Busness Object
Deveoper Guide

Versata L ogic Suite - WebSphere 4.0 Edition

VERSATA, INC.

300 LAKESIDE DRIVE

SUITE 1500

OAKLAND, CA 94612-3534

PHONE: 510.238.4100

INTERNET: HTTP://WWW.VERSATA.COM
V S55E40-BDG-03



Copyright

Copyright © 2002 Versata, Inc. All rights reserved. Printed in the United States of America.

This software and documentation package contains proprietary information of Versata, Inc. and is provided under a
license agreement containing restrictions on use and disclosure. The software and documentation is also protected
under copyright law. Reverse engineering of the software is prohibited.

The information in this document is subject to change without notice. Versata, Inc. provides this publication "asis"
without warranty of any kind, either express or implied, including but not limited to the implied warranties or
conditions of merchantability or fitness for a particular purpose.

Versata Logic Suite, Versata Logic Studio, and Versata Logic Server are trademarks of Versata, Inc.

IBM, AS/400, CICS, DB2, MQSeries, Netfinity, 0S/390, and Visual Age are registered trademarks and AlX, DB2
Connect, MVS, and WebSphere are trademarks of IBM Corporation.

Microsoft, Microsoft SQL Server, Microsoft I nternet Explorer, Windows, Windows NT, Microsoft Access, Visual
J++, Visual Basic, Active X, FrontPage, Microsoft Visual SourceSafe, and SourceSafe are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Netscape, Netscape Navigator, and the Netscape N logo are registered trademarks of Netscape Communications
Corporation in the United States and other countries. Netscape Communicator, Netscape Enterprise Server, Netscape
FastTrack Server, and Netscape Navigator Gold are also trademarks of Netscape Communications Corporation, which
may be registered in other countries.

Adobe, the Adobe logo, Acrobat, and the Acrobat logo are trademarks of Adobe Systems I ncorporated.
Oracle and SQL* Plus are registered trademarks and SQL*Net is a trademark of Oracle Corporation.

HotJava, Java, JavaBeans, JavaScript, JDBC, JDK, JNDI, and Solaris are trademarks and Sun MicroSystemsis a
registered trademark of Sun MicroSystems, Inc.

Adaptive Server Enterprise, jConnect, and Sybase SQL Server are trademarks of Sybase, Inc. in the United States and/
or other countries.

Informix Dynamic Server and Informix-Driver for JDBC are trademarks and Informix is aregistered trademark of
Informix Corporation.

MERANT, DataDirect, INTERSOLV, PV CS, and SequelLink are registered trademarks of MERANT Solutions, Inc.

Macromedia and Dreamweaver are registered trademarks of Macromedia, Inc. in the United States and/or other
countries.

VisiBroker and VisiBroker for Java are trademarks or registered trademarks of I nprise Corporation.

HP-UX is aregistered trademark of Hewlett-Packard Company.

Rational and Rational Rose are registered trademarks of Rational Software Corporation.

VeriSign is atrademark of VeriSign, Inc.

WinZip is aregistered trademark of Nico Mac Computing, Inc.

Seagate Crystal Reportsisatrademark of Seagate Software, Inc.

Pentium is a registered trademark of Intel Coporation in the U.S. and other countries.

BEA and BEA WebL ogic are registered trademarks and BEA WebL ogic Server is atrademark of BEA Systems, Inc.
All company, product, service, and trade names referenced may be service marks, trademarks, or registered
trademarks of their respective owners.



Table of Contents

Preface
Versata LogiC SUIte AOCUMENTALION. ........c.iieieeeietieeeie ettt b e s bbb e et ae e ebesbenbesnen XVi
Versata LOogiC SUITE LIDIaIY ... ..ottt bbb e e XVi
VersatalLogic Suite Library PDF ManUalS .......ccccevviivirireereeeseee s see st eae e e s XVi
VersatalLogic Suite User INterface HEP ...oveeeirece e XVii
Versata Class LibrarieS HEIP ..ot st XViii
VersataLogic SUITE REAAME .....cuceeiee et Xviii
Conventions for documentation and user interface helP ......ccveeveeeeeice s Xix
Additional dOCUMENTALION. ........ceiieeiitiieiiee ettt st s st b XX
IBM WebSphere™ Application Server doCUmMEntation ...........cceceeeerereeieresesesieseeseseseesesseeseens XX
VErsata LOQiC SUITE FESOUICES.......cceiuereerieriesieeeseeteseesessestessessessensesseseesessessessessesssssensessessensesessesseesessensensens XXi
Sampl e database and Sample aPPliCALIONS ......ccueieeere e ere s XXi
VEISEAWWED SOttt sttt ettt ekt e ket et ese et e ne b e bene e XXi
Versata KNOWIEAGE BASE.......ccuiece ettt et sne e see e e e e enen XXii
Versata Devel OpEr DISCUSSIONS .....c..ecoviuieririeieeseeseesieeeseseeeesessessessessessessesaessessensessessssesseessssessesseseenees XXii
V ersata CUSLOMET SUDPOM ....ccuviveeeeiieeeieeseesiestesteseeteseesseseesseseesessesessessessessessesseseessenseseesssssensesenseseenees XXii
Technical support for IBM WebSphere AppliCation SEIVES .........ccvirereeerececere e s XXiii
(4 2 /2N o I = = I g o ¥ Tox {0 o ISP 25
(@Y= VT T PR 26
1= 1= 0 1 == S 27
L [TV (o WS T FS o 11T =S 28



CHAPTER 2 Developing a Data MO ..........cccoevieieieesecie e 31

L@t 7= 0 1= B0 )< V= RS 32
DA MOUE] OVEIVIEIW ..ottt r et n et rer et rener e nn e 33
Data MOdelS VEIrSUS FEPOSITONES ......cveeeeeeeeeeiresese s st te e s e e e e se e sre e besteseeseen e see e sneenensesnesnensn 33

L@ o = w0 (= 11 a1 10 1SS 33
Data model referenCe iNFOMMELION ............cirieireiieee et b e b e b e b srenesrere e 36
Data model deSign QUILEIINES.........cooiiiiiiiee ettt bbb e e e enea 36
Denormalizing for PErfOIMANCE ..........ou i e e see e 37
Naming conventions for data 0bjects and atrTDULES............ccoirirere e e 38
General NAMING CONMVENTIONS ........oiiirierireet sttt sttt sttt sbesbesbesbesbeseesbenseseeneaneeseanes 38
INfOrmMixX NAMING CONVENTIONS ......coueiuiriiieiieeiesie sttt sbe s sbe e se e bt e e e e b e e e e ne e e sne e 39

Oracle, Sybase, and Microsoft SQL Server naming CONVENLIONS.........ccoerererereneesienieseeseesenieens 40

Data type mapping between the Versata Logic Suite and RDBMSS..........ccooiviiinineneseseeene e 40
Oracle and Versata Logic Suite data type MapPiNgS.......coeoeeereeerrerenesesie e seeseesesessesesee e seesees 41
Microsoft SQL Server and Versata Logic Suite data type mappings........cocceeeveeeerereresesieseneenens 43

Sybase and Versata Logic Suite data type MapPiNgS. .......coeeerereerereriesiesie e see e seeesesre e seesees 46
Informix and Versata Logic Suite data type MapPingS.........coeeereeeerenerierie e 47

DB2 Universal Database and Versata L ogic Suite datatype mappings.........ccceeeerereenereesenienens 49

ANSI SQL and Versata Logic Suite data type Mappings ........ccoeeererereereeieeieresesiess e seesee e 52
Sequential numbering inthe Versata LogiC SUITE ........cooreirireriie et e 53
Sequential NUMDENTNG TN OFACIE........uiiieeeee e et e ens 53
Sequential numbering in Microsoft SQL Server and Sybase..........ccoceviirerinene e 54
Sequential numbering in DB2 Universal Dat@bhase...........cieveireeiererieeienene s 55
BUIlAiNG @d8EAMOTE .........eoieeeitee et bbb et e et e e e b e et b b e besae b e beneens 56
REPOSITONY fil@ SLIUCTUNE ...ttt ettt e b e bbb et e e e eneeneas 56
Creating @ NEW FEPOSITONY .....cc.eruiiuiriertireesteieseeeeeeseeresseesesbesaesbesaeseeseaseese e e et esesbesaeebesbesbesbensessaneenseneanes 58
Upgrading an eXiSting FEPOSITONY .......cceiuiririeriereeieieieeertesiesie et see st st ses e e e sse s e sbesbeseeseesbeseeeeneeneas 58
Using the Reengingering MaNAQEY ........c..oieueierieeieieeese sttt b e bbb s e e e eneeneas 59
Reengineering Manager USEr INTEITaCE. .........ioiiiieeee e 59
Reengineering data objeCtSiNt0 & rEPOSITONY ......coieiireriirierie et 60

Notes on reengineering data MOELS .........coeiiiiriii e e e 61
Validating 8 dataMOCE] ..ottt et b e b neena 62

Editing the data model validation utility commandsfile ..., 64

Using the Repository EXChaNge M NEGEY .........coveeeirirerierierie ettt sae e e e e seeneeneas 65

Faq] ool g Ao [F= Lo o [OOSR 65
IMpPOrting rePOSItOrY ODJECES ......ocuiiiiie e e e 66
WOIKING WIth GrOUDS.....uveeceeeiesie sttt st sre st sttt s e e ae e e e sa e e e seesesaeenesrenteseeseensnnannnnnennens 68
WX [0 (1o o (0 1F =TSRSS 68
MOVING ODJECLS AIMONG GIOUPS ....veuvveeerereeeeseetesteresteesseesseseesesee e e sesseseseseseesessesessesessenessenessesessesessenes 69
MOVING @SINGIE ODJECE ......ceeeiiiite bbb bbb e 69

MOVING @ SINGIE FIlE...c.eeieiee e bbbt 69

[ TeY T o K=o [0 11 o OSSOSO 70

Using the Business Objects and FileS Manager ..........covuereeiieinieinieee s 70



RENAMING GIOUPDS ...ttt ettt s et b et be et s beee s ae e e be e e st e a e e e e aeeaeeheebeeaeebesbeebesbenbeseeneenseneeesneaneas 71

(D1 L= i gTo o] o N o TR 71
Finding 0DJECIS @NA FIlES ..o bbb e 72
Building and compiling group fllES ...ttt e 72
Working With attribDUtE tEMPIELES..........eeeeceecre st ne e er e e ens 73
Propagating tEMPIEEES. ......ccvrverecereser e steeste e e s et sae st e e s e e e e e e eseese et e s seesesrentesaeseeneeneeenneenens 74
Issues With attribULE tEMPIELES.......c.eceeeierec e se et s ne e er e neens 75
PrOPErtY INNEMTANCE. ... .cueee ettt e st e e e seesesaeseesteseese e e eneerennnens 75

(D= 2= Y 0L 7= 110 == P 76
Implementing changes iN RECOIASOUICES..........cveieirererere e seeseeeseeeesesse e sre e st seseesseneeneenes 77

Issues with attribute group tEMPIALES.........cceeeereeerec e er s 7
Propagation of attribute group template ChangeS .........cccivveevereriererereee e 78
Implementing changes iN RECOIASOUICES.......c..cveveiriresereseseeseeeseeeesesesesre e s sreseeseeseeneeneenes 79
CHAPTER 3Working with Data ObjJECtS.......ccccvuiiiieiiecieecee e 81
L@ pF= o0 g0 Vs YT VRPN 82
Data ODJECT OVEIVIEIN ...ttt s b et e et e e st e e eb e s et e bt eb e s e be e e eeneensneanea 83
X0 (o 1 aTe [0 F=1 7= o o) = £ 84
Create New Data OBbJECt WIZAd .......cccvveveeeeieeece st se s e s sttt es e seese s se s snesse e nesneenens 84
Creating adata object inthe Versata LogiC StUIO........ccccvereeeeerine et 84
Importing a data object from another rePOSITOrY ........coveeieiiereeeree e 85
Reengineering @ data ObJECL ..........eiviirereeseee st sttt st e e e ese e e nnesrenrennen 85
Adding adata objeCt fromM XIML .......cciieeierireciee e s sre e saesr e e e erenneens 86

VKoo YT a0 [ = = Mo o= = 87
(RS g T gTo 0 T = o o] = £ SR 87

(D= 1= i gTo o F= 7= o o] = £ SR 87
Generating an Impact ANalYSIS REPOI .........ccviieiiiie et e snenean 88
(D= =Y @] o] = o1l BI= o 1< a0 (=10 0y 20 I oo SR 88

Setting properties for data ODJECES........cveii e e 89
Properties tab of the Transaction LOgiC DESIGNET .......cccverieeeerirerese e vee e seeeeeee e seeseeseens 20

