions for the error types can be found in pdflib.h. These
are constructed by prefixing the error name with PDF_ (e.g., PDF_MemoryError). The
opaque data pointer argument to PDF_new2() is useful for multi-threaded applications
which want to supply a handle to thread- or class-specific data in the PDF_new2() call.
PDFlib supplies the opaque pointer to the user-supplied error and memory handlers via
a call to PDF_get_opaque(), but doesn’t otherwise use it.

An important task of the error handler is to clean up PDFlib internals using PDF_
delete() and the supplied pointer to the PDF object. PDF_delete() will also close the out-
put file if necessary. PDFlib functions other than PDF_delete() must not be called from
within a client-supplied error handler. After fatal exceptions the PDF document cannot
be used, and will be left in an incomplete and inconsistent state.

Except for non-fatal errors (type NonfatalError), client-supplied error handlers must
not return to the library function which raised the exception. This can be achieved by
using the setjmp()/longjmp() facility.

The following code may be used as a starting point for developing a custom error
handler:

void custom_errorhandler(PDF *p, int type, const char* shortmsg)
{
 char msg[256];

 sprintf(msg, "Application error: %s\n", shortmsg);

(void) fprintf(stderr, msg); /* Issue a warning message in all cases */

 switch (type) {
case PDF_NonfatalError:

return;

case PDF_MemoryError: /* you can act on specific errors here */
case PDF_IOError:
case PDF_RuntimeError:
case PDF_IndexError:
case PDF_TypeError:
case PDF_DivisionByZero:
case PDF_OverflowError:
case PDF_SyntaxError:
case PDF_ValueError:
case PDF_SystemError:
case PDF_UnknownError:
default:

 if (p != NULL) /* first allocation? */
PDF_delete(p); /* clean up PDFlib */

 exit(99); /* brutal way of saying good-bye */
 }
}

Obviously, the appropriate action when an error happens is completely application spe-
cific. The above sample doesn’t even attempt to handle the error, but simply exits. A
custom error handler can be installed in PDFlib by using PDF_new2().

30 Chapter 2: PDFlib Language Bindings

2.3.5 Version Control in C
In the C language binding there are two basic versioning issues:
> Does the PDFlib header file in use for a particular compilation correspond to the

PDFlib binary?
> Is the PDFlib library in use suited for a particular application, or is it too old?

The first issue can be dealt with by comparing the macros PDFLIB_MAJORVERSION and
PDFLIB_MINORVERSION supplied in pdflib.h with the return values of the API functions
PDF_get_majorversion() and PDF_get_minorversion() which return PDFlib major and mi-
nor version numbers.

The second issue can be dealt with by comparing the return values of the above-
mentioned functions with fixed values corresponding to the needs of the application.

On Unix platforms the PDFlib library file name may contain version information if
the platform supports it (see Appendix A, »Shared Libraries and DLLs«). In this case PDF-
lib leverages operating system support for library versioning.

2.3.6 Unicode Support in C
C developers must manually construct their Unicode strings according to Section 3.3.8,
»Unicode Support«. For CJK encoding which may contain null characters, the PDF_
show2() functions etc. must be used, since their counterparts PDF_show() etc. expect
regular null-terminated C-style strings which don’t support embedded null characters.

2.4 C++ Binding
2.4.1 How does the C++ Binding work?

In addition to the pdflib.h C header file, an object wrapper for C++ is supplied for PDFlib
clients. It requires the pdflib.hpp header file, which in turn includes pdflib.h which must
also be available. The corresponding pdflib.cpp module should be linked to the applica-
tion which in turn should be linked against the generic PDFlib C library.

Using the C++ object wrapper effectively replaces the PDF_ prefix in all PDFlib func-
tion names with the more object-oriented p-> approach. Keep this in mind when read-
ing the PDFlib API descriptions.

2.4.2 Availability and Special Considerations for C++
Although the PDFlib C++ binding assumes an ANSI C++ environment, this is not strictly
required by the implementation. In fact, we work around some issues related to non-
ANSI-conforming compilers in pdflib.hpp and pdflib.cpp. It may be worthwhile to add
namespace support to the PDFlib C++ wrapper, but this is currently not implemented
due to restrictions in the namespace handling of some widely used compilers.

In most environments there are inherent issues related to C++ deployment in shared
libraries which adversely affect portability. For this reason it is suggested to statically
bind pdflib.cpp to your application, and use the generic PDFlib C library as a shared li-
brary (if shared libraries are to be used at all).

2.4 C++ Binding 31

2.4.3 The »Hello world« Example in C++
// hello.cpp
//
// PDFlib client: hello example in C++
//
//

#include <stdio.h>
#include <stdlib.h>

#include "pdflib.hpp"

int
main(void)
{
 PDF *p; // pointer to the PDF class
 int font;

 p = new PDF();

 // Open new PDF file
 if (p->open("hello_cpp.pdf") == -1) {

fprintf(stderr, "Error: couldn’t open PDF file.\n");
exit(2);

 }

 p->set_info("Creator", "hello.cpp");
 p->set_info("Author", "Thomas Merz");
 p->set_info("Title", "Hello, world (C++)!");

 // start a new page
 p->begin_page((float) a4_width, (float) a4_height);

 font = p->findfont("Helvetica-Bold", "host", 0);

 p->setfont(font, 24);

 p->set_text_pos(50, 700);
 p->show("Hello, world!");
 p->continue_text("(says C++)");
 p->end_page(); // finish page

 p->close(); // close PDF document
 delete p;

 return(0);
}

2.4.4 Error Handling in C++
Error handling for PDFlib clients written in C++ works the same as error handling in C,
so everything in Section 2.3.4, »Error Handling in C« applies to C++, too. In addition, a
number of C++ peculiarities must be observed:

A C++ error handler can be supplied in the PDF constructor, which has the same sig-
nature as the PDF_new2() function. The C++ error handler must not be a class method

32 Chapter 2: PDFlib Language Bindings

since it will be called indirectly through a function pointer without any class associa-
tion.

In the C++ binding, the PDF data type refers to a C++ class, not to the structure used in
the C binding (this change is automatically accomplished via simple macro substitution
in the header files). However, the C++ error handler lives on the client side, but has to
deal with the PDFlib-internal C data structure. For this reason, C++ error handlers must
use the (rather private) data type name PDF_c although the PDFlib API reference calls for
the PDF data type.

Finally, a note for those brave folks who want to throw C++ exceptions in their client-
supplied PDFlib error handler: don’t do it! Since PDFlib is a C implementation, the error
handler will be called from a C-style stack without any exception and stack unwinding
information, so throwing a C++ exception in the error handler is likely to result in a
crash. The correct way to do it is to install a C-style error handler, do a longjmp() to a C++
method, and throw the C++ exception from there (since we’re now back on the C++
stack).

2.4.5 Version Control in C++
Version control for the C++ binding is identical to version control in the C binding (see
Section 2.3.5, »Version Control in C«)

2.4.6 Unicode Support in C++
Unicode support for the C++ binding is identical to Unicode support in the C binding
(see Section 2.3.6, »Unicode Support in C«).

2.5 Java Binding
2.5.1 How does the Java Binding work?

Starting with the Java1 Development Kit (JDK) 1.1, Java supports a portable mechanism
for attaching native language code to Java programs, the Java Native Interface (JNI)2. The
JNI provides programming conventions for calling native C or C++ routines from within
Java code, and vice versa. Each C routine has to be wrapped with the appropriate code in
order to be available to the Java VM, and the resulting library has to be generated as a
shared or dynamic object in order to be loaded into the Java VM.

PDFlib supplies JNI wrapper code for using the library from Java. This technique al-
lows us to attach PDFlib to Java by simply loading the shared library from the Java VM.
The actual loading of the library is accomplished via a static member function in the
pdflib Java class. Therefore, the Java client doesn’t have to bother with the specifics of
loading the shared library.

Taking into account PDFlib’s stability and maturity (and the availability of source
code), attaching the native PDFlib library to the Java VM doesn’t impose any stability or
security restrictions on your Java application, while at the same time offering the per-
formance benefits of a native implementation. Regarding portability (at least on the
server side), remember that PDFlib runs on many more platforms than the Java VM!

1. See http://java.sun.com
2. See http://java.sun.com/products/jdk/1.2/docs/guide/jni/index.html

http://java.sun.com/products/jdk/1.2/docs/guide/jni/index.html
http://java.sun.com

2.5 Java Binding 33

2.5.2 Availability and Special Considerations for Java
Obviously, for developing Java applications you will need the JDK which includes sup-
port for the JNI. For compiling the PDFlib-supplied JNI wrapper file (C code), you will
need the JNI header files for C, which are part of the JDK (or SDK, if the vendor distin-
guishes between runtime and development environment).

The JDK has been ported many Unix and other platforms. Apple’s Java implementa-
tion, the MacOS Runtime for Java (MRJ)1, version 2.0 and above, also supports the JNI. In
order to comply with a court ruling in a law suit against Sun, Microsoft also had to im-
plement JNI support in their Java environment. Microsoft started shipping JNI support
in Visual J++ 6.0 SP2, and the Java VM shipped in Internet Explorer 4.01 SP1a.

For the PDFlib binding to work, the Java VM must have access to the PDFlib Java
wrapper, the auxiliary libraries, and the PDFlib Java package.

The PDFlib Java package. In order to maintain a consistent look-and-feel for the Java
developer, starting with version 3.0 PDFlib is organized as a Java package with the fol-
lowing package name:

com.pdflib.pdflib

This package is available in the pdflib.jar file. You can generate an abbreviated HTML-
based version of the PDFlib API reference (this manual) using the javadoc utility since
the PDFlib class contains the necessary javadoc comments. javadoc-generated documen-
tation is contained in the PDFlib binary distribution. Comments on using PDFlib with
specific Java IDEs may be found in text files in the distribution set.

In order to supply this package to your application, you must add pdflib.jar to your
CLASSPATH environment variable, add the option -classpath pdflib.jar in your calls to the
Java compiler and runtime, or perform equivalent steps in your Java IDE. In JDK 1.2 and
above you can configure the Java VM to search for native libraries in a given directory
by setting the java.library.path property to the name of the directory, e.g.

java -Djava.library.path=. pdfclock

In addition, the following platform-dependent steps must be performed:

Unix. On Unix systems the library name supplied in the PDFlib Java class file will be
decorated according to the system’s naming conventions for the names of shared li-
braries (usually by prepending lib and appending .so). The library must be placed in one
of the default locations for shared libraries, or in an appropriately configured directory
(see Appendix A, »Shared Libraries and DLLs« for details).

Windows. On Windows systems the file name of the PDFlib wrapper is pdf_java.dll).
This DLL must be placed in the Windows system directory, or a directory which is listed
in the PATH environment variable.

Macintosh. On the Mac the library name supplied in the PDFlib Java class file is used
without any change (i.e. pdf_java). The shared library is searched in the Systems
Extensions folder, the MRJ Libraries folder within the Extensions folder, and the folder
where the starting application lives (JBindery, for example). Note that the above nam-

1. See http://devworld.apple.com/java

http://devworld.apple.com/java

34 Chapter 2: PDFlib Language Bindings

ing not only relates to the file name, but also to the fragment name of the library which
must be correctly set by the linker. Also, you may want to increase the amount of mem-
ory allocated to JBindery, especially if you want to process images with PDFlib.

PDFlib servlets. Taking into account its maturity, stability, and speed, PDFlib is per-
fectly suited for server-side Java applications, especially servlets. The PDFlib distribu-
tion contains an example of a PDFlib Java applet which demonstrates the basic use.
When using PDFlib with a specific servlet engine the following configuration issues
should be observed:
> The directory where the servlet engine looks for native libraries varies among ven-

dors. Common candidate locations are system directories, directories specific to the
underlying Java VM, and local directories of the servlet engine. Please check the doc-
umentation supplied by the vendor of your servlet engine.

> Servlets are often loaded by a special class loader which may be restricted, or use a
dedicated classpath. For some servlet engines it is required to define a special engine
classpath to make sure that the PDFlib package will be found.

More detailed notes on using PDFlib with specific servlet engines can be found in addi-
tional documentation contained in the PDFlib distribution.

2.5.3 The »Hello world« Example in Java
/* hello.java
 *
 * PDFlib client: hello example in Java
 */

import java.io.*;
import com.pdflib.pdflib;

public class hello
{
 public static void main (String argv[]) throws

OutOfMemoryError, IOException, IllegalArgumentException,
IndexOutOfBoundsException, ClassCastException, ArithmeticException,
RuntimeException, InternalError, UnknownError

 {
int font;
pdflib p;

p = new pdflib();

if (p.open_file("hello_java.pdf") == -1) {
 System.err.println("Couldn't open PDF file hello_java.pdf\n");
 System.exit(1);
}

p.set_info("Creator", "hello.java");
p.set_info("Author", "Thomas Merz");
p.set_info("Title", "Hello world (Java)");

p.begin_page(595, 842);

font = p.findfont("Helvetica-Bold", "host", 0);

2.5 Java Binding 35

p.setfont(font, 18);

p.set_text_pos(50, 700);
p.show("Hello world!");
p.continue_text("(says Java)");
p.end_page();

p.close();
 }
}

2.5.4 Error Handling in Java
The Java binding installs a special error handler which translates PDFlib errors to native
Java exceptions according to Table 2.4. The Java exceptions can be dealt with by apply-
ing the appropriate language constructs, i.e., by bracketing critical sections:

try {
...some PDFlib instructions...

} catch (Throwable e) {
System.err.println("Exception caught:\n" + e);

}

Since PDFlib declares appropriate throws clauses, client code must either catch all possi-
ble PDFlib exceptions, or declare those itself.

2.5.5 Version Control in Java
Version control for the Java binding is done transparently when loading the shared li-
brary. The wrapper code for loading the PDFlib shared library relies on the major and
minor version numbers (which are queried from the PDFlib library). An exact match of
both minor and major version number is required. If a PDFlib library with a non-match-
ing version number is found, the wrapper code will raise a java.lang.InternalError ex-
ception.

Table 2.4. Java exceptions thrown by PDFlib

PDFlib error name Java exception explanation
MemoryError java.lang.OutOfMemoryError not enough memory
IOError java.io.IOException input/output error, e.g. disk full
RuntimeError java.lang.IllegalArgumentException wrong order of PDFlib function calls
IndexError java.lang.IndexOutOfBoundsException array index error
TypeError java.lang.ClassCastException argument type error
DivisionByZero java.lang.ArithmeticException division by zero
OverflowError java.lang.ArithmeticException arithmetic overflow
SyntaxError java.lang.RuntimeException syntactical error
ValueError java.lang.IllegalArgumentException a value supplied as argument to

PDFlib is invalid
SystemError java.lang.InternalError PDFlib internal error, or

incompatible PDFlib library version
NonfatalError java.lang.UnknownError warnings (can be disabled)
UnknownError java.lang.UnknownError other error

36 Chapter 2: PDFlib Language Bindings

2.5.6 Unicode Support in Java
Java supports Unicode natively. The Java language wrapper automatically converts all
Java strings to Unicode or ISO Latin 1 (PDFDocEncoding), as appropriate. Java’s Unicode-
awareness, however, may lead to subtle problems regarding 8-bit encodings (such as
winansi) and Unicode characters in literal strings. More details on this issue can be
found in Section 3.3.8, »Unicode Support«.

Unicode characters can be written directly into code and string literals using a Uni-
code-aware text editor, or entered with an escape sequence such as

p.set_parameter("nativeunicode", "true");
Unicodetext = "\u039B\u039F\u0393\u039F\u03A3";

2.6 Perl Binding
2.6.1 How does the Perl Binding work?

Perl1 supports a mechanism for extending the language interpreter via native C librar-
ies. The PDFlib wrapper for Perl consists of a C wrapper file and a Perl package module.
The C module is used to build a shared library which is loaded at runtime by the Perl in-
terpreter, with some help from the package file. The shared library module is referred to
from the Perl script via a use statement.

2.6.2 Availability and Special Considerations for Perl
The Perl extension mechanism loads shared libraries at runtime through the DynaLoad-
er module. The Perl executable must have been compiled with support for shared librar-
ies (this is true for the majority of Perl configurations).

For the PDFlib binding to work, the Perl interpreter must have access to the PDFlib
Perl wrapper, the auxiliary libraries, and the module file pdflib_pl.pm. In addition to the
platform-specific methods described below you can add a directory to Perl’s @INC
search path using a command similar to the following:

use lib qw(/path/to/lib);
use pdflib_pl 3.01;

before the use pdflib_pl line. However, Perl will only use the path given in this command
for the PDFlib wrapper library (e.g., pdflib_pl.so.0), but not any required auxiliary librar-
ies. These must either be made available via operating system specific methods (see Ap-
pendix A, »Shared Libraries and DLLs«), or built into the PDFlib wrapper library.

Unix. On Unix systems both pdflib_pl.so and pdflib_pl.pm will be found if placed in the
current directory, or the directory printed by the following Perl command:

perl -e 'use Config; print $Config{sitearchexp};'

Perl will also search the subdirectory auto/pdflib_pl. PDFlib’s install mechanism will
place the files in the correct directories. Typical output of the above command looks like

/usr/lib/perl5/site_perl/5.6/i686-linux

1. See http://www.perl.com

http://www.perl.com

2.6 Perl Binding 37

Windows. On the Windows platform PDFlib supports the ActiveState port of Perl 5 to
Windows, also known as ActivePerl.1 PDFlib does not work with the Microsoft port or
other old ports of Perl 5. Both pdflib_pl.dll and pdflib_pl.pm will be found if placed in the
current directory, or the directory printed by the following Perl command:

perl -e "use Config; print $Config{sitearchexp};"

Typical output of the above command looks like

C:\Program Files\Perl5.6\site\lib

Note ActivePerl 5.6 is not compatible to older versions of ActivePerl with respect to extension mod-
ules. For this reason pdflib_pl.dll cannot be exchanged between ActivePerl 5.6 and older ver-
sions. The PDFlib binary distribution contains DLLs for both.

Macintosh. PDFlib supports the Macintosh port of Perl known as MacPerl2. Both the
shared library pdflib_pl and pdflib_pl.pm will be found if placed in the current folder, or
in one of the following folders:

<MacPerl>:lib
<MacPerl>:lib:MacPPC

where <MacPerl> denotes the Perl installation folder. In order to run the supplied sam-
ples, start Perl and open the script via »Script«, »Run Script«. It should be noted that the
generated PDF output ends up in the Perl interpreter’s folder if a relative file name is
supplied (as in the sample scripts). You may want to increase the memory allocated to
the Perl interpreter, especially if you want to process images with PDFlib.

2.6.3 The »Hello world« Example in Perl
#!/usr/bin/perl
hello.pl
#
PDFlib client: hello example in Perl
#

use pdflib_pl 3.01;

$p = PDF_new();

die "Couldn't open PDF file" if (PDF_open_file($p, "hello_pl.pdf") == -1);

PDF_set_info($p, "Creator", "hello.pl");
PDF_set_info($p, "Author", "Thomas Merz");
PDF_set_info($p, "Title", "Hello world (Perl)");

PDF_begin_page($p, 595, 842);
$font = PDF_findfont($p, "Helvetica-Bold", "host", 0);

PDF_setfont($p, $font, 18.0);

PDF_set_text_pos($p, 50, 700);
PDF_show($p, "Hello world!");

1. See http://www.activestate.com
2. See http://www.macperl.com

http://www.activestate.com
http://www.macperl.com

38 Chapter 2: PDFlib Language Bindings

PDF_continue_text($p, "(says Perl)");
PDF_end_page($p);
PDF_close($p);

PDF_delete($p);

2.6.4 Error Handling in Perl
The Perl binding installs a special error handler which translates PDFlib errors to native
Perl exceptions. The Perl exceptions can be dealt with by applying the appropriate lan-
guage constructs, i.e., by bracketing critical sections:

eval {
...some PDFlib instructions...

};
die "Exception caught" if $@;

2.6.5 Version Control in Perl
Perl’s package mechanism supports a major/minor version number scheme for exten-
sion modules which is used by the PDFlib Perl binding. PDFlib applications written in
Perl simply use the line

use pdflib_pl 3.01;

in order to make sure they will get the required library version (or a newer one).

2.6.6 Unicode Support in Perl
Perl developers must manually construct their Unicode strings according to Section
3.3.8, »Unicode Support«.

2.7 Python Binding
2.7.1 How does the Python Binding work?

Python1 supports a mechanism for extending the language (interpreter) via native C li-
braries. The PDFlib wrapper for Python consists of a C wrapper file. The C module is used
to build a shared library which is loaded at runtime by the Python interpreter. The
shared library module is referred to from the Python script via an import statement.

2.7.2 Availability and Special Considerations for Python
The Python extension mechanism works by loading shared libraries at runtime. For the
PDFlib binding to work, the Python interpreter must have access to the PDFlib Python
wrapper:

Unix. On Unix systems the PDFlib shared library for Python pdflib_py.so will be
searched in the directories listed in the PYTHONPATH environment variable.

Windows. On Windows systems the PDFlib shared library pdflib_py.dll will be searched
in the directories listed in the PYTHONPATH environment variable.

1. See http://www.python.org

http://www.python.org

2.7 Python Binding 39

Macintosh. On the Mac the PDFlib shared library pdflib_py.ppc.slb will be searched in
the Mac:Plugins folder of the Python application folder.

2.7.3 The »Hello world« Example in Python
#!/usr/bin/python
hello.py
#
PDFlib client: hello example in Python
#

from sys import *
from pdflib_py import *

p = PDF_new()

if PDF_open_file(p, "hello_py.pdf") == -1:
 print 'Couldn\'t open PDF file!', "hello_py.pdf"

exit(2);

PDF_set_info(p, "Author", "Thomas Merz")
PDF_set_info(p, "Creator", "hello.py")
PDF_set_info(p, "Title", "Hello world (Python)")

PDF_begin_page(p, 595, 842)
font = PDF_findfont(p, "Helvetica-Bold", "host", 0)

PDF_setfont(p, font, 18.0)

PDF_set_text_pos(p, 50, 700)
PDF_show(p, "Hello world!")
PDF_continue_text(p, "(says Python)")
PDF_end_page(p)
PDF_close(p)

PDF_delete(p);

2.7.4 Error Handling in Python
The Python binding installs a special error handler which translates PDFlib errors to na-
tive Python exceptions according to Table 2.5. The Python exceptions can be dealt with
by applying the appropriate language constructs, i.e., by bracketing critical sections:

try:
...some PDFlib instructions...

except:
print 'Exception caught!'

Table 2.5. Python exceptions thrown by PDFlib

PDFlib error name Python exception explanation
MemoryError MemoryError not enough memory
IOError IOError input/output error, e.g. disk full
RuntimeError RuntimeError wrong order of PDFlib function calls
IndexError IndexError array index error
TypeError TypeError argument type error

40 Chapter 2: PDFlib Language Bindings

2.7.5 Version Control in Python
We are currently not aware of any intrinsic versioning scheme available for Python.
Currently PDFlib applications in Python must use manual version control.

2.7.6 Unicode Support in Python
Python developers must manually construct their Unicode strings according to Section
3.3.8, »Unicode Support«.

2.8 Tcl Binding
2.8.1 How does the Tcl Binding work?

Tcl1 supports a mechanism for extending the language (interpreter) via native C librar-
ies. The PDFlib wrapper for Tcl consists of a C wrapper file. The C module is used to build
a shared library which is loaded at runtime by the Tcl interpreter.

In addition, the PDFlib Tcl binding leverages the idea of extension packages intro-
duced in Tcl 7.5. All PDFlib functions are packed into a single Tcl extension package. The
shared library module is referred to from the Tcl script via a package statement.

2.8.2 Availability and Special Considerations for Tcl
The Tcl extension mechanism works by loading shared libraries at runtime. For extend-
ing the Tcl interpreter with PDFlib, Tcl 8.0 or higher is required (because of its support
for binary strings). Unicode support requires Tcl 8.2 or higher. The PDFlib wrapper code
for Tcl may also be compiled for older versions of Tcl (down to 8.0). The supplied bina-
ries, however, require Tcl 8.2 or higher.

For the PDFlib binding to work, the Tcl shell must have access to the PDFlib Tcl wrap-
per (the supplied test programs use auto_path to make the library available from the
current directory; this facilitates testing) and the package index file pkgIndex.tcl:

Unix. On Unix systems the library name pdflib_tcl.so supplied in the pkgIndex.tcl file
must be placed in one of the default locations for shared libraries, or in an appropriately
configured directory (see Appendix A, »Shared Libraries and DLLs« for details).

