
LatexDoclet API Documentation

Robert McDermid

Mar 3, 1999

Contents

0.1 LatexDoclet . 2
0.1.1 Field Summary . 2
0.1.2 Constructor Summary . 3
0.1.3 Method Summary . 4
0.1.4 Fields . 5
0.1.5 Constructors . 7
0.1.6 Methods . 7

0.1 LatexDoclet 2

0.1 LatexDoclet

java.lang.Object

public LatexDoclet
extends Object

This class is a doclet that generates Javadoc help as a LaTex file. LaTex is
a macro package for Donald Knuth’s excellent Tex type-setting package. It is
available on virtually every platform. This doclet generates code that conforms
to the LaTex 2e distribution. It requires one non-standard package, the fancyhdr
package.

Javadoc documentation is frequently enhanced by adding html tagging to
the comments. Obviously, this will not do anything useful in a LaTex file, so
this package attempts to make a reasonable translation for most of the tags
commonly found in Sun’s documentation. Fortunately, it is fairly easy to map
these tags into LaTex, but it is not always perfect.

This doclet adds the following command line options to javadoc:

-f Specify the output filename. Defaults to javadoc.tex
-title ”title” Specify the title for the documentation File. This will be displayed

on the title page
-docauthor Specify the name of the document author. This will be displayed

on the title page.
-twoside Specifies that the document will eventually be printed double-sided.

Tbe output will be formatted appropriately for this.
-nodetails The detailed constructor, method, and field information will not

be shown. Only the summaries will be shown. This results in a
good reference type document.

-nosummary The summaries will be omitted, but method, constructor, and field
details will be shown. This results in a slightly shorter document.

0.1.1 Field Summary

Type Description
private static
int

allClassesRef
Holds the id of the panel listing all classes in the generated file

private static
String

author
The document author - used on the title page.

private static
Hashtable

classIds
This hashtable is used to match heading ids to fully qualified class
names.

0.1 LatexDoclet 3

Type Description
private static
int

currentPackageId
Holds the link id of the package currently being processed

private static
boolean

definitionListFirstLine
This flag is used when converting definition lists from html to latex.

private static
RootDoc

doc
This is the RootDoc object passed to the start method.

private static
String[]

ourPackages
An array of all the package names documented in the IPF being
generated.

private static
PrintWriter

out
The output is written to this Writer.

private static
String

outputFileName
The name of the output file.

private static
int

packageListId
Holds the id of the panel with the list of all packages

private static
int

ref
This variable is incremented every time a heading id is specified,
so that each eading id will be unique.

private static
boolean

showDetails
Flag indicates whether to show the details of constructors, meth-
ods, and fields.

private static
boolean

showSummary
Falg indicates whether to show the summaries of constructors,
methods, and fields.

private static
String

title
The title to use for the latex file.

private static
boolean

twoSide
Flag indicating whether document should be formatted for double-
sided printing or not.

0.1.2 Constructor Summary

Description
LatexDoclet()

0.1 LatexDoclet 4

0.1.3 Method Summary

Returns Description
public static
String

dehyphenate(java.lang.String str)
Prevents latex from hyphenating the words, by appending a
mandatory hyphen point at the end of all the words in the string.

public static int getClassId(com.sun.javadoc.ClassDoc c)
Gets the id for a given class.

public static int getClassId(java.lang.String className)
Gets the id for a given class.

public static
String

getExceptionsString(com.sun.javadoc.ExecutableMemberDoc
method)
Returns a string with a comma-separate list of all the exceptions
that may be thrown by a method.

public static
String

getLink(java.lang.String className, java.lang.String
text)
Gets Latex for reference to specified class.

public static
String

getParamString(com.sun.javadoc.ExecutableMemberDoc
method)
Returns a string containing all the parameters for a method.

public static
void

header()
Writes the latex header.

public static
boolean

isPackageInternal(java.lang.String pack)
Determines if the specified package is one being processed in this
file.

public static int optionLength(java.lang.String option)
Returns how many option words specify a given tag.

public static
void

printClassTree(com.sun.javadoc.ClassDoc doc)
Outputs latex for superclass hierarchy for a class.

public static
void

processClass(com.sun.javadoc.ClassDoc c)
Produces the latex for a particular class.

public static
String

processCommentText(java.lang.String in, boolean
inSummary)
Process the comment or tag text to convert html tagging to Latex
commands.

public static
void

processConstructors(com.sun.javadoc.ConstructorDoc[]
docs, int startRes)
Write out a the constructor details.

public static
void

processFields(com.sun.javadoc.FieldDoc[] docs, int
startRes)
Write out a field details.