Setting optimistic locking fOr data OhJECES.........vvereeeeicireee e e 94
Enabling resynchronization with a persistent data SOUrCE.........ccevvveereereeeeeeeee e e s 95
WOrking With COEA VAlUES [ISES.....cuiiuiieeericecce st st ene e ere e 95
Defining aCoded VAlUES [iSh........ccviiereieieeceeeee st st r e 96
Caching COOEA VAIUES [ISES........ecueieieeeeirieeise ettt s et e s ene e aene s e sresnenseenens 96
WOTKIiNG With @triBULES. ........ecvieeececee e e r et s e e e s e e e e e e erenneens 98
Attributes and declarative DUSINESS TUIES.........covoii e 98
Attributestab of the Transaction LOGIC DESIGNET .........ccvuieerieiierieseieseeeee s sre e s seeseeaeresneens 99

WX 0 o 7N ] o101 (= [ RS 100

Adding attributes to data ODJECES........ccicieeccc e s 102
Deleting attributes from data ODJECES ........ccuervreeerere et 103
RENAMING BHTTDULES ... ettt et et st se e e e e se e e e e eseeseeneeeesseseneeneees 103
Changing an attribDULE'S AatatYPE.....ccuevverererieereere e e se e sre e sesreaesreneens 103



AV A L0 I ] o0 (=R 104

Example - virtual attributes in sum and COUNL FUIES..........cceoeiiiiinine e 106
Defining an attribute @S VITUAL ..........ccoiiriiiiiieeeee et s 106
WOTKiNg With FelationNShiPS. ... .coeeeeerieie ettt ettt bbb e e st e e st e e e et e b saesbesbennan 107
Types of relationShiPS SUPPOITEU.......covoiiieeeieeeee ettt ettt b et be e bbb e e 107
Many-to-many rel@tionNShiPS........c.oo ittt bbb e e st e b e nae s 108
TYPERNIEIAICHIES ...ttt bbbt bt b e s et e st e ae b e e st sbe s besbesaenbesees 108
Implementing type NIErarChi€S...... ..ot s 109
Guidelines for Store with Super type hierarChies.........coooeeeiniiice e 110
Relationships tab of Transaction LOgiC DESIGNEY .......c..oiieririririere st 111

RS = M0 Ta g T ol =l [ (o] oV URRTRN 113
AddiNg rel@tioNSNIPS......coveiie bbb e e e bbb e e 113
Adding arelationship From XIML ..o e s s e 114
Deleting relatioNSNiPS . .......ciiiieeereeeet ettt bbb e e et ae b e see b e 115
Changing Keys for rel@tionShiPS ..o e s e 115
Working with indexes and Primary KEYS ......ccvveiereriereeieesieresesiesesesesre e e saesesse e e s e ssessessesaeseessenenns 117
L T Y Y TS 117

F g0 1= o T (o] SRS SPRSTRRN 118
o (o 1 g0 10 (x-S 119

(D= T (a0 10 (x-SR 119
Changing iNAeX defiNItIONS........ccccciiiiieiier e s s e s s snenrenes 120
CHAPTER 4 Deploying Data M OGElS.......cccoocuieiieiieciie et 121
CEDEEE OVEIVIBIN ...ttt et b et e st e ae et e b e eb e e b e e besb e ee e b ene e eeeaeebeebesnesbesbereesbantas 122
DEPIOYMENE OVEIVIBIN ...ttt ettt sttt s h et s be st e aese e ae s s e se et e aeebe e et saeebesbeseesbese e e eneensebesnennens 123
SEtiNG UP 8 SYSEEM DSN ...ttt sttt sttt h et b e s besb e se et ese e e eaeeaeebesaesbesbesbesbeneas 124
Deploying adata model t0 @ database SEIVES .........ccvieverire it sresrennens 126
Working With the SErVer MaNAOET .........cccveeireresireeeee e ettt ae s e et e e sneesessesnesseneees 128
Server Manager INtrodUCtioN Ai@lOg........coververeeriereerireeresesee e e e e e se e snesresseneens 128

Connect for AULO SEIECION AIAlOg .....eoveieeeieeeire e eneas 128
Auto-select Changed Data ObJECLS........c.eeuervreeieeriere s e sesie e seestee e e e e se e sre e seeseesaeseneens 129

Select Data ObJECLS AIAlOQ .....eevrverieriirieseiereeesere st e s e et s e s s re e e e e e e e eesesnenresseneens 130

Deploy to Server Or SCriptS dialOg .....cvveirrrririeiireireeseee e e e s see e seesreeeeeseeennens 130

VAT g R (ol L= 1o VAo = oo [ 131

D= ie=4\Y[olo (S WBT='o![0)YA®] o]iT0] 010 1= oo S 132
Configuration OptioNS AialOg.......ccveeeirireririsee e e se e ese e eresneneens 132

[R5 0| VA (o X BI= o] o) VAo - o o SR 133

Server Deployment Preview dialOg.......cccovveiinene i se e s sre e 133

Data model deplOyMENt FIlES......cc.ci e e re e reeresresaesrennens 133
(D= o1 o)Y7001=: 10 oo N {1 = SRS 134
Generating deployment scripts instead of deploying t0 SEIVEr........oocovvveverecccecceeeec e 135
RUNNING AEPIOYMENE SCIPES ...vieeueeeeeeerereere st e st st e s st s e e st se e e se e e e se e e sresbesaesresteseeseeneenenrennensens 136

Running deployment scripts against OraCle........covecvveeiiereresie e 136



Running deployment scripts against Microsoft SQL Server or Sybase.........ccooevivirciiien 137

Running deployment scripts against INfOMMIX..........ooiiiiiiie i e 137

Running deployment scripts against DB2 Universal Database..........coocveveerirrerieeencneneneseie e 137
Granting permiSSioNS MEBNUAITY ..........ooiieieieieee et sbe e st s sbe bt see e e e eens 138
Permissions for Microsoft SQL Server and SybDase ..o 138
PermiSSiONS FOF OFBCIE.......coueiiiieiee ettt b et e se bt e e e 138
Generating qUOLEd TAENTITIENS. ..ot ettt s s a e neen 139
Quoted identifiers fOr OFaCle........cci it et s ae s re e e 139

Quoted identifiers for Microsoft SQL Server and Syhase.........ccoovveveeevececesienese e 139

Quoted identifiers for INFOIMIX .....cii et st be et e sr e saeesre e sas 140

Quoted identifiersfor DB2 Universal Database...........cceeuviieiiiieieeie st sttt este e nee s 140

Testing the repository for quoted IdentifierS .........cvvvvvrercieeeere e 141
Example of QUOLE IdENEIFIErS.......viiee i 141

Data model deplOYMENT EITOIS......c.ccvieiirirereesteereee e e et e e teseeaese e e e e eresresneeeessensensensnses 141
Deploying to MUItiple dat@bases. ........ccvevvereiiririe st se et e e e s 142
Example of multiple schema deployment...........ccooveericceie e e 143
CHAPTER 5Working with Query ODjectS.......ccccooviiieiiecieececeece e 145
CAPEEE OVEIVIBIW ...ttt bttt sttt a e e e he e st b e s ae e bt she bt s b e b e s bese e ben b et e me et eheebesaesnaneas 146
QUENY ODJECE OVEIVIEIW ...ttt sttt sttt ettt ae et eb e s he bbb e s b e ee et e st s e e e e m b e be e e ebeeaesbesbesbeseeseeseaneas 147
QUENY OBJECE EFTNITION ...ttt bbbt et e e e b e s e sbesaesbesaeeeseeeens 147
QUErY ODJECE AEPIOYIMENL ...ttt ettt bbbt se et e e e e e e e eb e s e sbeeaesbesbesesbeeans 147
When to use query ObjeCtS in apPliCaLIONS........c.iierieie ettt s 148
ChildmOSt data ODJECL .......ceeeeieeee e ettt sb e s bt saesaesbeneen 149
QUENY ODJECE FEIBLTIONSNIPS ...ttt sttt b et et ee et e e se e e e e ebe st sbesaesbesbaneesbeneans 149
Query object deSigN GUIAEIINES........c..oiiiieeee et e bbb e b e 150
System validation of QUENY ODJECES. ........ooie e 151
PN (o 1 gTo o (U1 Y o] o = ol £ SRR 152
NEW QUENY ODJECE WIZBIT ......oouiiiieieeeirteee ettt ettt s b e s s b e st e e se e e et sbe et e saeebe st enseseeneees 153
Welcome to the New Query ObjeCt WiZard............cceoureerineni e s 154

Choose Data Objects for the New Query ODJECE .........cooo i 154

Choose Attributes for the QUENY ODJECL ..o s 156

Specify Where/Order By Clause for the QUery ObJECE ..........ooiiiriienenieerieeeree e 157

Specify Having/Group By Clause for the Query ObJECt .........oooiiieiiiieeeseere e 157
FINESNEO......eoe bbb e b bbb bt bbb e bbbt se b b 158

VKoo YT 0o o LU 1= Y] o] = ot £ PSS 159
QUENY ODJECE DESIGNES .....vcveeeeceeeeerie et se e ste e s e et es e e s e ese s e stesaestesaeseesteseeseseesensessessessesseseensessensens 160
(D= 2= W @] =01 1] - o T 162
ATIDULES LA ... 164

Query Object EXPression BUIAEY .........c.cveiieeise e ses et se et e e s seeesaenaesennens 166
JOINSTAD ... 167

RTAT == L@ 0 1= =Y = o RS 168
HaViNG/Group BY 1aD.......ccceeiiice et st ere e s sae e e e s 169

Vii



010 L= = o SO RURURPPTRPR 171
Modifying underlying data objects for aquery ObJECL ........cocoiiiiii e 173
VYo (o 1 gTo =N = itz o] o = ol AP 173

DI L= il aTo Jr= N v itz Lol o = ol (TSRS 173
Changing & dat@ ODJECE .......cc.eeiiiiee ettt ettt s b et s se e b e 173
Modifying attributes for a query ODJEC..........ooi i e 174
AddiNg 8N AEFDULE..........eoee et b s nee e 174
Deleting N @FTDULE .........oooieee ettt be b e e b e 175
WOTKING W JOINS ...ttt st bbb b se et et e et et be e besbesaesbe e e 175
VYo (o gTo = Tol] 1 elo g e [1 1 o o FUN TSRS 175
Deleting @j0iN CONTITION ........ccooiiiiiriieie ettt bbb s e et et sbeseesaeseesbenen 175
MOodifying @JOiN CONAITION..........eiiiiieeieie ettt be b b seeneen 176

Adding selection and sort criteriafor query ObjeCt FECOIAS.........ccuririririrene e 176
Validating qUENY ODJECE SYNEBX .....cvevireeieiereete ettt sttt bttt e e b st sae b besaesbe e e 177
Database and schema referencesin SQL tEXL .......ccvoeeiiiiere e e 178
Defining a custom superclass for aquery ODJECT ...........oo i 179
Enabling deployment of attribute-level security datafor aquery object ..........covviiiiiiiccicencnne 179
Enabling insertsto aparent data ODJECL ...........oeeeririiiie e e 179
Setting the Parentl nsertable property in the Query Object DESIgNEY ..........ccovverererirceeienerenins 180

Notes about the Parentinsertabl@ Property .......oocoeeeeireeneeee e 180
Disabling resynchronization with a persistent data SOUICE...........ccerreriereriine e 182
CHAPTER 6 Understanding Transaction LOJIC.......cccvivereerieieeriesieseese s seeseesneens 183
(@1 720 1= 0= VT 184
LI 0= o o L T T o T o0y = = 185
What are declarative DUSINESS TUIES? ..o 185
Why use declarative BUSINESS FUIES? .......ceviieiicesee ettt nre e s 186
Business rules functionality compared to spreadsheet functionality.........ccoccovvevieveverncciesesieseiens 187
TYPES OF DUSINESS FUIES ...ttt bbbt bbb e et a et besbe s besae b e e e 189
DEIVALION TUIES ...ttt ettt e e et b s r s e b bt e st e ens 189
Multiple data object updates through cascading FUIES...........ccooririiiiiiine e 192
ALLITDULE VAT ABLTION TUIES.......eoeeec bbb s b 193
PrESENTELION TUIES.......c.eiiieeeeeet bbbt e bt e bt et e et e s n e en s 194
L0701 (Lo 1= TN USSP 196
Referential INtEGIITY FUIES ... ..o ittt b e b b e e e 197
CONSETAINES ...ttt ettt ettt bbb bbbt bbb b e b e et e e et e b et b st b et b et b 198
BUSINESS TUIE BCLIONS ...ttt bbb bbb n e r e en s 198
TranSaCtioN [OQiC PrOCESSING. . ..ueverueeeerertetere st eeesteseeseeseeseeseseesessesbesaessesbessessenseseeneanseseanesaesaesbesaesbesensen 200
Order Of rule ProCESSING OPEIaLIONS........ccvirverieeeieieeiere ettt sttt seeseeseese e e ebe s e ebesbesbesaeseesbeseesaeneas 201
Before insert/update/del €18 BVENT .........oo.iii i e e 202
SEEAEFAUITS ....cveeeet ettt b e e e e bbb 202
Attribute alterability CRECK .......cc.i o bbb e 202