DivisionByZero ZeroDivisionError division by zero
OverflowError OverflowError arithmetic overflow
SyntaxError SyntaxError syntactical error
ValueError ValueError a value supplied as argument to PDFlib is invalid
SystemError SystemError PDFlib internal error
NonfatalError RuntimeError warnings (can be disabled)
UnknownError RuntimeError other error

1. See http://dev.scriptics.com

Table 2.5. Python exceptions thrown by PDFlib

PDFlib error name Python exception explanation

http://dev.scriptics.com

2.8 Tcl Binding 41

Windows. Unfortunately, Tcl doesn’t itself produce a platform-specific decoration of
the library name. If you compile the Tcl binding from source code, you must change the
library name pdflib_tcl.so supplied in the pkgIndex.tcl file to the appropriate name
pdflib_tcl.dll (this has already been done in the binary distribution). A library by this
name will be searched in the Tcl shell’s directory, the current directory, the Windows
and Windows\system32 directories, and the directories listed in the PATH environment
variable. The files pkgIndex.tcl and pdflib_tcl.dll will be searched for in the directories

C:\Program Files\Tcl 8.3\lib\tcl8.3\
C:\Program Files\Tcl 8.3\lib\tcl8.3\pdflib

Make sure to have the auxiliary DLLs accessible, too.

Mac. On the Mac the library pdflib_tcl.so and pkgIndex.tcl will be searched in the Tcl
shell’s folder, and in the folders

System:Extensions:Tool Command Language:tcl8.3
System:Extensions:Tool Command Language:tcl8.3:pdflib

In order to run the supplied samples, start the Wish application and use the »Source«
menu command to locate the Tcl script. It should be noted that the generated PDF out-
put ends up in the Tcl shell’s folder if a relative file name is supplied (as in the sample
scripts).

2.8.3 The »Hello world« Example in Tcl
#!/bin/sh
#
hello.tcl
#
PDFlib client: hello example in Tcl
#

Hide the exec to TCL but not to the shell by appending a backslash\
exec tclsh "$0" ${1+"$@"}

The lappend line is unnecessary if PDFlib has been installed
in the Tcl package directory
lappend auto_path .

package require pdflib 3.01

set p [PDF_new]

if {[PDF_open_file $p "hello_tcl.pdf"] == -1} {
 puts stderr "Couldn't open PDF file!"
 exit
}

PDF_set_info $p "Creator" "hello.tcl"
PDF_set_info $p "Author" "Thomas Merz"
PDF_set_info $p "Title" "Hello world (Tcl)"

PDF_begin_page $p 595 842
set font [PDF_findfont $p "Helvetica-Bold" "host" 0]

42 Chapter 2: PDFlib Language Bindings

PDF_setfont $p $font 18.0

PDF_set_text_pos $p 50 700
PDF_show $p "Hello world!"
PDF_continue_text $p "(says Tcl)"
PDF_end_page $p
PDF_close $p

PDF_delete $p

2.8.4 Error Handling in Tcl
The Tcl binding installs a special error handler which translates PDFlib errors to native
Tcl exceptions. The Tcl exceptions can be dealt with by applying the appropriate lan-
guage constructs, i.e., by bracketing critical sections:

if [catch { ...some PDFlib instructions... } result] {
puts stderr "Exception caught!"
puts stderr $result

}

2.8.5 Version Control in Tcl
Tcl’s package mechanism supports a major/minor version number scheme for exten-
sion modules which is used by the PDFlib Tcl binding. PDFlib applications written in Tcl
simply use the line

package require pdflib 3.01

in order to make sure they will get the required library version (or a newer one, which is
ok for PDFlib).

2.8.6 Unicode Support in Tcl
Starting with version 8.2, Tcl supports Unicode natively. The Tcl language wrapper auto-
matically converts all Tcl strings to Unicode or ISO Latin 1 (PDFDocEncoding), as appro-
priate. Tcl’s Unicode-awareness, however, may lead to subtle problems regarding 8-bit
encodings (such as winansi) and Unicode characters in literal strings. More details on
this issue can be found in Section 3.3.8, »Unicode Support«.

Unicode characters can be written directly into code and string literals using a Uni-
code-aware text editor, or entered with an escape sequence such as

PDF_set_parameter $p "nativeunicode" "true"
set Unicodetext "\u039B\u039F\u0393\u039F\u03A3"

3.1 General Programming Issues 43

3 PDFlib Programming Concepts

3.1 General Programming Issues
3.1.1 PDFlib Program Structure

PDFlib applications must obey certain structural rules which are very easy to under-
stand. Writing applications according to these restrictions is straightforward. For exam-
ple, you don’t have to think about opening a page first before closing it. Since the PDFlib
API is very closely modelled after the document/page paradigm, generating documents
the »natural« way usually leads to well-formed PDFlib client programs.

PDFlib checks for several conditions in the ordering of API calls, but doesn’t attempt
to trap all kinds of illegal function call combinations. In the development phase it will
be helpful to take a look at all warning messages generated by PDFlib, since these usual-
ly point to problems in the client’s ordering of function calls. PDFlib will throw an ex-
ception if bad parameters are supplied by a library client.

3.1.2 Memory Management
Note This section applies to C and C++ PDFlib clients only. All other language bindings leverage the

internal memory management of the language environment.

PDFlib dynamically allocates and frees lots of small and large memory chunks. The gen-
eral strategy is to strictly separate PDFlib memory from client memory. In order to
achieve this, data supplied by the client to PDFlib functions is copied into PDFlib memo-
ry space if the data is still needed after the call is finished. Consequently, PDFlib is re-
sponsible for freeing such memory when the data is no longer needed.

In order to allow for maximum flexibility, PDFlib’s internal memory management
routines (which are based on standard C malloc/free) may be replaced by external proce-
dures provided by the client. These procedures will be called for all PDFlib-internal
memory allocation or deallocation.

It is not reasonable to provide custom memory management routines from the
scripting language bindings (since freeing the programmer from memory management
chores is a major advantage of scripting languages). For this reason, custom memory
management routines are only available for the C and C++ programmer. For all other
language bindings memory management is handled in the respective wrapper code.

Memory Management in C. Memory management routines can be installed with a call
to PDF_new2(), and will be used in lieu of PDFlib’s internal memory management rou-
tines. Either all or none of the following routines must be supplied:
> an allocation routine.
> a deallocation (free) routine
> a reallocation routine for enlarging memory blocks previously allocated with the al-

location routine.
These routines must adhere to the standard C malloc/free/realloc semantics, but may
choose an arbitrary implementation. All routines will be supplied with a pointer to the
calling PDF object. The only exception to this rule is that the very first call to the alloca-

44 Chapter 3: PDFlib Programming Concepts

tion routine will supply a PDF pointer of NULL. Client-provided memory allocation rou-
tines must therefore be prepared to deal with a NULL PDF pointer.

Using the PDF_get_opaque() function, an opaque application specific pointer can be
retrieved from the PDF object. The opaque pointer itself is supplied by the client in the
PDF_new2() call. The opaque pointer is useful for multi-threaded applications which
may want to keep a pointer to thread- or class specific data inside the PDF object, for use
in memory management or error handling routines.

The signatures of the memory management routines can be found in Section 4.2,
»General Functions«.

Memory Management in C++. The PDF constructor accepts an optional error handler,
optional memory management procedures, and an optional opaque pointer argument.
Default NULL arguments are supplied in pdflib.hpp which will result in PDFlib’s internal
error and memory management routines becoming active.

Client-supplied memory management for the C++ binding works the same as with
the C language binding. As with the error handler, the signatures of the memory man-
agement routines must be slightly changed to use PDF_c instead of PDF as their first ar-
gument.

Note User-supplied memory management routines are used (besides PDFlib) in the Zlib compression
library, but not in the TIFF and PNG libraries.

3.1.3 Generating PDF Documents directly in Memory
In addition to generating PDF documents on a file, PDFlib can also be instructed to gen-
erate the PDF directly in memory (»in-core«). This technique offers performance bene-
fits since no disk-based I/O is involved, and the PDF document can, for example, directly
be streamed via HTTP. Webmasters will be especially happy to hear that their server will
not be cluttered with temporary PDF files. Unix users can write the generated PDF to the
stdout channel and consume it in a pipe process by supplying »–« as filename for PDF_
open_file().

You may, at your option, periodically collect partial data (e.g., every time a page has
been finished), or fetch the complete PDF document in one big chunk at the end (after
PDF_close()). Interleaving production and consumption of the PDF data has several ad-
vantages. Firstly, since not all data must be kept in memory, the memory requirements
are reduced. Secondly, such a scheme can boost performance since the first chunk of
data can be transmitted over a slow link while the next chunk is still being generated.
However, the total length of the generated data will only be known when the complete
document is finished.

The active in-core PDF generation interface. In order to generate the PDF data in mem-
ory simply supply an empty filename to PDF_open_file(), and retrieve the data with PDF_
get_buffer():

PDF_open_file(p, "")
...create document...
PDF_close(p);

buf = PDF_get_buffer(p, &size);
... use the PDF data contained in the buffer buf...
PDF_delete(p);

3.1 General Programming Issues 45

This is considered »active« mode since the client decides when he wishes to fetch the
buffer contents. Active mode is available for all supported language bindings.

Note C and C++ clients must neither touch nor free the returned buffer.

The passive in-core PDF generation interface. In »passive« mode, which is only avail-
able in the C and C++ language bindings, the user installs (via PDF_open_mem()) a call-
back function which will be called at unpredictable times by PDFlib whenever PDF data
is waiting to be consumed. However, timing and buffer size constraints related to flush-
ing (transferring the PDF data from the library to the client) can be configured by the cli-
ent in order to provide for maximum flexibility. Depending on the environment, it may
be advantageous to fetch the complete PDF document at once, in multiple chunks, or in
many small segments in order to prevent PDFlib from increasing the internal docu-
ment buffer. The flushing strategy can be set using PDF_set_parameter() and the flush
parameter values detailed in Table 3.1.

3.1.4 Error Handling
Errors of a certain kind are called exceptions in many languages for good reasons – they
are mere exceptions, and are not expected to occur very often during the lifetime of a
program. The general strategy, then, is to use conventional error reporting mechanisms
(read: special function return codes) for function calls which may go wrong often times,
and use a special exception mechanism for those rare occasions which don’t warrant
cluttering the code with conditionals. This is exactly the path that PDFlib goes: Some
operations can be expected to go wrong rather frequently, for example:
> Trying to open an output file for which one doesn’t have permission
> Using a font for which metrics information cannot be found
> Trying to open a corrupt image file

PDFlib signals such errors by returning a special value (usually – 1) as documented in
the API reference. Other events may be considered harmful, but will occur rather infre-
quently, e.g.
> running out of virtual memory
> not adhering to programming restrictions (e.g., closing a document before opening

it)
> supplying wrong parameters to PDFlib API functions (e.g., trying to draw a circle with

a negative radius, or supplying NULL pointers for required string arguments)

If the library detects such an exceptional situation, a central error handler is called in
order to deal with the situation, instead of passing special return values to the caller.

Table 3.1. Controlling PDFlib’s flushing strategy with the flush parameter

flush parameter flushing strategy benefits
none flush only once at the end of the

document
complete PDF document can be fetched by
the client in one chunk

page flush at the end of each page generating and fetching pages can be nicely
interleaved

content flush after all fonts, images, file
attachments, and pages

even better interleaving, since large items
won’t clog the buffer

heavy always flush when the internal 64
KB document buffer is full

PDFlib’s internal buffer will never grow
beyond a fixed size

46 Chapter 3: PDFlib Programming Concepts

Obviously, the appropriate way to deal with an error heavily depends on the language
used for driving PDFlib. For this reason, details on error handling are given in the lan-
guage-specific sections in Chapter 2. Generally, we let C and C++ clients decide what to
do by installing a custom error handler in PDFlib, or propagate the error to the lan-
guage’s native exception handling mechanism (all other language bindings). In the case
of native language exceptions, the library client has the choice of catching exceptions
and appropriately dealing with them, using the means of the respective language. The
implementation of raising exceptions is obviously language-specific, and part of the
wrapper code.

For C and C++ clients which chose to not install their own error handler, the default
action upon exceptions is to issue an appropriate message on the standard output
channel, and exit on fatal errors. The PDF output file will be left in an inconsistent state!
Since this may not be adequate for a library routine, for serious PDFlib projects it is
strongly advised to leverage PDFlib’s error handling facilities. A user-defined error han-
dler may, for example, present the error message in a GUI dialog box, and take other
measures instead of aborting. More information on implementing a custom error han-
dler (for C and C++) and catching exceptions (for other language bindings) can be found
in Chapter 2.

Runtime errors in PDFlib applications fall into one of several categories as shown in
Table 3.2. The error handler will receive the type of PDFlib error along with a descriptive
message as arguments, and present it to the user (for most language bindings), or per-
form custom operations if a user-supplied error handler was installed (for C and C++).

Non-fatal error messages (warnings) generally indicate some problem in your PDFlib
code which you should investigate more closely. However, processing may continue in
case of non-fatal errors. For this reason, you can suppress warnings using the following
function call:

PDF_set_parameter(p, "warning", "false");

The suggested strategy is to enable warnings during the development cycle (and closely
examine possible warnings), and disable warnings in a production system.

Table 3.2. PDFlib runtime errors

error name decimal value explanation
MemoryError 1 not enough memory
IOError 2 input/output error, e.g. disk full
RuntimeError 3 wrong order of PDFlib function calls
IndexError 4 array index error
TypeError 5 argument type error
DivisionByZero 6 division by zero
OverflowError 7 arithmetic overflow
SyntaxError 8 syntactical error
ValueError 9 a value supplied as argument to PDFlib is invalid
SystemError 10 PDFlib internal error, or configuration problem (e.g.,

version mismatch)
NonfatalError 11 A non-fatal problem was detected. Non-fatal errors

(warnings) can be suppressed using PDF_set_parameter().
UnknownError 12 other error

3.2 Page Descriptions 47

3.2 Page Descriptions
3.2.1 Coordinate Systems

PDF’s default coordinate system is used within PDFlib. The default coordinate system
(or default user space in PDF lingo) has the origin in the lower left corner of the page,
and uses the DTP point as unit:

1 pt = 1 inch / 72 = 25.4 mm / 72 = 0.3528 mm

The first coordinate increases to the right, the second coordinate increases upward.
PDFlib client programs may change the default user space by rotating, scaling, translat-
ing, or skewing, resulting in new user coordinates. The respective functions for these
transformations are PDF_rotate(), PDF_scale(), PDF_translate(), and PDF_skew(). If the
user space has been transformed, all coordinates in graphics and text functions must be
supplied according to the new coordinate system. The coordinate system is reset to the
default coordinate system at the start of each page.

In order to assist PDFlib users in working with PDF’s coordinate system, the PDFlib
distribution contains the PDF file grid.pdf which visualizes the coordinates for several
common page sizes. Printing the appropriately sized page on transparent material (take
care to use suitable material since cheap overhead transparencies do not withstand
heat, and may ruin your laser printer!) may provide a useful tool for preparing PDFlib
development.

Don’t be mislead by PDF printouts which seem to experience page objects with
wrong dimensions. These may be wrong because of some common reasons:
> The »Fit to Page« option has been checked in Acrobat’s print dialog, resulting in

scaled print output.
> Non-PostScript printer drivers are not always able to retain the exact size of page ob-

jects.
The freely available Acrobat plugins callas pdfMeasure1 or Enfocus Measure2 may help
in determining object sizes and distances in PDF files.

Note Hypertext functions, such as those for creating text annotations, links, and file annotations are
not affected by user space transformations, and always use the default coordinate system in-
stead.

Using metric coordinates. Metric coordinates can easily be used by scaling the coor-
dinate system. The scaling factor is derived from the definition of the DTP point given
above:

PDF_scale(p, 28.3465, 28.3465);

After this call PDFlib will interpret all coordinates (except for hypertext features, see
above) in centimeters since 72 / 2.54 = 28.3465.

Using top-down coordinates. Unlike PDF’s bottom-up coordinate system some graph-
ics environments use top-down coordinates which may be preferred by some develop-
ers. Such a coordinate system can easily be established using PDFlib’s transformation
functions. However, since the transformations will also affect text output additional

1. See http://www.callas.de/download.htm
2. See http://www.enfocus.com/plugins.htm

http://www.enfocus.com/plugins.htm
http://www.callas.de/download.htm

48 Chapter 3: PDFlib Programming Concepts

calls are required in order to avoid text being displayed in a mirrored sense. In order to
set up a coordinate system with the origin in the top left corner of the page and the y co-
ordinate pointing downwards while maintaining the usual text direction (text stands
upright on the page) use the following code sequence:

PDF_begin_page(p, width, height); /* set up the page dimensions */
PDF_translate(p, 0, height); /* move the coordinate origin */
PDF_scale(p, 1, -1); /* reflect at the horiz. axis */

font = PDF_findfont(p, "Helvetica-Bold", "host", 0); /* sample text */
PDF_setfont(p, font, -18.0); /* make the text point upwards */
PDF_set_value(p, "horizscaling", -100); /* compensate for the mirroring */

PDF_set_text_pos(p, 50, 100); /* now use top-down coordinates */
PDF_show(p, "Hello world!");

Page sizes. Although PDF and PDFlib don’t impose any restrictions on the usable page
size, Acrobat implementations suffer from architectural limits regarding the page size.
Note that other PDF interpreters may well be able to deal with larger or smaller docu-
ment formats. If run in Acrobat 3 compatibility mode PDFlib will throw a PDF_
RuntimeError exception if the Acrobat 3 limits are exceeded; if run in Acrobat 4 compati-
bility mode (the default) PDFlib will only issue a non-fatal warning message.

Common standard page size dimensions can be found in Table 3.4.1 (C macro definitions
for these formats are available in pdflib.h.)

3.2.2 Paths and Color

Graphics paths. A path is a shape made of an arbitrary number of straight lines, rect-
angles, or curves. A path may consist of several disconnected sections. Paths may be
stroked or filled, or used for clipping. Stroking draws a line along the path, using client-
supplied parameters for drawing. Filling paints the entire region enclosed by the path,

Table 3.3. Minimum and maximum page sizes supported by Acrobat 3 and 4

Acrobat viewer minimum page size maximum page size
Acrobat 3 1" = 72 pt = 2.54 cm 45" = 3240 pt = 114.3 cm
Acrobat 4 1/24" = 3 pt = 0.106 cm1

1. The documented limit for Acrobat 4 is 1/4" = 18 pt = 0.635 cm, but the above seems to be the real limit.

200" = 14400 pt = 508 cm

1. More information about ISO, Japanese, and U.S. standard formats can be found at the following URLs:
http://www.twics.com/~eds/papersize.html, http://www.cl.cam.ac.uk/~mgk25/iso-paper.html

Table 3.4. Common standard page size dimensions

page format width height page format width height
A0 2380 3368 A6 297 421
A1 1684 2380 B5 501 709
A2 1190 1684 letter 612 792
A3 842 1190 legal 612 1008
A4 595 842 ledger 1224 792
A5 421 595 11 x 17 792 1224

http://www.twics.com/~eds/papersize.html
http://www.cl.cam.ac.uk/~mgk25/iso-paper.html

3.3 Text Handling 49

using client-supplied parameters. Clipping reduces the imageable area by replacing the
current clipping area (which is the page size by default) with the intersection of the cur-
rent clipping area and the path.

It’s important to understand that merely constructing a path doesn’t result in any-
thing showing up on the page; you must either fill or stroke the path in order to get vis-
ible results:

PDF_moveto(p, 100, 100);
PDF_lineto(p, 200, 100);
PDF_stroke(p);

Most graphics functions make use of the concept of a current point, which can be
thought of as the location of the pen used for drawing.

Color. PDFlib clients may specify the colors used for filling and stroking the interior of
paths and text characters. Colors may be specified as gray values between 0 and 1, or as
RGB triples, i.e., three values between 0 and 1 specifying the percentage of red, green,
and blue. The default value for stroke and fill colors is black, i.e. (0, 0, 0).

3.2.3 Ordering constraints

Ordering constraints for path functions. For the sake of efficiency, PDF page descrip-
tions must obey certain restrictions related to the ordering of path description, build-
ing, and using the path. In particular, none of the following functions must be used be-
tween the beginning of a path (i.e., one of the functions listed in Section 4.4.3, »Path
Segments«) and its natural demise (i.e., one of the functions listed in Section 4.4.4, »Path
Painting and Clipping«):
> all functions listed in Section 4.4.1, »General Graphics State« (e.g., changing line

width or linecap)
> all functions listed in Section 4.4.2, »Special Graphics State«
> all functions listed in Section 4.5, »Color Functions« (e.g., changing the fill or stroke

color)

These rules may easily be summarized as »don’t change the appearance within a path
description«.

3.3 Text Handling
3.3.1 The PDF Core Fonts

PDF viewers support a core set of 14 fonts which need not be embedded in any PDF file.
Even when a font isn’t embedded in the PDF file, PDF and therefore PDFlib need to know
about the width of individual characters. For this reason, metrics information for the
core fonts is already built into the PDFlib binary. However, the builtin metrics informa-
tion is only available for the native host encoding (see below). Using another encoding
than the host encoding requires metrics information files. Metrics files for the PDF core
fonts are included in the PDFlib distribution in order to make it possible to use encod-
ings other than the host encoding. The core fonts are the following:

50 Chapter 3: PDFlib Programming Concepts

Courier, Courier-Bold, Courier-Oblique, Courier-BoldOblique,
Helvetica, Helvetica-Bold, Helvetica-Oblique, Helvetica-BoldOblique,
Times-Roman, Times-Bold, Times-Italic, Times-BoldItalic,
Symbol, ZapfDingbats

3.3.2 Builtin and External 8-Bit Encodings
PDF supports flexible text encodings (the mapping of numerical code values to charac-
ter glyphs) for 8-bit text fonts. PDFlib includes provisions for supporting diverse encod-
ing vectors for dealing with text. The builtin encoding vectors are referred to via sym-
bolic names. Table 3.5 lists the symbolic encoding names supported internally by
PDFlib. Additional encodings are available in external encoding files distributed with
PDFlib (see below), or can be defined by the user (see Section 3.3.3, »Custom Encoding
Files for 8-Bit Encodings«). All supported encodings can be arbitrarily mixed in one doc-
ument. You may even use different encodings for a single font, although the need to do
so will only rarely arise.

The winansi encoding. This encoding reflects the Windows ANSI character set, more
specifically codepage 1252 including the three characters which Microsoft added for
Windows 98 and Windows 2000 (Euro, Zcaron, and zcaron). The exact definition can be
found in the C header files in the PDFlib source file set, or in the PDF specification [1].
The winansi encoding is a superset of ISO 8859-1 (Latin-1) and can therefore also be used
on Unix systems.

Note Most PostScript fonts do not yet contain the three additional Windows characters. They are
supported by the core fonts in Acrobat 4, however.

The macroman encoding. This encoding reflects the MacOS character set, albeit with
the old currency symbol at position 219, and not the Euro character as redefined by Ap-
ple (this incompatibility is dictated by the PDF specification). Also, this encoding does
not include the Apple glyph and the mathematical symbols as defined in the MacOS
character set. The exact definition can be found in the C header files in the PDFlib source
distribution, or in the PDF specification [1].

The ebcdic encoding. This encoding relates to the EBCDIC (Extended Binary Coded
Decimal Interchange Code) defined by IBM and used on the IBM AS/400, S/390, and other
midrange and mainframe systems. More specifically, PDFlib’s ebcdic encoding uses the
EBCDIC codepage 1047. As with all other PDFlib encodings, ebcdic encoding is always
available for generating PDF output, and not only on native EBCDIC machines. The dif-

Table 3.5. Builtin character encodings supported by PDFlib

encoding description
winansi Windows codepage 1252, a superset of ISO 8859-1
macroman Mac Roman encoding, i.e., the default Macintosh character set
ebcdic EBCDIC codepage 1047 as used on IBM AS/400 and S/390 systems
builtin Original encoding used by non-text (symbol) or non-latin text fonts
host macroman on the Mac, ebcdic on EBCDIC-based systems, and winansi on all others

3.3 Text Handling 51

ference, however, is that on those machines the built-in metrics for the core fonts are
sorted according to ebcdic encoding, and that host encoding (see below) also relates to
ebcdic encoding.

The builtin encoding. The encoding name builtin doesn’t describe a particular charac-
ter ordering but rather means »take this font as it is, and don’t mess around with the
character set«. This concept is sometimes called a »font specific« encoding and is very
important when it comes to non-text fonts (such as logo and symbol fonts), or non-latin
text fonts (such as Greek and Cyrillic). Such fonts cannot be reencoded using one of the
supported encodings since their character names don’t match those in these encodings.
Therefore, builtin must be used for all symbolic or non-text fonts, such as Symbol and
ZapfDingbats. Non-text fonts can be recognized by the following entry in their AFM file:

EncodingScheme FontSpecific

while latin-text fonts will usually have the entry

EncodingScheme AdobeStandardEncoding

Fonts with the Adobe StandardEncoding can be reencoded to winansi, macroman, or
ebcdic encodings, while fonts with FontSpecific encoding can’t, and must use builtin en-
coding instead. PDFlib issues a warning message when an attempt is made to reencode
symbol fonts.

Note Unfortunately, many typographers and font vendors didn’t fully grasp the concept of font spe-
cific encodings (this may be due to less-than-perfect production tools). For this reason, there
are many latin text fonts labeled as FontSpecific encoding, and many symbol fonts labeled
with Adobe StandardEncoding.

