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Presentation contentsPresentation contents

 DFSee scripting history, design goals and alternatives

 High level layout of TxScript programs

 Script parameters and variables

 Expressions, available operators

 Built-in functions

 Control structures, program flow

 Expression substitution in commands

 Example scripts fragments, from DFSee usage
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Who am I ?Who am I ?

 Jan van Wijk      
 Software Engineer, C, Rexx, Assembly, PHP
 Founded FSYS Software in 2001, developing and

supporting DFSee from version 4 to 14.x
 First OS/2 experience in 1987, developing parts of

OS/2 1.0 EE  (Query Manager, later DB2)
 Used to be a systems-integration architect at a

large bank, 500 servers and 7500 workstations
 Developing embedded software for machine

control and appliances from 2008 onwards

 Home page:    https://www.dfsee.com/

https://www.dfsee.com/
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Dfsee scripting historyDfsee scripting history

 Over time, to automate repeating and more
complex tasks, several scripting methods
have been (and still are!) used with DFSee:

 BAT/CMD/SHELL scripts, calling DFSee

 Rexx subcmd environment for the OS/2 version

 Native scripting, being a simple list of DFSee
commands, executed sequentially, with simple
error handling and parameter substitution
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TxScript design goalsTxScript design goals

 Backwards compatible with existing .DFS scripts
as far as possible, allowing re-use

 Direct access to much DFSee internal info, 
including disk sectors from a script

 Powerful expressions, variables and functions
 Can be used from and in the (DFSee) command-line too

 Conditional and looping control to allow 
more intelligent and powerful scripts

Note: For 'DFSee' you can read any hosting program
that uses the TxScript engine from the TxLib library
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Do we need another language ?Do we need another language ?

 Trying to avoid re-inventing yet another wheel,
some alternatives have been considered:

 Rexx, as used in OS/2 version already
 Python, clean OO type language
 Perl, very powerful, hackers heaven :-)
 PHP, Ruby etc as used in WEB environments

 All had problems with integration in the hosting
program (DFSee), availability on all required
platforms, or added complexity for install etc.

 Developing a new language is fun, so YES :-)
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High level layout of TxScriptHigh level layout of TxScript

 LINE-oriented, but ignores whitespace usage
within and between lines. Each line is either:

 A comment line (ignored mostly :-)

 An interpreter 'pragma' altering its behaviour

 Program flow statements like IF or WHILE

 An assignment to one or more script variables

 A command to be passed to the host (DFSee) to 
be executed, including substitution of expressions



 TxWin and DFSee native scripting  © 2018 JvW

Example for script layoutExample for script layout

;script example

;;defaultparam 1 5

IF  $1 < $_parts

  Say $1 is OK!

ENDIF

 A comment line

 A pragma

 Control statement
with an expression

 A command to be
executed by DFSee

 End of the Control
statement
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Script parameters and variablesScript parameters and variables

 Parameters to the script are positional, and
named $1 through $9, $0 is the scriptname

 Variables follow the 'Perl' syntax where
possible, with a subset of the functionality

 $variable a scalar variable
 $array[index] scalar taken from an array
 %array whole array
 $hash{key} scalar taken from a hash
 #hash whole hash variable
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System variablesSystem variables

 Variablenames starting with '$_' are system
variables (DFSee) and are read-only

 They come as scalar and scalar-from-array variants

 Some examples (there are dozens :-)

 $_parts total number of partitions, 1..n
 $_disk current opened disk number
 $_this sector number for current sector
 $_d_size[X] size in sectors for disk nr X
 $_p_fsform[Y] FS-format for partition nr Y
 $_b_sector[Z] Contents of sector nr Z, 

in a (512 byte) binary string
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Expression and variable valuesExpression and variable values

 Variable and expression values are either:

 A string of arbitrary length, may contain any character
value from 0..255, allowing binary data manipulation

 A 64-bit signed integer value, allowing huge numbers
while maintaining the exact integer value

 Expression operators and built-in functions
automatically convert between these

 Other types like floating-point may be added later
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Expressions, operators, functionsExpressions, operators, functions

 Expression syntax and semantics are pretty
close to those defined in 'Perl' and 'C' but are
not exactly identical

 Operators work on 1, 2 or 3 operands:
 Unary, like + - ! NOT 1 operand
 Binary, like + * < = 2 operands
 Ternary, (cond) ? exp1 : exp2 3 operands

 Textual operators like 'AND' must be uppercase!