Viii



Parent check/fetCh parent rePliCaLE. ........coiiere e e et 202

EVAIUALE FOMMUIAL .. ...ttt ettt ettt eb e bt b et s 202

Coded Value CONSIFaINT CHECK ......cuiiieiiieieree ettt et bbb st e eeneen 202
ALtribute Validation CHECK..... ..ot s s 202
Business object CONSIIaiNt CRECK .........coiiiiiie e e s 203

N LU= o T Y o TSR URPO 203

(00 ol Lol g 7= I "ox 1 Fo o FOU RO PRSROR RN 203

L0 TT o o= S o= o L= TR PURRORRN 203

Parent adjUSLMENES .......cc.eeiiieeece s ettt se e ne et ese e e enesseesesnenresaeneeneeneees 204

After inSert/Update/dEl 618 BVENT ........c.oc et e e et 204

NESE TEVEIS. ..ttt ettt sttt b et b e bt nns 204

[V Koo Ko (0 IR = L= 1 o 205
ANalyzing BUSINESS FEQUITEIMENES. .......ocieieieieiieeeesese et e et sae e s e e e seesaese e e eneesensesaeseessesessensenes 206
BusiNess fUNCLioN AEfiNITION .........coiiiiieeee ettt b seere 206
Business requirements defiNitioN.........cccoeiiiicirie s 206
Mapping reqUIreMENES O FUIES .......cceeueeeeiere sttt st e e e se e e e ese e resreseeneeneees 207

B0 02T (o VT T="o] o] 0o o TSRS 207

S C 1 o o U1 =SSR 208
Mapping requirements to the data MOdel ...........cccoveviieeiccc e 209

RUIES AEBSIGN PALLEINS ....eeuveeeeeeeeete et sttt e s ae st e be e seenae e e neenesrentesneseesresensensenes 209
Recognizing NON-declaratiVe PaLtErNS..........ccoveireierisee s e e et aese e enenseens 210
CHAPTER 7 Defining BUSINESS RUIES .......ocueiiiiieiice e 211
CAPEEE OVEIVIBIW ...ttt b e e s e et a e e bt e h e e b e e ae e b e e b e bt s b e b e s beee e ben b et e ne et sheebesaeseeneas 212
Overview of busiNesS FUIES AEfiNITION. ........coi et 213
BUSINESS FUIES AESIGN ISSUES......eeveueereieeietee ettt sttt see e se st et sbe s e saese e beseeseeae e e eneeneebesnesaesnenaeens 213
General process for defining DUSINESS FUIES..........cccoi i e 216
Completing the prerequisites for business rule definition ... 216
Defining basic declarative BUSINESS FUIES .........c.ooiiiriiiee e 216
Defining PreSentation FUIES....... ..ottt et e e e st se e b s 217

Testing business rules and obtaining user feedback ............coeriiiiinere e 217
Redefining the data model and FUIES .........cviiiieee e 218
Defining extensions and customizationS fOr TUIES...........ccoo e 219
Understanding the Transaction LOgiC DESIGNEY ......c.cievirieeereeeeereeeesieseseeseeesaesesseesaeseesessessesssssessesseneens 220
ATTTDULES TAD ... bbb e sttt et b bbb et sttt 221
DEITVALION 1A ...ttt bbbttt ens 221
Validation/Data TYPE TAD......cceeeierececeee ettt ettt s e e srenresreneeneas 222
PrESENtatioN TAD.......oiueiiee ettt b et ns 225

[N 015 = o TSRS 225

RS = (L0 1S T 1S = o 225
Referential INtegrity tah.......ccecici e e 226

Error Messages While Preventing frame..........ccoecveiivesiesie et 227
PreSEntalion TAD..........coi et ns 228



EXTENAEA LA .....cveeeeece bbb 228

CONSITAINES T8I ...ttt bt et b e b et et e e e e ea e et et e s aesbesbenaesbeeaas 228

F X oi 0] 153 = o J SRR 229
010 L= = o USSR 230
LU= =] o L= SRRV URRURN 230
Procedures for defining DUSINESS FUIES .........oouiiiiiieee e e s 232
DefiniNg @ deriValiON TUIE.........ccoeie i e e ettt ae b e seesbe e 232
Deleting @ deriVation FUIE ..ot ettt b e bbb e e seesbe e 234
Defining a condition Validation FUIE............coeiiiiiiee et 234
Defining a coded values list Validation FULE .........co.oiiiieeceene et 234
DEfiNING 8 CONSLIAINT ......cveieieteite ettt sttt st st ae st ae e he st e s b sb e st e bese e e e e e e eresneebesnenrens 235
DefiNiNG @N BCHON FUIE ...ttt st b et et se et et s beebesaeseesbennen 236
Defining a presentation rule to select a non-default archetype for an attribute...........cocooeeeiieeeenene 237
Defining a presentation rule to add an image to a data object in a Javaapplication............ccccoeeunee. 238
Building rules expressions in the RUIE BUITAEY ...........ccocoiiiiiiiiiinee e 239
Generating DUSINESS FUIES FEPOMTS........eiuiiteie ettt bttt se e e e b seebe s be b e seaneas 239
BUSINESS RUIES REPOI i@l 00. ... .ceeueeerieetiriceie ettt ae e sbe e e 241

Printing data ODJECE FUIES.......cc.oiuiie et et et sae e b e 242

Printing atriDULE FUIES ..ot b e e e se e b e 242
UPdating DUSINESS FULES.......coueiiitieeie ettt ettt s bbb et st e e et e st ebeseeseesbennen 243
BUSINESS FUIE SYNEBX.....veveuveieeseiseeeeseeseeseseeseesestessessessessessessesseseesensessessessessessessessessessesseseeseesessessessessessensens 244
General guidelines for Writing ruleS EXPreSSIONS ........c.cvievireererereee e seeseeesesse e se e e sseseenees 244
Syntax for conditional EXPrESSIONS. ........ciiveerieeerreerre s see st e e se e ere e eresresresreseesrenaeseenees 245
Note about using isNull in conditional EXPrESSIONS..........ccvverierierierereeere e eeneens 245

Syntax for fOrMUIA EXPIESSIONS ........ccveeereeeeireeieresere e s et e s e e e e s e sresrestesreseesaeeensennesaenes 245
Syntax for defallt EXPIrESSIONS..........ccveeereeeeiree e s se e er e e ereereesessestesrenaeseenees 246
Syntax fOr ACtiON EXPrESSIONS........ccererererreerieeererseesese e s e seseesteteseesseseesseseeseesesseesessessessessessenseseenses 246
Note about uSiNg LIKE iN rUl€ EXPreSSIONS.......c.eiirierierieierieeeertesessestestesseseeseesseseessesessessessessessessens 246
Elements sUpported iN FUIE EXPIrESSIONS........cuivierererresieeesteeeseeseesesseesessessessessessessesseseessessessesessessens 247
Identifiers supported iN rUIE EXPIESSIONS........cccceevrrereirrieseseereeeeseeeeesre s seesressesrese e senaeseeneenennes 247
Reserved WOrdS in FUIE EXPIrESSIONS .......ccvireeisiereseeseestestesteseeseeseeseeseesessesssssessssessessessessessesseneens 247
Constants supported iN rUle EXPrESSIONS .......cc.evureerereeirererre e stesesee e seeseeaeseeeeeesessessessessessens 248

Tokens supported iN rUle EXPIESSIONS ......c..eriiereereeie ettt sttt et seereseerens 248

BNF fOr rUl€ EXPreSSION SYNEAX ....cc.cueiieeirieeirieeerieresiesesieseste et se et se s e se e sessesesbesessenesnesennas 250
CHAPTER 8 Building and Deploying Business ODjectS........ccccvvereeneeneneeseenieenn, 255
CEDEEE OVEIVIBIN ...ttt et b et e st e ae et e b e eb e e b e e besb e ee e b ene e eeeaeebeebesnesbesbereesbantas 256
Overview of business abject generation and deplOYMENL ...........ccoeriireriirire e 257
Setting deplOYMENE OPLIONS ......c.eiiriiiirie ettt b e et e e e se e b ebe e ebeeaesbesaesbesbeseesaeneas 257
=N 20 (< o] o)1= oL APPSR 257
Attribute-level security deployMENt..........ooo i e s 258

Files created during ObjECt GENEIaLION.........cccciviiiiiierie ettt e s see b e 259

Files created during 0bject COMPITELION........cc.eiiiiieieeceeee e e e 259



Compiler defaults and OptioN SEHINGS ........ooreeiirerie et 260

Additional filesfor deplOYMENE ..........oo it se e se e 261
Required Versata Logic SUIte JAR FIlES....c.oui e e 261
Optional external dependent classes OF JAR fil€S........ooo i 261

Deploying to IBM WebSphere Application SErVEr 4.0 ..o e e 262

Setting up deployed objectsin the Versata Logic Server CONSOIE.......ccouievueiierierieneeninieieseee e 263

Redepl0ying DUSINESS ODJECES ..o ettt e e e 264

Using menu options to build and compile buSINESS ODJECLS..........cccvverirererecree s 265

Saving changes to rebuilt QUErY OBJECES.......ccvivierieceree e e 266

Using the Versata Logic Server Deployment WiZard .........cccoeeeeererisieseseseeseeeseseeessesessessesseseenssssenenns 268

Deployment Wizard USEr INTEITACE ......c.ccovvirericie st 269
[D]= o 10)Y2001= 0 18(®] o) i0] 1Yo 1= oo 269
Choose VersataLogic Server for Deployment didlog........covevvvierenerererieereieeseseesesesese e 270
LTS 1= o o TF= oo R 272

Deploying business objects to a development environment Versata Logic SErVer .......coccvvvevvvreeneen 273

Hot deploy and dynamiC rel 0A0ING .........oivereerieieeieeeer ettt e eb e st se b sae e e e 275

Hot deploying to Versata's devel opment enViroNMENT ............oooeeererienene e 275

Dynamic reloading in Versata' s devel opment enVirONMENt............coeeerueeerereeierieniesese e seeeeseeeenes 276

Hot deploy and dynamic rel oading task refErenCe..........ooeveerriei e 276

TESHING traNSACHION TOGIC ....vetieeieeieee ettt ettt sttt b b b e e bt e e e b e e e bt sbesbesaesbeseeseeseeneas 279
Using Versata Logic Server Console rUle traCing.........coeruereeiererieeie et 279
Debugging BUSINESS ODJECE COUR........coueiuirieriirierteie sttt e b e s b e b e 279

Deploying business objects to a production eNVIFONMENT............ccoiririrerereeee e 281

Creating the . 8F Tl ... .o ettt b e s bbbt neen 281

DePlOyiNg the . 8F FIl@.......o it ettt s b e bbb e 282

Setting default deplOyMENt VBIUES..........cciiriieie ettt st sbe e een 283

CHAPTER 9 Understanding Business Object FileS........cccoocviieiviiesieenc e 285
(Ot pT=T0 1= G0V Y= R 286
Overview of VersataLogic Server BUSINESS ODJECES ........oviiiiriei e 287

BUSINESS ODJECE AEPIOYMENL. ..ottt bbb s se et eebe e b s nesaesbe b e 287

Business 0bject DaSIC @rChitECLUIE ...........coiiiiieiee e e et 288

Generated files for DUSINESS ODJECES. ........o it et 290

IMPLEMENTALTON FIIES ...t ettt et s be bbb e b e e e 291
Data object implementatiion fIlES....... ..o e s 291
Query object implementation fIlES...... ... e 298

Remote and home INtErfate filES..... ... 303
HOME INEEITACE FIlE ...t 303
REMOLE INEEITACE FIlE....eeie s 304

Deployment AESCITPLON FIlE ..ot se bbb e 305

REVIEWING TI18 PIrOPEITIES ...ttt ettt b e bbb et se et e e b e st st esb e besbenbeseeneens 306
Reviewing file properties from the ObjeCtStah .........ccvierireieiee e 306
Reviewing file properties from the FIleStab..........ccoco i 307