The host encoding. Like builtin, the host encoding plays a special role since it doesn’t
refer to some fixed character set. Instead, host encoding will be mapped to macroman on
the Mac, ebcdic on EBCDIC-based systems, and winansi on all others. The host encoding is
primarily useful as a vehicle for writing platform-independent test programs (like those
contained in the PDFlib distribution) or other encoding-wise simple applications. As-
suming that PDFlib client programs are always encoded in the host’s native encoding,
such programs will always generate PDF text output with the »correct« encoding. Con-
trary to all other aspects of PDFlib, the concept of a host encoding is inherently non-por-
table. For this reason host encoding is not recommended for production use.

External encoding files. The PDFlib distribution contains several encoding files which
may be useful if you need to use one of the supplied encodings directly, or want to use it
as a starting point for writing your own encoding files. In order to use these, the PDFlib
resource configuration file and font metrics files must be accessible (see Section 3.3.6,
»Resource Configuration and the UPR Resource File«).

52 Chapter 3: PDFlib Programming Concepts

3.3.3 Custom Encoding Files for 8-Bit Encodings
In addition to a number of predefined encodings (see Section 3.3.2, »Builtin and External
8-Bit Encodings«) PDFlib supports user-defined 8-bit encodings in order to make
PDFlib’s font handling even more flexible. User-defined encodings are the way to go if
you want to deal with some character set which is not internally available in PDFlib,
such EBCDIC codepages different from the one supported internally in PDFlib. The fol-
lowing steps must be followed before a user-defined encoding can be leveraged in a
PDFlib program:
> Generate a description of the encoding in a simple text format.
> Configure the encoding in the PDFlib resource file (see Section 3.3.6, »Resource Con-

figuration and the UPR Resource File«).
> Provide a font (metrics and possibly outline file) that supports all characters used in

the encoding. Of course, the characters in the font must use the correct PostScript
glyph names as defined in the encoding table.

The encoding file simply lists glyph names and numbers line by line. As an example, the
following excerpt shows the encoding definition for the ISO 8859-2 (Latin 2) encoding,
also known as Windows codepage 1250:

% Encoding definition for PDFlib
% ISO 8859-2 (Latin-2)
space 32 % 0x20
exclam 33 % 0x21
quotedbl 34 % 0x22
...more glyph assignments...
yacute 253 % 0xFD
tcedilla 254 % 0xFE
dotaccent 255 % 0xFF

More formally, the contents of an encoding file are governed by the following rules:
> Comments are introduced by a percent ’%’ character, and terminated by the end of

the line.
> The first entry in each line is a PostScript character name, followed by whitespace

and a decimal character code in the decimal range 1–255. PDFlib does not support the
use of the null character (code position 0) in user-defined encodings.

> Character codes which are not mentioned in the encoding file are assumed to be un-
defined.

Table 3.6. Additional external character encodings distributed with PDFlib

encoding description
iso8859-2 Latin-2: this character set supports the Slavic languages of Central Europe which use the

Latin alphabet. ISO 8859-2 is nearly identical to the Windows codepage 1250.
iso8859-9 Latin-5 (yes, that's 5, not 9!): this character set supports Danish, Dutch, English, Finnish,

French, German, Irish, Italian, Norwegian, Portuguese, Spanish, Swedish, and Turkish. In
addition, this PDFlib encoding contains the characters 130-159 as defined in the Turkish
Windows codepage 1254. Note that Acrobat’s core fonts unfortunately do not contain the
following characters which are required by ISO 8859-9: Gbreve, gbreve, Idotaccent,
Scommaaccent, scommaaccent.

iso8859-15 Latin-9: this character set is a variation of Latin-1 which adds the Euro character as well as
some missing French and Finish characters. Latin-9 is sometimes also dubbed Latin-0,
although this is not the official name.

3.3 Text Handling 53

The relationship between the name of the encoding file and the name of the actual en-
coding (to be used with PDF_findfont()) is specified in PDFlib’s resource file (see Section
3.3.6, »Resource Configuration and the UPR Resource File«). Sample encoding files are
supplied with PDFlib.

Finding character names. In order to write a custom encoding file you will have to find
information about the exact definition of the character set to be defined by the encod-
ing, as well as the exact glyph names used in the font files.1 You must also ensure that a
chosen font provides all necessary characters for the encoding. For example, the core
fonts supplied with Acrobat do not support ISO 8859-2 (Latin 2). If you happen to have
the FontLab2 font editor (by the way, a great tool for dealing with all kinds of font and
encoding issues), you may use it to find out about the encodings supported by a given
font (look for »codepages« in the FontLab documentation). Actually, you may even use
FontLab’s encoding files since these are compatible with PDFlib’s.

For the convenience of PDFlib users, the PostScript program print_glyphs.ps in the dis-
tribution fileset can be used to find the names of all characters contained in a font. In
order to use it, enter the name of the font at the end of the PostScript file and send it
(along with the font) to a PostScript Level 2 or 3 printer, or view it with a Level-2-compat-
ible PostScript viewer such as Ghostscript3. The program will print all characters in the
font, sorted alphabetically by glyph name.

If a font does not contain a character required for a custom encoding, it will be miss-
ing in the PDF document.

3.3.4 Hypertext Encoding
PDF supports two methods for encoding hypertext elements such as bookmarks, anno-
tations, and document information fields. Up to Acrobat 3, all hypertext strings had to
be encoded with a special 8-bit encoding called PDFDocEncoding (PDFDocEncoding can
not be used for text used on page descriptions). Starting with Acrobat 4, Unicode strings
can be used for all hypertext elements. For more information on Unicode see Section
3.3.8, »Unicode Support«.

PDFDocEncoding (see Figure 3.1) is a superset of ISO 8859-1 (Latin 1) and therefore
contains all ASCII characters in the lower part. Although PDFDocEncoding and the Win-
dows codepage 1252 are quite similar, they differ substantially in the character range
0x80 – 0xA0.

Many clients will be able to directly use PDFDocEncoding. However, since the Mac
encoding substantially differs from PDFDocEncoding, it is necessary to convert Mac
strings to PDFDocEncoding when it comes to hypertext elements, and non-ASCII special
characters are to be used. Mac special characters must be converted to Unicode before
they can be used in hypertext elements. This conversion must be performed by the
client.

Note Hypertext strings will automatically be converted to PDFDocEncoding on EBCDIC systems.

1. Useful raw material for writing encoding tables for a variety of standards and vendor-specific character sets can be found
at ftp://ftp.unicode.org/Public/MAPPINGS; Information about the glyph names used in PostScript fonts can be found at
http://partners.adobe.com/asn/developer/typeforum/unicodegn.html (although font vendors are not required to follow
these recommendations).
2. See http://www.fontlab.com
3. See http://www.cs.wisc.edu/~ghost

http://www.fontlab.com
ftp://ftp.unicode.org/Public/MAPPINGS
http://partners.adobe.com/asn/developer/typeforum/unicodegn.html
http://www.cs.wisc.edu/~ghost

54 Chapter 3: PDFlib Programming Concepts

3.3.5 Font Outline and Metrics Files

PDF font embedding. PDF supports fonts outside the set of 14 core fonts in several
ways. PDFlib is capable of embedding PostScript type 1 font descriptions into the gener-
ated PDF output. Alternatively, a font descriptor consisting of the character metrics and
some general information about the font (without the actual character outline data)
can be embedded. If a font is not embedded in a PDF document, Acrobat will take it from
the target system if available, or construct a substitute font according to the font de-
scriptor in the PDF. Table 3.7 lists different situations with respect to font usage, each of
which poses different requirements on the necessary font and metrics files.

PDFlib supports the following formats for metrics and outline data on all platforms:
> The platform-independent AFM (Adobe Font Metrics) and the Windows-specific PFM

(Printer Font Metrics) format for metrics information. Since PFM files do not describe
the full character metrics but only the glyphs used in Windows (codepage 1252), they
can only be used for the winansi or builtin encodings, while AFM-based font metrics
can be rearranged to any encoding supported by the font.

> The platform-independent PFA (Printer Font ASCII) and the Windows-specific PFB
(Printer Font Binary) format for PostScript Type 1 font outline information.

 000 001 002 003 004 005 006 007 010 011 012 013 014 015 016 017

 020 021 022 023 024 025 026 027 030 031 032 033 034 035 036 037

 040 041 042 043 044 045 046 047 050 051 052 053 054 055 056 057

060 061 062 063 064 065 066 067 070 071 072 073 074 075 076 077

100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117

 120 121 122 123 124 125 126 127 130 131 132 133 134 135 136 137

 140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157

160 161 162 163 164 165 166 167 170 171 172 173 174 175 176 177

200 201 202 203 204 205 206 207 210 211 212 213 214 215 216 217

 220 221 222 223 224 225 226 227 230 231 232 233 234 235 236 237

 240 241 242 243 244 245 246 247 250 251 252 253 254 255 256 257

260 261 262 263 264 265 266 267 270 271 272 273 274 275 276 277

300 301 302 303 304 305 306 307 310 311 312 313 314 315 316 317

 320 321 322 323 324 325 326 327 330 331 332 333 334 335 336 337

 340 341 342 343 344 345 346 347 350 351 352 353 354 355 356 357

360 361 362 363 364 365 366 367 370 371 372 373 374 375 376 377

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1 H I J K L M N O

2 ! " # $ % & � () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 A a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~

8 ` a b c d e f g h i j k l m n o

9 p A � q r s t u v w x y z { |

A }~ � � � � � � � � � � � � �

B � � � � � � � � � � � � � � � �

C � � � � ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª «

D ¬ ­ ® ¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ º »

E ¼ ½ ¾ ¿ À Á Â Ã Ä Å Æ Ç È É Ê Ë

F Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Fig. 3.1. The PDFDocEncoding character set as defined in PDF 1.3 with hex and octal codes.
Note the Euro character at position hexadecimal A0 = octal 240.

3.3 Text Handling 55

If you can get hold of a font file, but not the corresponding metrics file, you can try to
generate the missing metrics using one of several freely available utilities. For example,
the T1lib package1 contains the type1afm utility for generating AFM metrics from PFA or
PFB font files.

When a font with font-specific encoding (a symbol font) is used, but not embedded
in the PDF output, the resulting PDF will be unusable unless the font in question is al-
ready natively installed on the target system (since Acrobat can only simulate latin text
fonts). Such PDF files are inherently nonportable, although they may be of use in con-
trolled environments, such as intra-corporate document exchange.

PostScript font names. It is important to use the exact (case-sensitive) PostScript font
name whenever a font is referenced in PDFlib. There are several possibilities to find a
PostScript font’s exact name:
> Open the font outline file (*.pfa or *.pfb), and look for the string after the entry

/FontName. Omit the leading / character from this entry, and use the remainder as
the font name.

> If you have ATM (Adobe Type Manager) installed, you can double-click the font
(*.pfb) or metrics (*.pfm) file, and will see a font sample along with the PostScript
name of the font.

> Open the AFM metrics file and look for the string after the entry FontName.

Note The PostScript font name may differ substantially from the Windows font menu name, e.g.
»AvantGarde-Demi« (PostScript name) vs. »AvantGarde, Bold« (Windows font menu name).
Also, the font name as given in any Windows .inf file is not relevant for use with PDF.

Performance notes. It is important to be aware of the impact of font handling issues
on PDFlib’s performance. Generally, the font metrics (either in-core or on file) are ac-
cessed whenever a certain font/encoding combination is used for the first time. Subse-
quent requests for the same combination will be satisfied from PDFlib’s internal font
cache without any further performance penalty. Regarding font handling performance,
the following observations may be useful:

Table 3.7. Different font usage situations and required metrics and outline files

font usage font metrics file required? font outline file required?
One of the 14 core fonts with PDFlib’s host
encoding1,2

no no

One of the 14 core fonts with an encoding
other than PDFlib’s host encoding2

yes (AFM files supplied with
the PDFlib distribution)

no

Non-core font which will not be embedded yes no
Non-core font which will be embedded yes yes
Additional font/encoding combinations for
which the metrics have been compiled into
PDFlib (see below)

no yes, if font embedding is
requested

Standard CID fonts3 no no
Non-standard CID fonts (not supported) (not supported)

1. See Section 3.3.1, »The PDF Core Fonts« for a list of core fonts.
2. See Section 3.3.2, »Builtin and External 8-Bit Encodings« for the definition of PDFlib’s host encoding.
3. See Section 3.3.7, »CID Font Support for Japanese, Chinese, and Korean Text« for more information on CID fonts.

1. See http://www.neuroinformatik.ruhr-uni-bochum.de/ini/PEOPLE/rmz/t1lib/t1lib.html

http://www.neuroinformatik.ruhr-uni-bochum.de/ini/PEOPLE/rmz/t1lib/t1lib.html

56 Chapter 3: PDFlib Programming Concepts

> Due to their small size and binary nature, PFM metrics files can be read much faster
than the text-based AFM metrics files. However, they cannot be used for arbitrary
encodings.

> AFM files contain much useful information about many aspects of font usage, and
can be used for arbitrary encodings. However, although only the bare character met-
rics are required for PDFlib, the complete AFM file must be parsed in a time-consum-
ing manner. For performance-critical applications it might be worthwhile to strip
the unneeded data (e.g., the kerning information) from the AFM file. The AFM files
supplied with PDFlib have been stripped in this way.

> For specific applications the performance can be improved very much by compiling
the metrics information for the required font/encoding combinations into the
PDFlib binary, thereby obviating the use for external metrics files at all. The compile_
metrics utility supplied with PDFlib can be used for constructing a C header file with
the required data. (The default metrics data built into PDFlib have also been generat-
ed with this utility.) compile_metrics requires re-compiling the PDFlib binary and is
therefore only useful to C or C++ developers.

Legal aspects of font embedding. It’s important to note that mere possession of a font
file may not justify embedding the font in PDF, even for holders of a legal font license.
Many font vendors impose restrictions on the use of their fonts for non-print usage.
Some type foundries completely forbid PDF font embedding, others offer special online
or embedding licenses for their fonts, while still others allow font embedding provided
the fonts are subsetted. Please check the legal implications of font embedding before at-
tempting to embed fonts with PDFlib.

Note PDFlib currently doesn’t implement font subsetting.

3.3.6 Resource Configuration and the UPR Resource File
In order to make PDFlib’s font handling platform-independent and customizable, a con-
figuration file can be supplied for describing the available fonts along with the names
of their outline and metrics files, and the names of additional encoding files. In addi-
tion to the static configuration file, dynamic configuration can be accomplished at
runtime by adding resources with PDF_set_parameter(). For the configuration file we
dug out a simple text format called »Unix PostScript Resource« (UPR) which came to life
in the era of Display PostScript. However, we will take the liberty of extending the origi-
nal UPR format for our purposes. The UPR file format as used by PDFlib will be described
below.1 There is an Adobe-supplied utility called makepsres floating around the Internet
which can be used to automatically generate UPR files from PostScript font outline and
metrics files.

The UPR file format. UPR files are text files with a very simple structure that can easily
be written in a text editor or generated automatically. To start with, let’s take a look at
some syntactical issues:
> Lines can have a maximum of 255 characters.
> A backslash ’\’ escapes any character, including newline characters. This may be used

to extend lines. Windows directory names must be separated by double backslashes
’\\’ or a single forward slash ’/’.

1. For those interested, the complete specification can be found in the book »Programming the Display PostScript System
with X« (Appendix A), available at http://partners.adobe.com/asn/developer/PDFS/TN/DPS.refmanuals.TK.pdf

http://partners.adobe.com/asn/developer/PDFS/TN/DPS.refmanuals.TK.pdf

3.3 Text Handling 57

> The period character ’ . ’ serves as a section terminator, and must therefore be es-
caped when used at the start of any other line.

> All entries are case-sensitive.
> Comment lines may be introduced with a percent ’%’ character, and terminated by

the end of the line.
> Whitespace is ignored everywhere.

UPR files consist of the following components:
> A magic line for identifying the file. It has the following form:

PS-Resources-1.0

> A section listing all types of resource categories described in the file. Each line de-
scribes one resource category. The list is terminated by a line with a single period
character. Available resource categories are described below. This section exists for
compatibility only, and is ignored by PDFlib.

> The optional directory line may be used as a shortcut for a directory prefix common
to all resource files described in the file. The prefix will be added to all file names giv-
en in the UPR file. If present, the directory line starts with a slash character, immedi-
ately followed by the directory prefix. Note that the initial slash character is required
on all platforms, and is not part of the directory name. Using the directory prefix a
UPR file may, for example, point to some central PostScript font directory some-
where in the file system.

Note Do not use the directory prefix for the PDFlib ActiveX component since it substitutes the UPR
directory prefix mechanism with Windows registry entries.

> A section for each of the resource categories listed at the beginning of the file. Each
section starts with a line showing the resource category, followed by an arbitrary
number of lines describing available resources. The list is terminated by a line with a
single period character. Each resource data line contains the name of the resource
(equal signs have to be quoted), an equal sign, and the corresponding relative or ab-
solute file name f0r the resource. Relative file names will have the directory prefix
applied, if one is present in the file. Using a double equal sign forces the file name to
be interpreted absolute, i.e., the prefix is not used.

Supported resource categories. The resource categories currently supported in PDFlib
are listed in Table 3.8. Other resource categories may be present in the UPR file for com-
patibility with Display PostScript installations, but they will silently be ignored.

Sample UPR file. The following listing gives an example of a UPR configuration file as
used by PDFlib. It describes the 14 PDF core fonts’ metrics, plus metrics and outline files
for two extra fonts, plus a custom encoding:

Table 3.8. Resource categories supported in PDFlib

resource category name explanation
FontAFM PostScript font metrics file in AFM format
FontPFM PostScript font metrics file in PFM format
FontOutline PostScript font outline file in PFA or PFB format
Encoding Text file containing an 8-bit encoding table

58 Chapter 3: PDFlib Programming Concepts

PS-Resources-1.0
FontAFM
FontPFM
FontOutline
Encoding
.
% Directory prefix example for Windows: /c:/psfonts
//usr/local/lib/fonts
FontAFM
Code-128=Code_128.afm
Courier=Courier.afm
Courier-Bold=Courier-Bold.afm
Courier-BoldOblique=Courier-BoldOblique.afm
Courier-Oblique=Courier-Oblique.afm
Helvetica=Helvetica.afm
Helvetica-Bold=Helvetica-Bold.afm
Helvetica-BoldOblique=Helvetica-BoldOblique.afm
Helvetica-Oblique=Helvetica-Oblique.afm
Symbol=Symbol.afm
Times-Bold=Times-Bold.afm
Times-BoldItalic=Times-BoldItalic.afm
Times-Italic=Times-Italic.afm
Times-Roman=Times-Roman.afm
ZapfDingbats=ZapfDingbats.afm
.
FontPFM
Foobar-Bold=foobb___.pfm
.
FontOutline
Code-128=Code_128.pfa
.
Encoding
Latin-2=latin-2.enc
.

Searching for the UPR resource file. If only the built-in resources are to be used (PDF
core fonts with host encoding), a UPR configuration file is not required, since PDFlib
contains all necessary resources.

If other resources are to be used, PDFlib will search several places for a resource file.
The process is configurable and consists of the following steps:
> The PDFlib ActiveX component checks a registry entry to find the file pdflib.upr in the

fonts subdirectory of the PDFlib installation directory. The search process stops here
for the ActiveX version of PDFlib.

> On Unix and Windows systems, the environment variable PDFLIBRESOURCE is exam-
ined and used as a resource file name.

> If no file name is found, the client-settable resourcefile parameter (which may be set
using PDF_set_parameter()) is examined and used as a resource file name, if set.

> If no file name is found, the file name pdflib.upr in the current directory is used.
> If this file can’t be opened, an IOError is raised.
> If a resource file can be opened during any of the above steps, but a required resource

category cannot be found, a SystemError is raised.

Note Don’t forget to set the prefix entry in the upr file accordingly. The path to the upr file is not au-
tomatically prepended to the resource file names listed in the upr file.

3.3 Text Handling 59

Setting resources without a UPR file. In addition to using a UPR file for the configura-
tion, it is also possible to directly configure individual resources within the source code
via the PDF_set_parameter() function. This function takes a category name and a corre-
sponding resource entry as it would appear in the respective section of this category in
a UPR resource file, for example:

PDF_set_parameter(p, "FontAFM", "Foobar-Bold=foobb___.afm")
PDF_set_parameter(p, "FontOutline", "Foobar-Bold=foobb___.pfa")

Note The method described above is not supported in the ActiveX version of PDFlib, or if a upr file is
to be used.

3.3.7 CID Font Support for Japanese, Chinese, and Korean Text

CJK support in Acrobat and PDF1. While Japanese font support was already available
in Acrobat 3J, Acrobat 4 added full support for CID (Character ID) fonts for Japanese, Chi-
nese, and Korean (CJK) text even in the non-Japanese versions of the full Acrobat pack-
age as well as the free Acrobat Reader. In order to use CJK documents in Acrobat you
must do one of the following:
> Use a localized CJK version of Acrobat.
> If you use any non-CJK version of the full Acrobat 4 product, select the Acrobat in-

staller’s option »Asian Language Support« (Windows) or »Language Kit« (Mac). The
required CJK fonts will be installed from the Acrobat 4 product CD-ROM.

> If you use Acrobat Reader 4, install one of the Asian Font Packs which are available on
the Acrobat 4 product CD-ROM, or on the Web.2

CJK encodings and fonts. Historically, a wide variety of CJK encoding schemes has
been developed by diverse standards bodies, companies, and other organizations. For-
tunately enough, all prevalent encodings are supported by Acrobat and PDF by default.
Acrobat 4 supports a wealth of different encoding schemes for CJK fonts. Since the con-
cept of an encoding is much more complicated for CJK text than for Latin text, simple
encoding vectors with 256 entries no longer suffice. Instead, PostScript and PDF use the
concept of character collections and character maps (CMaps) for organizing the charac-
ters in a font. Conceptually, CMaps can be thought of as large encodings for CJK fonts.

Acrobat 4 supports a set of standard fonts for CJK text. These fonts are supplied with
the Acrobat installation (or the Asian FontPack), and therefore don’t have to be embed-
ded in the PDF file (this parallels the use of the 14 core fonts for Latin text). These fonts
contain all characters required for common encodings, and support both horizontal
and vertical writing modes. The standard fonts and CMaps are documented in Table 3.9.
As can be seen from the table, the default CMaps support most CJK encodings used on
Mac, Windows, and Unix systems, as well as several other vendor-specific encodings.
Detailed descriptions of the character encoding standards which are supported by these
CMaps can be found in the PDF specification [1]. Tables with all supported characters are
available from Adobe3.

1. This is a good opportunity to praise Ken Lunde’s seminal tome »CJKV information processing – Chinese, Japanese, Korean
& Vietnamese Computing« (O’Reilly 1999, ISBN 1-56592-224-7), as well as his work at Adobe since he’s one of the driving
forces behind CJK support in PostScript and PDF.
2. See http://www.adobe.com/prodindex/acrobat/cjkfontpack.html
3. See http://partners.adobe.com/asn/developer/typeforum/cidfonts.html for a wealth of resources related to CID fonts,
including tables with all supported glyphs (search for »character collection«).

http://partners.adobe.com/asn/developer/typeforum/cidfonts.html
http://www.adobe.com/prodindex/acrobat/cjkfontpack.html

60 Chapter 3: PDFlib Programming Concepts

CJK font support in PDFlib. Having realized the similarity between core fonts/encod-
ing vector on the one hand, and CJK standard fonts/CMaps on the other hand, it won’t
be much of a surprise that both Latin and CJK fonts can be selected with the same PDFlib
interface, using the CMap name in lieu of the encoding name, and taking into account
that a given CJK font supports only a certain set of CMaps (see Table 3.9). The HeiseiKaku-
Go sample in Table 3.9 has been generated with the following code:

font = PDF_findfont(p, "HeiseiKakuGo-W5", "Ext-RKSJ-H", 0);
PDF_setfont(p, font, 24);
PDF_set_text_pos(p, x, y);
PDF_show(p, "\x93\xFA\x96\x7B\x8C\xEA");

These instructions locate one of the Japanese standard fonts, choosing a ShiftJIS-com-
patible CMap (Ext-RKSJ) encoding and horizontal writing mode (H). The fontname para-
meter must be the exact name of the font (strictly speaking, the value of the /CIDFont-
Name entry in the corresponding CID PostScript font file), without any encoding or
writing mode suffixes. The encoding parameter is the name of one of the supported
CMaps (the choice depends on the font) and will also indicate the writing mode (see
below). PDFlib supports all of Acrobat 4’s default CMaps, and will complain when it de-
tects a mismatch between the requested font and the CMap. For example, asking PDFlib
to use a Korean font with a Japanese encoding will result in an exception of type PDF_
ValueError.

Although CID font embedding is technically possible in PDF 1.3, it is not practical due
to the size of typical CID fonts, and due to the fact that most CJK font licenses do not
permit embedding. For this reason the embedding parameter is not used for CID fonts,
and must be 0.