0.1 LatexDoclet 5

Returns Description
public static
void

processMethods(com.sun.javadoc.MethodDoc[] docs, int
startRes)
Write out the method details.

public static
void

processPackage(com.sun.javadoc.PackageDoc p, int id)
Processes an individual package.

public static
String

processSymbols(java.lang.String in)
This method is called to convert certain characters in a string to
their symbolic representation in latex.

public static
void

readOptions(java.lang.String[][] options)
Processes our extra command line options.

public static
boolean

start(com.sun.javadoc.RootDoc \ doc)
Called to start processing documentation.

public static
void

trailer()
Writes the trailer for the latex file.

0.1.4 Fields

allClassesRef
private static int allClassesRef

Holds the id of the panel listing all classes in the generated file

author
private static String author

The document author - used on the title page. Defaults to an empty string

classIds
private static Hashtable classIds

This hashtable is used to match heading ids to fully qualified class names.
We use these to look p the ids for @see tags and other links internal to the
generated ipf file.

currentPackageId
private static int currentPackageId

Holds the link id of the package currently being processed

definitionListFirstLine
private static boolean definitionListFirstLine

This flag is used when converting definition lists from html to latex. On the
first line, e do not start the line with \\. On other lines we do.

doc

0.1 LatexDoclet 6

private static RootDoc doc

This is the RootDoc object passed to the start method. We keep a static
reference to it ecause it has the DocErrorReporter in it that we may need to
use.

ourPackages
private static String[] ourPackages

An array of all the package names documented in the IPF being generated.

out
private static PrintWriter out

The output is written to this Writer.

outputFileName
private static String outputFileName

The name of the output file. This defaults to javadoc.tex, but can be over-
ridden y the -f command line option.

packageListId
private static int packageListId

Holds the id of the panel with the list of all packages

ref
private static int ref

This variable is incremented every time a heading id is specified, so that
each eading id will be unique.

showDetails
private static boolean showDetails

Flag indicates whether to show the details of constructors, methods, and
fields.

showSummary
private static boolean showSummary

Falg indicates whether to show the summaries of constructors, methods, and
fields.

title
private static String title

The title to use for the latex file. Defaults to ”Javadoc Documentation”

twoSide
private static boolean twoSide

Flag indicating whether document should be formatted for double-sided
printing or not.

0.1 LatexDoclet 7

0.1.5 Constructors

LatexDoclet
public LatexDoclet()

0.1.6 Methods

dehyphenate
public static String dehyphenate(java.lang.String str)

Prevents latex from hyphenating the words, by appending a mandatory hy-
phen point at the end of all the words in the string. This process removes all
extra spaces.

Parameters:

str The string to de-hyphenate

Returns:
The string with all words having \- appended

getClassId
public static int getClassId(com.sun.javadoc.ClassDoc c)

Gets the id for a given class. Only works on classes that are going to be in
the file we are generating. It finds it by looking it up in the hashtable classIds.

Parameters:

c The class to get the id for.

Returns:
The id of the specified class.

getClassId
public static int getClassId(java.lang.String className)

Gets the id for a given class. Only works on classes that are going to be in
the file we are generating. It finds it by looking it up in the hashtable classIds.

Parameters:

className The fully qualified class name to get the id for.

Returns:
The id of the specified class.

getExceptionsString

0.1 LatexDoclet 8

public static String
getExceptionsString(com.sun.javadoc.ExecutableMemberDoc method)

Returns a string with a comma-separate list of all the exceptions that may
be thrown by a method.

Parameters:

method The method to get the exception list for.

Returns:
The comma-separated list of exceptions.

getLink
public static String getLink(java.lang.String className, java.lang.String text)

Gets Latex for reference to specified class. This produces a string containing
a complete Latex reference string, if the class is one of the ones we are processing.
Otherwise, it just returns the name of the class.

Parameters:

className Fully qualified class name of the class to get the reference
for

text

Returns:
String containing the reference text.

getParamString
public static String getParamString(com.sun.javadoc.ExecutableMemberDoc
method)

Returns a string containing all the parameters for a method. The parameters
are separated by commas and surrounded by brackets.

Parameters:

method The method to get the parameter list for

Returns:
String with the parameter list

header
public static void header()

Writes the latex header. In here we set our document class, load some extra
packages, set up the page headers, create the title page and table of contents,
and so forth.

0.1 LatexDoclet 9

isPackageInternal
public static boolean isPackageInternal(java.lang.String pack)

Determines if the specified package is one being processed in this file. If the
package is not internal then references to it cannot be done.