Xi



Modifying afile’ sread-only attribULE ............coe i e 307

WOrKing With @XTErNal FIIES..... ..ot et e e bbb sre e 308
AddiNg filESTO ATEPOSITONY ....cveeiieiieieeieee ettt sttt st se s bt see e e be e e e e ne et sbesaesbeseeees 308
Referencing an existing file in arepository (Add FileS) ... 308
Copying an existing file into arepository (Add File COPIES) ......cccceeriririne e 309
Creating anew file in @rePOSITONY ... s be e sne s 309
Removing a user-defined file from arepoSItOry ..........cooeriernene e 310
Adding files and packagesto the Classpath ... 310
REGISLENTNG OBJECES ...ttt ettt st sae b b sae e e e 311
Referencing regiStered ODJECES .......c..o ittt sae b e e seesbe e 312

L0 LS T gl = oo o = [ o] RO 313
Using an external Java CoOE EUITON ..........viviieierereeee e et see et e e se s e sresresreseenreeens 313
Using the Versata Code EItOr .........ccuciiieiiire et se e e e sre e sneseessenens 313
Viewing code in the Versata Code EAItOr .........cuiviirireierireerescese e e 314

S apT= T oo e = o] Fo ox (1 o RO 317

Tipsfor editing code in the Versata Code EditOr.........coveeveceeirere e 317
Opening the Versata Code Editor as asimple text editor...........coovvevvvereieereciecesese e 318

Printing code from the Versata Code EditOr .......cccovveiieeirenie e eee e 318

Types of filesthat can be edited in the Versata Code Editor ........ccccveveevcevvseninvcvcseeeseseeee, 318
CHAPTER 10 Extending Business Object COode..........cccceevreeiieiiiieiie e 321
CEDEEE OVEIVIBIN ...ttt et b et e st e ae et e b e eb e e b e e besb e ee e b ene e eeeaeebeebesnesbesbereesbantas 322
TYPES OF CUSLOM COUE........euiiiiiitiieerie sttt ettt ettt eb s b b e e et e e e e ea e et et ehe et e e ae bt sbesbesaesbeseee 323
Methods for instantiating BUSINESS ODJECES.......c.coiiiii e 326
FaCLOrY MELNOAS ... bbbt et a et s b sbe b sbesbe e 326
Example of acustom factory Method............cooieiiiiiiiiie e e 330

INSEANCE MELNOUS ...ttt b et b e s bbbt e b e e be b e e et et eneeneene 330
System-supplied iNStaNCE MELNOUS...........occoiiirii e 331
Examples of custom instance MEthOUS...........ccouiiir e 332

Server event-handling MOGE] ...........cviiri i re e sresreneesrenes 333
HOW event-handliNg WOPKS........c.cioviiiireie sttt e e sse e snesreseesneseenrenens 333

QIR 1SS0 == £ 334
Order of processing fOr COMMIL EVENES ......c.cceiereeerre et snesre e 334
Adding server event-handling COUE..........ccuriieririeeere et nae s 335
Event-handling COOE EXaMPIES........cc.eciieierie ettt st e e e e e e esesresresreseenseneens 335
Subclassing bUSINESS ODJECE ClaSSES.......cvcireeire ettt re e sresreneesaenes 339
Subclassing versata.VIS.DataOb]ECL .........ccuveiiiireie e ree et ese e resresaesaenes 339
Creating a DataObject subclass with specialized methods ..........ccveveveeeievie e 339
Applying a DataObject subclass to data ObJECES ......cc.vcveceveveerec e 340

Calling business object code from client appliCations...........coceviierirrieee e e e 341
Data @CCESS 1O FESUIT SELS ...vitiite ettt ettt sttt b e s ae b b e b e b e e et eae et s aeebesbesbesaeseesbennan 341

L@ o L= v o= o 1 1] oo FU TSSO 341

How an application qUENiES 8 dataDase..........couiirrreierireeree et eb e 342

Xii



Server data acCess DY SQL SITNG ...oveviiieie ettt s a e s sae e 346

Methods to get related data ObjECt FECOITS .........coueieieiree e e e e 347

REMOLE ODJECT BCCESS ...ttt b e e st e et e bt ettt e b e b e e s 348
Making methods remotely aCCeSSIDIE.........c.oiiii e 349
Integrating with custom applications and business ObJECtS.........cccovrieiineni e, 350
Accessing remote ObjeCtS fromM ClIENES ........coiiiriiee e e s 350
Creating rows VErsus Creating ODJECES ........couiiioiriii ettt s 351
Building business 0bject COIIECHIONS..........coiiiieeer s 352
RECOMPULING AEITVALIONS ... .ceeeeeecee ettt sttt se e e e e e e e re e b e snesresbeneeneeneees 354
Computing reSUItS WIithOUL SAVING ......ccuvieiiiie e ee et s se e e sse e snesre e saeneesseneens 355

= Y= U 0o LT 1= = o) RS 358
Setting up an email NOLIfICaION SYSEM...c.uiciie e 359

SQL EXPrESSION EVBIUBLON ......ccvevireiieeetisie e steseeese et ese e eesesseeressessesresseseese e seseesesseesensessessessessessesseseesessennees 364
S I o = 364
Parse tree Jata SEIUCTUNE.......cuivieeeeeeeeee ettt b nnas 365

0|1 S o =\ RSS 366
SOQLEVA CIBSS.....cviitieitictiecte ettt ettt ettt e ettt e bt eebe e et e sbe e sbesbeesbesabenbeere e beeaeesbesaeebeentesanes 367
QIS0 R ) = o= T RSS 367
MUItiplE @Val MELNOAS .....cceeeeceecece e et sn e eenee s 368
SOQLEVAl CONSLIUCLOT ....vecvivieiieiieite et cteieeseseeebesbe st e eeesbeeseesseensesteessesbeeseesaeesbesasenbestesntesseeneesans 368
SQLEVal.SetProperty MEhOG ........oieiiiiere et s e sre e snennens 368
Subclassing the SQLEVEl ClESS.......cciiiiiieieereeecse s st re et saeaenaeneens 369
Understanding SQL eXpression eValUalions..........cc.vveeverieieseseseseeseeieseesessesseesesessessessesseneeses 369
Run-time changes required to use the SQL eValUALO .........ccccveeereeeenisie e see e s 370
SQL expression evaluator EXAMPIES. .......cciviiieierireeereeeeie s s et e s esee e e eseese s e ssessessessenaesseneens 371
General SQL evaluator €XAMPIE........ccviieierieeeeeecse st se e e s et sae e aenens 371
Client-side filtering @XAMPIE .......ccovieiirere e e sre e saenens 371
Working with Versata LogiC Server SECUrity ProPErti€S.......cccvvvreierreeiesesiestesteseseeseeseeessessessesseseessensenes 375
Versata LogiC SErver SECUNLY APIS... ..o s st 375
Writing custom SECUrity apPliCaLIONS.........ciirieierereeerere et se e e s e sre e sre e e eeneeneenes 376
Working with JTS transaction ManageMeNt..........coeeere oot e b e e b e 377
Suppressing creation of abstract MEtNOAS. ..o e e 378
Handling Java quotes inside Versata L ogic Server COe SIINGS......covvereriereerieeeneeeeesesesie e e 379
CHAPTER 11 Working with Versata CONNECLOrS........ccccveeerieerieveesiecee e eee e 381
L@t pT=0 1= B0V Y= R 382
EXTENSIDIE DALA ACCESS (XD A) .ttt ettt a et b et b e e b b s ee e e et e e e st e aesae e bt sbeseeseeseeneas 383
Understanding Versata CONNECLOIS ......c.ueiuiruerueruerieeesieieeeeteeiessessesteseestesteseeseesbansesseneessesesssssessessesaensessessans 384
FgIS =g (K= ] T [ Oa g o< ot o] L= PP 384
Connector classes and MELNOGS ..ot e bbb e 385
REIFTEVE] PIrOCESSING ... ettt ettt ettt sttt e st b et aesbe st e s be st e be b e seese et e aeeaeebeebesbeeeesbesesbeneees 387

S VT o015 1o SRR 388

Xiii



Associating Connectors With data ODJECES .......co.eiiii i e e 389

Defining Connectors for data O] ECES..........uieiiiiiiee e e e 389
Setting up Connectorsin the Versata LogiC SErver CONSOIE.........oouierieirieeerireeese e 389
Creating CUSLOM Versata COMNECLOIS ........coureeireerierie et ste sttt seesee st et e e ese st sbesaeebesaesbesbenbesbe s e bense e saesaeseas 391
Adding a Versata Connector file t0 @rePOSITONY ........ciiueiierieieeeererte st 392
Writing code for a custom Versata CONNECTON ...........cuerireeeriererie et e e e e 393
Testing & CUSIOM V ErSata CONNECION .......ciueeireeuiereeeee ettt sttt se et see e e e e be st ebesaesbesaesbeseees 394
Packaging a cuStOm V ersatal CONMNECLON .........ccueivereeieeeierieeestesiesiesie st e e st se e e see e sse e e seesbesaeseeseeneans 395
APPENDIX A Transaction Logic EXamples..........ccooeviiiieiiicvic e 397
APPENAIX OVEIVIEW .....eneeeeeeeee ettt e e se et sse e e seesaetessesse st estesaesseseneesaensenenneeneesensesseeresseneeseenennennnnns 398
Calculation in parent, based 0N Child AaLa...........cooiiiiiiiie e e 399
Comparing values from SiDIiNG ODJECES ......cc.oiiiiiee e s s 399
Constraining updates based 0N Parent data............ccoeieeeeireieeeiee e e 400
NS T T I 0= 401
Retrieving data with auser-defined MEthOd ...........coverrieiiecs e 402
Overriding normal rule behavior with user-defined eVENtS.........cocveveece s 403
Using batch programs to trigger calendar-driven FUIES...........ooieeiiiiiene e 405
IND X e e e R e r e e n e ne e nnne e 407

Xiv



Preface

XV



PREFACE
VERSATA LOGIC SUITE DOCUMENTATION

Versata Logic Suite documentation

The Versata L ogic Suite documentation is electronically provided in . pdf and. hl p file
formats during installation of the system. Review the following sections for documentation
file descriptions, installation locations, and viewing instructions.

Versata Logic Suite Library

The Versata L ogic Suite Library consists of . pdf (portable document format) files, an .hlp
file, achmfile, and areadme.txt file. These files are automatically installed in the\ Hel p
subfolder of the default directory during installation.

The Versata Logic Suite Library (Li br ary. pdf ) isthe main page Provideslinksto al of the
. pdf manuals, hlpfile, chm file, readme, and full-text search of all of the . pdf manuals.

To launch Li brary. pdf after installing Versata Logic Suite and Acrobat Reader:

On the desktop, click the Start button - Programs - Versata Logic Suite 5.5
<edition_Name> - Versata Logic Suite Library.

Note: Each. pdf file should be viewed, searched, and printed using the 4.05 version of
Adobe® Acrobat® Reader with Search to ensure that the full-text search feature
functions correctly and that graphics display properly.

This software is available for installation from the main Versatainstallation screen, or
you may download it at www. adobe. com

Note: Thisversion of the Versata Logic Suite allows integration of transaction logic and
process logic in your business objects. The integration features and documentation for
those featuresis only available if you have purchased the Process Logic Add-On.

Versata Logic Suite Library PDF Manuals

Thefollowing . pdf files comprisethe Versata L ogic Suite Library:

n  Getting Started Guide (Get ti ngSt ar t ed. pdf ). Provides basic installation and
configuration steps for the Versata Logic Studio, Versata Logic Server, and other products
needed to run the Versata L ogic Suite.

m Tutorial (Tut ori al . pdf ). Steps you through features of the Versata L ogic Suite. It also
describes Javaand HTML sample applications and shows you how to create your own
Javaand HTML applications (with presentation design only).

= Architecture and Project Guide (Ar chi t ect ur e&Pr oj ect Qui de. pdf ). Introduces the
system architecture, project development process, and team devel opment functionality of
the Versata Logic Suite. This guide also contains a glossary of Versata L ogic Suite, Java™,
and database terms.

XVi



PREFACE
VERSATA LOGIC SUITE DOCUMENTATION

Business Object Developer Guide (Busi nessbj ect Devel oper Gui de. pdf ). Describes
how to use the Versata L ogic Studio to design a datamodel and transaction logic for
applications. Sections of this manual explain data object and query object definition,
business rules development, data model and transaction logic deployment, and rules
testing.

Application Developer Guide (Appl i cat i onDevel oper Gui de. pdf ). Describes how to
use the Versata L ogic Studio to create the user interface for applications (with presentation
design only). Sections of the manual explain HTML and Java application devel opment,
application deployment, application testing, and application delivery.

Administrator Guide (Adni ni st r at or Gui de. pdf ). Describes how to administer
deployed objects and define security in the Versata L ogic Server through the Versata L ogic
Server Console and server code.

Reference Guide (Ref er enceGui de. pdf ). Contains reference information, including the
Versata Logic Studio user interface help, ahigh-level summary of system classlibraries,
details about repository . xnmi and. dt d files, and a glossary of terms.