PDFlib doesn’t require any font-specific metrics information for CID fonts, and
doesn’t make any attempt to decode the client-supplied text strings, or verify whether
they are correctly encoded with respect to the underlying CMap. For this reason calcu-
lating the extent of text with PDF_stringwidth() and activating underline/overline/
strikeout mode are not supported for CID fonts. Also, all characters in CJK fonts are con-

Table 3.9. Predefined CMaps and Acrobat’s standard fonts for Japanese, Chinese, and Korean text

locale available standard
fonts in Acrobat

font samples supported CMaps (encodings)

Simplified
Chinese

STSong-Light GB-EUC-H, GB-EUC-V, GBpc-EUC-H, GBpc-EUC-V,
GBK-EUC-H, GBK-EUC-V, UniGB-UCS2-H1, UniGB-
UCS2-V1

Traditional
Chinese

MHei-Medium

MSung-Light

B5pc-H, B5pc-V, ETen-B5-H, ETen-B5-V, ETenms-B5-H,
ETenms-B5-V, CNS-EUC-H, CNS-EUC-V, UniCNS-
UCS2-H1, UniCNS-UCS2-V1

Japanese HeiseiKakuGo-W5

HeiseiMin-W3

83pv-RKSJ-H, 90ms-RKSJ-H, 90ms-RKSJ-V, 90msp-
RKSJ-H, 90msp-RKSJ-V, 90pv-RKSJ-H, Add-RKSJ-H,
Add-RKSJ-V, EUC-H, EUC-V, Ext-RKSJ-H, Ext-RKSJ-V,
H, V, UniJIS-UCS2-H1, UniJIS-UCS2-V1, UniJIS-UCS2-
HW-H1, UniJIS-UCS2-HW-V1

Korean HYGoThic-Medium

HYSMyeongJo-
Medium

KSC-EUC-H, KSC-EUC-V, KSCms-UHC-H, KSCms-
UHC-V, KSCms-UHC-HW-H, KSCms-UHC-HW-V,
KSCpc-EUC-H, UniKS-UCS2-H1, UniKS-UCS2-V1

1. Unicode-compatible CMap

3.3 Text Handling 61

sidered to have the same width, including latin characters. If you want latin characters
which have a smaller width than the CJK characters you must switch to a latin 8-bit font
such Courier or Helvetica.

Note PDFlib currently only supports the standard CID fonts supplied with Acrobat (see Table 3.9).
Neither custom CID fonts nor Japanese, Chinese, or Korean TrueType fonts can be used. How-
ever, you can simulate bold fonts by rendering »fill and stroke« text (rendering mode 2, see
textrendering parameter).

Horizontal and vertical writing mode. PDFlib supports both horizontal and vertical
writing modes. The mode is selected along with the encoding by choosing the appropri-
ate CMap name. CMaps with names ending in -H select horizontal writing mode, while
the -V suffix selects vertical writing mode.

Note Some PDFlib functions change their semantics according to the writing mode. For example,
PDF_continue_text() should not be used in vertical writing mode, and the character spacing
must be negative in order to spread characters apart in vertical writing mode. The details are
discussed in the respective function descriptions.

CJK text encoding in PDFlib. The client is responsible for supplying text such that its
encoding matches the encoding requested for the CID font. PDFlib does not check
whether the supplied text conforms to the requested encoding. Since several of the sup-
ported encodings may contain null characters in the text strings, C and C++ developers
must take care not to use the PDF_show() etc. functions, but instead PDF_show2() etc.
which allow for arbitrary binary strings along with a length parameter. For all other
bindings, the text functions support binary strings, and PDF_show2() etc. are not re-
quired. For multi-byte encodings, the high-order byte of a character must appear first.

PDFlib language bindings which are natively Unicode-aware automatically convert
Unicode strings supplied to the library. For this reason only Unicode-compatible CMaps
should be used with these language bindings (see also Section 3.3.8, »Unicode Support«).

Printing PDF documents with CJK text. Printing CJK documents gives rise to a number
of issues which are outside the scope of this manual. However, we will supply some use-
ful hints for the convenience of PDFlib users. If you have trouble printing CJK docu-
ments with Acrobat, consider one or more of the following:
> Printing CID fonts does not work on all PostScript printers. Native CID font support

has only been integrated in PostScript version 2015, i.e. PostScript Level 1 and early
Level 2 printers do not natively support CID fonts (unless the printer is equipped
with the Type 0 font extensions). However, for early Level 2 devices the printer driver
is supposed to take care of this by downloading an appropriate set of compatibility
routines to pre-2015 Level 2 printers.

> Due to the large number of characters CID fonts consume very much printer memo-
ry (disk files for CID fonts typically are 5–10 MB in size). Not all printers have enough
memory for printing such fonts. For example, in our testing we found we had to up-
grade a Level 3 laser printer from 16 MB to 48 MB RAM in order to reliably print PDF
documents with CID fonts.

> Non-Japanese PostScript printers do not have any Japanese fonts installed. For this
reason, you must check »Download Asian Fonts« in Acrobat’s print dialog.

62 Chapter 3: PDFlib Programming Concepts

> If you can’t successfully print using downloaded fonts, check »Print as Image« in Ac-
robat’s print dialog. This instructs Acrobat to send a bitmapped version of the page
to the printer (300 dpi, though).

3.3.8 Unicode Support
Starting with version 4, Acrobat fully supports the Unicode
standard. This is a large character set which covers all current
and many ancient languages and scripts in the world, and has
significant support in many applications and operating sys-
tems.1 PDFlib supports the Unicode standard for the following
features:
> bookmarks (see Figure 3.2)
> contents and title of note annotations (see Figure 3.2)
> standard and user-defined document information field contents (but not user-

defined field names – the PDF specification unfortunately doesn’t allow this)
> description and author of file attachments
> CJK text on page descriptions, provided a Unicode-compatible encoding is used (see

Section 3.3.7, »CID Font Support for Japanese, Chinese, and Korean Text«)

Before delving into the Unicode implementation, however, you should be aware of the
following restrictions regarding Unicode support in Acrobat:
> Unicode support for the actual page descriptions is only available for CJK fonts.
> The usability of Unicode-enhanced PDF documents heavily depends on the Unicode

support available on the target system. Unfortunately, most systems today are far
from being fully Unicode-enabled in their default configurations. Although Win-
dows NT and MacOS support Unicode internally, availability of appropriate Unicode
fonts is still an issue.

> Acrobat on Windows is unable to handle more than one script in a single annotation.
This seems to be related to an OS-specific issue (restrictions of the text edit widget
used in Acrobat’s implementation of the annotation feature).

Unicode encoding for hypertext elements. PDFlib supports a dual-encoding approach
with respect to all text supplied by the client for one of the Unicode-enabled hypertext
functions. PDF expects Unicode hypertext according to the following rules (these are
also known as big-endian UTF-16 serialization with signature):
> In order to distinguish »regular« 8-bit encoded text strings from 16-bit Unicode

strings, the Unicode Byte Order Mark (BOM) is used as a sentinel at the beginning of
the string. The BOM consists of the following two byte values which must be the first
16-bit character in all Unicode strings for hypertext:

hex (FE, FF) = octal (376, 377)

> Subsequent characters in the Unicode string are encoded with 2 bytes each, where
the high order byte occurs first in the linear ordering (big-endian byte ordering, un-
like the little-endian ordering used on Windows/Intel systems).

> Since Unicode strings may contain null characters, the usual C convention for
strings cannot be used. For this reason, all non-Unicode-aware PDFlib language bind-

1. See http://www.unicode.org for more information about the Unicode standard

http://www.unicode.org

3.3 Text Handling 63

ings (e.g., the C and C++ language bindings) expect Unicode strings to be terminated
with a Unicode null character, i.e., two null bytes.

For example, the following string (in octal notation) encodes the Greek string »ΛΟΓΟΣ«
(see Figure 3.2):

\0376\0377\003\233\003\237\003\223\003\237\003\243\0\0

or in hexadecimal notation:

\xFE\xFF\x03\x9B\x03\x9F\x03\x96\x03\x9F\x03\xA3\0\0

Clients of non-Unicode-aware language bindings (see below) must manually wrap Uni-
code hypertext with BOM and double-null as described above.

Unicode encoding for page descriptions. PDF allows Unicode-encoded text on docu-
ment pages (as opposed to hypertext as discussed above). Unfortunately, this holds
only true for CID fonts, but not regular Type 1 PostScript fonts. In order to place Uni-
code-conforming Chinese, Japanese, or Korean text on a page, a Unicode-compatible
CMap must be used. These are easily identified by the Uni prefix in their name, and are
marked in Table 3.9. These CMaps, however, only support the characters required for the
respective locale, but not other Unicode characters.

Unicode text on page descriptions must be supplied »as is«, i.e., it must not be
wrapped with BOM and double-null like hypertext. In addition, clients of the C and C++
language bindings (except when the ANSI string class is used in the latter case) must
take care not to use the standard text functions (PDF_show(), PDF_show_xy(), and PDF_
continue_text()) when the text may contain embedded null characters. In such cases the
alternate functions PDF_show2() etc. must be used. This is not a concern for all other

Fig. 3.2. Unicode bookmarks (left) and Unicode text annotations (right)

64 Chapter 3: PDFlib Programming Concepts

language bindings since the PDFlib language wrappers internally call PDF_show2() etc.
in the first place.

Wrong Unicode character assignments on Windows. The following PDFlib language
bindings are Unicode-aware, and can automatically convert Unicode strings to the for-
mat expected by PDFlib:
> ActiveX/COM
> Java
> Tcl (requires Tcl 8.2 or above)

However, in order to avoid the character conversion problem described below, Unicode
support is disabled by default in these bindings. It can be activated by setting the PDFlib
parameter nativeunicode to true (see also Section 4.3.2, »Text Output«):

p.set_parameter("nativeunicode", "true");

Native Unicode mode means that the wrapper code will internally distinguish the fol-
lowing cases, and apply the appropriate conversion:
> 8-bit strings, i.e., strings which contain only characters from U+0000 to U+00FF are

interpreted as PDFDocEncoding (for hypertext) or 8-bit characters according to the
current encoding (for page descriptions).

> Unicode strings for hypertext functions will be wrapped with BOM and double-null
> Unicode strings for page descriptions will be supplied without any conversion. This

requires a Unicode-compatible CMap to be selected (see Table 3.9).

The developer generally need not care about the encoding specifics detailed above, but
can simply use Unicode text as supported by the environment. (More details on Uni-
code usage from within the supported languages can be found in the manual section
for the respective binding in Chapter 2). However, there’s a subtle issue related to literal
Unicode characters embedded in ActiveX, Java, or Tcl source code which we will try to
explain with a Java example.

Java’s native support for Unicode strings is just fine for PDF’s hypertext elements,
but can be dangerous with respect to page descriptions and non-Unicode-compliant 8-
bit encodings. For example, while most characters in the Windows codepage 1252 are
compatible with Unicode, not all are (more specifically, the range 0x80-0x9F). Consider
the following attempt to show the endash character with PDFlib’s Java binding:

// Literal character 0x96 = Alt-150 in the code. Works only if nativeunicode == false
p.show("–");

When this snippet is compiled under Unix with the Latin-1 character set (which is fully
Unicode-compatible), it will work just fine. However, when it is compiled under Win-
dows with codepage 1252 and nativeunicode == true, the literal endash character (0x96 in
codepage 1252) will be translated to the corresponding Unicode character (0x2013 in this
example), which is unsuited for an 8-bit PDF encoding such as winansi. In order to pre-
vent this problem in native Unicode mode rewrite the above code snippet as follows:

// Safe way of selecting characters outside Latin-1 if nativeunicode == true
p.show("\u0096");

3.3 Text Handling 65

This will pass the intended character code 0x96 to PDFlib, which will correctly interpret
it according to the chosen encoding vector (although the Java compiler will be fooled
into believing it deals with the Unicode character 0x096, which doesn’t actually exist).

3.3.9 Text Metrics, Text Variations, and Text Box Formatting

Font and character metrics. PDFlib uses the character and font metrics system used by
PostScript and PDF which shall be briefly discussed here.

The font size which must be specified by PDFlib users is the minimum distance be-
tween adjacent text lines which is required to avoid overlapping character parts. The
font size is generally larger than individual characters in a font, since it spans ascender
and descender, plus possibly additional space between lines.

The leading specifies the vertical distance between the baselines of adjacent lines of
text. By default it is set to the value of the font size. The capheight is the height of capital
letters such as T or H in most latin fonts. The ascender is the height of lowercase letters
such as f or d in most latin fonts. The descender is the distance from the baseline to the
bottom of lowercase letters such as j or p in most latin fonts. The descender is usually
negative. The values of capheight, ascender, and descender are measured as a fraction of
the font size, and must be multiplied with the required font size before being used.

The values of capheight, ascender, and descender for a specific font are supplied in
the font metrics file, and can be queried from PDFlib as follows:

float capheight, ascender, descender, fontsize;
...
font = PDF_findfont(p, "Times-Roman", "host", 0);
PDF_setfont(p, font, fontsize);

capheight = PDF_get_value(p, "capheight", font) * fontsize;
ascender = PDF_get_value(p, "ascender", font) * fontsize;
descender = PDF_get_value(p, "descender", font) * fontsize;

Note The position and size of superscript and subscript cannot be queried from PDFlib since this in-
formation is not contained in AFM metrics files.

capheight

descender

ascender

font size

baseline

Fig. 3.3. Font and character metrics

66 Chapter 3: PDFlib Programming Concepts

CPI calculations. While most fonts have varying character widths, so-called mono-
spaced fonts use the same widths for all characters. In order to relate PDF font metrics to
the characters per inch (CPI) measurements often used in high-speed print environ-
ments, some calculation examples for the mono-spaced Courier font may be helpful. In
Courier, all characters have a width of 600 units with respect to the full character cell of
1000 units per point (this value can be retrieved from the corresponding AFM metrics
file). For example, with 12 point text all characters will have an absolute width of

12 points * 600/1000 = 7.2 points

with an optimal line spacing of 12 points. Since there are 72 points to an inch, exactly 10
characters of Courier 12 point will fit in an inch. In other words, 12 point Courier is a 10
cpi font. For 10 point text, the character width is 6 points, resulting in a 72/6 = 12 cpi
font. Similarly, 8 point Courier results in 15 cpi.

Underline, overline, and strikeout text. PDFlib can be instructed to put lines below,
above, or in the middle of text. The stroke width of the bar and its distance from the
baseline are calculated based on the font’s metrics information. In addition, the current
values of the horizontal scaling factor and the text matrix are taken into account when
calculating the width of the bar. PDF_set_parameter() can be used to switch the under-
line, overline, and strikeout feature on or off as follows:

PDF_set_parameter(p, "underline", "true"); /* enable underlines */

The current stroke color is used for drawing the bars. The current linecap and dash pa-
rameters are ignored, however. Aesthetics alert: in most fonts underlining will touch
descenders, and overlining will touch diacritical marks atop ascenders.

Note The underline, overline, and strikeout features are not supported for CID fonts.

Text rendering modes. PDFlib supports several rendering modes which affect the ap-
pearance of text. This includes outline text and the ability to use text as a clipping path.
Text can also be rendered invisibly which may be useful for placing text on scanned im-
ages in order to make the text accessible to searching and indexing, while at the same
time assuring it will not be visible directly. The rendering modes are described in Table
3.10. They can be set with PDF_set_value():

PDF_set_value(p, "textrendering", 1); /* set stroked text rendering */

Text box formatting. While PDFlib offers the PDF_stringwidth() function for perform-
ing text width calculations, many clients need easy access to text box formatting and
justifying, e.g. to fit a certain amount of text into a given column. Although PDFlib of-
fers such features, you shouldn’t think of PDFlib as a full-featured text and graphics lay-

Table 3.10. Values for the text rendering mode

value explanation value explanation
0 fill text 4 fill text and add it to the clipping path
1 stroke text 5 stroke text and add it to the clipping path
2 fill and stroke text 6 fill and stroke text and add it to the clipping path
3 invisible text 7 add text to the clipping path

3.3 Text Handling 67

out engine. The PDF_show_boxed() function is an easy-to-use method for text box for-
matting with a number of formatting options. Text may be laid out in a rectangular box
either left-aligned, right-aligned, centered, or fully justified. The first line of text starts
at a baseline with a vertical position which equals the top edge of the supplied box mi-
nus the leading. The bottom edge of the box serves as the last baseline used. For this rea-
son, descenders of the last text line may appear outside the specified box (see Figure
3.4).

This function justifies by adjusting the inter-word spacing (the last line will be left-
aligned only). Obviously, this requires that the text contains spaces (PDFlib will not in-
sert spaces if the text doesn’t contain any). Advanced text processing features such as
hyphenation are not available – PDFlib simply breaks text lines at existing whitespace
characters. Text is never clipped at the boundaries of the box.

Supplying a feature parameter of blind can be useful to determine whether a string
fits in a given box, without actually producing any output.

ASCII newline characters (ox0A) in the supplied text are recognized, and force a new
paragraph. CR/NL combinations are treated like a single newline character. Other for-
matting characters are currently not supported.

The following is a small example of using PDF_show_boxed(). It uses PDF_rect() to
draw an additional border around the box which may be helpful in debugging:

text = "In an attempt to reproduce sounds more accurately, pinyin spellings often ... ";
fontsize = 13;

font = PDF_findfont(p, "Helvetica", "host", 0);
PDF_setfont(p, font, fontsize);

x = 50;
y = 650;
w = 357;
h = 6 * fontsize;

c = PDF_show_boxed(p, text, x, y, w, h, "justify", "");
if (c > 0) {

/* Not all character could be placed in the box; act appropriately here */
...

}
PDF_rect(p, x, y, w, h);
PDF_stroke(p);

In an attempt to reproduce sounds more accurately, pinyin
spellings often differ markedly from the older ones, and
personal names are usually spelled without apostrophes or
hyphens; an apostrophe is sometimes used, however, to
avoid ambiguity when syllables are run together (as in
Chang´an to distinguish it from Chan´gan).

Fig. 3.4. Top: Text box formatting: the bottom edge will serve as the last base-
line, not as a clipping border. Right: text box formatting doesn’t work if only
single words fit in a line. In the situation in the figure to the right, PDF_show_
boxed() will not actually format any text.

Large
Machinery
Department✗

68 Chapter 3: PDFlib Programming Concepts

The following requirements and restrictions of PDF_show_boxed() shall be noted:
> Contiguous blanks in the text should be avoided.
> Due to restrictions in PDF’s word spacing support, the space character must be avail-

able at code position 0x20 in the encoding. Although this is the case for most com-
mon encodings, it implies that justification will not work with EBCDIC encoding.

> The simplistic formatting algorithm may fail for unsuitable combinations of long
words and narrow columns. In particular, if only a single word fits in a column, PDF_
show_boxed() will not format any text at all, but leave the column empty (see Figure
3.4).

> Since the bottom part of the box is used as a baseline, descenders in the last line may
extend beyond the box area.

> It’s currently not possible to feed the text in multiple portions into the box format-
ting routine. However, you can retrieve the text position after calling PDF_show_
boxed() with the textx and texty parameters.

> Support for text box formatting is not available for CID fonts.

3.4 Image Handling
3.4.1 Supported Image File Formats

Embedding raster images in the generated PDF is an important feature of PDFlib. PDFlib
currently deals with the image file formats described below. For most formats PDFlib
passes the compressed image data unchanged to the PDF output since PDF internally
supports most compression schemes used in image file formats. This technique (called
pass-through in the descriptions below) results in very fast image import, since decom-
pressing the image data and subsequent recompression are not necessary. However,
PDFlib cannot check the integrity of the compressed image data in this mode. Incom-
plete or corrupt image data may result in error or warning messages when using the
PDF document in Acrobat (e.g., »Read less image data than expected«).

If an image file can’t be imported successfully and you need to know more details
about the reason set the imagewarning parameter to true (see Section 4.6, »Image Func-
tions« for more details):

PDF_set_parameter(p, "imagewarning", "true");

PNG images. If the freely available PNG reference library (which in turn requires the
Zlib compression library) is installed, PDFlib supports all flavors of PNG images (»Porta-
ble Network Graphics«).1 PNG images are currently not handled in pass-through mode.
If PNG images contain transparency information, the transparency is retained in the
generated PDF (see Section 3.4.5, »Image Masks and Transparency«). Alpha channels are
not supported by PDF, and therefore PDFlib.

Note All binary distributions of PDFlib support the PNG image file format.

JPEG images. JPEG images are always handled in pass-through mode. PDFlib supports
the following flavors of JPEG images:

1. See http://www.w3.org/Graphics/PNG and http://www.libpng.org/pub/png for more information on the PNG image
file format and the libpng library

http://www.libpng.org/pub/png
http://www.w3.org/Graphics/PNG

3.4 Image Handling 69

> The »baseline« JPEG flavor which accounts for the vast majority of available JPEG
images.

> Progressive JPEG compression which is supported by Acrobat 4/PDF 1.3. If run in
Acrobat 3 compatibility mode, however, PDFlib will refuse to import progressive
JPEGs.

PDFlib applies a workaround which is necessary for correctly processing Photoshop-
generated CMYK JPEG files.

GIF images. GIF images are always handled in pass-through mode (PDFlib does not use
LZW decompression). PDFlib supports the following flavors of GIF images:
> Due to restrictions in the compression schemes supported by the PDF file format,

the entry in the GIF file called »LZW minimum code size« must have a value of 8 bits.
Unfortunately, there is no easy way to determine this value for a certain GIF file. An
image which contains more than 128 distinct color values will always qualify (e.g., a
full 8-bit color palette with 256 entries). Images with a smaller number of distinct
colors may also work, but it is difficult to tell in advance because graphics programs
may use 8 bits or less as LZW minimum code size in this case, and PDFlib may there-
fore reject the image. The following trick which works in Adobe Photoshop and simi-
lar image processing software is known to result in GIF images which are accepted by
PDFlib: load the GIF image, and change the image color mode from »indexed« to
»RGB«. Now change the image color mode back to »indexed«, choosing a color pal-
ette with more than 128 entries, for example the Mac or Windows system palette, or
the Web palette.

> The image must not be interlaced.
> Only the first image of a multi-frame (animated) GIF image will be imported.

For other GIF image flavors conversion to the PNG graphics format is recommended.

TIFF images. Sam Leffler’s TIFFlib1 can be plugged into PDFlib in order to support
many TIFF compression and encoding flavors. In most cases TIFF images will be handled
in pass-through mode. TIFF images which make use of other compression schemes will
first be decompressed, and then recompressed with the Flate/Zlib algorithm (if Zlib is
available). PDFlib supports the following flavors of TIFF images:
> compression schemes: uncompressed, CCITT (group 3, group 4, and RLE), LZW, and

PackBits (Macintosh RunLength encoding) are handled in pass-through mode; other
compression schemes are handled by uncompressing.

> color depth: black and white, grayscale, RGB, and CMYK images; any alpha channel
which may be present in the file is ignored.

> TIFF files containing more than one image (see Section 3.4.6, »Multi-Page Image
Files«)

Multi-strip TIFF images are converted to multiple images in the PDF file which will visu-
ally exactly represent the original image, but can be individually selected with Acrobat’s
image selection tool. Some TIFF features (e.g., CIE color space) and combinations of fea-
tures (e.g., LZW and alpha channel) are not supported.

Note All binary distributions of PDFlib support the TIFF image file format.

1. See http://www.libtiff.org

http://www.libtiff.org

70 Chapter 3: PDFlib Programming Concepts

CCITT images. Raw Group 3 or Group 4 fax compressed image data are always handled
in pass-through mode. Note that this format actually means raw CCITT-compressed im-
age data, not TIFF files using CCITT compression. Raw CCITT compressed image files are
usually not supported in end-user applications, but can only be generated with fax-
related software.

Raw data. Uncompressed (raw) image data may be useful for some special applica-
tions, e.g., constructing a color ramp directly in memory. The nature of the image is de-
duced from the number of color components: 1 component implies a grayscale image, 3
components an RGB image, and 4 components a CMYK image.

3.4.2 Embedding and Scaling Images
Embedding raster images with PDFlib is easy to accomplish. First, the image file has to
be opened with a PDFlib function which does a brief analysis of the image parameters.
The PDF_open_image_file() function returns a handle which serves as an image descrip-
tor. This handle can be used in a call to PDF_place_image(), along with positioning and
scaling parameters:

if ((image = PDF_open_image_file(p, "jpeg", "image.jpg", "", 0)) == -1) {
fprintf(stderr,"Error: Couldn't read image.\n");

} else {
PDF_place_image(p, image, 0.0, 0.0, 1.0);
PDF_close_image(p, image);

}

The call to PDF_close_image() may or may not be required, depending on whether the
same image will be used again in the same document (see Section 3.4.3, »Re-using Image
Data«).

Scaling and dpi calculations. PDFlib never changes the number of pixels in an import-
ed image. Scaling either blows up or shrinks image pixels, but doesn’t do any downsam-
pling. A scaling factor of 1 results in a pixel size of 1 unit in user coordinates. In other
words, the image will be imported at 72 dpi if the user coordinate system hasn’t been
scaled (since there are 72 default units to an inch).

