
TxWin native scriptingTxWin native scripting

Jan van WijkJan van Wijk

TxWin native scripting languageTxWin native scripting language
as available in DFSee 9.03 and up,as available in DFSee 9.03 and up,
and TxWin starting from version 2and TxWin starting from version 2

 TxWin and DFSee native scripting © 2018 JvW

Presentation contentsPresentation contents

 DFSee scripting history, design goals and alternatives

 High level layout of TxScript programs

 Script parameters and variables

 Expressions, available operators

 Built-in functions

 Control structures, program flow

 Expression substitution in commands

 Example scripts fragments, from DFSee usage

 TxWin and DFSee native scripting © 2018 JvW

Who am I ?Who am I ?

 Jan van Wijk
 Software Engineer, C, Rexx, Assembly, PHP
 Founded FSYS Software in 2001, developing and

supporting DFSee from version 4 to 14.x
 First OS/2 experience in 1987, developing parts of

OS/2 1.0 EE (Query Manager, later DB2)
 Used to be a systems-integration architect at a

large bank, 500 servers and 7500 workstations
 Developing embedded software for machine

control and appliances from 2008 onwards

 Home page: https://www.dfsee.com/

https://www.dfsee.com/

 TxWin and DFSee native scripting © 2018 JvW

Dfsee scripting historyDfsee scripting history

 Over time, to automate repeating and more
complex tasks, several scripting methods
have been (and still are!) used with DFSee:

 BAT/CMD/SHELL scripts, calling DFSee

 Rexx subcmd environment for the OS/2 version

 Native scripting, being a simple list of DFSee
commands, executed sequentially, with simple
error handling and parameter substitution

 TxWin and DFSee native scripting © 2018 JvW

TxScript design goalsTxScript design goals

 Backwards compatible with existing .DFS scripts
as far as possible, allowing re-use

 Direct access to much DFSee internal info,
including disk sectors from a script

 Powerful expressions, variables and functions
 Can be used from and in the (DFSee) command-line too

 Conditional and looping control to allow
more intelligent and powerful scripts

Note: For 'DFSee' you can read any hosting program
that uses the TxScript engine from the TxLib library

 TxWin and DFSee native scripting © 2018 JvW

Do we need another language ?Do we need another language ?

 Trying to avoid re-inventing yet another wheel,
some alternatives have been considered:

 Rexx, as used in OS/2 version already
 Python, clean OO type language
 Perl, very powerful, hackers heaven :-)
 PHP, Ruby etc as used in WEB environments

 All had problems with integration in the hosting
program (DFSee), availability on all required
platforms, or added complexity for install etc.

 Developing a new language is fun, so YES :-)

 TxWin and DFSee native scripting © 2018 JvW

High level layout of TxScriptHigh level layout of TxScript

 LINE-oriented, but ignores whitespace usage
within and between lines. Each line is either:

 A comment line (ignored mostly :-)

 An interpreter 'pragma' altering its behaviour

 Program flow statements like IF or WHILE

 An assignment to one or more script variables

 A command to be passed to the host (DFSee) to
be executed, including substitution of expressions

 TxWin and DFSee native scripting © 2018 JvW

Example for script layoutExample for script layout

;script example

;;defaultparam 1 5

IF $1 < $_parts

 Say $1 is OK!

ENDIF

 A comment line

 A pragma

 Control statement
with an expression

 A command to be
executed by DFSee

 End of the Control
statement

 TxWin and DFSee native scripting © 2018 JvW

Script parameters and variablesScript parameters and variables

 Parameters to the script are positional, and
named $1 through $9, $0 is the scriptname

 Variables follow the 'Perl' syntax where
possible, with a subset of the functionality

 $variable a scalar variable
 $array[index] scalar taken from an array
 %array whole array
 $hash{key} scalar taken from a hash
 #hash whole hash variable

 TxWin and DFSee native scripting © 2018 JvW

System variablesSystem variables

 Variablenames starting with '$_' are system
variables (DFSee) and are read-only

 They come as scalar and scalar-from-array variants

 Some examples (there are dozens :-)

 $_parts total number of partitions, 1..n
 $_disk current opened disk number
 $_this sector number for current sector
 $_d_size[X] size in sectors for disk nr X
 $_p_fsform[Y] FS-format for partition nr Y
 $_b_sector[Z] Contents of sector nr Z,

in a (512 byte) binary string

 TxWin and DFSee native scripting © 2018 JvW

Expression and variable valuesExpression and variable values

 Variable and expression values are either:

 A string of arbitrary length, may contain any character
value from 0..255, allowing binary data manipulation

 A 64-bit signed integer value, allowing huge numbers
while maintaining the exact integer value

 Expression operators and built-in functions
automatically convert between these

 Other types like floating-point may be added later

 TxWin and DFSee native scripting © 2018 JvW

Expressions, operators, functionsExpressions, operators, functions

 Expression syntax and semantics are pretty
close to those defined in 'Perl' and 'C' but are
not exactly identical

 Operators work on 1, 2 or 3 operands:
 Unary, like + - ! NOT 1 operand
 Binary, like + * < = 2 operands
 Ternary, (cond) ? exp1 : exp2 3 operands

 Textual operators like 'AND' must be uppercase!