Migration Guide (M gr at i onGui de. pdf) . Provides guidelines for upgrading to release
5.5 of Versata Logic Suite from a previous version.

PDX Guide (PDXGui de. pdf ). Describes how to use the user interface devel opment
featuresincluded in PDX. These features have now been integrated into the core Versata
Logic Suite product.

Using PDX Frameless Archetypes (Usi ng PDX Framel ess Ar chet ypes. pdf).
Describes how to use the Frameless Archetypes feature included in PDX. This feature has
now been integrated into the core Versata Logic Suite product.

Versata Logic Suite User Interface Help

The Versata Logic Suite User Interface Help is provided in aMicrosoft HTML help file called
vst udi 0. chm Thishelp file provides context-sensitive help with detailed descriptions of
the frames and fields in the Versata Logic Studio.

To launch vst udi 0. chm

1.

Focus on awindow or frame in the Versata L ogic Studio and press F1 to launch a context-
sengitive help topic for that element.

OR

Choose Help - Versata Logic Suite Library in the Versata Logic Studio.

In the Versata Logic Suite Library, click the Versata User Interface Help link.
Click yes when prompted to open thefile.

XVil



PREFACE

VERSATA LOGIC SUITE DOCUMENTATION

XViii

OR

. Choose Start - Programs - Versata Logic Suite 5.5 <edition_name> - Versata Logic

Suite Library.
In the Versata Logic Suite Library, click the Versata User Interface Help link.

. Click yeswhen prompted to open thefile.

Versata Class Libraries Help

The Versata Class Libraries are provided in aWinHelp file called vst udi o. hl p. This. hl p
file describes al of the classes and methods included in the Versata L ogic Suite packages.

To launch vst udi o. hl p:
1. Focus on aclass name, method, or a string in the Code Editor in the Versata Logic Studio

and press F1 to launch a context-sensitive help for that element.
OR

. Choose Help - Versata Logic Suite Library in the Versata Logic Studio.

In the Versata Logic Suite Library, click the Versata Class Libraries Help link.

. Click yeswhen prompted to open thefile.

OR

. Choose Start - Programs - Versata Logic Suite 5.5 <edition_name> - Versata Class

Libraries Help.

\ersata Logic Suite Readme
Ther eadne. t xt file provides latebreaking release notes about the Versata Logic Suite.

Tolaunchr eadne. t xt :

= During installation of the Versata Logic Studio, click the Yes button when prompted to
view the readme.

m  Choose Start > Programs - Versatal ogic Suite 5.5 <edition_name> - Versatal ogic
Suite Readme.



PREFACE
VERSATA LOGIC SUITE DOCUMENTATION

Conventions for documentation and user interface help

The following conventions are used in the documentation to convey special meaning.

Code, such as folder names, file names, and example code snippets, is shown in Courier
New font, I i ke this.

Brackets, < > around part of afile name, or path, indicate that the information between the
brackets should be filled in as appropriate. For example, the default directory path

\ Ar chet ypes\ <appl i cati on_name>\ <r eposi t ory_nane> indicates that text
between the brackets depends on the name of the currently opened application and
repository. Note that these are different from the angle brackets that appear around tags and
macro code.

Toolbar menu options in procedures are shown in this format: On the desktop, click the
Start button > Programs - Versata Logic Suite 5.5 - Versata Logic Server Console. The
first option isthe top menu in the hierarchy. Succeeding options progress to submenus.

Menu commands and tab hames are shown with their full paths:
s Menus. From the File menu, choose New = Repository.

= Tabs. Thisoptionis set on the Properties: Attributestab of the Transaction Logic
Designer.

A Caution or Warning is important advice that you should read carefully.

The Versata User Interface help uses these additional conventions.

Click F1 while focusis on a dialog, window, menu, or toolbar in the Versata Logic Studio
to launch context-sensitive help.

Contents, Index, and Find tabs are provided on the left pane of the Help window when you
launch the Versata Logic Suite help file.

s Click the Contents tab to look in the table of contents. It lists the modules and main
sequences of the help.

= Click the Index tab to search the index.
» Click the Find tab to search the text of the entire help system.

Browse buttons (Back and Forward) are provided in the Help toolbar, and Previous and
Next hyperlinks are provided in the Help topics. Use these options to scroll through
sequences of related topics.

To print ahelp topic, click the Print button at the top of the Help window. To print an entire
book of help topics, select the book on the Contents tab and click the Print button.

XiX



PREFACE
VERSATA LOGIC SUITE DOCUMENTATION

XX

Additional documentation

IBM WebSphere™ Application Server documentation

For information about features specific to the IBM WebSphere™ Application Server, consult
the documentation at the following Web sites:

To access the IBM Documentation Center, visit the following Web site:

<as_r oot >\ web\ doc\ begi n_here\i ndex. ht m

For the latest corrections and additions to this information, consult the IBM WebSphere™
Application Server Web site. To view the latest Release Notes, visit the Library page of the
Web site: ht t p: // www. i bm coni sof t war e/ webser ver s/ appser v/

For instructions to help you enable debugging, tracing, logging, and monitoring to detect
and diagnose problems in both the IBM WebSphere™ Application Server and your own
programs, refer to the WebSphere™ online help and the FAQ at ht t p: / / www. i bm conl
sof t war e/ webser ver s/ appserv/library. htm

For information about the IBM HTTP Server, visit the following Web site:

http://ww. i bm com sof t war e/ webser ver s/

For more information on using and configuring DB2, visit the following site:

http://ww. software. i bm contf cgi - bi n/ db2ww/ | i br ary/ pubs. d2w/
r epor t #UDBPUBS

To correctly display the preceding documentation, you need Netscape Navigator 4.07 or
Microsoft Internet Explorer 4.01 or higher.



PREFACE
VERSATA LOGIC SUITE RESOURCES

Versata Logic Suite resources

The following resources are available to help you learn more about the Versata Logic Suite.

Sample database and sample applications

The Versata Logic Studio includes a sample database with examples of business requirements,
functions, and rules. Extensive sample applications are provided to illustrate features of the
HTML and Java applications generated by the Versata L ogic Suite (with presentation design
only). These sample applications include example code for you to use to implement complex
features more easily.

The samples and sample database are located in the Sanpl es directory where you install the
Versata Logic Suite. Thevsanpl es. hl p file, located in the Hel p directory, provides detailed
descriptions of the sample database, rules examples, and sample applications (with
presentation design only). In addition, the most recent description of each sample application
islocated inthe About _*. app. rt f filein each sample application folder in the Versata Logic
Studio Explorer.

To access the Versata Logic Suite sample applications (with presentation design only):
Launch the Versata Logic Studio.

Open sanpDBL1. xnl (the sample database) as your repository.

Expandthe i ent Appl i cati ons folder in the Versata Logic Studio Explorer.
Select a particular sample application and run it.

Review the About _*. app. rtf filein that sample application folder (Files tab) or choose
Help > Samplesto launch vsanpl es. hl p for information about that sample application.

A A

\ersata Web site

Browse the Versata Web site at www. ver sat a. com for the latest information about:
= Versata Logic Suite products, upgrades, and demos

s Sdes

= Employment opportunities

m  Training

= Professional Services

XXi



PREFACE
VERSATA LOGIC SUITE RESOURCES

Versata Knowledge Base

The Versata Knowledge Base is avail able to help with your technical questions about the
Versata Logic Suite. You can search through our growing library of technical articles or
participate in our online Developer Discussions forum.

To access the Versata Knowledge Base:

1. Visit the Versata Web site at http://www.versata.com.
2. Click the Training and Support tab, then select Versata Knowledge Base.

Versata Developer Discussions

Access Versata Devel oper Discussions on the Versata Web site. Sign up to view the postings
and subscribe to the mailing list to receive the latest news about the Versata Logic Suite
automatically. These technical discussions provide aforum for customers, partners,
distributors, and Versatainternal employees to post technical and general questions,
suggestions, and solutions about devel opment, run-time, and production features of the
Versata Logic Suite.

To access the Versata Knowledge Base:

1. Visit the Versata Web site at http://www.versata.com.
2. Click the Training and Support tab and select Devel oper Discussion.

Versata Customer Support

You may use any of the following methods to contact Versata Customer Support.

= Internet. At the Versata website (wwwv. ver sat a. con), click on the Training and Support
tab to find information about Versata Customer Support.

= Phone. 510.238.4100. Between 7:00am and 5:30pm, Pacific Time, Monday-Friday
s E-mail.

»  For softwareissues. techsupport @ersata. com

»  For documentation issues. docs @er sat a. com

XXii



PREFACE
TECHNICAL SUPPORT FOR IBM WEBSPHERE APPLICATION SERVER

Technical support for IBM WebSphere Application

Server

If you experience a problem that is specifically related to the IBM WebSphere™ Application

Server, cal:

= Your IBM systemsintegration consultant, if your implementation is being assisted by IBM
Global Services

= |BM Software Service Support: 1-800-237-5511

To learn more about IBM Software Support, see the IBM support page at:
http://ww. i bm com Support

You can also e-mail IBM directly with your suggestions and requirements for future releases.
Report noncritical defects that do not require a personal interaction or formal support to:

WASTEAM@JS. | BM COM.

XXiil



PREFACE
TECHNICAL SUPPORT FOR IBM WEBSPHERE APPLICATION SERVER

XXiV



|ntroduction

25



INTRODUCTION

OVERVIEW

Overview

26

This guide explains how you can use the Versata Logic Suite to devel op business objects that
execute transaction logic for run-time Java and HTML enterprise applications. Versata L ogic
Suite business objects run on Versata L ogic Server integrated with a J2EE application server.
Business objects’ transaction logic can be used with application user interfaces created in the
Versata Logic Studio or in a JSP development environment.

This guide walks you through the steps needed to create a Versata repository data model that
maps to an external data source, and to define business rules on data model objects that
implement transaction logic on the Versata Logic Server. Tasks covered include how to
reengineer from and deploy to externa data sources, how to modify data object, attribute, and
relationship characteristics in the Versata L ogic Studio, how to create and modify query
objects, the non-persistent data sources used for display purposes in applications, how to
define different types of business rules to execute transaction logic, how to build and compile
business rule input into deployabl e files, how to package and deploy business object filesto a
Versata Logic Server and J2EE application server, how to extend transaction logic with
custom code, and how to implement data source connectivity for objects on Versata Logic
Server.



INTRODUCTION
PREREQUISITES

Prerequisites

Before you begin designing transaction logic in the Versata L ogic Studio, you should have a
good understanding of the following:

= The business requirements for application data. To determine requirements for an
application, you need to define the processes to be automated and the data to be stored.
Process automation and data storage both affect the business object model and the
transaction logic that you need to define in the Versata repository. You need to define the
requirements to enforce for processes and data. You can do this through a variety of
methods, including use case diagrams and context diagrams.

= Thelogical datamodel to be used for repository business abjects. You can use standard
logic data modeling (LDM) methods to produce alogical business object model. A logical
model represents the overall logical structure of the data to be stored, independent of any
software or data storage structure. A logical model givesaformal representation of the data
needed to run an enterprise or a business activity. Versata does not restrict the tools you can
use to produce this logical model. Note that Versata offers a separate product that provides
integration with Rational Rose.

» The physical database(s) against which enterprise applications will run. You then can
determine the best way to produce this model in a Versata repository.

= System requirements for the project devel opment environment and production
environment, including the J2EE application server setup.

You may want to review the Architecture and Project Guide and the Reference Guide to get an
overview of how the Versata L ogic Suite works. The Architecture and Project Guide provides
an introduction to devel oping transaction logic and applicationsin the Versata L ogic Studio,
including how to manage projects and facilitate team development. The Reference Guide
contains details about the Versata L ogic Studio development environment and the .xnl and
.dt d files used to store Versata repository source information. This guide also includes a
glossary of terms and other general reference information.

If you plan to extend business object transaction logic code, you require knowledge of Java
programming concepts, EJB architecture, and J2EE specification requirements. The depth of
knowledge required depends on the complexity of the custom code. Also, you should
understand the class libraries provided with the Versata L ogic Suite. Details about these classes
and their methods are available in the Javadoc API help installed with the product.

27



INTRODUCTION

HOw TO USE THIS GUIDE

How to use this guide

28

This guide includes the following information.

The Preface describes the documentation accompanying the Versata Logic Suite and points
to additional resources, such as the sample database and applications included in the
sample repository, SampDB1.xml, that gets installed with the product.

This chapter outlines the purpose, prerequisites and contents of this guide.

Chapters 2-5 explain how to produce a data model in a Versata repository and modify it in
the Versata Logic Studio. This model represents physically stored data accessed by
applications and governed by transaction logic.