Resolution (dpi) values which may be contained in the original image file are ig-
nored by PDFlib, but may be queried via the resx and resy parameters; the user is respon-
sible for scaling the coordinate system appropriately (beware of non-square pixels). The
following algorithm may be used to import an image at the resolution given in the file
(or at 72 dpi if the image file doesn’t contain any dpi value), and place it on the full page:

/* query the dpi values which may be present in the image file */
dpi_x = PDF_get_value(p, "resx", image);
dpi_y = PDF_get_value(p, "resy", image);

/* calculate scaling factors from the dpi values, see description of resx/resy */
if (dpi_x > 0 && dpi_y > 0) {

scale_x = ((float) 72.0) / dpi_x;
scale_y = ((float) 72.0) / dpi_y;

} else if (dpi_x < 0 && dpi_y < 0) {
scale_x = (float) 1.0;
scale_y = dpi_y / dpi_x;

} else {

3.4 Image Handling 71

scale_x = (float) 1.0;
scale_y = (float) 1.0;

}

/* create a new page such that the scaled image exactly fits, and place the image */
PDF_begin_page(p, PDF_get_value(p, "imagewidth", image) * scale_x,

PDF_get_value(p, "imageheight", image) * scale_y);
PDF_scale(p, scale_x, scale_y);
PDF_place_image(p, image, 0.0, 0.0, 1.0);
PDF_end_page(p);

In order to ignore any dpi value present in the image, and use a fixed dpi value instead
(e.g. 300) replace the first two lines in the above code fragment with

dpi_x = 300;
dpi_y = 300; /* or whatever you like */

Forcing printed image size. In order to place an image on a PDF page such that it re-
sults in a specified target width and height (as opposed to specifying the resolution val-
ues as in the previous algorithm) with a lower left corner at (x, y) (all coordinates in
points) the following algorithm may be used:

scale_x = width/PDF_get_value(p, "imagewidth", image);
scale_y = height/PDF_get_value(p, "imageheight", image);

PDF_save(p);

/* scale the coordinate system to match the image size to the given rectangle */
PDF_scale(p, scale_x, scale_y);

/* in the positioning coordinates we must compensate for the above scaling */
PDF_place_image(p, image, x/scale_x, y/scale_y, 1);
PDF_restore(p);

Non-proportional image scaling. Since in most cases images will be scaled proportion-
ally (i.e., using the same scaling factor in both dimensions), PDF_place_image() supports
only a single scaling parameters which is applied to both dimensions. Non-proportional
scaling can easily be achieved by scaling the coordinate system, bracketed with save/re-
store in order to not disturb other graphics operations. The following sequence will
place an image, scaled to 50 percent horizontally and 75 percent vertically:

PDF_save(p); /* save the original coordinate system */
PDF_scale(p, 0.5, 0.75); /* scale the coordinates, and therefore the image */
PDF_place_image(p, image, 0.0, 0.0, 1.0);
PDF_restore(p); /* restore the original coordinate system */

Remember that the x and y positions supplied to PDF_place_image() will also be subject
to the PDF_scale() call, and must be adjusted by dividing by the scaling factors.

3.4.3 Re-using Image Data
It should be emphasized that PDFlib supports an important PDF optimization tech-
nique for using repeated raster images.

Consider a layout with a constant logo or background on several pages. In this situa-
tion it is possible to include the image data only once in the PDF, and generate only a

72 Chapter 3: PDFlib Programming Concepts

reference on each of the pages where the image is used. Simply open the image file and
call PDF_place_image() every time you want to place the logo or background on a partic-
ular page. You can place the image on multiple pages, or use different scaling factors for
different occurrences of the same image (as long as the image hasn’t been closed). De-
pending on the image’s size and the number of occurrences, this technique can result in
enormous space savings.

3.4.4 Memory Images and External Image References
While the majority of image data for use with PDFlib will be pulled from some disk file
on the local file system, other image data sources are also supported.

For performance reasons supplying existing image data directly in memory may be
preferable over opening a disk file. PDFlib supports in-core image data for certain image
file formats.

PDFlib also supports an experimental feature which isn’t recommended for general-
use PDF files, but may offer advantages in certain environments. While almost all PDF
documents are completely self-contained (the only exception being non-embedded
fonts), it is also possible to store only a reference to some external data source in the
PDF file instead of the actual image data, and rely on Acrobat to fetch the required im-
age data when needed. This mechanism works similar to the well-known image refer-
ences in HTML documents. Usable external image sources include data files in the local
file system, and URLs. It is important to note that while file references work in Acrobat 3
and 4, URL references only work in Acrobat 4 (full product). PDF documents which in-
clude image URLs are neither usable in Acrobat 3 nor Acrobat Reader 4!

The PDF_open_image() interface can be used for both in-memory image data and ex-
ternal references.

3.4.5 Image Masks and Transparency

Transparency in PDF. Transparency has been missing from PostScript and PDF for
quite a long time. Only with PDF 1.3 (and PostScript 3) Adobe integrated some limited
support for transparency into languages and applications. While image masks (painting
solid color through a bitmap mask) are an old feature of both PostScript and PDF, Acro-
bat 4 added the feature of masking particular pixels of an image. This offers the follow-
ing opportunities:
> Masking by position: an image may carry the intrinsic information »print the fore-

ground only, but not the background«. This is often used in catalog images.
> Masking by color value: pixels of a certain color (or from a color range – but not arbi-

trary sets of colors) are not painted, but the previously painted part of the page
shines through instead. In TV and video technology this is also known as bluescreen-
ing, and is most often used for combining the weather man and the map into one
image.

It is important to note that PDF supports binary transparency only: there is no alpha
channel or variable opacity (»blend this image with the background«) but only a binary
decision (»print either the image pixel, or the background pixel«). Binary transparency
may be considered »poor man’s alpha channel«. Another important restriction is that
in PDF the mask is always attached to the image; it's not possible to use an image first
with a mask, and the same image a second time without a mask, or with a different
mask.

3.4 Image Handling 73

Viewing and printing PDF files with transparency. Equally important as PDF’s intrinsic
limitations with respect to transparency are the practical limitations when it comes to
using PDF files with transparency in the viewer application. The following restrictions
should be noted:
> Transparency only works in PDF 1.3/Acrobat 4 – older viewers will completely ignore

transparency information, and display or print the whole image (overpainting the
background).

> Printing transparent images to PostScript Level 1 or 2 doesn't work, even with Acro-
bat 4 (since transparency support only appeared in PostScript 3, and can’t easily be
emulated). Acrobat prints the base image without the mask.

> If an image is masked by position Acrobat 4 viewers will only honour the clipping up
to a certain image size, and display the whole image otherwise. It appears from ex-
perimentation that the following limit applies:

 width x height x components < 1024 K

Images above this limit are displayed without applying the mask. The limit in a typi-
cal PostScript 3 printer seems to be lower, resulting in PostScript errors when trying
to print PDF documents with large masked images.

> Ghostscript 6.0 does not support masked images in PDF.

Transparency support in PDFlib. PDFlib supports both masking by position and by col-
or value (only single color values, but no ranges). Transparency information can be ap-
plied implicitly or explicitly.

Note Masked images are not supported in Acrobat 3 compatibility mode.

In the implicit case, the transparency information from an external image file is re-
spected, provided the image file format supports transparency or an alpha channel (this
is not the case for all image file formats). Transparency information is detected in the
following image file formats:
> GIF image files may contain a single transparent color value which is respected by

PDFlib.
> PNG image files may contain several flavors of transparency information, or a full al-

pha channel. PDFlib tries to preserve as much as possible from this information: sin-
gle transparent color values are retained; if multiple color values with an attached
alpha value are given, only the first one with an alpha value below 50 percent is
used; a full alpha channel is ignored.

The explicit case requires two steps, both of which involve image operations. First, an
image must be prepared for later use as a binary transparency mask. This is accom-
plished by using the standard image file function with an additional parameter:

mask = PDF_open_image_file(p, "png", filename, "mask", 0)

In order to be usable as a mask, an image must have only a single color component and
a bit depth of 1, i.e., only plain bitmaps are suitable as a mask. Only PNG and in-memory
images as supported for constructing a mask. Pixel values of 0 in the mask will result in
the corresponding area of the image being painted, while pixel values of 1 result in the
background shining through.

In the second step this mask is applied to another image which itself is acquired
through one of the usual image functions:

74 Chapter 3: PDFlib Programming Concepts

image = PDF_open_image_file(p, type, filename, "masked", mask)
if (image != -1)

PDF_place_image(p, image, x, y, scale);

Note the different use of the optional string parameter for PDF_open_image_file(): mask
for defining a mask, and masked for applying a mask to another image. The integer pa-
rameter is unused in the first step, and carries the mask descriptor in the second step.

The image and the mask may have different pixel dimensions; the mask will auto-
matically be scaled to the image’s size.

PDFlib doesn’t make any provisions for painting solid color through a mask (like
PostScript’s imagemask operator), since this is a special case of the general masking
mechanism. You can achieve this effect by applying the required mask to an auxiliary
image constructed in memory with PDF_open_image() (a solid rectangle of the request-
ed color).

Note Multi-strip TIFF images are converted to multiple PDF images, which would be masked individ-
ually by PDFlib. Since this is usually not intended, this kind of images should be avoided as
mask target. Also, it is important to not mix the implicit and explicit cases, i.e., don’t use imag-
es with transparent color values as mask.

Ignoring transparency. Sometimes it is desirable to ignore any transparency informa-
tion which may be contained in an image file. For example, Acrobat’s anti-aliasing fea-
ture (also known as »smoothing«) isn’t used for 1-bit images which contain black and
transparent as their only colors. For this reason imported images with fine detail (e.g.,
rasterized text) may look ugly when the transparency information is retained in the
generated PDF. In order to solve this problem, PDFlib’s automatic transparency support
can be disabled with the ignoremask parameter when opening the file:

image = PDF_open_image_file(p, "gif", filename, "ignoremask", 0)

3.4.6 Multi-Page Image Files
PDFlib supports TIFF files which contain more than one image, also known as multi-
page files. In order to use multi-page TIFFs, the call to PDF_open_image_file() additional
string and numerical parameters are used:

image = PDF_open_image_file(p, "tiff", "image.tif", "page", 1)

The page parameter indicates that a multi-image file is to be used, and is only supported
for TIFF images. The last parameter specifies the number of the image to use. The first
image is numbered 1. This parameter may be increased until PDF_open_image_file() re-
turns -1, signalling that no more images are available in the file.

A code fragment similar to the following can be used to convert all images in a multi-
image TIFF file to a multi-page PDF file:

for (frame=1; /* */ ; frame++) {
image = PDF_open_image_file(p, "tiff", filename, "page", frame);
if (image == -1)

break;
PDF_begin_page(p);
PDF_place_image(p);
PDF_end_page(p);

}

4.1 Data Types and Naming Conventions 75

4 PDFlib API Reference
The API reference documents all supported PDFlib functions. A few functions are not
supported in certain language bindings since they are not necessary. These cases are
mentioned in appropriate notes.

4.1 Data Types and Naming Conventions
PDFlib data types. The exact syntax to be used for a particular language binding may
actually vary slightly from the C syntax shown here in the reference. This especially
holds true for the PDF document parameter (PDF * in the API reference) which has to be
supplied as the first argument to almost all PDFlib functions in the C binding, but not
those bindings which hide the PDF document parameter in an object created by the lan-
guage wrapper.

Table 4.1 details the use of the PDF document type and the string type in all language
bindings. The data types integer, long, and float are not mentioned since there is an obvi-
ous mapping of these types in all bindings. Please refer to the respective language sec-
tion and the examples in Chapter 2 for more language-specific details.

Naming conventions for PDFlib functions. In the C binding, all PDFlib functions live in
a global namespace and carry the common PDF_ prefix in their name in order to mini-
mize namespace pollution. In contrast, several language bindings hide the PDF docu-
ment parameter in an object created by the language wrapper. For these bindings, the
function name given in this API reference must be changed by omitting the PDF_ prefix
and the PDF * parameter used as first argument. For example, the C-like API description

Table 4.1. Data types in the language bindings

language binding PDF
document
parameter
required?

function
names use
PDF_ prefix?

string data type binary data type

ActiveX no no BSTR (string) variant of type
VT_ARRAY | VT_UI1 1

1. In other words, a variant array of unsigned bytes.

Delphi with ActiveX no no String (for 8-bit encodings)
or WideString (for Unicode)

OleVariant

C (also used in
this API reference)

yes yes const char * 2

2. C language NULL string values and empty strings are considered equivalent.

const char *

C++ no no string or const char * 3

3. ANSI C++ strings or C-style char * are used according to a compiler-dependent preprocessor definition. NULL string
values must not be used in the C++ binding.

char *
Java no no String byte[]
Perl yes yes string string
Python yes yes string string
Tcl yes yes string byte array 4

4. Byte arrays were introduced in Tcl 8.1.

76 Chapter 4: PDFlib API Reference

PDF *p;
...
PDF_open_file(PDF *p, const char *filename);

translates into the following when the function is used from Java:

pdflib p;
...
p.open_file(String filename);

4.2 General Functions
4.2.1 Setup

Note Users of the ActiveX and Java bindings can ignore the functions in this section (but not the pa-
rameters).

Table 4.2 lists relevant parameters and values for this section.

void PDF_boot(void)
void PDF_shutdown(void)
Boot and shut down PDFlib, respectively. Recommended for the C language binding, al-
though currently not required. For all other language bindings booting and shutting

Table 4.2. Parameters and values for the setup functions

function key explanation
set_parameter compatibility Set PDFlib’s compatibility mode to one of the strings »1.2« or »1.3« for

Acrobat 3 or 4. The default is 1.3. This parameter must be set before the
first call to PDF_open_*(). Setting compatibility to »1.2« will make Acrobat
4 features unavailable. Note that strict Acrobat 3 compatibility mode is
not required for generating Acrobat 3 compatible files, but only in very
specific circumstances related to PDF-enabled RIPs (see Section 1.3, »PDFlib
Output and Compatibility«).

set_parameter flush Set PDFlib’s flushing strategy to none, page, content, or heavy. The default
is page. See Section 3.1.3, »Generating PDF Documents directly in Memory«
for a discussion of flushing strategies. This parameter is only relevant to
the C and C++ language bindings.

set_parameter prefix Resource file name prefix as used in a UPR file (see Section 3.3.6, »Resource
Configuration and the UPR Resource File«). The prefix can only be set once.

set_parameter resourcefile Relative or absolute file name of the PDFlib UPR resource file. The resource
file will be loaded at the next attempt to access resources. The resource file
name can only be set once. This call should occur before the first page.

set_parameter serial Set the serial string for the ActiveX edition (see Section 2.2.2, »Availability
and Special Considerations for ActiveX«

set_parameter warning Enable or suppress warnings (nonfatal exceptions). Possible values are true
and false, default value is true.

set_value compress Set the compression parameter to a value from 0–9. Default value is 6.
This parameter does not affect precompressed image data which is
handled in pass-through mode.
0 no compression
1 best speed
9 best compression

4.2 General Functions 77

down is accomplished automatically by the wrapper code, and these functions are not
available.

int PDF_get_majorversion(void)
int PDF_get_minorversion(void)
Return the PDFlib major and minor version number, respectively.

Note Both functions are not available in the ActiveX, Java, Perl, and Tcl bindings because these sup-
ply their own versioning schemes.

PDF *PDF_new(void)
Create a new PDF object, using PDFlib’s internal default error handling and memory al-
location routines. PDF_new() returns a handle to a PDF object which is to be used in sub-
sequent PDFlib calls. The contents of the PDF structure are considered private to the li-
brary; only pointers to the PDF structure are used at the API level.

The data type used for the opaque PDF object handle varies among language bind-
ings. This doesn’t really affect PDFlib clients, since all they have to do is pass the PDF
handle as the first argument to all functions.

This function does not return any error code. If it doesn’t succeed due to unavailable
memory, a PDFlib exception is raised.

PDF_new() must always be paired with a matching PDF_delete() call.

Note This function is not available in the C++ binding since it is hidden in the PDF constructor. In the
ActiveX and Java bindings this function is automatically called by the wrapper code, and there-
fore also not available.

PDF *PDF_new2(
void (*errorhandler)(PDF *p, int type, const char *msg),
void* (*allocproc)(PDF *p, size_t size, const char *caller),
void* (*reallocproc)(PDF *p, void *mem, size_t size, const char *caller),
void (*freeproc)(PDF *p, void *mem),
void *opaque)

Create a new PDF object. Returns a pointer to the opaque PDF data type which is re-
quired as the p argument for all other functions. Unlike PDF_new(), the caller may op-
tionally supply own procedures for error handling and memory allocation. The func-
tion pointers for the error handler, the memory procedures, or both may be NULL.
PDFlib will use default routines in these cases. Either all three memory routines must be
provided, or none.

PDF_new2() must always be paired with a matching PDF_delete() call.

Note In the C++ binding this function is indirectly available via the PDF constructor. Not all function
arguments must be given since default values of NULL are supplied. In all bindings other than C
and C++ this function is automatically called by the wrapper code, and therefore not available.

void PDF_delete(PDF *p)
Delete a PDF object and free all document-related PDFlib-internal resources. Although
not necessarily required for single-document generation, deleting the PDF object is
heavily recommended for all server applications when they are done producing PDF.
This function must only be called once for a given PDF object. PDF_delete() should also
be called from client-supplied error handlers for cleanup. If more than one PDF docu-

78 Chapter 4: PDFlib API Reference

ment will be generated it is not necessary to call PDF_delete() after each document, but
only when the complete sequence of PDF documents is done.
PDF_delete() must always be paired with a matching call to one of the PDF_new() or PDF_
new2 () functions.

Note In the C++ binding this function is indirectly available via the PDF destructor. In the ActiveX
and Java bindings this function is automatically called by the wrapper code, and therefore not
available.

void *PDF_get_opaque(PDF *p)
Return the opaque application pointer stored in PDFlib which has been supplied in the
call to PDF_new2(). PDFlib never touches the opaque pointer, but supplies it unchanged
to the client. This may be used in multi-threaded applications for storing private
thread-specific data within the PDF object.

Note This function is only available in the C and C++ bindings.

4.2.2 Document and Page
Table 4.3 lists relevant parameters and values for this section.

int PDF_open_file(PDF *p, const char *filename)
Open a new PDF file associated with p, using the supplied filename. PDFlib will attempt
to open a file with the given name, and close the file when the PDF document is fin-
ished. This function returns -1 on error, and 1 otherwise.

The special file name »–« can be used for generating PDF on the stdout channel (this
obviously does not apply to environments which don’t support the notion of a stdout
channel, such as the MacOS and ActiveX).

If filename is empty the PDF document will be generated in memory instead of on
file. The result must be fetched by the client with the PDF_get_buffer() function. PDF_
open_file() will always succeed in this case, and never return the -1 error value.

PDF_open_file() must always be paired with a matching PDF_close() call.

Note In the C++ binding this function is hidden in the overloaded open() call.

int PDF_open_fp(PDF *p, FILE *fp)
Open a new PDF file associated with p, using the supplied file handle. The function re-
turns -1 on error, and 1 otherwise.

On Mac, Windows, and AS/400 the fp file handle must have been opened in binary
mode, which is necessary for PDF output. On Windows PDFlib changes the output mode
of the supplied file handle to binary mode itself.

PDF_open_fp() must always be paired with a matching PDF_close() call.

Note This function is only available in the C and C++ bindings. In the C++ binding, it is hidden in the
overloaded open() call.

Table 4.3. Parameters and values for the document and page functions

function key explanation
set_value pagewidth

pageheight
Change the page size dimensions of the current page. These parameters
must only be used within a page description. The parameters must be
given as strings.

4.2 General Functions 79

void PDF_open_mem(PDF *p, size_t (*writeproc)(PDF *p, void *data, size_t size))
Open a new PDF document in memory, without writing to a disk file. The user-supplied
writeproc callback function will be called by PDFlib in order to submit (portions of) the
generated PDF data. The callback function must return the number of bytes written. If
the return value doesn’t match the size argument supplied by PDFlib, an exception will
be thrown, and PDF generation stops. The frequency of writeproc calls is configurable
with the flush parameter. The default value of the flush parameter is page (see Section
3.1.3, »Generating PDF Documents directly in Memory« for details).

PDF_open_mem() must always be paired with a matching PDF_close() call.

Note This function is only available in the C and C++ bindings. In the C++ binding it is hidden in the
overloaded open() call. Other language bindings can use PDF_open_file() with an empty file
name in order to create PDF documents in memory.

const char * PDF_get_buffer(PDF *p, long *size)
Fetch the full or partial buffer containing the generated PDF data. This function must
only be called between page descriptions (i.e., after PDF_end_page() and before PDF_
begin_page()), or after PDF_close() and before PDF_delete() (the latter is not required by
all language bindings). This function must only be called if an empty filename has been
supplied to PDF_open_file(). It returns a buffer full of binary PDF data for consumption
by the client. The size parameter is only used for C and C++ clients, and points to a mem-
ory location where the length of the returned data in bytes will be stored. In all other
language bindings an object of appropriate length will be returned, and the size parame-
ter must be omitted.

If this function is called between page descriptions, it will return the PDF data gener-
ated so far. If it is called after PDF_close() it returns the remainder of the PDF document.
If there is only a single call to this function which happens after PDF_close() the return
value is guaranteed to contain the complete PDF document in a contiguous buffer.

This function returns a language-specific data type for binary data according to Ta-
ble 4.1.

void PDF_close(PDF *p)
Finish the generated PDF document, free all document-related resources, and close the
output file if the PDF document has been opened with PDF_open_file(). This function
must be called when the client is done generating pages, regardless of the method used
to open the PDF document.

When the document was generated in memory (as opposed to on file), the document
buffer will still be kept after this function is called (so that it can be fetched with PDF_
get_buffer()), and will be freed in the next call to PDF_open(), or in PDF_delete().

PDF_close() must always be paired with a matching call to one of the PDF_open_*()
functions.

void PDF_begin_page(PDF *p, float width, float height)
Start a new page in the PDF file. The width and height parameters are the dimensions of
the new page in points. Acrobat’s page size limits are documented in Section 3.2.1, »Co-
ordinate Systems«. A list of commonly used page formats can be found in Table 3.4.
Note that there are C convenience definitions for some common page formats (see Sec-
tion 4.8, »Page Size Formats«). The page size can be changed after calling PDF_begin_

80 Chapter 4: PDFlib API Reference

page() with the pagewidth and pageheight parameters. In order to produce landscape
pages use width > height.

PDF_begin_page() must always be paired with a matching PDF_end_page() call.

void PDF_end_page(PDF *p)
Must be used to finish a page description. PDF_end_page() must always be paired with a
matching PDF_begin_page() call.

4.2.3 Parameter Handling
PDFlib maintains a number of internal parameters which are used for controlling
PDFlib’s operation and the appearance of the PDF output. Four functions are available
for setting and retrieving both numerical and string parameters. All parameters (both
keys and values) are case-sensitive. The descriptions of available parameters can be
found in the respective sections.

float PDF_get_value(PDF *p, const char *key, float modifier)
Get the numerical value of some internal PDFlib parameter key, in some cases character-
ized by the modifier. For parameters where the description doesn’t mention modifier, it is
ignored and must be 0.

void PDF_set_value(PDF *p, const char *key, float value)
Set some numerical PDFlib parameter key to value.

const char * PDF_get_parameter(PDF *p, const char *key, float modifier)
Get the string value of some PDFlib parameter key, in some cases further characterized
by modifier. For parameters where the description doesn’t mention modifier, it is ignored
and must be 0.

Note C and C++ clients must neither touch nor free the returned string.

void PDF_set_parameter(PDF *p, const char *key, const char *value)
Set the string value of some PDFlib parameter key to value.

4.3 Text Functions
4.3.1 Font Handling

Table 4.4 lists relevant parameters and values for this section.

int PDF_findfont(PDF *p, const char *fontname, const char *encoding, int embed)
Prepare the font fontname for later use with PDF_setfont(). The metrics will be loaded
from memory or from an external metrics file.

For 8-bit fonts, encoding is one of builtin, macroman, winansi, ebcdic, or host (see Sec-
tion 3.3.2, »Builtin and External 8-Bit Encodings«), or the name of an external PDFlib-
supplied or user-defined encoding (see Section 3.3.3, »Custom Encoding Files for 8-Bit
Encodings«). Note that in order to use arbitrary encodings, you will need metrics infor-
mation for the font (see Section 3.3.5, »Font Outline and Metrics Files«).

4.3 Text Functions 81

Alternatively, encoding can be the name of one of the built-in CMaps if fontname de-
scribes a CID font (see Section 3.3.7, »CID Font Support for Japanese, Chinese, and Korean
Text«). In this case metrics information is not required. Case is significant for both
fontname and encoding.

Note CID fonts are not supported in Acrobat 3 compatibility mode.

If the embed parameter has the value 0, only general font information is included in the
PDF output. If embed = 1, the font outline file must be available in addition to the met-
rics information, and the actual font definition will be embedded in the PDF output.
However, the font file will only be checked when this function is called, but not yet
used, since font embedding is done at the end of the generated PDF file. The embed pa-
rameter must be 0 for CID fonts.