Parameters:

pack The package name to check for

Returns:
true if the package is being documented in the latex file being generated.

optionLength
public static int optionLength(java.lang.String option)

Returns how many option words specify a given tag. This is part of the
command-line option processing for javadoc. Any unregonized tags are passed
in here, and it returns how many symbols that tag should be. For example, for
-f which takes a filename as an argument, it would return 2 (1 for the tag itself,
and one for the filename).

Parameters:

option The option to get length for

Returns:
The length for the option.

printClassTree
public static void printClassTree(com.sun.javadoc.ClassDoc doc)

Outputs latex for superclass hierarchy for a class.

Parameters:

doc The class to print the chart for

processClass
public static void processClass(com.sun.javadoc.ClassDoc c)

Produces the latex for a particular class. This consists of writing out the
class section with the description of the class, and field, constructor and method
summaries, and then writing out the text for each individual field, method, and
constructor.

Parameters:

c The class to document

0.1 LatexDoclet 10

processCommentText
public static String processCommentText(java.lang.String in, boolean
inSummary)

Process the comment or tag text to convert html tagging to Latex com-
mands. Sun, in particular, uses a lot of html tags in its comments to format
them nicely when converted to javadoc format. Fortunately, many of these can
easily be easily converted to Latex. Tags which are not recognized are omitted.
This is not perfect, but usually what comes out is reasonably decent looking.
processSymbols is also called by this method to fix up any tricky symbols.

Parameters:

in The text to process
inSummary If the text to be processed is from the summary, set this to

true. This prevents things like lists from being translated,
which sometimes causes problems for latex, because the
end tag will not be included because of truncation for the
summary.

Returns:
Cleaned up text.

processConstructors
public static void processConstructors(com.sun.javadoc.ConstructorDoc[]
docs, int startRes)

Write out a the constructor details. This method is called by processClass
to write out documentation for each constructor for the class.

Parameters:

docs Array of constructor information
startRes The reference id to use for the first constructor. Add one

for second constructor, and so forth.

processFields
public static void processFields(com.sun.javadoc.FieldDoc[] docs, int
startRes)

Write out a field details.

Parameters:

docs Array of field information
startRes The reference id to use for the first field. Add one for

second field, and so forth.

0.1 LatexDoclet 11

processMethods
public static void processMethods(com.sun.javadoc.MethodDoc[] docs, int
startRes)

Write out the method details.

Parameters:

docs Array of nethod information
startRes The reference id to use for the first method. Add one for

second method, and so forth.

processPackage
public static void processPackage(com.sun.javadoc.PackageDoc p, int id)

Processes an individual package. This means we start a new chapter and list
all the classes in the package, with references. Then we detail each individual
class in separate sections.

Parameters:

p The package to document
id The id to use for the label. These have already been pre-

determined in the calling routine.

processSymbols
public static String processSymbols(java.lang.String in)

This method is called to convert certain characters in a string to their sym-
bolic representation in latex. For example, you cannot leave a backslash in clear
test, because it will be interpreted as a latex command. So, it is replaced with
it’s symbolic representation. There are quite a few special characters in Latex
(good Unix-style design- use as many cryptic symbols as possible in the syntax!)
but I think this handles them all.

Parameters:

in The string to process

Returns:
Processed string.

readOptions
public static void readOptions(java.lang.String[][] options)

Processes our extra command line options. There are several extra com-
mand line options supported by this doclet, and this scans through the options
presented, and handles them appropriately. No error checking is performed at

0.1 LatexDoclet 12

this time.

Parameters:

options Array of options

start
public static boolean start(com.sun.javadoc.RootDoc doc)

Called to start processing documentation. This is the entry point for the
doclet, and it handles outputting all the preliminary pages such as the package
list, and sets up the class ids. It then processes each package one by one by
calling processPackage.

Parameters:

doc The document object to process

Returns:
true on success.

trailer
public static void trailer()

Writes the trailer for the latex file. Basically just prints the index and the
\end{document} tag.

Index

allClassesRef, 5
author, 5

classIds, 5
currentPackageId, 5

definitionListFirstLine, 5
dehyphenate, 7
doc, 5

getClassId, 7
getExceptionsString, 7
getLink, 8
getParamString, 8

header, 8

isPackageInternal, 9

LatexDoclet, 2

optionLength, 9
ourPackages, 6
out, 6
outputFileName, 6

packageListId, 6
printClassTree, 9
processClass, 9
processCommentText, 10
processConstructors, 10
processFields, 10
processMethods, 11
processPackage, 11
processSymbols, 11

readOptions, 11
ref, 6

showDetails, 6
showSummary, 6
start, 12

title, 6
trailer, 12
twoSide, 6