 Functions take zero or more arguments
and return a value (in an expression)
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Operator precedence, high to lowOperator precedence, high to low

$name[]++ --
     

Atom, Term           

- + ! ~          
* / %            
+ -        
x      
.                
<<  >>           
== != < > <= >=  
=== !==     
EQ NE LT GT LE GE

 Variable, indexed, auto
increment/decrement

 String, number, function
nested-expr or ternary

 Unary operators
 Binary multiply/division
 Binary plus/minus
 String replication
 String concatenation
 Numeric bit-shift
 Numeric compare
 Same value AND type
 String compare
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Operator precedence, part 2Operator precedence, part 2

&                
^                
|    

            
&&               
||

               
=                
,

                
NOT              
AND              
OR              

 Bitwise AND
 Bitwise XOR
 Bitwise OR

 Logical AND (C-style)
 Logical OR (C-style)

 Assignment
 Comma, multi-expression

 Logical NOT (Perl style)
 Logical AND (Perl style)
 Logical OR (Perl style)
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Built-in functions, A-FBuilt-in functions, A-F

abs       
b32      
b2asc
b2int 
chr       
canceled
confirmed      
defined   
drivefs   
drivelabel
drives    
drivespace
exists    
filext
fnbase 

 Absolute value, numeric
 Clip to 32-bit unsigned
 Binary string to ASCII
 Binary string to reversed int
 ASCII value for number
 Test for canceled last operation
 Confirmation Yes/No/Cancel
 Is variable defined
 FS-name for drive letter
 Label string for drive letter
 All drive letters in string
 Freespace in KiB for drive
 File exists
 Set default file extension
 Extract filename without ext
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Built-in functions, G-MBuilt-in functions, G-M

fnfile
fnpath
getcwd     
h2asc      
h2int      
i2dec      
i2hex      
index      
lc         
left
length     
makedir   
max        
min        
message    

 Extract filename without path
 Extract path only, no filename
 Get current working directory
 Get string from hex-ascii str
 Get integer from hex-ascii str
 Convert int to decimal str
 Convert int to hexadecimal str
 Find substring in string
 Return lowercased string
 Left adjust string, pad/clip
 Get length of string
 Create full directory path
 Ret maximum of values
 Ret minimum of values
 Message popup, until [OK]
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Built-in functions, O-ZBuilt-in functions, O-Z

ord        
prompt     
replace    
sec2gib      
sec2kib      
sec2mib      
reverse 
right   
rindex     
strip     
 
substr     
uc         
undef      

 Numeric value 1st char in str
 Popup question, return string
 Replace characters in string
 Get GiB value for #sectors
 Get KiB value for #sectors
 Get MiB value for #sectors 
 Reverse characters in string
 Right adjust string pad/clip
 Reverse find substring in str
 Strip leading/trailing chars from

a string (default spaces)
 Extract substring from string
 Return uppercased string
 Undefine (free) a variable

releasing any used storage
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Control structures, branchingControl structures, branching

IF  (condition)

statement-list

ELSEIF (condition)

statement-list

ELSE

statement-list

ENDIF

 Like the Perl IF, not
using a {} block  but
an ENDIF keyword

 () parenthesis on
conditions optional

 Any number of the
ELSEIF clause

 ELIF, ELSIF and
ELSEIF accepted
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Control structures, loopingControl structures, looping

WHILE  (condition)
statement-list

ENDWHILE  label

FOR init;condition;iterator
statement-list

ENDFOR  label

DO  label
Statement-list

UNTIL (condition)

 'C' like, explicit END
replaces any {} block

 () parenthesis on
conditions optional

 'break' exits the loop,
can take a 'label' too

 'continue' skips code
upto the loop iterator

 Labels are optional
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Control structures, more loopingControl structures, more looping

LOOP
Statement-list

ENDLOOP

LOOP
  EXIT label WHEN (cond1)

Statement-list
IF  (condition2)
   Statement-list
   break    label
ENDIF
Statement-list

  EXIT label WHEN (cond3)
ENDLOOP  label

 Endless loop, no
condition at all

 LOOP with one or
more exit conditions
at arbitrary positions

 Mainly useful when
using the LABELS
in nested loops :)
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Command expression substitutionCommand expression substitution

 Transparent, replacing expressions by the result
of the expression, when starting with a variable:

 $_this + 100
 Wipe  z  $start  $_d_cylsize * 25
 Say You have $_parts partitions on $_disks disks

 Explicit, enclose in double curly brackets if NOT
starting with a variable, or any conflicting syntax:

 Restore  {{$imgfile}}  -P:$partition ; -P conflicting
 Say we are in: {{getcwd()}} ; not a variable
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Miscellaneous commentsMiscellaneous comments

 Keywords are case-insensitive (IF, WHILE)

 Parenthesis on conditions are optional

 Conditions must be on a single line, 
or use explicit line continuation

 Lines are 'continued' using '\' as last char
allowing long expressions to be spread
over more than one physical line
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Miscellaneous commentsMiscellaneous comments

 Script syntax is checked BEFORE running
any statement, except expressions to be
substituted in commands (to be refined :-)

 Single '$' characters in commands will be left
'as-is' so can be used freely, but when directly
followed by any alphabetic  a-z/A-Z it could be
mistaken for a variable and you need to escape
that by doubling the '$' character as: '$$'

 There may be application level mechanisms too,
that allow switching variable substitution on/off.
Would result in better readable commands ...
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Considered improvementsConsidered improvements

 User defined functions or subroutines

 More/better array and hash variable
handling and manipulation (perl like)

 Floating point variables

 Basic file-I/O, read/write text and binary
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Example code fragments - 1Example code fragments - 1

Set default parameters, in named variables

;;defaultparam 1 0    ;disk to work on, 0 = auto
;;defaultparam 2 '$0' ;default image name
;;defaultparam 3 2    ;minimum number of disks
;;defaultparam 4 99   ;maximum number of disks
;
log $0                ;same as scriptname
$stick    = $1
$image    = $2
$dmin = $3
$dmax = $4
$stickmsg = "bootable multi-ISO, (USB) disk"
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Example code fragments - 2Example code fragments - 2

Check DFSee version and number of disks

if $_version >= 1000
  if ($_disks >= $dmin) && ($_disks <= $dmax)

    ;  ... do the real work ...

  else
    confirm Need $dmin to $dmax disks, got: $_disks
  endif
else
  confirm Script needs DFSee 10.x (this is $_version)
endif
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Example code fragments - 3Example code fragments - 3

Get size + number smallest accessible disk
(taken from the DFSUSB32.DFS script)

$size = 99999999
for $disk = 1; $disk <= $_disks; $disk++

if $_d_size[ $disk] < $size
  if $_d_access[ $disk]
    $stick = $disk
    $size = $_d_size[ $stick]
  endif
endif

endfor
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Example code fragments - 4Example code fragments - 4

;Create a FAT32 partition on a memory stick

cr -d:$stick pri fat32 -M -o -L:"-v:Sdata -p:Stick2 -l:*"
if $_rc == 0
  'format' -f:32 -v:DfStickdata
  if $_rc == 0
    lvm -n:DFSeeUSBStickBIG -d:$stick
    $exitmsg = FAT32 created and formatted."
  else
    $exitmsg = Create FAT32 partition failed!"
  endif
endif
part -d:$stick
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Example – recovery script coreExample – recovery script core

confirm -y Recreate $parts partitions on disk $work
if $_rc == 0
  $done = 0
  while (1) ;single pass, allow break from section
     ;  ... multiple recovery sections here (see next slide)
     break
  endwhile
  part -d -n
  if $done == $parts
    confirm $done partitions done~~Press a key to exit
  endif
else
  confirm Recovery canceled by user
endif
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Example – recovery script sectionExample – recovery script section

;add one section for every partition, with specific message
cr  pri bmgr  1  -a:0,c  -F -I-
if $_rc == 0
  $done++
else
  confirm Create partition $done +1 failed $abortmsg
  break
endif
cr log hpfs 2000 -at:6001,c -L:"-v:eCS -p:Boot -l:C -menu"
if $_rc == 0
  $done++
else
  confirm Create partition $done +1 failed $abortmsg
  break
endif



Questions ?Questions ?

TxWin native scriptingTxWin native scripting


	Title
	Contents
	Who
	History
	Script
	wheel
	layout
	example
	vars
	sysvars
	values
	express
	oper1
	oper2
	func1
	func2
	func3
	branch
	loop
	loop2
	subst
	misc1
	misc2
	improve
	Ex-params
	EX-version
	EX-finddisk
	Ex-format
	Ex-RecCore
	Ex-RecSection
	Q?