Chapter 2, “Developing aDataModel” on page 31, provides guidelines for data model
objects and attributes, including naming conventions and data type mappings. This
chapter describes the alternate methods for creating a repository data model, explains
how to validate a data model, discusses the use of groups to divide data model objects
into manageabl e subsets, and explains the use of attribute templates to provide data
object inheritance.

Chapter 3, “Working with Data Objects’ on page 81, provides instructions for creating
and modifying data objects in the Versata L ogic Studio. Topics covered include coded
values lists, attribute persistence, data type, and other properties, relationships, and
indexes.

Chapter 4, “Deploying Data Models’ on page 121, explains how to use the Server
Manager wizard to deploy Versata Logic Studio data model definitions to supported
RDBMSs.

Chapter 5, “Working with Query Objects’ on page 145, discusses how and why to use
query objects, special reusable presentation objects, to display datain applications.

Chapters 6-11 and Appendix A discuss how to define rules on business objectsto
implement transaction logic, and describe business object files' contents and how to
extend them.

Chapter 6, “Understanding Transaction Logic” on page 183, provides an overview of
the declarative business rules used to implement transaction logic on Versata Logic
Server. This chapter includes an outline of transaction logic processing, descriptions of
the different types of rules, and adiscussion of how to translate requirementsinto rules.

Chapter 7, “Defining Business Rules” on page 211, provides guidelines for defining
business rules, outlines the Versata L ogic Studio business rule definition process,
describes the Transaction Logic Designer, providesinstructions for defining specific
types of rules, and details rule expression syntax.



INTRODUCTION
HOW TO USE THIS GUIDE

Chapter 8, “Building and Deploying Business Objects’ on page 255, explains how to
build and compile Java classes or EJBs for business objects, and how to package these
filesin a J2EE enterprise application (EAR). This chapter describes how to use the
available wizard to package these files and deploy them to a development Versata
Logic Server running on IBM WebSphere Application Server Single Server Edition,
and how to copy files and run a batch file to set them up on a production Versata L ogic
Server running on |IBM WebSphere Application Server Advanced Edition.

Chapter 9, “Understanding Business Object Files’ on page 285, outlines the contents of
the filesthat Versata L ogic Studio generates for business objects, explains how to make
external files available in a Versata repository, and describes the tools available to
review and modify file properties and code.

Chapter 10, “Extending Business Object Code” on page 321, discusses extensionsto
business object code. This chapter describes key generated code, including object
instantiation code, event-handling code, SQL expression evaluation code, security
management code, and remote object access code. This chapter provides procedures
and examples for some common code extensions, including custom event-handling and
subclassing.

Chapter 11, “Working with Versata Connectors’ on page 381, describes Versata Logic
Suite’'s eXtensible Data Access (XDA) structure and the Versata Connectors used for
business objects’ database connectivity.

Appendix A, “Transaction Logic Examples’ on page 397, provides examples of
different business requirements and illustrates how they can be enforced through
Versata Logic Suite business rules.

29



INTRODUCTION
How TO USE THIS GUIDE

30



Developing a Data Modd

31



DEVELOPING A DATA MODEL

CHAPTER OVERVIEW

Chapter overview

32

Read this chapter to understand how to complete tasks to create and modify your datamodel in
the Versata L ogic Studio. This chapter discusses the data model components stored in a
Versata repository, outlines basic reference information to consider before you begin data
modeling, and provides instructions for the different methods for creating a data model. After
reading this chapter, you should be able to use the Versata L ogic Studio to develop a data
model for the data to be displayed and modified in your applications.

This chapter includes the following:

“Data model overview” on page 33, introduces the basic structure and contents of a
Versata data model.

“Datamodel reference information” on page 36, provides some basic rulesto follow as
you are developing a data model in a Versata repository, including the following:

s “Datamodel design guidelines’ on page 36

= “Denormalizing for performance” on page 37

= “Naming conventions for data objects and attributes’ on page 38

= “Datatype mapping between the Versata Logic Suite and RDBMSs’ on page 40
= “Sequential numbering in the Versata Logic Suite”’ on page 53

“Building adata model” on page 56, provides instructions for creating a datamodel in a
Versata repository, including the use of the Repository Exchange Manager and
Reengineering Manager. This section also describes the file structure for Versata
repositories.

“Working with groups’ on page 68, describes how to create and use groups to subdivide
the objects in your data model.

“Working with attribute templates’ on page 73, describes how to create abstract attributes
at the repository level and use them to implement attribute inheritance in repository data
objects.

Note: For information about adding and modifying data objects in a data model, see

“Working with Data Objects’ on page 81.

For information about adding and modifying query objectsin a data model, see
“Working with Query Objects’ on page 145.



DEVELOPING A DATA MODEL
DATA MODEL OVERVIEW

Data model overview

A data model provides alogical representation of the way datais organized in a physical data
source, illustrating the structure of the data and the rel ationships among the data. The data
model isthe basic building block for development. A data model must be present in a
repository in order for you to define transaction logic (business rules) and design application
user interfaces in the Versata Logic Studio.

Data models versus repositories

Data models are stored in repositories. Because each repository can contain only one data
model, the terms data model and repository sometimes are used interchangeably and may get
confused. Keep in mind that the repository is really more than the data model. Initially, a
repository holdsjust the datamodel. Then, asyou define transaction logic and, if you are using
the Versata Logic Studio for presentation design, build the application user interface, these
objects are added to the repository. The repository thus becomes a container for metadata about
all of the application components that are defined in Versata Logic Studio.

Repository metadatais stored in. xmi files. Each repository hasitsown . xm file. Each first-
level repository object also hasitsown . xn file. First-level repository objects are data
objects, relationships, query objects, applications, and forms. Of these, data objects,

rel ationships, and query objects are considered part of the data model. The attributes for each
data object also are part of the data model. Attributeinformation is stored in each data object’s
. xm file. For more information about Versata Logic Suite. xn files, see the Reference
Guide.

You have the option of creating groups to contain the objects within your data model. Each
group serves as alogical container for repository objects and their filesin the Versata Logic
Studio and as a physical container for object files on the filesystem. Your repository folder
includes a subfolder for each group you create, and object files are stored within these group
subfolders. The creation of groups eases work with large repositories. Groups usually
correspond to functional areas or types of objects.

Object definitions

Following are some definitions of the objects in the data model:

= Dataobject. A representation of an object stored in aphysical data source. Every data
object usually mapsto onerelational table, but it may also represent an object from another
type of data source, such as a packaged or legacy application. In the Versata Logic Studio,
you view and modify data objects in the Transaction Logic Designer. You can define new
data objects with the New Data Object wizard, accessed through the right-click sub-menu.

33



DEVELOPING A DATA MODEL
DATA MODEL OVERVIEW

34

m Attribute. A characteristic of aphysically stored data object, with defined values for
different instances of the object. For objects stored in relational databases, each attribute
maps to a column. The values for an attribute must be of a particular datatype. In the
Versata Logic Studio, you define, view, and modify attributes on the Attributes tab of the
Transaction Logic Designer.

= Relationship. An association between two data objects based on matching values for an
attribute that isincluded in both data objects. In the Versata L ogic Studio, you define, view,
and modify relationships on the Relationships tab of the Transaction Logic Designer.

=»  Query object. An object based on a SQL query that selects attributes from one data object
or multiple related data objects. Serves as a reusable presentation object in applications,
useful for limiting or grouping data displayed on forms. Query objects are not physically
stored. In the Versata Logic Studio, you view and modify query objects in the Query
Object Designer. You can define new query objects with the New Query Object wizard.

Data objects, including their attributes and relationships, are physically stored. To run
applications from a Versata repository, data objects from that repository must be deployed to
one or more physical data sources and connectivity must be established to these data sources.
The Deployment Manager automates deployment for relational databases (including
Microsoft SQL Server, Sybase, Oracle, Informix, and DB2 Universal Database). For
information, see “Deploying a data model to a database server” on page 126. For these
relational databases, the Versata L ogic Suite also includes Versata Connectors that provide
connectivity with applications. For other types of data sources, you need to manually manage
data model deployment, and you need to write custom Connectors to provide connectivity. For
information, see “Working with Versata Connectors’ on page 381. Because query objects are
not physically stored, they are not deployed to a database server. Query objects are a different
class of objects than data objects, so information about working with them isin a separate
chapter.

Both data obj ects and query objects are considered business objects. As such, they are exposed
as distinct objectsin the Versata L ogic Studio Explorer. Transaction logic is defined on data
objects. To run Versata L ogic Studio-generated applications, you must build and compile
business objects, then deploy them to the Versata L ogic Server and the IBM WebSphere
Application Server. The Versata Logic Studio automates these processes.

During the build and compile process, the Versata Logic Studio createsvarious . j ava filesfor
each data object and each query object. Thefiles for each data object include transaction logic
execution code to implement rules defined on that data object. The implementation files for
each data object and query object include those required to create Enterprise JavaBeans (EJB)
for each one. Each data object can be built into an entity Bean, while each query object can be
built into a session Bean. You set deployment propertiesin the Transaction Logic Designer
and Query Object Designer to indicate whether to implement objects as Beans or simply as
Java classes. During the deployment process, business object files are copied to locations
accessible to the Versata Logic Server and accessible to IBM WebSphere Application Server.
For more information about the files created when you build, compile, and deploy business
objects, see “Building and Deploying Business Objects’ on page 255.



DEVELOPING A DATA MODEL
DATA MODEL OVERVIEW

Note: This chapter includes information about all RDBM Ss supported by the Versata Logic
Suite. Every release of the Versata Logic Suite may not support every RDBMS

discussed in this chapter. For information about the RDBM Ss supported by thisrelease,
see the Getting Sarted Guide.

35



DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION

Data model reference information

36

Review this section before you begin working on your Versata data model.

Data model design guidelines

When you build or modify a data model for use with the Versata L ogic Suite, observe the
standard guidelines for your environment and modeling tools. Before you begin work with
your data model, work on defining your business requirements. For information about
defining business requirements, see “Analyzing business requirements’ on page 206. For
information about the Versata Logic Suite devel opment process, see the Architecture and
Project Guide.

Data model design in the Versata Logic Suiteisiterative. You can refine the data model as
needed as you define business rules and application user interfaces, and discover additional
requirements. When you modify the data model, you simply need to redeploy to the database
server to implement changes. In most cases, you can use the Deployment Manager to automate
this task.

You need to consider Versata Logic Suite-specific characteristics, because the data model
serves as the starting point for transaction logic and applications.You must consider the
attributes required to build business rules. Also, you must consider the datato be displayed on
application forms or pages. The Versata Logic Studio provides techniques for you to refine
your data model as needed for transactino logic and data display without changing the
physically stored data. You can define virtual attributes, attributesthat are calculated for usein
transaction logic but not physically stored. You can create query objects, data sources that are
instantiated as needed for data display rather than physically stored.

Thefollowing are additional issues to consider:

= You may need to define multiple query objectsin your data model. Most applications use
query objects as data sources instead of data objects. Query objects are generally more
effective because they exclude unnecessary data attributes and include join data. Use the
New Query Object wizard to define new query objects. Use the Query Object Designer to
modify existing query objects. Define as many query objects as possible at the beginning
of your development process, adding more after you prototype your application user
interface and clarify which data to display on forms or pages. You can define query objects
at any stage in the development process, and you can replace data objects with the new
guery objects at any time. For information about query objects, see page 145.



DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION

= You can use coded values lists to validate user selections of attribute values rather than
picks or other referential integrity methods. Coded values lists are preferred over
referential integrity rules when the number of valuesis small and the values do not change
often. Define coded values lists early so that they appear in your prototype applications.
You can add coded values list values at any point in development — you will not need to
edit or recompile applications. For more information, refer to page 95.

Note that data values for a data object used as a coded values list are not stored in the data
object’'s. xm file butina. csv file of the same name.

= Give careful consideration to how you denormalize your data model. In many cases
denormalization may simplify rule definition and improve application performance. For
information, see “ Denormalizing for performance”’ on page 37. The Versata L ogic Suite
provides virtual attributes so you can create attributes that are used for rule processing but
not stored in the database. For information, see page 104.

= Usejunction data objectsto implement many-to-many relationships. For moreinformation,
see “Many-to-many relationships’ on page 108.

= Implement type hierarchiesin Store with Super data objects. For more information, see
“Type hierarchies’ on page 108.

»  Observe the Versata L ogic Suite naming conventions. Avoid the use of server-reserved
words; for example, do not name adataobject Sort or Or der . Use singular names for data
objects. Avoid the use of non-standard characters, such as embedded spaces, that require
quoted identifiers. The Versata L ogic Suite supports quoted identifiers, but they often are
not supported in basic interactive query tools. It also is useful to set your own conventions
in naming objects. For example, you might assign prefixes for coded values lists and query
objects.

