LatexDoclet Information

Robert McDermid
Mar 2, 1999



Contents

1 What is it?
2 Installation
3 Usage

4 Enhancing IPFDoclet



1 What is it?

When programming with Java, Sun has provided a tool which makes it pos-
sible to document source code in such a way that the documentation can be
formatted into html, in an extremely readable way. All of Sun’s API docu-
mentation is provided in this format, and developers writing Java code almost
always document their code in this way. The tool is known as javadoc.

Starting in JDK 1.2, Sun has changed the format of the html generated by
this tool. They have also provided a simple means to change or extend the
documentation that is generated. This is by means of the so-called “Doclets”.
A Doclet is a java class that extends the class com.sun. javadoc.Doclet. When
running javadoc normally, a standard doclet is automatically used. However,
an alternative doclet may be specified on the command line.

In fact, Sun has made this mechanism so powerful, that it is possible to
generate documentation in a completely different format from html. That is
what this doclet does.

The format generated by this doclet is known as Latex. Latex is a macro
package for Donald Knuth’s extremely powerful typesetting system known as
Tex. It basically allows very precise typesetting of documents in most any form
desired. The file format is ascii text, and Latex is then used to compile this to
a device independent dvi file. This file can then be printed or viewed online.

I was interested in doing this because sometimes I prefer to have printed
documentation for my own code. In particular, when someone new joins your
team, and needs to come up to speed, it is often easier for them to read through
a printed document at their leisure, than wade through a mass of html. I
would have liked to generate a standard word-processor format, something like
RTF, because most people are more familiar with word processors these days.
However, after studying the RTF spec for a while, I decided that there was
no way I was going to fiddle around with that horrible mess (it actually looks
like a very debased form of Tex - at least the command format is very similar).
It never ceases to amaze me that Microsoft is completely unable to produce
anything that is cleanly designed and easy to use.

Anyway, in order to do anything with the output of this doclet, you will need
Latex. If you have access to a Unix machine, there’s a good chance somebody
will have already installed it. If not, it shouldn’t be hard to get a copy. For
0S/2, try the following URL:

http://hobbes.nmsu.edu/pub/os2/apps/wp/tex/emtex/

For Windows, try this URL:
http://www.ssc.wisc.edu/"dvanness/howto.htm

One thing to note—the output generated by this tool tends to be quite large.
For example, the documentation for just the java.util package for JDK 1.2 is
over 200 pages. So use it with care. Note the options available for reducing the
size of the output.



2 Installation

Installation is very simple. Simply place the file LatexDoclet.class on your
classpath. Also, there is a .sty file included, fancyhdr.sty that must be avail-
able to Latex. Use the usual techniques for adding this if you don’t have it
already, or simply place it in the directory where the generated .tex file goes,
and it will be found automatically.

3 Usage

There are three steps to using this doclet. The first is to run javadoc on your
source files to generate the Latex source code. The second is to compile the
Latex source code to a dvi file. In order to do the second step, you will have
to have Latex installed on your machine. The third step is to print or view the
.dvi file. Again, you will need Latex for this. Consult your latex documentation
for how to do this.

First of all, I will assume you are familiar with the use of javadoc to generate
documentation from your source code. You normally run it with a command
line like:

javadoc packagel package2 package3
or:
javadoc @packages

where packages is a file containing a list of all the packages you want to
document. You may also specify individual class names, but I don’t recommend
this, as it doesn’t work out quite as nicely.

In order to use the LatexDoclet, you must add the -doclet parameter to
the javadoc command line, for example:

javadoc -doclet LatexDoclet @packages

For this to work, the LatexDoclet.class file must be on the classpath.
The LatexDoclet adds several command line options to javadoc. They are
documented here:

Option Description

-f file Specifies the output file name. For example, when
compiling the JDK 1.2 base documentation, I specify
-f jdk12_.tex. It’s best to use the extension tex for the
output file. The default is javadoc.tex.

-title “title” Specifies the title for the Latex document. The title is
displayed on the title page.




Option Description

-docauthor Specifies the author for the document. This will also be
“author” displayed on the title page.
-nodetails Specifies that the field, constructor, and method details

should not be generated. This will result in a nice summary
document that makes a good quick reference.

-nosummary Specifies that the field, constructor, and method summary
tables should not be generated. You may wish to omit
these to reduce document length a bit. May be used in
conjunction with -nodetails in which case you will get a
very concise summary document.

-twoside Specifies that the output will be formatted for double-sided
printing. This basically just means that the odd page num-
bers will be shifted on the page slightly towards the outer
edge of the page.

Once you have the Latex file, you have to compile it. This is somewhat
dependent on your Latex installation, but usually it’s just a matter of typing
something like:

latex myfile.tex

Generally, Latex will not be able to resolve all the cross-references on the
first pass. It will output a message to this effect. In this case, you should
re-run it again. Frequently, you will have to re-run it three times to get all
the references sorted out. You should then generate the index. LatexDoclet
includes index information. This will be in a file with the same name as your
.tex file, but with the extension idx. Typically you would generate the index
with a command like:

makeindex myfile.idx

which will generate a file called myfile.ind. Now, run Latex one more time
to include the index. If you do not update the index, and there is an old one
around, that one will be used. If you delete the myfile.ind file, then no index
will be written to the DVI file.

At this point, you now have a DVI file, which can be printed or viewed
online. There are also tools which can convert it to a PDF format, if you wish.
For instance, this readme was originally written with Latex and then converted
to PDF using such a tool. The details of all this are dependent on your Latex
installation, so consult your documentation.

4 Enhancing IPFDoclet

I have tried my best to make the output of LatexDoclet fairly complete, and also
to make it look nice. For example, Sun uses a lot of html tagging in it’s javadoc



source—obviously this won’t work in Latex. However, the doclet attempts to
translate most of the common tags into Latex equivalents so, for example, lists,
<code> tags, etc. should all come out ok.

However, I'm sure I've missed a few. Also, the output generated does not
include all the information that the standard doclet provides. For example,
there is no section in the summary listing methods inherited from base classes,
and there is no deprecated section. This was a choice on my part - I don’t find
I use those sections that much, so I didn’t bother to put them in. However,
if you want to, or want to change the format of the output, I’ve included the
complete source to LatexDoclet. You are free to modify it as you wish.

The source isn’t exactly the greatest example of object-oriented program-
ming that I've ever written. In fact, it’s not object-oriented at all, all the
methods are static, and there’s only one class, LatexDoclet. However, I've pro-
vided javadoc comments for all the methods, and there are liberal comments
through the text. It shouldn’t be too hard to figure out.

The javadoc for the class is available here in dvi and pdf formats (courtesy
of LatexDoclet!) and also in standard html format.