 Functions take zero or more arguments
and return a value (in an expression)

 TxWin and DFSee native scripting © 2018 JvW

Operator precedence, high to lowOperator precedence, high to low

$name[]++ --

Atom, Term

- + ! ~
* / %
+ -
x
.
<< >>
== != < > <= >=
=== !==
EQ NE LT GT LE GE

 Variable, indexed, auto
increment/decrement

 String, number, function
nested-expr or ternary

 Unary operators
 Binary multiply/division
 Binary plus/minus
 String replication
 String concatenation
 Numeric bit-shift
 Numeric compare
 Same value AND type
 String compare

 TxWin and DFSee native scripting © 2018 JvW

Operator precedence, part 2Operator precedence, part 2

&
^
|

&&
||

=
,

NOT
AND
OR

 Bitwise AND
 Bitwise XOR
 Bitwise OR

 Logical AND (C-style)
 Logical OR (C-style)

 Assignment
 Comma, multi-expression

 Logical NOT (Perl style)
 Logical AND (Perl style)
 Logical OR (Perl style)

 TxWin and DFSee native scripting © 2018 JvW

Built-in functions, A-FBuilt-in functions, A-F

abs
b32
b2asc
b2int
chr
canceled
confirmed
defined
drivefs
drivelabel
drives
drivespace
exists
filext
fnbase

 Absolute value, numeric
 Clip to 32-bit unsigned
 Binary string to ASCII
 Binary string to reversed int
 ASCII value for number
 Test for canceled last operation
 Confirmation Yes/No/Cancel
 Is variable defined
 FS-name for drive letter
 Label string for drive letter
 All drive letters in string
 Freespace in KiB for drive
 File exists
 Set default file extension
 Extract filename without ext

 TxWin and DFSee native scripting © 2018 JvW

Built-in functions, G-MBuilt-in functions, G-M

fnfile
fnpath
getcwd
h2asc
h2int
i2dec
i2hex
index
lc
left
length
makedir
max
min
message

 Extract filename without path
 Extract path only, no filename
 Get current working directory
 Get string from hex-ascii str
 Get integer from hex-ascii str
 Convert int to decimal str
 Convert int to hexadecimal str
 Find substring in string
 Return lowercased string
 Left adjust string, pad/clip
 Get length of string
 Create full directory path
 Ret maximum of values
 Ret minimum of values
 Message popup, until [OK]

 TxWin and DFSee native scripting © 2018 JvW

Built-in functions, O-ZBuilt-in functions, O-Z

ord
prompt
replace
sec2gib
sec2kib
sec2mib
reverse
right
rindex
strip

substr
uc
undef

 Numeric value 1st char in str
 Popup question, return string
 Replace characters in string
 Get GiB value for #sectors
 Get KiB value for #sectors
 Get MiB value for #sectors
 Reverse characters in string
 Right adjust string pad/clip
 Reverse find substring in str
 Strip leading/trailing chars from

a string (default spaces)
 Extract substring from string
 Return uppercased string
 Undefine (free) a variable

releasing any used storage

 TxWin and DFSee native scripting © 2018 JvW

Control structures, branchingControl structures, branching

IF (condition)

statement-list

ELSEIF (condition)

statement-list

ELSE

statement-list

ENDIF

 Like the Perl IF, not
using a {} block but
an ENDIF keyword

 () parenthesis on
conditions optional

 Any number of the
ELSEIF clause

 ELIF, ELSIF and
ELSEIF accepted

 TxWin and DFSee native scripting © 2018 JvW

Control structures, loopingControl structures, looping

WHILE (condition)
statement-list

ENDWHILE label

FOR init;condition;iterator
statement-list

ENDFOR label

DO label
Statement-list

UNTIL (condition)

 'C' like, explicit END
replaces any {} block

 () parenthesis on
conditions optional

 'break' exits the loop,
can take a 'label' too

 'continue' skips code
upto the loop iterator

 Labels are optional

 TxWin and DFSee native scripting © 2018 JvW

Control structures, more loopingControl structures, more looping

LOOP
Statement-list

ENDLOOP

LOOP
 EXIT label WHEN (cond1)

Statement-list
IF (condition2)
 Statement-list
 break label
ENDIF
Statement-list

 EXIT label WHEN (cond3)
ENDLOOP label

 Endless loop, no
condition at all

 LOOP with one or
more exit conditions
at arbitrary positions

 Mainly useful when
using the LABELS
in nested loops :)

 TxWin and DFSee native scripting © 2018 JvW

Command expression substitutionCommand expression substitution

 Transparent, replacing expressions by the result
of the expression, when starting with a variable:

 $_this + 100
 Wipe z $start $_d_cylsize * 25
 Say You have $_parts partitions on $_disks disks

 Explicit, enclose in double curly brackets if NOT
starting with a variable, or any conflicting syntax:

 Restore {{$imgfile}} -P:$partition ; -P conflicting
 Say we are in: {{getcwd()}} ; not a variable

 TxWin and DFSee native scripting © 2018 JvW

Miscellaneous commentsMiscellaneous comments

 Keywords are case-insensitive (IF, WHILE)

 Parenthesis on conditions are optional

 Conditions must be on a single line,
or use explicit line continuation

 Lines are 'continued' using '\' as last char
allowing long expressions to be spread
over more than one physical line

 TxWin and DFSee native scripting © 2018 JvW

Miscellaneous commentsMiscellaneous comments

 Script syntax is checked BEFORE running
any statement, except expressions to be
substituted in commands (to be refined :-)

 Single '$' characters in commands will be left
'as-is' so can be used freely, but when directly
followed by any alphabetic a-z/A-Z it could be
mistaken for a variable and you need to escape
that by doubling the '$' character as: '$$'

 There may be application level mechanisms too,
that allow switching variable substitution on/off.
Would result in better readable commands ...

 TxWin and DFSee native scripting © 2018 JvW

Considered improvementsConsidered improvements

 User defined functions or subroutines

 More/better array and hash variable
handling and manipulation (perl like)

 Floating point variables

 Basic file-I/O, read/write text and binary

 TxWin and DFSee native scripting © 2018 JvW

Example code fragments - 1Example code fragments - 1

Set default parameters, in named variables

;;defaultparam 1 0 ;disk to work on, 0 = auto
;;defaultparam 2 '$0' ;default image name
;;defaultparam 3 2 ;minimum number of disks
;;defaultparam 4 99 ;maximum number of disks
;
log $0 ;same as scriptname
$stick = $1
$image = $2
$dmin = $3
$dmax = $4
$stickmsg = "bootable multi-ISO, (USB) disk"

 TxWin and DFSee native scripting © 2018 JvW

Example code fragments - 2Example code fragments - 2

Check DFSee version and number of disks

if $_version >= 1000
 if ($_disks >= $dmin) && ($_disks <= $dmax)

 ; ... do the real work ...

 else
 confirm Need $dmin to $dmax disks, got: $_disks
 endif
else
 confirm Script needs DFSee 10.x (this is $_version)
endif

 TxWin and DFSee native scripting © 2018 JvW

Example code fragments - 3Example code fragments - 3

Get size + number smallest accessible disk
(taken from the DFSUSB32.DFS script)

$size = 99999999
for $disk = 1; $disk <= $_disks; $disk++

if $_d_size[$disk] < $size
 if $_d_access[$disk]
 $stick = $disk
 $size = $_d_size[$stick]
 endif
endif

endfor

 TxWin and DFSee native scripting © 2018 JvW

Example code fragments - 4Example code fragments - 4

;Create a FAT32 partition on a memory stick

cr -d:$stick pri fat32 -M -o -L:"-v:Sdata -p:Stick2 -l:*"
if $_rc == 0
 'format' -f:32 -v:DfStickdata
 if $_rc == 0
 lvm -n:DFSeeUSBStickBIG -d:$stick
 $exitmsg = FAT32 created and formatted."
 else
 $exitmsg = Create FAT32 partition failed!"
 endif
endif
part -d:$stick

 TxWin and DFSee native scripting © 2018 JvW

Example – recovery script coreExample – recovery script core

confirm -y Recreate $parts partitions on disk $work
if $_rc == 0
 $done = 0
 while (1) ;single pass, allow break from section
 ; ... multiple recovery sections here (see next slide)
 break
 endwhile
 part -d -n
 if $done == $parts
 confirm $done partitions done~~Press a key to exit
 endif
else
 confirm Recovery canceled by user
endif

 TxWin and DFSee native scripting © 2018 JvW

Example – recovery script sectionExample – recovery script section

;add one section for every partition, with specific message
cr pri bmgr 1 -a:0,c -F -I-
if $_rc == 0
 $done++
else
 confirm Create partition $done +1 failed $abortmsg
 break
endif
cr log hpfs 2000 -at:6001,c -L:"-v:eCS -p:Boot -l:C -menu"
if $_rc == 0
 $done++
else
 confirm Create partition $done +1 failed $abortmsg
 break
endif

Questions ?Questions ?

TxWin native scriptingTxWin native scripting

	Title
	Contents
	Who
	History
	Script
	wheel
	layout
	example
	vars
	sysvars
	values
	express
	oper1
	oper2
	func1
	func2
	func3
	branch
	loop
	loop2
	subst
	misc1
	misc2
	improve
	Ex-params
	EX-version
	EX-finddisk
	Ex-format
	Ex-RecCore
	Ex-RecSection
	Q?