= Give careful consideration to attributes’ datatypes. In some cases, you may be able to
achieve performance improvements by modifying data types. For example, amemo
attribute may require multiple SQL statements for an insert, but if you redefine that
attribute to be text, variable length, only one statement is required.

Denormalizing for performance

Denormalization is often an issue when declaring business rules. In the Versata Logic Studio,
we generally recommend that you denormalize dataif it improves the performance of your
applications. For example, you might make a data object that duplicates customer names and
current balances if obtaining that information from the normalized data objectsis particularly
slow.

37



DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION

38

Another example of when to denormalize is when you need to assure that a customer’s
account balance does not exceed the credit limit. In afully normalized database, the
application would issue aggregate queries to sum each of the order items and orders. This
guerying would reduce performance noticeably, so the classical response is to calculate and
store customer balance as a stored attribute and update it when orders are updated. In hand-
coded systems, the trade-off for denormalizing has been arisk to database integrity—since the
adjustment logic must be placed in multiple transactions—and disk space. In the VersatalL ogic
Suite, such performance denormalizations are maintained with guaranteed integrity, and disk
spaceisrarely anissue.

Note that performance-oriented denormalizations are in sharp contrast to structural
denormalizations. Structural denormalizations are usually database design errorsthat result in
hiding the proper number of data objects. The two most common errors are repeating fields
and collapsing parent data in child rows. The denormalizations that we recommend are those
that improve the performance of transaction logic execution, such as using a parent replicate
derivation rule rather than ajoin.

Use the same procedures to denormalize the data that you would use in other devel opment
environments. The Versata Logic Suite maintains referential integrity for the denormalized
data, so the only real cost of denormalization is disk space.

The Versata L ogic Studio allows you to define derived attributes as virtual, meaning their
values are calculated as necessary to provide values for rules, but they are not physically
stored. This feature provides you with another option if you want to avoid denormalizing. For
more information, see “Virtual attributes’ on page 104.

Naming conventions for data objects and attributes

Naming conventions vary among data modeling tools. The following points explain how the
Versata Logic Suite addresses names and recommends conventions for data models. We also
recommend that you run the data model validation utility to check the data object and attribute
names in your data model.

Note: Every release of Versata Logic Suite may not support every RDBMS discussed in this
section. For information about the RDBM Ss supported by this release, see the Getting
Sarted Guide.

General naming conventions

= TheVersataL ogic Suite does not support data object names shorter than 4 charactersif you
intend to deploy the data object to the database server using Versata Studio.

= Data object names cannot begin with an underscore character.



DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION

Data object names should not end with the text “Base”. This ending would cause the
object’s implementation file name to look like a base implementation file, resulting in
confusion.

The Versata Logic Suite does not support attribute names longer than 31 characters.

Spaces and underscores are the only special characters supported in data object or attribute
names. If you use spacesin names, deploy the datamodel using quoted identifiers, and note
that many tools do not support quoted identifiers.

Use singular nouns for data objects (for example, EMPLOY EE rather than EMPLOY EES).
They make better default captionsin your applications.

Each business object is defined in the interface files <Obj ect _nane>. j ava and
<Obj ect _NaneHone>. j ava, and isimplemented in the classfile
<Cbj ect _Nanel npl >. j ava. Naming of custom object files follows the same pattern.

By default, the attribute name is used for the attribute control caption on aform. You can
define more meaningful captions (or captions with special characters) in the Transaction
Logic Designer to override the default.

Avoid using SQL reserved words (such as Or der and Dat e) for data object and attribute
names. Note that you are not prevented for using these types of reserved words for names.
However, these errors are found when the data model is validated.

For junction data objects (also known as "intersection” data objects), we recommend
names that combine the names of the primary data objects. For example, you could use the
name EMPLOY EESKILL for the junction data object linking EMPLOY EE and SKILL
data objects.

The Versata Logic Studio allows you create a data object with the same name as a user-
defined Javafile in the repository. In this case, if the data object is enabled for remote
access, duplicate . j ava files exist. To avoid this duplication, do not give a data object a
name that matches arepository Javafile.

Informix naming conventions

The Versata Logic Studio uses the first 13 characters of a data object name for code
generation. To avoid package name duplication errors, make sure that the first 13
characters of your data object nhames are unique.

The Versata Logic Studio uses the first 13 characters of an attribute name for code
generation. To avoid duplication of variable namesin packages when attributes are used in
business rules (key and derived attributes), make sure that the first 13 characters of your
attribute names are unique.

Data object names and attribute names should not be longer than 18 characters.

39



DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION

40

Oracle, Sybase, and Microsoft SQL Server naming conventions

» The VersataLogic Studio uses the first 17 characters of a data object name for code
generation. To avoid package name duplication errors, make sure that the first 17
characters of your data object names are unique.

= The Versata Logic Studio uses the first 17 characters of an attribute name for code
generation. To avoid duplication of variable namesin packages when attributes are used in
business rules (key and derived attributes), make sure that the first 17 characters of your
attribute names are unique.

» Dataobject names and attribute names should not be longer than 30 characters for Sybase
or Microsoft SQL Server, and should not be longer than 29 characters for Oracle.

Data type mapping between the Veersata Logic Suite and
RDBMSs

When you reengineer an RDBM S database into a Versata L ogic Suite repository, the data
types of the native RDBM Ss are mapped automatically to Versata Logic Suite data types.

When you use the Deployment Manager to deploy a Versata L ogic Suite data model to a
database server, the Versata L ogic Suite data types are mapped automatically to the database
server’s native data types native to the database server.

For attributes that were reengineered from an RDBM S database, the Versata L ogic Suite saves
the original datatypein the repository. If you do not change the attribute’s data type, the saved
data type is deployed back to the database server. If an attribute was changed after
reengineering, was created in the Versata L ogic Studio, or is being deployed to a different type
of database server than the one from which it was reengineered, Versata uses the default data
type from the mapping table for deployment.

Data type mappings are global in arepository and cannot be controlled on a per-object, per-
attribute basis. Conversion of data types during reengineering is determined by the
requirements of each RDBM S and cannot be modified.

For each Versata L ogic Suite data type, there is a default attribute archetype used for
applications designed in the Versata L ogic Studio. Thisdefault is used to construct attributesin
scalar displays. If you want to build a scalar display with non-default attribute archetypes, you
can override the default archetype in the Transaction Logic Designer.



DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION

Note: Determine the correct data type for attributes that are keys early in your devel opment

process. You may not be able to change the data type of akey in the Versata L ogic
Studio. If you need to change the data type for an attribute that is a key, you need to
drop the key, change the data type, then recreate the key and itsindex. You also need to
review any relationships involving that key and any rules dependent on those

rel ationships, and recreate them if necessary. For instructions for changing data types,
see “ Changing an attribute's data type” on page 103.

Every release of the Versata L ogic Suite may not support every RDBMS discussed in
this section. For information about the RDBM Ss supported by this release, see the
Getting Sarted Guide.

Some of the data types listed in the following mappings tables include termsin
parentheses after the name of the type. For numerical data types, the first termin the
parentheses represents the precision of the data type (the total number of digits it
contains). The second term represents the scale of the datatype (the number of decimal
placesit contains). For non-numerical datatypes, the term in parentheses represents the
number of characters allowed for an attribute value of that datatype. Also, thetermpin
parentheses represents the precision. The term (s) represents the scale of the data type.

Oracle and Versata Logic Suite data type mappings

The following mappings are used when you reengineer an Oracle database to a repository and
when you deploy a Versata Logic Suite data model to an Oracle database.

Note: CLOB support is provided for Oracle 8, with the following guidelines: Read is fully
supported for all CLOB attributes. Pre-populated CL OB attributes all ow text updates of
unlimited size. CLOB attributes that were not previously populated or that are being
inserted as new records have a maximum text size of 4kb.

Reengineering from Oracle to the Versata Logic Suite

Original data types
in Oracle RDBMS

Reengineered data types
in Versata Logic Suite repository

Char (1-255)
VarChar (1-255)
VarChar2 (1-255)
NChar (1-255)
NVarChar2 (1-255)

Text

41



DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION

42

Original data types
in Oracle RDBMS

Reengineered data types
in Versata Logic Suite repository

Char (256-2000)
VarChar (256-4000)
VarChar2 (256-4000)
NChar (256-2000)
NVarChar2 (256-2000)
Long

CLOB

NCLOB

Memo

Number (1-2,0)

Number, Size=Byte

Number (3-4, 0)

Number, Size=Integer

Number (5-9,0)

Number, Size=L ong Integer

Float (63-126)
Number (1-38,5-126)

Number, Size=Double

Float (0-62)

Number, Size=Single

Number (where no other mapping applies)

Number, Size=Decimal (p,s)

Date

Date/Time

Number (15,4)

Currency

Raw (1-255)
LongRaw
BLOB

BFile

Other unmapped

LongBinary




DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION

Deploying from the Versata Logic Suite to Oracle

The following table lists default data type mappings for deployments to Oracle. Mappings
apply to attributes with data types that were not reengineered.

Data types in
Versata Logic Suite repository

Data types as deployed to Oracle

Text VarChar2
Memo VarChar2 (1500)
Number, Size=Byte Number (3,0)
Number, Size=Integer Number (10,0)

Number, Size=L ong Integer

Number (10,0)

Number, Size=Double Float (126)
Number, Size=Single Float (63)
Number, Size=Decimal (p,s) Number (p,s)
Date/Time Date

Yes/No Number (3,0)
Currency Number (15,4)
LongBinary LongRaw
AutoNumber Number (10,0)

Note: Decimal calculation errors may occur when alarge valueis entered for a column of data
type Single in arepository deployed to Oracle.

Microsoft SQL Server and Versata Logic Suite data type mappings

The following mappings are used when you reengineer a Microsoft SQL Server database to a
repository and when you deploy a Versata L ogic Suite data model to a Microsoft SQL Server

database.

Note: Asof release 7.0, Microsoft SQL Server provides support for large character fields, up
to amaximum length of 4000. Versata L ogic Suite does not enforce its size
requirements, so devel opers have responsibility for providing the data type sizesto
meet these requirements. If errors occur during reengineering or deployment,

developers need to fix them.

43



DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION

44

Original data types
in Microsoft SQL Server RDBMS

Reengineering from Microsoft SQL Server to the Versata Logic Suite

Reengineered data types
in Versata Logic Suite repository

Char (1-255)

VarChar for SQL Server 6.5 and earlier (1-255)
VarChar for SQL Server 7.0 and later (1-4000)
NChar (1-255)

NVarChar (1-255)

Text

Char (256-8000)

VarChar (256-8000)
NChar (256-8000)
NVarChar (256-8000) Text
NText

Memo

TinylInt

Number, Size=Byte

Smalllnt

Number, Size=Integer

Int

Number, Size=Long Integer

Numeric
Decimal
Float (0-126)

Number, Size=Double

Red (0-62)

Number, Size=Single

Decimal or Numeric (where no other mapping
applies)

Number, Size= Decimal (p,s)

DateTime Date/Time
SmallDateTime

TimeStamp

Bit Yes/No
Money Currency
SmallMoney

Binary (30-8000) LongBinary

VarBinary (30-8000)
Image
Other unmapped




DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION

Deploying from the Versata Logic Suite to Microsoft SQL Server

Thefollowing table lists default data type mappings for deploymentsto Microsoft SQL Server.
Mappings apply to attributes with data types that were not reengineered.

Data types in Versata Logic Suite
repository

Data types as deployed to Microsoft SQL
Server

Text VarChar
Memo Text
Number, Size=Byte TinyInt
Number, Size=Integer Smalint
Number, Size=L ong Integer Int
Number, Size=Double Float
Number, Size=Single Real
Number, Size=Decimal (p,s) Numeric (p,s)
Date/Time DateTime
Yes/No Bit
Currency Money
LongBinary Image
AutoNumber Int

45



DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION

Sybase and Versata Logic Suite data type mappings

The following mappings are used when you reengineer a Sybase database to a data model/
repository and when you deploy a Versata L ogic Suite data model to a Sybase database.

Reengineering from Sybase to the Versata Logic Suite

Original data types
in Sybase RDBMS

Reengineered data types
in Versata Logic Suite repository

46

Char (1-255) Text

VarChar (1-255)

VarChar2 (1-255)

Text Memo

TinylInt Number, Size=Byte
Smallint Number, Size=Integer
Int Number, Size=Long Integer
Numeric Number, Size=Double
Decimal

Float (0-126)

Real (0-62) Number, Size=Single

Decimal or Numeric (where no other mapping
applies)

Number, Size=Decimal (p,s)

DateTime Date/Time
SmallDateTime

TimeStamp

Bit Yes/No
Money Currency
SmallMoney

Binary (30-255) LongBinary

VarBinary (30-255)
Image
Other unmapped




DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION

Deploying from the Versata Logic Suite to Sybase

The following table lists default data type mappings for deployments to Sybase. Mappings
apply to attributes with data types that were not reengineered.