If the requested font/encoding combination cannot be used due to configuration
problem (e.g., a font, metrics, or encoding file could not be found, or a mismatch was de-
tected), an exception of type PDF_RuntimeError will be raised. Otherwise, the value re-
turned by this function can be used as font argument to other font-related functions.
PDF_findfont() can safely be called outside of page descriptions.

Note The returned number – the font handle – doesn’t have any significance to the user other than
serving as an argument to PDF_setfont() and related functions. In particular, requesting the
same font/encoding combination in different documents may result in different font handles.

void PDF_setfont(PDF *p, int font, float fontsize)
Set the current font in the given fontsize. The font descriptor must have been retrieved
with PDF_findfont(). This function must only be called within a page description. The

Table 4.4. Parameters and values for the font functions (see Section 4.2.3, »Parameter Handling«)

function key explanation
set_parameter FontAFM

FontPFM
FontOutline
Encoding

The corresponding resource file line as it would appear for the respective
category in a UPR file (see Section 3.3.6, »Resource Configuration and the
UPR Resource File«)

get_value font Return the identifier of the current font which must have been set with
PDF_setfont(). Must only be called within a page description.

get_parameter fontname The name of the current font which must have been previously set with
PDF_setfont(). This function must only be called within a page
description.

get_parameter fontencoding The name of the encoding or CMap used with the current font. A font
must have been previously set with PDF_setfont(). This function must
only be called within a page description. Note that the returned encoding
name may not be literally identical to the encoding parameter supplied to
PDF_findfont() because host encoding has been resolved, or PDFlib forced
a different encoding because the requested encoding couldn’t be used
with the font.

get_value fontsize Return the size of the current font which must have been previously set
with PDF_setfont(). This function must only be called within a page
description.

get_value capheight
ascender
descender

Return metrics information for the font identified by the modifier. See
Section 3.3.9, »Text Metrics, Text Variations, and Text Box Formatting« for
more details. The values are measured in fractions of the font size, and
must therefore be multiplied by the desired font size.

82 Chapter 4: PDFlib API Reference

font must be set on each page before drawing any text. Font settings will not be retained
across pages. The current font can be changed an arbitrary number of times per page.

4.3.2 Text Output
Note All text supplied to the functions in this section must match the encoding selected with PDF_

findfont(). This applies to 8-bit text as well as Unicode or other encodings selected via a CMap.

Table 4.4 lists relevant parameters and values for this section.

Table 4.5. Parameters and values for the text functions (see Section 4.2.3, »Parameter Handling«)

function key explanation
set_value leading Set the leading, which is the distance between baselines of adjacent lines

of text. The leading is used for PDF_continue_text() and set to the value of
the font size when a new font is selected using PDF_setfont(). Setting the
leading equal to the font size results in dense line spacing. However,
ascenders and descenders of adjacent lines will generally not overlap.

set_value textrise Set the text rise parameter. The text rise specifies the distance between the
desired text position and the default baseline. Positive values of text rise
move the baseline up. The text rise always relates to the vertical
coordinate. This may be useful for superscripts and subscripts. The text rise
is set to the default value of 0 at the beginning of each page.

set_value horizscaling Set the horizontal text scaling to the given percentage, which must be
greater than 0. Text scaling shrinks or expands the text by a given
percentage. The text scaling is set to the default of 100 at the beginning of
each page. Text scaling always relates to the horizontal coordinate.

set_value textrendering Set the current text rendering mode to one of the values given in Table
3.10. The text rendering parameter is set to the default of 0 (= solid fill) at
the beginning of each page.

set_value charspacing Set the character spacing, i.e., the shift of the current point after placing
the individual characters in a string. The spacing is given in text space
units. It is reset to the default of 0 at the beginning of each page. In order
to spread the characters apart use positive values for horizontal writing
mode, and negative values for vertical writing mode.

set_value wordspacing Set the word spacing, i.e., the shift of the current point after placing
individual words in a text line. In other words, the current point is moved
horizontally after each ASCII space character (0x20). Since fonts with
multi-byte encodings don’t have an ASCII space character they are not
affected by the word spacing. The spacing value is given in text space
units. It is reset to the default of 0 at the beginning of each page.

get_value textx
texty

The x or y coordinate, respectively, of the current text position.

set_parameter underline
overline
strikeout

Set the current underline, overline, and strikeout modes, which are
retained until they are explicitly changed. Theses modes can be set
independently from each other, and are reset to false at the beginning of
each page (see Section 3.3.9, »Text Metrics, Text Variations, and Text Box
Formatting«).
true underline/overline/strikeout text (does not work for CID fonts)
false do not underline/overline/strikeout text

set_parameter native-
unicode

If true, enable native Unicode text processing for language bindings with
Unicode support; disable if false. Default value is false (see Section 3.3.8,
»Unicode Support«).

4.3 Text Functions 83

void PDF_show(PDF *p, const char *text)
Print text in the current font and font size at the current text position. Both font (via
PDF_setfont()) and current point (via PDF_moveto() or another text output function)
must have been set before. The current point is moved to the end of the printed text. In
the C and C++ bindings text must not contain null characters.

void PDF_show2(PDF *p, const char *text, int len)
Same as PDF_show(), but with explicit string length in bytes for strings which may con-
tain null characters. If len = 0 a null-terminated string is assumed as in PDF_show().

Note This function is only available for the C and C++ bindings, and is not required for the other lan-
guage bindings.

void PDF_show_xy(PDF *p, const char *text, float x, float y)
Print text in the current font at position (x, y). The font must have been set before. The
current point is moved to the end of the printed text. In the C and C++ bindings text
must not contain null characters.

void PDF_show_xy2(PDF *p, const char *text, int len, float x, float y)
Same as PDF_show_xy(), but with explicit string length in bytes for strings which may
contain null characters. If len = 0 a null-terminated string is assumed as in PDF_show_
xy().

Note This function is only available for the C and C++ bindings, and is not required for the other lan-
guage bindings.

void PDF_continue_text(PDF *p, const char *text)
Move to the next line and print text. The start of the next line is determined by the lead-
ing parameter and the most recent call to PDF_show_xy() or PDF_set_text_pos(). The cur-
rent point is moved to the end of the printed text. In the C and C++ bindings text must
not contain null characters. This function should not be used in vertical writing mode.

void PDF_continue_text2(PDF *p, const char *text, int len)
Same as PDF_continue_text(), but with explicit string length in bytes for strings which
may contain null characters. If len = 0 a null-terminated string is assumed as in
continue_text().

Note This function is only available for the C and C++ bindings, and is not required for the other lan-
guage bindings.

int PDF_show_boxed(PDF *p, const char *text, float x, float y, float width, float height,
const char *mode, const char *feature)

Format the supplied text into a rectangular column. mode selects the horizontal align-
ment mode as discussed below.

If width = 0 and height = 0, mode can attain one of the values left, right, or center, and
the text will be formatted according to the chosen alignment with respect to the point
(x, y), with y denoting the position of the baseline. In this mode, this function does not
check whether the submitted parameters result in some text being clipped at the page
edges, nor does it apply any line-wrapping. It returns the value 0 in this case.

84 Chapter 4: PDFlib API Reference

If width or height is different from 0, mode can attain one of the values left, right, center,
justify, or fulljustify. The supplied text will be formatted into a text box defined by the
lower left corner (x, y) and the supplied width and height. If the text doesn’t fit into a line,
a simple line-breaking algorithm is used to break the text into the next available line,
using existing space characters for possible line-breaks. While the left, right, and center
modes align the text on the respective line, justify aligns the text on both left and right
margins. According to common practice the very last line in the box will only be left-
aligned in justify mode, while in fulljustify mode all lines (including the last one if it con-
tains at least one space character) will be left- and right-aligned. fulljustify is useful if the
text is to be continued in another column.

This function returns the number of characters which could not be processed since
the text didn’t completely fit into the column. If the text did actually fit, it returns 0.
Since no formatting is performed if width = 0 and height = 0, this function always re-
turns 0 in this case.

The current font must have been set before calling this function. The current values
of font, font size, horizontal spacing, and leading are used for the text.

If the feature parameter is blind, all calculations are performed, but no text output is
actually generated. This can be used for size calculations and possibly trying different
font sizes for fitting some amount of text into a given box by varying the font size. Oth-
erwise feature must be empty.

This function cannot be used with CID fonts. It is safe to use PDF_continue_text() after
this function if mode = left or justify.

float PDF_stringwidth(PDF *p, const char *text, int font, float size)
Return the width of text in an arbitrary font and size which has been selected with PDF_
findfont(). The width calculation takes the current values of the following text parame-
ters into account: horizontal scaling, character spacing, and word spacing. In the C and
C++ bindings text must not contain null characters.

This function cannot be used with CID fonts. If the current font is a CID font, this
function returns 0 regardless of the text and size arguments.

float PDF_stringwidth2(PDF *p, const char *text, int len, int font, float size)
Same as PDF_stringwidth(), but with explicit string length in bytes for strings which may
contain null characters. If len = 0 a null-terminated string is assumed as in PDF_
stringwidth().

Note This function is only available for the C and C++ bindings, and is not required for the other lan-
guage bindings.

void PDF_set_text_pos(PDF *p, float x, float y)
Set the current text position to (x, y). The text position is set to the default value of (0, 0)
at the beginning of each page.

Note The current point for graphics output and the current text position are maintained separately.

4.4 Graphics Functions 85

4.4 Graphics Functions
4.4.1 General Graphics State

Note Don’t use general graphics state functions within a path description (see Section 3.2, »Page De-
scriptions«).

void PDF_setdash(PDF *p, float b, float w)
Set the current dash pattern to b black and w white units. b and w must be non-negative
numbers. In order to produce a solid line, set b = w = 0. The dash parameter is set to solid
at the beginning of each page.

void PDF_setpolydash(PDF *p, float *darray, int length)
Set a more complicated dash pattern. The array of the given length contains alternating
values for black and white dash lengths. The array values must be non-negative, and not
all zero. In order to produce a solid line, choose length = 0 and darray = NULL or an empty
array. The array length must be less than or equal to 8; otherwise the array will be trun-
cated. The dash parameter is set to a solid line at the beginning of each page.

Note The length parameter is only required for the C and C++ language bindings. Other language
bindings simply supply the array as argument, and the language wrapper will automatically
determine its length.

void PDF_setflat(PDF *p, float flatness)
Set the flatness to a value between 0 and 100 inclusive. The flatness parameter describes
the maximum distance (in device pixels) between the path and an approximation con-
structed from straight line segments. The flatness parameter is set to the default value
of 0 at the beginning of each page, which means that the device’s default flatness is
used.

void PDF_setlinejoin(PDF *p, int linejoin)
Set the linejoin parameter to a value of 0, 1, or 2. The linejoin parameter specifies the
shape at the corners of paths that are stroked, as shown in Table 4.6. The linejoin para-
meter is set to the default value of 0 at the beginning of each page.

Table 4.6. Values of the linejoin parameter

value description (from the PDF specification) examples
0 Miter joins: the outer edges of the strokes for the two segments are

continued until they meet. If the extension projects too far, as determined
by the miter limit, a bevel join is used instead.

1 Round joins: a circular arc with a diameter equal to the line width is drawn
around the point where the segments meet and filled in, producing a
rounded corner.

2 Bevel joins: the two path segments are drawn with butt end caps (see the
discussion of linecap parameter), and the resulting notch beyond the ends
of the segments is filled in with a triangle.

86 Chapter 4: PDFlib API Reference

void PDF_setlinecap(PDF *p, int linecap)
Set the linecap parameter to a value 0, 1, or 2. The linecap parameter controls the shape
at the ends of open paths with respect to stroking, as shown in Table 4.7. The linecap pa-
rameter is set to the default value of 0 at the beginning of each page.

void PDF_setmiterlimit(PDF *p, float miter)
Set the miter limit to a value greater than or equal to 1. The miterlimit parameter is set to
the default value of 10 at the beginning of each page.

void PDF_setlinewidth(PDF *p, float width)
Set the current line width to width units in the user coordinate system. The linewidth
parameter is set to the default value of 1 at the beginning of each page.

4.4.2 Special Graphics State
All graphics state parameters are restored to their default values at the beginning of a
page. The default values are documented in the respective function descriptions. Func-
tions related to the text state are listed in Section 4.3, »Text Functions«.

All transformation functions (PDF_translate(), PDF_scale(), PDF_rotate(), PDF_skew(),
and PDF_concat()) change the coordinate system used for drawing future objects. They
do not affect existing objects on the page at all.

void PDF_save(PDF *p)
Save the current graphics state. The graphics state contains parameters that control all
types of graphics objects. Saving the graphics state is not required by PDF; it is only nec-
essary if the application wishes to return to some specific graphics state later (e.g., a cus-
tom coordinate system) without setting all relevant parameters explicitly again. The
following items are subject to save/restore:
> graphics parameters: clipping path, coordinate system, current point, flatness, line

cap style, dash pattern, line join style, line width, miter limit;
> color parameters: fill and stroke colors;
> text parameters: character spacing, word spacing, horizontal scaling, leading, font,

font size, rendering mode, text rise;

The saved graphics state does not include the values of the fillrule, underline, overline, and
strikeout parameters.

This function must not be called within a path construction sequence. PDF_save()
must always be paired with a matching PDF_restore() call.

Table 4.7. Values of the linecap parameter

value description (from the PDF specification) examples
0 Butt end caps: the stroke is squared off at the endpoint of the path.

1 Round end caps: a semicircular arc with a diameter equal to the line width
is drawn around the endpoint and filled in.

2 Projecting square end caps: the stroke extends beyond the end of the line
by a distance which is half the line width and is squared off.

4.4 Graphics Functions 87

void PDF_restore(PDF *p)
Restore the most recently saved graphics state. The corresponding graphics state must
have been saved on the same page. Pairs of PDF_save() and PDF_restore() may be nested.

This function must not be called within a path construction sequence. PDF_restore()
must always be paired with a matching PDF_save() call.

Note Although the PDF specification doesn’t limit the nesting level of save/restore pairs, applications
must keep the nesting level below 10 in order to avoid printing problems caused by restrictions
in the PostScript output produced by PDF viewers, and to allow for additional save levels re-
quired by PDFlib internally.

void PDF_translate(PDF *p, float tx, float ty)
Translate the origin of the coordinate system to (tx, ty). The new origin of the coordinate
system is the point (tx, ty), measured in the old coordinate system.

void PDF_scale(PDF *p, float sx, float sy)
Scale the coordinate system by sx and sy. This function may also be used for achieving a
reflection (mirroring) by using a negative scaling factor. One unit in the x direction in
the new coordinate system equals sx units in the x direction in the old coordinate sys-
tem (analogous for y coordinates).

Note Due to limitations in the Acrobat viewers, PDFlib must output coordinates with absolute values
above 32.767 as integers. This may affect output accuracy in rare cases (when very small scaling
factors and very large coordinates are used).

void PDF_rotate(PDF *p, float phi)
Rotate the user coordinate system by phi degrees. Angles are measured counterclock-
wise from the positive x axis of the current coordinate system. The new coordinate axes
result from rotating the old coordinate axes by phi degrees.

void PDF_skew(PDF *p, float alpha, float beta)
Skew the coordinate system by the angles of alpha and beta degrees. Skewing (or shear-
ing) distorts the coordinate system by the given angles in x and y direction. Angles are
measured counterclockwise from the positive x axis of the current coordinate system.
Both alpha and beta must be different from 90˚ and 270˚.

void PDF_concat(PDF *p, float a, float b, float c, float d, float e, float f)
Concatenate a matrix to the current transformation matrix (CTM) for text and graphics.
This function allows for the most general form of transformations. Unless you are fa-
miliar with the use of transformation matrices, the use of PDF_translate(), PDF_scale(),
PDF_rotate(), and PDF_skew() is suggested instead of this function. The CTM is reset to
the identity matrix (1, 0, 0, 1, 0, 0) at the beginning of each page. The six floating point
values make up the matrix in the same way as in PostScript and PDF (see references). In
order to avoid degenerate transformations, a*d must not be equal to b*c.

88 Chapter 4: PDFlib API Reference

4.4.3 Path Segments
Table 4.8 lists relevant parameters and values for this section.

Note Make sure to call one of the functions in Section 4.4.4, »Path Painting and Clipping« after us-
ing the functions in this section, or the constructed path will have no effect.

void PDF_moveto(PDF *p, float x, float y)
Set the current point to (x, y). The current point is set to the default value of undefined at
the beginning of each page.

Note The current point for graphics output and the current text position are maintained separately.

void PDF_lineto(PDF *p, float x, float y)
Add a straight line from the current point to (x, y) to the current path. The current point
must be set before using this function. The point (x, y) becomes the new current point.

The line will be centered around the »ideal« line, i.e. half of the linewidth (as deter-
mined by the value of the linewidth parameter) will be painted on each side of the line
connecting both endpoints. The behavior at the endpoints is determined by the value of
the linecap parameter.

void PDF_curveto(PDF *p, float x1, float y1, float x2, float y2, float x3, float y3)
Add a Bézier curve from the current point to (x3, y3) to the current path, using (x1, y1) and
(x2, y2) as control points. The endpoint of the curve becomes the new current point.

void PDF_circle(PDF *p, float x, float y, float r)
Add a circle with center (x, y) and radius r to the current path. The point (x + r, y) becomes
the new current point. Elliptical curves can be constructed by applying non-uniform
scaling factors before drawing the circle.

void PDF_arc(PDF *p, float x, float y, float r, float start, float end)
Add a circular arc segment with center (x, y) and radius r to the current path, extending
from start to end degrees. Angles are measured counterclockwise from the positive x
axis of the current coordinate system. Before drawing the arc segment, this function
implicitly moves the current point to the beginning of the arc. The endpoint of the arc
becomes the new current point.

void PDF_rect(PDF *p, float x, float y, float width, float height)
Add a rectangle with lower left corner (x, y) and the supplied width and height to the cur-
rent path. Setting the current point is not required before using this function. The point
(x, y) becomes the new current point. The lines will be centered around the »ideal« line,
i.e. half of the linewidth (as determined by the value of the linewidth parameter) will be
painted on each side of the line connecting the respective endpoints.

Table 4.8. Parameters and values for the path segment functions (see Section 4.2.3, »Parameter Handling«)

function key explanation
get_value currentx

currenty
The x or y coordinate, respectively, of the current point.

4.4 Graphics Functions 89

void PDF_closepath(PDF *p)
Close the current path, i.e., add a line from the current point to the starting point of the
path. The current point must be set before using this function.

4.4.4 Path Painting and Clipping
Table 4.9 lists relevant parameters and values for this section.

Note All functions in this section leave the current point undefined. Subsequent drawing operations
must explicitly set the current point (e.g., using PDF_moveto()) after one of these functions
has been called.

void PDF_stroke(PDF *p)
Stroke (draw) the current path with the current line width and the current stroke color.
This operation clears the path.

void PDF_closepath_stroke(PDF *p)
Close the current path (add a straight line segment from the current point to the start-
ing point of the path), and stroke it with the current line width and the current stroke
color. This operation clears the path.

void PDF_fill(PDF *p)
Fill the interior of the current path with the current fill color. The interior of the path is
determined by one of two algorithms (see PDF_setfillrule()). Open paths are implicitly
closed before being filled. This operation clears the path.

void PDF_fill_stroke(PDF *p)
Fill and stroke the current path with the current fill and stroke color, respectively. This
operation clears the path.

void PDF_closepath_fill_stroke(PDF *p)
Close the current path (add a straight line segment from the current point to the start-
ing point of the path), fill, and stroke it. This operation clears the path.

void PDF_clip(PDF *p)
Use the intersection of the current path and the current clipping path as the clipping
path for future operations. The clipping path is set to the default value of the page size
at the beginning of each page. This operation clears the path. The clipping path is sub-
ject to PDF_save()/PDF_restore(). The clipping path can only be enlarged by means of
PDF_save()/PDF_restore(). This operation clears the path.

Table 4.9. Parameters and values for the path painting and clipping functions (see Section 4.2.3,
»Parameter Handling«)

function key explanation
set_parameter fillrule Set the current fill rule to winding or evenodd. The fill rule is used by PDF

viewers to determine the interior of shapes for the purpose of filling or
clipping. Since both algorithms yield the same result for simple shapes,
most applications won’t have to change the fill rule. The fill rule is reset to
the default of winding at the beginning of each page.

90 Chapter 4: PDFlib API Reference

void PDF_endpath(PDF *p)
Terminate the current path without filling or stroking it. This function is deprecated,
and its use is discouraged. Use one of the above stroke, fill, clip functions instead.

4.5 Color Functions
All color functions expect gray and color values in the inclusive range 0–1. The values
are interpreted according to additive color mixture, i.e., 0 means no color and 1 means
full intensity. Therefore, a gray value of 0 and RGB values with (r, g, b) = (0, 0, 0) mean
black; a gray value of 1 and RGB values with (r, g, b) = (1, 1, 1) mean white. RGB or gray val-
ues in the range 0–255 must be scaled to the range 0–1 by dividing by 255.

Note Don’t use color functions within a path description (see Section 3.2, »Page Descriptions«).

void PDF_setgray_fill(PDF *p, float gray)
Set the current fill color to the gray value. The gray fill parameter is set to the default
value of 0 at the beginning of each page.

void PDF_setgray_stroke(PDF *p, float gray)
Set the current stroke color to the gray value. The gray stroke parameter is set to the de-
fault value of 0 at the beginning of each page.

void PDF_setgray(PDF *p, float gray)
Set the current fill and stroke color to the gray value. The gray parameter is set to the de-
fault value of 0 at the beginning of each page.

void PDF_setrgbcolor_fill(PDF *p, float red, float green, float blue)
Set the current fill color to the supplied RGB values. The rgbcolor fill parameter is set to
the default value of (0, 0, 0) at the beginning of each page.

void PDF_setrgbcolor_stroke(PDF *p, float red, float green, float blue)
Set the current stroke color to the supplied RGB values. The rgbcolor stroke parameter is
set to the default value of (0, 0, 0) at the beginning of each page.

void PDF_setrgbcolor(PDF *p, float red, float green, float blue)
Set the current fill and stroke color to the supplied RGB values. The rgbcolor parameter
is set to the default value of (0, 0, 0) at the beginning of each page.

4.6 Image Functions
The functions for opening images described below can be called within or outside of
page descriptions. Opening images outside a PDF_begin_page() / PDF_end_page() con-
text actually offers slight output size advantages.

Table 4.10 lists relevant parameters and values for this section.

4.6 Image Functions 91

int PDF_open_image_file(PDF *p,
const char *type, const char *filename, const char *stringparam, int intparam)

Open and analyze a raster graphics file in one of the supported file formats as deter-
mined by the type parameter. The type parameter may attain the following values: png,
gif, jpeg, tiff (case is significant for all parameters). The returned image handle, if not -1,
may be used in subsequent image-related calls. In order to get more detailed informa-
tion about the nature of an image-related problem (wrong image file name, bad image
data, etc.), set the imagewarning parameter to true (see Table 4.10).
PDFlib will open the image file with the given name, process the contents, and close it
before returning from this call. Although images can be placed multiply within a docu-
ment (see PDF_place_image()), the actual image file is not kept open after this call.

The stringparam and intparam parameters are used for additional image attributes
according to Table 4.11. If stringparam is unused, it must be an empty string, and
intparam must be 0.

PDF_open_image_file() must always be paired with a matching PDF_close_image() call.

Note The returned image handles cannot be reused across multiple PDF documents.

Table 4.10. Parameters and values for the image functions (see Section 4.2.3, »Parameter Handling«)

function key explanation
get_value imagewidth

imageheight
Get the width or height, respectively, of an image in pixels. The modifier is
the integer handle of the selected image.

get_value resx
resy

Get the horizontal or vertical resolution of an image, respectively. The
modifier is the integer handle of the selected image.

If the value is positive, the return value is the image resolution in pixels per
inch (dpi). If the return value is negative, it can be used to find the aspect
ratio of non-square pixels, but doesn’t have any absolute meaning. If the
return value is zero, the resolution of the image is unknown.

set_parameter image-
warning

This parameter can be used in order to obtain more detailed information
about why an image couldn’t be opened sucessfully with PDF_open_
image_file() or PDF_open_ccitt():
true Raise a Nonfatal exception when the image function fails.

The information string supplied with the exception may be
useful in debugging image-related problems.

false Do not raise an exception when the image function fails.
Instead, the function returns -1 on error. This is the default.

Table 4.11. The stringparam and intparam parameters of PDF_open_image_file()

stringparam explanation and possible intparam values
mask Create a mask from this image. The returned image handle may be used in subsequent

calls for opening another image and supplied this image for the »masked« parameter.
The intparam parameter is ignored in this case, and must be 0.

masked Use the image descriptor given in intparam as a mask for this image. The intparam
parameter is an image handle which has been retrieved with a previous call to PDF_
open_image() with the »mask« parameter.

ignoremask Ignore any transparency information which may be present in the image file.
invert Invert black and white for 1-bit TIFF images. This is mainly intended as a workaround for

certain TIFF images which are interpreted differently by different applications.
page Extract the image with the number given in intparam from a multi-page file. The first

image has the number 1. This is only supported for multi-image TIFF files.

92 Chapter 4: PDFlib API Reference

int PDF_open_CCITT(PDF *p,
const char *filename, int width, int height, int BitReverse, int K, int BlackIs1)

Open an image file with raw CCITT G3 or G4 compressed bitmap data (this is different
from a TIFF file which contains CCITT-compressed image data!). The returned image
handle, if not -1, may be used in subsequent image-related calls. However, since PDFlib
is unable to analyze CCITT images, all relevant parameters have to be passed to PDF_
open_CCITT() by the client. The parameters have the following meaning (apart from
filename, width, and height, which are obvious):

BitReverse: If 1, do a bitwise reversal of all bytes in the compressed data.

K: CCITT compression parameter for encoding scheme selection. It has to be set as fol-
lows: -1 indicates G4 encoding, 0 indicates one-dimensional G3 encoding (G3-1D), 1 indi-
cates mixed one- and two-dimensional encoding (G3, 2-D) as supported by PDF.

BlackIs1: If this parameter has the value 1, 1-bits are interpreted as black and 0-bits as
white. Most CCITT images don't use such a black-and-white reversal, i.e., most images
use BlackIs1 = 0.

PDF_open_CCITT() must always be paired with a matching PDF_close_image() call.

int PDF_open_image(PDF *p, const char *type, const char *source, const char *data,
long length, int width, int height, int components, int bpc, const char *params)

This versatile interface can be used to work with image data in several formats and from
several data sources. The returned image handle, if not -1, may be used in subsequent
image-related calls.

The type parameter denotes the kind of image data or compression. It can attain the
values jpeg, ccitt, or raw (see Section 3.4.1, »Supported Image File Formats«); the source
parameter denotes where the image data comes from, and can attain the values fileref,
url, or memory (see Section 3.4.4, »Memory Images and External Image References«). The
relationship among the source, data, and length parameters is explained in Table 4.12.
The data parameter has binary data type according to Table 4.1.

Note Images referenced via external files or URLs are not supported in Acrobat 3 compatibility mode.

The width and height parameters describe the dimensions of the image. The number of
color components must be 1, 3, or 4 corresponding to grayscale, RGB, or CMYK image data.

Table 4.12. Values of the source, data, and length parameters of PDF_open_image()

source data length
fileref string1 with a platform-independent file name (see [1])

1. data is not a string in Java, ActiveX, and C++, which makes it a little bit clumsy to pass filenames or URLs.

unused, should be 0
url string1 with an image URL conforming to RFC 17382. The

URL will not be resolved by PDFlib, but by Acrobat when
the PDF is opened (see Section 3.4.4, »Memory Images and
External Image References«). This experimental feature is
not recommended for production use.

2. The URL must not contain any additional parameter, query string, access scheme, network login, or fragment iden-
tifier.

unused, should be 0

memory Binary bytes containing image data; the image data is
compressed according to the type parameter

length of (compressed)
image data in bytes.

4.6 Image Functions 93

The number of bits per component bpc must be 1, 2, 4, or 8. width, height, components,
and bpc must always be supplied.

If type is raw, length must be equal to [width x components x bpc/ 8] x height bytes,
with the bracketed term adjusted upwards to the next integer, and this exact amount of
data must be supplied. The image samples are expected in the standard PostScript/PDF
ordering, i.e., top to bottom and left to right (assuming no coordinate transformations
have been applied). Even if bpc is not 8, each pixel row begins on a byte boundary, and
color values must be packed from left to right within a byte. Image samples are always
interleaved, i.e., all color values for the first pixel are supplied first, followed by all color
values for the second pixel, and so on. If components = 1 and bpc = 1, params may be mask
in order to use this image as an image mask.

If type is ccitt, CCITT-compressed image data is expected. In this case, params is exam-
ined. For CCITT images two parameters as described for PDF_open_CCITT() can be sup-
plied in the params string as follows:

/K -1 /BlackIs1 true

Supported values for /K are -1, 0, or 1, the default value is 0. Supported values for /BlackIs1
are true and false; the default value is false. The default values will be used if an empty
params string is supplied. BitReverse cannot be supplied in this string. Instead, a special
notion is used: if length is negative, the image data will be reversed.

If params is not used, it must be empty. The client is responsible for the memory
pointed to by the data argument. The memory may be freed by the client immediately
after this call.

PDF_open_image() must always be paired with a matching PDF_close_image() call.

Note Unlike PDF_open_image_file() this function doesn’t retrieve the image parameters from the
image data, but relies on correct values being supplied by the client. Passing incorrect values
will result in error messages when trying to open the PDF document in Acrobat.

Note Don’t use Photoshop-generated CMYK JPEG images with this functions since they will appear
in the PDF with inverted colors.

void PDF_close_image(PDF *p, int image)
Close the image. This only affects PDFlib’s associated internal image structure. If the im-
age has been opened from file, the actual image file is not affected by this call since it
has already been closed at the end of the corresponding PDF_open_image_file() call. An
image handle cannot be used any more after having been closed with this function,
since it cuts PDFlib’s internal association with the image.

PDF_close_image() must always be paired with a matching call to one of the PDF_
open_image_file(), PDF_open_CCITT(), or PDF_open_image() functions.

void PDF_place_image(PDF *p, int image, float x, float y, float scale)
Place the supplied image (which must have been retrieved with one of the PDF_open_*()
functions) on the current page. The lower left corner of the image is placed at (x, y) on
the current page, and the image is scaled by the supplied scaling factor. See Section 3.4.2,
»Embedding and Scaling Images« for more information on scaling and dpi calculations,
including non-uniform scaling (different scaling factors in x and y dimensions).

This function can be called an arbitrary number of times on arbitrary pages, as long
as the image handle has not been closed with PDF_close_image(). PDF_place_image()

94 Chapter 4: PDFlib API Reference

must only be used within page descriptions, i.e., between PDF_begin_page() and PDF_
end_page().

4.7 Hypertext Functions
4.7.1 Document Open Action and Open Mode

Table 4.13 lists relevant parameters and values for this section. These parameters can be
set at an arbitrary time before calling PDF_close().

4.7.2 Bookmarks
Table 4.14 lists relevant parameters for this section.

Note Adding bookmarks sets the open mode (see Section 4.7.1, »Document Open Action and Open
Mode«) to bookmarks unless another mode has explicitly been set.

int PDF_add_bookmark(PDF *p, const char *text, int parent, int open)
Add a PDF bookmark with the supplied text that points to the current page. The text
may be encoded with PDFDocEncoding or Unicode. This function must not be called be-
fore starting the first page of the document with PDF_begin_page().

This function returns an identifier for the bookmark just generated. This identifier
may be used as the parent parameter in subsequent calls. In this case, a new bookmark
will be generated which is a subordinate of the given parent. In this way, arbitrarily
nested bookmarks can be generated. If parent = 0 a new top-level bookmark will be gen-
erated. If the open parameter has a value of 0, child bookmarks will not be visible. If open
= 1, all children will be folded out.

Table 4.13. Parameters for document open action and open mode (see Section 4.2.3, »Parameter Handling«)

function key explanation
set_parameter openaction Set the open action, i.e., the zoom factor for the first page of the

document. Possible values are retain, fitpage, fitwidth, fitheight, fitbbox.
The meaning of these values is explained in Table 4.19. The default is
retain. This parameter can be set once at an arbitrary time before PDF_
close().

set_parameter openmode Set the appearance when the document is opened. The default value is
bookmarks if the document contains any bookmarks, and otherwise none:
none Neither bookmarks nor thumbnails are visible
bookmarks Open the document with bookmarks visible.
thumbnails Open document with thumbnails visible (not recommended

since PDFlib doesn’t support thumbnail generation).
fullscreen Open the document in fullscreen mode.

Table 4.14. Parameters for bookmarks (see Section 4.2.3, »Parameter Handling«)

function key explanation
set_parameter bookmark-

dest
Set the target zoom for bookmarks generated in the future. Possible values
are retain, fitpage, fitwidth, fitheight, fitbbox. The meaning of these
values is explained in Table 4.19. This parameter can be changed an
arbitrary number of times. The default is retain.

4.7 Hypertext Functions 95

The bookmark target will be viewed at the current bookmark zoom factor which can be
set via the bookmarkdest parameter (see Table 4.14).

This function must only be called within a page description.

4.7.3 Document Information Fields

void PDF_set_info(PDF *p, const char *key, const char *value)
Fill document information field key with value. The value can be encoded with PDF-
DocEncoding or Unicode, while the key must be encoded with PDFDocEncoding. key may
be any of the four standard information field names, or up to one custom field name
(see Table 4.15). If a custom field name is used, it must consist of printable ASCII charac-
ters except any of the following: blank ’ ’, %, (,), <, >, [,], {, }, /, and #.

Regarding the use and semantics of custom document information fields, PDFlib
users are encouraged to take a look at the Dublin Core Metadata element set.1

4.7.4 Page Transitions
PDF files may specify a page transition in order to achieve special effects which may be
useful for presentations or »slide shows«. In Acrobat, these effects cannot be set docu-
ment-specific or on a page-by-page basis, but only for the full screen mode. PDFlib, how-
ever, allows setting the page transition mode and duration for each page separately. Ta-
ble 4.13 lists relevant parameters and values for this section.

Table 4.15. Values for the document information field key

key explanation
Subject Subject of the document
Title Title of the document
Creator Creator of the document
Author Author of the document
Keywords Keywords describing the contents of the document
(any custom name) User-defined field name. PDFlib supports one additional field which may

be arbitrarily named.

1. See http://purl.org/DC

Table 4.16. Parameters and values for page transitions (see Section 4.2.3, »Parameter Handling«)

function key explanation
set_parameter transition Set the page transition effect for the current and any subsequent pages

until until the transition is changed again. The transition type strings
givenbelow are supported. type may also be empty to reset the transition
effect. The default transition is replace, i.e., no special effect.
split Two lines sweeping across the screen reveal the page
blinds Multiple lines sweeping across the screen reveal the page
box A box reveals the page
wipe A single line sweeping across the screen reveals the page
dissolve The old page dissolves to reveal the page
glitter The dissolve effect moves from one screen edge to another
replace The old page is simply replaced by the new page (default)

set_value duration Set the page display duration in seconds for the current page. The default
duration is one second.

http://purl.org/DC

96 Chapter 4: PDFlib API Reference

4.7.5 File Attachments

void PDF_attach_file(PDF *p, float llx, float lly, float urx, float ury, const char *filename,
const char *description, const char *author, const char *mimetype, const char *icon)

Add a file attachment annotation at the rectangle specified by its lower left and upper
right corners in default user space coordinates. description and author may be encoded
in PDFDocEncoding or Unicode. mimetype is the MIME type of the file and will be used
by Acrobat for launching the appropriate program when the file attachment annota-
tion is activated. The icon parameter controls the display of the unopened file attach-
ment in Acrobat, as shown in Table 4.17.

Note PDF file attachments are only supported in Acrobat 4, and are therefore not supported in
PDFlib’s Acrobat 3 compatibility mode. Moreover, Acrobat Reader is unable to deal with file at-
tachments and will display a question mark instead. File attachments only work in the full Ac-
robat software.

4.7.6 Note Annotations

void PDF_add_note(PDF *p, float llx, float lly, float urx, float ury,
const char *contents, const char *title, const char *icon, int open)

Add a note annotation at the rectangle specified by its lower left and upper right cor-
ners in default user space coordinates. contents and title may be encoded with PDF-
DocEncoding or Unicode. The icon parameter controls the display of the unopened note
attachment in Acrobat, as shown in Table 4.18. The annotation will be opened if open = 1,
and closed if open = 0.

Table 4.17. Icon names for file attachments

icon name icon appearance icon name icon appearance

graph

pushpin

paperclip tag

Table 4.18. Icon names for note annotations

icon name icon appearance icon name icon appearance

comment newparagraph

insert key

note help

paragraph

4.7 Hypertext Functions 97

Note Different note icons are only available in Acrobat 4, and are not supported in Acrobat 3 com-
patibility mode (the icon parameter must be empty in this case). Acrobat 3 viewers (and appar-
ently Unix versions of Acrobat 4) will display the »note« type icon regardless of the supplied
icon parameter.

4.7.7 Links

void PDF_add_pdflink(PDF *p, float llx, float lly, float urx, float ury,
const char *filename, int page, const char *dest)

Add a file link annotation to the PDF file filename at the rectangle specified by its lower
left and upper right corners in default user space coordinates. page is the physical page
number of the target page. dest specifies the destination zoom. It can attain one of the
values specified in Table 4.19.

void PDF_add_locallink(PDF *p, float llx, float lly, float urx, float ury,
int page, const char *dest)

Add a link annotation with a target page in the current document at the rectangle spec-
ified by its lower left and upper right corners in default user space coordinates. page is
the physical page number of the target page, and may be a previously generated page,
or a page in the same document that will be generated later (after the current page).
However, the application must make sure that the target page will actually be generat-
ed; PDFlib will issue a warning message otherwise. dest specifies the destination zoom.
It can attain one of the values specified in Table 4.19.

void PDF_add_launchlink(PDF *p, float llx, float lly, float urx, float ury, const char *filename)
Add a launch annotation (arbitrary file type) at the rectangle specified by its lower left
and upper right corners in default user space coordinates. filename is the name of the
file which will be launched upon clicking the link.

void PDF_add_weblink(PDF *p, float llx, float lly, float urx, float ury, const char *url)
Add a weblink annotation at the rectangle specified by its lower left and upper right cor-
ners in default user space coordinates. url is a Uniform Resource Identifier encoded in 7-
bit ASCII specifying the link target. It can point to an arbitrary (Web or local) resource.

void PDF_set_border_style(PDF *p, const char *style, float width)
Set the border style for all kinds of annotations. These settings are used for all annota-
tions until a new style is set. At the beginning of a document the annotation border

Table 4.19. Values for the dest parameter of PDF_add_pdflink() and PDF_add_locallink(). The same values
are also used for the openaction (see Section 4.7.1, »Document Open Action and Open Mode«) and
bookmarkdest parameters (see Section 4.7.2, »Bookmarks«).

dest explanation
retain Retain the zoom factor which was in effect when the link was activated.
fitpage Fit the complete page to the window.
fitwidth Fit the page width to the window.
fitheight Fit the page height to the window.
fitbbox Fit the page’s bounding box (the smallest rectangle enclosing all objects) to the window.

98 Chapter 4: PDFlib API Reference

style is set to a default of a solid line with a width of 1. Possible values of the style param-
eter are solid and dashed. If width = 0 the links will be invisible.

void PDF_set_border_color(PDF *p, float red, float green, float blue)
Set the border color for all kinds of annotations. At the beginning of a document the an-
notation border color is set to (0, 0, 0).

void PDF_set_border_dash(PDF *p, float b, float w)
Set the border dash style for all kinds of annotations (see PDF_setdash()). At the begin-
ning of a document the annotation border dash style is set to a default of (3, 3). However,
this default will only be used when the border style is explicitly set to dashed.

4.8 Page Size Formats
<format>_width, <format>_height, where format is one of

a0, a1, a2, a3, a4, a5, a6, b5, letter, legal, ledger, p11x17;
These macro definitions provide page width and height values for the most common
page formats which may be used in calls to PDF_begin_page().

Note These values are only supplied for the C and C++ bindings. Other language clients may use the
values provided in Table 3.4.

5.1 The »Aladdin Free Public License« 99

5 The PDFlib License
PDFlib is available under two different licensing terms which are substantially differ-
ent, and meet the needs of different developer groups. Please take the time to read the
short summaries below in order to decide which one applies to your development.

5.1 The »Aladdin Free Public License«
This license applies to the main PDFlib package, but not to the ActiveX edition and any
EBCDIC editions (both of which are only available under the terms of the commercial
PDFlib license). The complete text of the license agreement can be found in the file
aladdin-license.pdf. In short and non-legal terms:
> you may develop free software with PDFlib, provided you make your source code

available
> you may develop software for your own use with PDFlib as long as you don’t sell it
> you may redistribute PDFlib non-commercially
> you may redistribute PDFlib on digital media for a fee if the complete contents of the

media are freely redistributable.

Note that only the text in the file aladdin-license.pdf is considered to completely describe
the licensing conditions. Project managers please note: using PDFlib in your commer-
cial projects is not covered by the Aladdin license, and effectively means jeopardizing
your project through unlicensed software.

5.2 The Commercial PDFlib License
A commercial PDFlib license is required for all uses of the software which are not explic-
itly covered by the Aladdin Free Public License, for example:
> shipping a commercial product which contains PDFlib
> distributing (free or commercial) software based on PDFlib when the source code is

not made available
> implementing commercial Web services with PDFlib

Licensing details and the PDFlib purchase order form can be found in the PDFlib distri-
bution. Please contact us if you are interested in obtaining a commercial PDFlib license,
or have any questions:

PDFlib GmbH
Tal 40, 80331 München, Germany
http://www.pdflib.com
phone +49 • 89 • 29 16 46 87
fax +49 • 89 • 29 16 46 86

Licensing contact: sales@pdflib.com
Support for PDFlib licensees: support@pdflib.com (include your license number)
For other inquiries check the PDFlib mailing list at
http://www.egroups.com/group/pdflib.

mailto:sales@pdflib.com
mailto:support@pdflib.com
http://www.egroups.com/group/pdflib
http://www.pdflib.com

100 Chapter 6: References

6 References
Although this manual is intended to be self-contained with respect to PDFlib program-
ming, it is highly recommended to obtain a copy of the PDF specification for a deeper
understanding of PDF and more detailed information:

[1] Adobe Systems Incorporated: PDF Reference, Second Edition: Version 1.3. Published
by Addison-Wesley 2000, ISBN 0-201-61588-6; also available as PDF from
http://partners.adobe.com/asn/developer/technotes.html

[2] Adobe Systems Incorporated: PostScript Language Reference Manual, third edition.
Published by Addison-Wesley 1999, ISBN 0-201-37922-8; also available as PDF from
http://partners.adobe.com/asn/developer/technotes.html

[3] The following book by the principal author of PDFlib is available in English, German,
and Japanese editions. It describes all aspects of integrating Acrobat in the WWW:

English edition: Thomas Merz, Web Publishing with Acrobat/PDF.
With CD-ROM. Springer-Verlag Heidelberg Berlin New York 1998
ISBN 3-540-63762-1, orders@springer.de

German edition: Thomas Merz, Mit Acrobat ins World Wide Web.
Effiziente Erstellung von PDF-Dateien und ihre Einbindung ins Web.
Mit CD-ROM. ISBN 3-9804943-1-4, Thomas Merz Verlag 1998
Note: the updated second edition will be available in October 2000 (ISBN 3-935320-00-0)
80331 München, Tal 40, fax +49 • 89 • 29 16 46 86
http://www.pdflib.com

Japanese edition: Tokyo Denki Daigaku 1999, ISBN 4-501-53020-0
http://plaza4.mbn.or.jp/~unit

http://partners.adobe.com/asn/developer/technotes.html
mailto:orders@springer.de
http://plaza4.mbn.or.jp/~unit
http://www.pdflib.com
http://partners.adobe.com/asn/developer/technotes.html

A Shared Libraries and DLLs 101

A Shared Libraries and DLLs
The details of building and using shared libraries, also known as shared objects or dy-
namic link libraries (DLLs), are among the most frequently asked questions of PDFlib
users. Most PDFlib language bindings require the use of shared libraries and may rely
on additional shared libraries (these are zlib, libpng, and TIFFlib). For your convenience,
we collected some general information about shared libraries in this appendix.

Shared Libraries on Unix Systems

The many faces of shared libraries on Unix. Most problems with shared libraries are
related to the variety of methods, options, and calls invented by Unix system vendors
for implementing shared library support. In order to facilitate building and using
shared libraries on a wealth of Unix systems, PDFlib leverages GNU libtool1. This is a col-
lection of macros and shell scripts which attempt to »do the right thing« in order to
build and use shared libraries on Unix systems.

While libtool support is completely integrated into the PDFlib configuration ma-
chinery, it is suggested to take a look at libtool and the corresponding documentation if
you want to learn more about shared libraries.

Building shared libraries. Although we do not even attempt to completely cover the
intricate details of shared libraries here, the hints given below may be helpful for PDFlib
users. Examples for Linux and other Unix systems are shown in brackets.
> On many systems a compiler flag (Linux: -fPIC) must be used for modules which are

intended to be linked into a shared library (so-called position-independent code, or
PIC).

> Similarly, most systems require a special linker flag for shared libraries (Linux:
-shared).

> The naming conventions for shared libraries vary (Linux and most others: .so,
HP-UX: .sl)

> The system may or may not support a versioning system for shared libraries. Some
systems require a version number to be included in the shared library file name, oth-
ers at least tolerate it. Still others refuse to load libraries with version numbers in
their names. The version number is often appended to the file name suffix with or
without an additional dot (Linux: lib<name>.so.5, BSDI: lib<name>.so5). The system
may or may not consider version numbers when loading shared libraries.

The PDFlib configure script and GNU libtool try to take care of all these issues by con-
structing suitable Makefiles. In case of problems try to locate as much information as
possible regarding the above issues, and compare with the generated Makefiles.

Using shared libraries. Once you managed to correctly build your shared library, you
are not yet done – you must make sure that the run-time linker (which loads and runs
your program) is able to access the library:
> In order to actually find shared libraries, a variety of mechanisms is deployed. The

most common is an environment variable (Linux, Solaris, and many others: LD_
LIBRARY_PATH, HP-UX: SHLIB_PATH, AIX: LIBPATH). It contains a colon-separated list of

1. See http://www.gnu.org/software/libtool/libtool.html

http://www.gnu.org/software/libtool/libtool.html

102 Chapter A: Shared Libraries and DLLs

directories which are searched for shared libraries. Failing that, a cache file (see be-
low) is consulted, and then some set of default system directories (Linux: /usr/lib and
/lib). Setting an environment variable doesn’t require root privilege, and can be use-
ful for testing. Library paths can also be hard-coded in the executable file using a spe-
cial linker option (Solaris: -R).

> In order to prepare the cache consulted by the run-time linker, a special program
(Linux: ldconfig) must be invoked. This program scans all relevant locations for
shared libraries and sets up a cache file with the known libraries (Linux: /etc/
ld.so.cache). Usually this program is invoked at boot time, and requires root privilege.
This technique is useful for permanently installing a shared library on a system.

The PDFlib configure script and GNU libtool emit some instructions explaining the re-
quired steps for using a shared library after the build process is completed. You may
recognize some of the above information in these instructions. Of course, the details
vary among systems.

In order to find out the shared libraries required by a program or another shared li-
brary, a special utility (Linux: ldd) can be invoked. It informs about the libraries which
are required for running a given program, and tries to locate these on the system. This is
convenient for the analysis of shared library related problems.

Note If you find yourself fiddling with shared library related problems because you cannot install the
libraries due to a lack of administrator privileges, take a look at the .libs subdirectory and the li-
brary wrapper scripts created by libtool. These items, along with the commands issued for the
test and install targets will give you an idea of libtool’s library deployment.

To share or not to share? Note that while most Unix systems support shared libraries,
not all do. According to the libtool documentation, building shared libraries is currently
not supported on the following systems:

alpha-dec-osf2.1
i*86-*-bsdi3.1
i*86-*-bsdi3.0
i*86-*-bsdi2.1
i*86-pc-cygwin
m68k-next-nextstep3
m68k-sun-sunos4.1.1
mips-sgi-irix5.3
powerpc-ibm-aix4.1.5.0

PDFlib’s configure mechanism will therefore build static versions of the library on those
systems. This implies that only the C and C++ language bindings will be available.

Library versioning scheme used by libtool. If the operating system supports a version-
ing scheme for shared libraries libtool will make use of it, and create versioned libraries
for PDFlib. It is very important to note that library version numbers are different from
software version numbers – don’t expect PDFlib’s major and minor version numbers to
show up in library file names! Library version numbers rather identify the binary pro-
gramming interface exposed by the library. A table with the PDFlib version numbers
and the corresponding interface (libtool) numbers can be found in the distribution.

A Shared Libraries and DLLs 103

Windows DLLs
DLLs (Dynamic Link Libraries) form one of the cornerstones of the Windows architec-
ture. Building and using DLLs is very well understood, and generally doesn’t pose any
problems. The major exception to this rule is the cluttering of the Windows directory
with all kinds of DLLs installed by every vendor and his dog. The PDFlib ActiveX compo-
nent tries to avoid this issue by installing all required DLLs into a single application-
specific directory. If you want to move PDFlib DLLs around your system, it may be use-
ful to know the order in which Windows searches for DLLs:
> The current directory (this may actually be difficult to determine, e.g. if you are

using a script interpreter).
> Windows 95/98: the Windows system directory
> Windows NT/2000: the 32-bit Windows system directory (system32)
> Windows NT/2000: the 16-bit Windows system directory (system)
> The Windows directory
> The directories listed in the PATH environment variable

Note The PDFlib ActiveX edition takes care of these issues through a private installation directory
and custom registry entries.

Shared Libraries on the Macintosh
Shared libraries on the MacOS are fully supported on PowerPC machines via the Code
Fragment Manager (CFM). 68K Macs require an extension called CFM68K which will not
be further discussed here. A file type of shlb is generally used for shared libraries. The
system looks for shared libraries in the following locations:
> The application folder
> The Extensions folder in the active system folder

104 Chapter B: Summary of PDFlib Functions

B Summary of PDFlib Functions
General Functions

Text Functions

Function prototype page
void PDF_boot(void) 76
void PDF_shutdown(void) 76
int PDF_get_majorversion(void) 77
int PDF_get_minorversion(void) 77
PDF *PDF_new(void) 77
PDF *PDF_new2(void (*errorhandler)(PDF *p, int type, const char *msg), void* (*allocproc)(PDF *p, size_t
size, const char *caller), void* (*reallocproc)(PDF *p, void *mem, size_t size, const char *caller), void
(*freeproc)(PDF *p, void *mem), void *opaque) 77
void PDF_delete(PDF *p) 77
void *PDF_get_opaque(PDF *p) 78
int PDF_open_file(PDF *p, const char *filename) 78
int PDF_open_fp(PDF *p, FILE *fp) 78
void PDF_open_mem(PDF *p, size_t (*writeproc)(PDF *p, void *data, size_t size)) 79
const char * PDF_get_buffer(PDF *p, long *size) 79
void PDF_close(PDF *p) 79
void PDF_begin_page(PDF *p, float width, float height) 79
void PDF_end_page(PDF *p) 80
float PDF_get_value(PDF *p, const char *key, float modifier) 80
void PDF_set_value(PDF *p, const char *key, float value) 80
const char * PDF_get_parameter(PDF *p, const char *key, float modifier) 80
void PDF_set_parameter(PDF *p, const char *key, const char *value) 80

Function prototype page
int PDF_findfont(PDF *p, const char *fontname, const char *encoding, int embed) 80
void PDF_setfont(PDF *p, int font, float fontsize) 81
void PDF_show(PDF *p, const char *text) 83
void PDF_show2(PDF *p, const char *text, int len) 83
void PDF_show_xy(PDF *p, const char *text, float x, float y) 83
void PDF_show_xy2(PDF *p, const char *text, int len, float x, float y) 83
void PDF_continue_text(PDF *p, const char *text) 83
void PDF_continue_text2(PDF *p, const char *text, int len) 83
int PDF_show_boxed(PDF *p, const char *text, float x, float y, float width, float height, const char *mode,
const char *feature) 83
float PDF_stringwidth(PDF *p, const char *text, int font, float size) 84
float PDF_stringwidth2(PDF *p, const char *text, int len, int font, float size) 84
void PDF_set_text_pos(PDF *p, float x, float y) 84

B Summary of PDFlib Functions 105

Graphics Functions

Color Functions

Function prototype page
void PDF_setdash(PDF *p, float b, float w) 85
void PDF_setpolydash(PDF *p, float *darray, int length) 85
void PDF_setflat(PDF *p, float flatness) 85
void PDF_setlinejoin(PDF *p, int linejoin) 85
void PDF_setlinecap(PDF *p, int linecap) 86
void PDF_setmiterlimit(PDF *p, float miter) 86
void PDF_setlinewidth(PDF *p, float width) 86
void PDF_save(PDF *p) 86
void PDF_restore(PDF *p) 87
void PDF_translate(PDF *p, float tx, float ty) 87
void PDF_scale(PDF *p, float sx, float sy) 87
void PDF_rotate(PDF *p, float phi) 87
void PDF_skew(PDF *p, float alpha, float beta) 87
void PDF_concat(PDF *p, float a, float b, float c, float d, float e, float f) 87
void PDF_moveto(PDF *p, float x, float y) 88
void PDF_lineto(PDF *p, float x, float y) 88
void PDF_curveto(PDF *p, float x1, float y1, float x2, float y2, float x3, float y3) 88
void PDF_circle(PDF *p, float x, float y, float r) 88
void PDF_arc(PDF *p, float x, float y, float r, float start, float end) 88
void PDF_rect(PDF *p, float x, float y, float width, float height) 88
void PDF_closepath(PDF *p) 89
void PDF_stroke(PDF *p) 89
void PDF_closepath_stroke(PDF *p) 89
void PDF_fill(PDF *p) 89
void PDF_fill_stroke(PDF *p) 89
void PDF_closepath_fill_stroke(PDF *p) 89
void PDF_endpath(PDF *p) 90
void PDF_clip(PDF *p) 89

Function prototype page
void PDF_setgray_fill(PDF *p, float gray) 90
void PDF_setgray_stroke(PDF *p, float gray) 90
void PDF_setgray(PDF *p, float gray) 90
void PDF_setrgbcolor_fill(PDF *p, float red, float green, float blue) 90
void PDF_setrgbcolor_stroke(PDF *p, float red, float green, float blue) 90
void PDF_setrgbcolor(PDF *p, float red, float green, float blue) 90

106 Chapter B: Summary of PDFlib Functions

Image Functions

Hypertext Functions

Parameters and Values

Function prototype page
int PDF_open_image_file(PDF *p, const char *type, const char *filename, const char *stringparam, int
intparam) 91
int PDF_open_CCITT(PDF *p, const char *filename, int width, int height, int BitReverse, int K, int BlackIs1) 92
int PDF_open_image(PDF *p, const char *type, const char *source, const char *data, long length, int
width, int height, int components, int bpc, const char *params) 92
void PDF_close_image(PDF *p, int image) 93
void PDF_place_image(PDF *p, int image, float x, float y, float scale) 93

Function prototype page
int PDF_add_bookmark(PDF *p, const char *text, int parent, int open) 94
void PDF_set_info(PDF *p, const char *key, const char *value) 95
void PDF_attach_file(PDF *p, float llx, float lly, float urx, float ury, const char *filename, const char
*description, const char *author, const char *mimetype, const char *icon) 96
void PDF_add_note(PDF *p, float llx, float lly, float urx, float ury, const char *contents, const char *title,
const char *icon, int open) 96
void PDF_add_pdflink(PDF *p, float llx, float lly, float urx, float ury, const char *filename, int page, const
char *dest) 97
void PDF_add_locallink(PDF *p, float llx, float lly, float urx, float ury, int page, const char *dest) 97
void PDF_add_launchlink(PDF *p, float llx, float lly, float urx, float ury, const char *filename) 97
void PDF_add_weblink(PDF *p, float llx, float lly, float urx, float ury, const char *url) 97
void PDF_set_border_style(PDF *p, const char *style, float width) 97
void PDF_set_border_color(PDF *p, float red, float green, float blue) 98
void PDF_set_border_dash(PDF *p, float b, float w) 98

category function keys
setup set_parameter prefix, resourcefile, compatibility, serial, warning

set_value compress, flush
document set_value pagewidth, pageheight, flush
font set_parameter FontAFM, FontPFM, FontOutline, Encoding
text set_value leading, textrise, horizscaling, textrendering, charspacing, wordspacing

get_value textx, texty, font, fontsize, capheight, ascender, descender
set_parameter underline, overline, strikeout, nativeunicode
get_parameter fontname, fontencoding

graphics set_parameter fillrule
get_value currentx, currenty

image get_value imagewidth, imageheight, resx, resy
set_parameter imagewarning

hypertext set_parameter openaction, openmode, bookmarkdest, transition
set_value duration

Index 107

Index

0-9
16-bit encoding 62
8-bit encodings 50

A
Acrobat 3 compatibility 11
Acrobat 4 compatibility 10
Active Server Pages 16

special considerations 19
ActiveX binding

error handling 18
general 15
redistribution 17
Unicode support 19
version control 19

Adobe Font Metrics (AFM) 54
AdobeStandardEncoding 51
AFM (Adobe Font Metrics) 54
Aladdin free public license 99
alpha channel 72
annotations 62, 96
API (Application Programming Interface)

reference 75
AS/400 7, 50
ascender 65
ascender parameter 81
Asian FontPack 59
attachments 62, 96
Author field 95
automation 16
availability of PDFlib 13

B
baseline compression 68
Bézier curve 88
big-endian 62
bindings 12
BitReverse 92
BlackIs1 92
blind mode 67, 84
bold CJK text 61
BOM (Byte Order Mark) 62
bookmarkdest parameter 94
bookmarks 62, 94
Borland Delphi: see Delphi
builtin encoding 50, 51
builtin encodings 50
Byte Order Mark 62
byte ordering 62

C
C binding

error handling 28
general 27
memory management 43
Unicode support 30
version control 30

C++ binding
error handling 31
general 30
memory management 44
Unicode support 32
version control 32

capheight 65
capheight parameter 81
categories of resources 57
CCITT 70, 92
CFM (Code Fragment Manager) 103
character ID (CID) 59
character metrics 65
character names 53
character sets 50
characters per inch 66
charspacing parameter 82
Chinese 59
CID fonts 59
CJK (Chinese, Japanese, Korean) 59
clip 49
CMaps 59
codepage

IBM 1047 50
Microsoft Windows 1250 52
Microsoft Windows 1252 50
Microsoft Windows 1254 52

color 49
color functions 90
COM (Component Object Model): see ActiveX

binding
commercial license 99
compatibility

Acrobat 4 10
Acrobat Reader 10

compatibility parameter 76
compile_metrics utility 56
compress parameter 76
compression 10, 44
coordinate system 47, 86

metric 47
top-down 47

core fonts 49

108 Index

CPI (characters per inch) 66
Creator field 95
current point 49
currentx and currenty parameter 88
custom encoding 52

D
default coordinate system 47
Delphi 16, 26

error handling 27
special considerations 26
Unicode support 27

descender 65
descender parameter 81
descriptor 54
DLL (dynamic link library) 18, 101
document and page functions 78
document information fields 62, 95
document open action 94
downsampling 70
dpi calculations 70
Dublin Core 95
duration parameter 95

E
EBCDIC 7, 50, 52
ebcdic encoding 50
embedding fonts 54
encoding 50

CJK 61
custom 52
for hypertext 53
Unicode 63

Encoding parameter 81
environment variable PDFLIBRESOURCE 58
error handling 14, 45

API 77
error names 46
in ActiveX 18
in C 28
in C++ 31
in Delphi 27
in Java 35
in JScript 22
in Perl 38
in Python 39
in Tcl 42
in VBScript 22
in Visual Basic 24

Errors class 19
Euro character 50, 54
exception: see error handling
external encodings 50
external image references 72

F
features of PDFlib 9
file attachments 62, 96
fill 48
fillrule parameter 89
Flate compression 10
flush parameter 45, 76
font metrics 65
font parameter 81
FontAFM parameter 81
fontencoding parameter 81
fontname parameter 81
FontOutline parameter 81
FontPFM parameter 81
fonts

AFM files 54
Asian fontpack 59
CID fonts 59
CJK fonts 59
descriptor 54
embedding 54
general 49
glyph names 53
legal aspects of embedding 56
metrics files 54
mono-spaced 66
outline files 54
PDF core set 49
PFA files 54
PFB files 54
PFM files 54
PostScript 54
PostScript names 55
resource configuration 56
type 1 54
Unicode support 62

fontsize parameter 81
FontSpecific encoding 51

G
general graphics state 85
GIF 69, 91
global.asa 20
graphics functions 85
graphics state 85, 86
grid.pdf 47
GUID 19

H
hello world example

for ASP/JScript 20
for ASP/VBScript 21
general 14
in C 28
in C++ 31
in Delphi 26

Index 109

in Java 34
in Perl 37
in Python 39
in Tcl 41
in VBScript 25
in Visual Basic 24

horizontal writing mode 59, 61
horizscaling parameter 82
host encoding 50, 51
hypertext

encoding 53
functions 94

I
icons

for file attachments 96
for notes 96

ignoremask 74, 91
image data, re-using 71
image file formats 68
image functions 90
image mask 72
image references 72
image scaling 70
imagewarning parameter 68, 91
imagewidth and imageheight parameters 71, 91
inch 47
in-core PDF generation 44
installation, silent for ActiveX 17
Internet Service Provider 18
invert 91
ISO 8859-1 50, 53
ISO 8859-15 52
ISO 8859-2 52, 53
ISO 8859-9 52

J
Japanese 59
Java binding

error handling 35
general 32
javadoc 33
package 33
servlet 34
Unicode support 36
version control 35

JPEG 10, 68, 91, 93
JScript 20

error handling 22
Unicode support 22

K
K parameter for CCITT images 92
Keywords field 95
Korean 59

L
landscape mode 80
language bindings: see bindings
Latin 1 encoding 50, 53
Latin 2 encoding 52
Latin 5 encoding 52
Latin 9 encoding 52
LD_LIBRARY_PATH 101
leading 65
leading parameter 82
licensing conditions 99
links 97
little-endian 62
longjmp 29

M
macroman encoding 50
makepsres utility 56
mask 73, 91
masked 74, 91
masking images 72
memory images 72
memory management

API 77
general 43
in C 43
in C++ 44

memory, generating PDF documents in 44
metadata 95
metric coordinates 47
metrics 65
Microsoft Transaction Server 16
millimeters 47
mirroring 87
mono-spaced fonts 66
MTS 16

N
nagger 17
nativeunicode parameter 64, 82
non-proportional image scaling 71
note annotations 62, 96

O
openaction parameter 94
openmode parameter 94
ordering constraints 49
overline parameter 66, 82

P
page 74
page descriptions 47
page parameter 91
page size formats 48, 98

limitations in Acrobat 48

110 Index

page transitions 95
pagewidth and pageheight parameters 78
parameter

ascender 81
bookmarkdest 94
capheight 81
charspacing 82
compatibility 76
compress 76
currentx and currenty 88
descender 81
duration 95
Encoding 81
fillrule 89
flush 45, 76
font 81
FontAFM 81
fontencoding 81
fontname 81
FontOutline 81
FontPFM 81
fontsize 81
horizscaling 82
imagewarning 91
imagewidth and imageheight 71, 91
leading 82
nativeunicode 64, 82
openaction 94
openmode 94
overline 66, 82
pageheight and pagewidth 78
prefix 76
resourcefile 58, 76
resx and resy 91
serial 76
strikeout 66, 82
textrendering 61, 66, 82
textrise 82
textx and texty 68, 82
transition 95
underline 66, 82
warning 46, 76
wordspacing 82

parameter handling functions 80
paramters

imagewarning 68
path 48

painting and clipping 89
segment functions 88

PDF 1.3 54
PDF_add_bookmark() 94
PDF_add_launchlink() 97
PDF_add_locallink() 97
PDF_add_note() 96
PDF_add_pdflink() 97
PDF_add_weblink() 97
PDF_arc() 88
PDF_attach_file() 96

PDF_begin_page() 79
PDF_boot() 76
PDF_circle() 23, 88
PDF_clip() 89
PDF_close() 79
PDF_close_image() 93
PDF_closepath() 89
PDF_closepath_fill_stroke() 89
PDF_closepath_stroke() 89
PDF_concat() 87
PDF_continue_text() 83
PDF_continue_text2() 83
PDF_curveto() 88
PDF_delete() 77
PDF_end_page() 80
PDF_endpath() 90
PDF_fill() 89
PDF_fill_stroke() 89
PDF_findfont() 80
PDF_get_buffer() 44, 79
PDF_get_majorversion() 77
PDF_get_minorversion() 77
PDF_get_opaque() 78
PDF_get_parameter() 80
PDF_get_value() 80
PDF_lineto() 88
PDF_moveto() 88
PDF_new() 77
PDF_new2() 77
PDF_open_CCITT() 92
PDF_open_file() 78
PDF_open_fp() 78
PDF_open_image() 72, 92
PDF_open_image_file() 91
PDF_open_mem() 79
PDF_place_image() 93
PDF_rect() 88
PDF_restore() 87
PDF_rotate() 87
PDF_save() 86
PDF_scale() 23, 87
PDF_set_border_color() 98
PDF_set_border_dash() 98
PDF_set_border_style() 97
PDF_set_info() 95
PDF_set_parameter() 59, 80
PDF_set_text_pos() 84
PDF_set_value() 80
PDF_setdash() 85
PDF_setflat() 85
PDF_setfont() 81
PDF_setgray() 90
PDF_setgray_fill() 90
PDF_setgray_stroke() 90
PDF_setlinecap() 86
PDF_setlinejoin() 85
PDF_setlinewidth() 86
PDF_setmiterlimit() 86

Index 111

PDF_setpolydash() 85
PDF_setrgbcolor() 90
PDF_setrgbcolor_fill() 90
PDF_setrgbcolor_stroke() 90
PDF_show() 83
PDF_show_boxed() 67, 83
PDF_show_xy() 83
PDF_show_xy2() 83
PDF_show2() 83
PDF_shutdown() 76
PDF_skew() 87
PDF_stringwidth() 66, 84
PDF_stringwidth2() 84
PDF_stroke() 89
PDF_translate() 87
PDFDocEncoding 53
PDFlib

features 9
program structure 43
thread-safety 9, 15

pdflib.upr 58
PDFLIBRESOURCE environment variable 58
Perl binding

error handling 38
general 36
Unicode support 38
version control 38

PFA (Printer Font ASCII) 54
PFB (Printer Font Binary) 54
PFM (Printer Font Metrics) 54
Photoshop 93
platforms 13
PNG 68, 73, 91
PNG library 44, 68
Portable Document Format Reference Manual

100
PostScript fonts 54
PostScript Language Reference Manual 100
prefix parameter 76
print_glyphs.ps 53
Printer Font ASCII (PFA) 54
Printer Font Binary (PFB) 54
Printer Font Metrics (PFM) 54
ProgID 19
program structure 43
Python binding

error handling 39
general 38
Unicode support 40
version control 40

R
raster images

functions 90
general 68

raw image data 70, 92
redistributing the ActiveX component 17
references 100

reflection 87
registry 17, 19
regsvr32 18
resource category 57
resourcefile parameter 58, 76
resx and resy parameter 91
RGB color 49

S
S/390 7, 50
scaling images 70
scripting API 13
serial parameter 76
servlet 34
setjmp 29
setup functions 76
shared libraries 101
silent install 17
skewing 87
special graphics state 86
standard output 78
standard page sizes 48
stdout channel 78
strikeout parameter 66, 82
stroke 48
structure of PDFlib programs 43
Subject field 95
subscript 65, 82
superscript 65, 82
SWIG 12
Symbol font 51

T
T1lib 55
Tcl binding

error handling 42
general 40
Unicode support 42
version control 42

text box formatting 65
text functions 80
text handling 49
text metrics 65
text rendering modes 66
text variations 65
textrendering parameter 61, 66, 82
textrise parameter 82
textx and texty parameter 68, 82
threading model 16
thread-safety 9, 15
TIFF 69, 91
TIFFlib 44, 69
Title field 95
top-down coordinates 47
transition parameter 95
transparency 72

problems with 74

112 Index

type 1 fonts 54

U
underline parameter 66, 82
Unicode 15, 62

in ActiveX 19
in C 30
in C++ 32
in Delphi 27
in Java 36
in JScript 22
in Perl 38
in Python 40
in Tcl 42
in VBscript 23
in Visual Basic 25
problems with language bindings 64

units 47
UPR (Unix PostScript Resource) 56

file format 56
file searching 58

URL 72, 97
user space 47
UTF-16 62

V
value: see parameter
VBA 16
vbObjectError 18
VBScript 16, 25

error handling 22
Unicode support 23

version control
for shared libraries 102

general 14
in ActiveX 19
in C 30
in C++ 32
in Java 35
in libtool 102
in Perl 38
in Python 40
in Tcl 42

vertical writing mode 59, 61
Visual Basic 16

error handling 24
special considerations 23
Unicode support 25

Visual Basic for Applications 16
Visual Basic Scripting Edition: see VBScript

W
warning 43, 48, 51, 97

suppress 46
warning parameter 46, 76
weblink 97
winansi encoding 50
Windows registry 17, 19
Windows Script Host (WSH) 16
wordspacing parameter 82
writing modes 59, 61

Z
ZapfDingbats font 51
ZIP compression 10
Zlib compression 10, 44, 68

	Contents
	1 Introduction
	1.1 PDFlib Programming
	1.2 PDFlib Features
	1.3 PDFlib Output and Compatibility

	2 PDFlib Language Bindings
	2.1 Overview of the PDFlib Language Bindings
	2.1.1 What’s all the Fuss about Language Bindings?
	2.1.2 Availability and Special Considerations
	2.1.3 The »Hello world« Example
	2.1.4 Error Handling
	2.1.5 Version Control
	2.1.6 Unicode Support
	2.1.7 Summary of the Language Bindings

	2.2 ActiveX/COM Binding
	2.2.1 How does the ActiveX/COM Binding work?
	2.2.2 Availability and Special Considerations for ActiveX
	2.2.3 Error Handling in ActiveX
	2.2.4 Version Control in ActiveX
	2.2.5 Unicode Support in ActiveX
	2.2.6 Using PDFlib with Active Server Pages
	2.2.7 Using PDFlib with Visual Basic
	2.2.8 Using PDFlib with Windows Script Host
	2.2.9 Using PDFlib with Borland Delphi

	2.3 C Binding
	2.3.1 How does the C Binding work?
	2.3.2 Availability and Special Considerations for C
	2.3.3 The »Hello world« Example in C
	2.3.4 Error Handling in C
	2.3.5 Version Control in C
	2.3.6 Unicode Support in C

	2.4 C++ Binding
	2.4.1 How does the C++ Binding work?
	2.4.2 Availability and Special Considerations for C++
	2.4.3 The »Hello world« Example in C++
	2.4.4 Error Handling in C++
	2.4.5 Version Control in C++
	2.4.6 Unicode Support in C++

	2.5 Java Binding
	2.5.1 How does the Java Binding work?
	2.5.2 Availability and Special Considerations for Java
	2.5.3 The »Hello world« Example in Java
	2.5.4 Error Handling in Java
	2.5.5 Version Control in Java
	2.5.6 Unicode Support in Java

	2.6 Perl Binding
	2.6.1 How does the Perl Binding work?
	2.6.2 Availability and Special Considerations for Perl
	2.6.3 The »Hello world« Example in Perl
	2.6.4 Error Handling in Perl
	2.6.5 Version Control in Perl
	2.6.6 Unicode Support in Perl

	2.7 Python Binding
	2.7.1 How does the Python Binding work?
	2.7.2 Availability and Special Considerations for Python
	2.7.3 The »Hello world« Example in Python
	2.7.4 Error Handling in Python
	2.7.5 Version Control in Python
	2.7.6 Unicode Support in Python

	2.8 Tcl Binding
	2.8.1 How does the Tcl Binding work?
	2.8.2 Availability and Special Considerations for Tcl
	2.8.3 The »Hello world« Example in Tcl
	2.8.4 Error Handling in Tcl
	2.8.5 Version Control in Tcl
	2.8.6 Unicode Support in Tcl

	3 PDFlib Programming Concepts
	3.1 General Programming Issues
	3.1.1 PDFlib Program Structure
	3.1.2 Memory Management
	3.1.3 Generating PDF Documents directly in Memory
	3.1.4 Error Handling

	3.2 Page Descriptions
	3.2.1 Coordinate Systems
	3.2.2 Paths and Color
	3.2.3 Ordering constraints

	3.3 Text Handling
	3.3.1 The PDF Core Fonts
	3.3.2 Builtin and External 8-Bit Encodings
	3.3.3 Custom Encoding Files for 8-Bit Encodings
	3.3.4 Hypertext Encoding
	3.3.5 Font Outline and Metrics Files
	3.3.6 Resource Configuration and the UPR Resource File
	3.3.7 CID Font Support for Japanese, Chinese, and Korean Text
	3.3.8 Unicode Support
	3.3.9 Text Metrics, Text Variations, and Text Box Formatting

	3.4 Image Handling
	3.4.1 Supported Image File Formats
	3.4.2 Embedding and Scaling Images
	3.4.3 Re-using Image Data
	3.4.4 Memory Images and External Image References
	3.4.5 Image Masks and Transparency
	3.4.6 Multi-Page Image Files

	4 PDFlib API Reference
	4.1 Data Types and Naming Conventions
	4.2 General Functions
	4.2.1 Setup
	4.2.2 Document and Page
	4.2.3 Parameter Handling

	4.3 Text Functions
	4.3.1 Font Handling
	4.3.2 Text Output

	4.4 Graphics Functions
	4.4.1 General Graphics State
	4.4.2 Special Graphics State
	4.4.3 Path Segments
	4.4.4 Path Painting and Clipping

	4.5 Color Functions
	4.6 Image Functions
	4.7 Hypertext Functions
	4.7.1 Document Open Action and Open Mode
	4.7.2 Bookmarks
	4.7.3 Document Information Fields
	4.7.4 Page Transitions
	4.7.5 File Attachments
	4.7.6 Note Annotations
	4.7.7 Links

	4.8 Page Size Formats

	5 The PDFlib License
	5.1 The »Aladdin Free Public License«
	5.2 The Commercial PDFlib License

	6 References
	A Shared Libraries and DLLs
	Shared Libraries on Unix Systems
	Windows DLLs
	Shared Libraries on the Macintosh

	B Summary of PDFlib Functions
	General Functions
	Text Functions
	Graphics Functions
	Color Functions
	Image Functions
	Hypertext Functions
	Parameters and Values

	Index