Data types in
Versata Logic Suite repository

Data types as deployed to Sybase

Text VarChar
Memo Text

Number, Size=Byte Smallint(5,0)
Number, Size=Integer Smallint
Number, Size=L ong Integer Int

Number, Size=Double Float
Number, Size=Single Red
Number, Size=Decimal (p,s) Numeric (p,s)
Date/Time DateTime
Yes/No Bit

Currency Money
LongBinary Image
AutoNumber Number (10,0)

Informix and Versata Logic Suite data type mappings

The following mappings are used when you reengineer an Informix database to a repository
and when you deploy a Versata L ogic Suite data model to an Informix database.

47



DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION

Reengineering from Informix to the Versata Logic Suite

Original data types
in Informix RDBMS

Reengineered data types
in Versata Logic Suite repository

Char (1-255)

Character (1-255)
VarChar (0-255)
Character Varying (0-255)
NChar (1-255)

NVarChar (1-255)
Interval (50)

Text

Char (256+)

Character (256+)
VarChar (256+)
Character Varying (256+)
NChar (256+)

NVarChar (256+)

Text

Memo

Number (1-2,0)

Number, Size=Byte

Smallint Number, Size=Integer

Int Number, Size=Long Integer
Integer

Serial

Dec Number, Size=Double
Decimal

Numeric

Double Precision

Float

Red Number, Size=Single
SmallFloat

Date Date/Time, SubType=Date and Time
DateTime

Money Currency

Byte LongBinary

48



DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION

Deploying from the Versata Logic Suite to Informix

The following table lists default data type mappings for deployments to Informix. Mappings
apply to attributes with data types that were not reengineered.

Note: Indexed attributes that you plan to deploy to an Informix database must have a length
(size) of lessthan 255. You cannot deploy to Informix if any attributes have indexed

attributes greater than or equal to 255.

Data types in
Versata Logic Suite repository

Data types as deployed to Informix

Text VarChar
Memo Text

Number, Size=Byte Smallint
Number, Size=Integer Smallint
Number, Size=L ong Integer Integer
Number, Size=Double Float
Number, Size=Single Float
Date/Time, SubType=Date and Time DateTime Year to Second
Yes/No Smallint
Currency Money (15,4)
LongBinary Byte
AutoNumber Serial

DB2 Universal Database and Versata Logic Suite data type

mappings

The following mappings are used when you reengineer a DB2 Universal Database to a
repository and when you deploy a Versata L ogic Suite data model to a DB2 UDB database.

Note: DB2 UDB does not support some precisions that are supported for corresponding
Versata Logic Suite data types, for example for VarChar and for Float.

49



DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION

Reengineering from DB2 Universal Database to the Versata Logic Suite

Original data types
in DB2 UDB

Reengineered data types
in Versata Logic Suite repository

Character (1-255)
VarChar (1-255)
Graphic (1-255)
VarGraphic (1-255)

Text

Long VarChar

Long VarGraphic
VarChar (256-32672)
VarGraphic (256-16336)

Memo

CLOB

DBCLOB

Smallint Number, Size=Integer
Bigint Number, Size=L ong Integer
Integer

Decimal (Numeric)
Double (0-126) (Float)

Number, Size=Double

Real (0-62) Number, Size=Single

Date Date/Time, SubType=Date

Time Date/Time, SubType=Time
TimeStamp Date/Time, SubType=Date and Time
BLOB LongBinary

50



DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION

Deploying from the Versata Logic Suite to DB2 Universal Database

The following table lists default data type mappings for deploymentsto DB2 UDB. Mappings
apply to attributes with data types that were not reengineered.

Data types in
Versata Logic Suite repository

Data types as deployed to DB2 UDB

Text VarChar
Graphic
Memo CLOB
Number, Size=Integer Smallint
Number, Size=L ong Integer Integer (10)
Number, Size=Double Double
Number, Size=Single Real
Date/Time, SubType=Date Date
Date/Time, SubType=Time Time
Date/Time, SubType=Date and Time TimeStamp
Yes/No SmallInt
Currency Decimal (15,4)
LongBinary BLOB

Note: DB2 Universal Database supports the AutoNumber data type used in Versata Logic

Suite.

51



DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION

ANS SQL and Versata Logic Suite data type mappings

Thefollowing table lists the ANSI SQL data types corresponding to the Versata L ogic Suite

data types.
ANSI SQL data types Versata Logic Suite data types
VarChar Text
Long VarChar Memo
TinyInt Number, Size=Byte
Smallint Number, Size=Integer
Int Number, Size=L ong Integer
Double Precision Number, Size=Double
Real Number, Size=Single
Decimal (p,s) Number, Size=Decimal (p,s)
TimeStamp Date/Time
Bit Yes/No
N/A Currency
Long VarBinary LongBinary
N/A AutoNumber

52



DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION

Sequential numbering in the Viersata Logic Suite

Sequential numbering is aproperty of columnsin database tables. It enables a numeric column
to generate a sequential list of unique numbers upon insert. Across RDBMS platforms, this
function is generally implemented through some form of sequence parameter or data type
defined on the column.

When you reengineer an RDBM S table containing a sequence number column, the Versata
Logic Studio convertsit to the AutoNumber data type. When you deploy a data model to a
database server, the Versata Logic Studio generates corresponding RDBM S objects and code
for attributes with AutoNumber data types. The Versata L ogic Studio also displays and fetches
appropriate values when a user creates new rows that contain sequence numbers.

Note: Every release of the Versata Logic Suite may not support every RDBMS discussed in
this section. For information about the RDBM Ss supported by this release, see the
Getting Sarted Guide.

Sequential numbering in Oracle

In Oracle, the Creat e Sequence command is used to assign unique numbers (such as
customer IDs) and to create a sequence that can be accessed by i nsert and updat e
statements. Here is an example of the Cr eat e Sequence command:

create sequence Custonerl|D
increment by 1
start with 10000;

The default increment valueis 1. A positive increment causes ascending incrementing of the
sequence number. A negative increment causes descending incrementing. "St art wi t h"
establishes the seed value with which the sequence will begin.

For example, if you increment by 5 starting with 10000, the value for the first row upon insert
will be 10005, the value for the second row will be 10010, and so on.

53



DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION

54

Typically, asequencein Oracleis used in aset of statements like the following:

sel ect <sequence_nane>. Next Val from dual ;

insert into <data_object_nanme> (<col um_nanel>, <columm_nane2>,
<col um_nanme3>)

val ues (<’ col um_val uel’ >,

<’ col um_val ue2’ >, <sequence_nane>. CurrVal ) ;

In this example, the sequence number property Next Val is associated with the column
designated as the sequence number column and tells Oracle to generate the next sequence
number value. Hence, the number is guaranteed to be unique. Upon insert, the sequence
number property is retrieved each time avalueis to be assigned, the value of the last row is
referenced, and the next valueis inserted.

Sequential numbering in Microsoft SQL Server and Sybase

For Microsoft SQL Server and Sybase, the identity property is assigned to a column at the
time of table creation. Using this property, the database server automatically generates a
seguence number and assigns it upon insert. Asin Oracle, a starting value and an increment
value must be assigned as parameters to the identity property.

Note: Oncetheidentity property isassigned to a column in Microsoft SQL Server or Sybase,
the only way to remove the property isto drop the data object and recreate it without
the property. You cannot remove it with the ALTER TABLE command.

Identity Columns

When you deploy a data model to Microsoft SQL Server or Sybase, the Versata Logic Suite

converts al AutoNumber attributes to Identity columns. The columns create unique,

sequential numbers for rowsupon i nser t . The following restrictions apply to Identity

columns:

= You cannot remove the Identity property from a column using the ALTER command. The
only way to remove the property isto drop the data object and recreate it without the
property.

= You cannot update Identity columns. You must delete the old row and insert a new row.
When you add a row, the value in the I dentity column is automatically generated.




DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION

»  Explicit values may be entered in Identity columns with the following guidelines:

If you load data through SQL scripts, you must manually set the server’s
identity_insert flagto ONfor each applicable data object and specify thei nsert
values for each row.

The database server may not be able to create sequential numbers, based on the initial
value, increment value, and the failure of transactions to complete. Any one of these
can contribute to gapsin ldentity values created by the server. For specific information
on how to address gaps, please refer to Microsoft SQL Server or Sybase
documentation.

If thei dentity_insert flagissetto ON, the Identity column does not validate
unique values. Under these conditions any user with permission can insert values into
the Identity column. These values can be duplicates if there is no unique index or
unique constraint defined on the Identity column.

Sequential numbering in DB2 Universal Database

DB2 Universal Database 7.x supports the AutoNumber data type used in the Versata L ogic

Suite.

If you choose not to take advantage of the AutoNumber capability, values for the attribute are
generated by the get count er method in the Versata Connectors code when you deploy the
data model. This method queries the database, selects the largest value for the attribute and
incrementsit by 1.

55



DEVELOPING A DATA MODEL
BUILDING A DATA MODEL

Building a data model

56

To get started in the Versata L ogic Studio, you need to have a repository that contains a data
model. Thefirst step isto create a new repository, represented by a

<reposi tory_nane>. xni file. For instructions, see“ Creating a new repository” on page 58.
Once the repository is open in the Versata Logic Studio, you can do any of the following to
populate the repository with a data model:

= Usethe Reengineering Manager to convert a supported RDBM S database to Versata L ogic
Suite. xm files. For instructions, see “ Reengineering data objects into a repository” on
page 60. After reengineering, use the data model validation utility to check your data
model, as described in “Validating a data model” on page 62.

= Usethe Repository Exchange Manager to import objects from another Versata Logic Suite
repository. For instructions, see “Using the Repository Exchange Manager” on page 65.

= Usethe Versata Logic Studio’s menu options to add groups to contain repository business
objects. For information, see “Working with groups’ on page 68.

»  Usethe Versata Logic Studio’s wizards to add data objects and query objects to the
repository. For instructions, see “ Adding data objects’ on page 84 and “New Query Object
wizard” on page 153.

Data objects’ dataare storedin . csv files with the same names as the data objects’ . xni
files. The. csv files contain any test data you enter aswell as stored and display values for
coded values lists. You can enter coded values list values in the Versata Logic Studio.
However, you must enter other test datain an external tool that supportsthe. csv file format,
such as Microsoft Excel. When you deploy a data model, you can transfer test data, but the
Server Manager does not perform any data type or other validation for test data.

Note: If you want to work with arepository that islocated on a machine that is remote from
your Versata Logic Studio installation, you need to map the machine to alocal network
drive. If you do not perform this mapping, you may encounter errors.

Repository file structure

Release 5.5 of Versata Logic Suite utilizes a different structure for storing repository fileson
the filesystem. This new structure is designed to simplify repository file management and
team development, and to facilitate integration with source control management systems. This
physical structure approximates the logical structure of the Explorer’s Files tab.

When you create a new repository, files are saved according to the new structure. When you
open an existing repository in this release’s Versata Logic Studio, you are asked to provide a
location for saving the repository’s files in this new structure.



DEVELOPING A DATA MODEL
BUILDING A DATA MODEL

Wherever you elect to save a new repository file or an upgraded repository file

(reposi tory. xm ) onyour filesystem, a subfolder with the same name as the repository is
created within the chosen folder. The <r eposi t or y> subfolder contains the subfolders
displayed in the following figure.

=] Cache
&[] Clientépps
M- s
= D Lib
E| D Client&pps

o ] HTMLApps
; [ Javadpps
----- {7 Remotelnterfaces
w00 Vs
=- {:| Local

|:| Client4pps
¢ e HTMLApps

-2 Javatpps
l I:l Temp
+ F-2 Vs
=] Source
El‘a Clientbppz
- @] HTMLApps
H- Javadpps
..... D Images
l F-2 Vs

Figure 1 Repository file structure

= The Sour ce subfolder isthe main one you will be concerned with as you develop objects
intherepository. This subfolder contains. xm sourcefiles, generated . j ava files, and any
user-defined files for repository objects; application files are stored within application
subfolders and business abject files are stored within the VI s subfolder. The | mages
subfolder includes system-supplied image files.

These files are the main files you will want to maintain under source control.

57



DEVELOPING A DATA MODEL
BUILDING A DATA MODEL

m The Cache subfolder contains cached versions of repository files including the cached
version of the whole repository, the <r eposi t or y>. vdb file; and afile used for business
object deployment, ther eposi t ory. VIDepl oy file.

In some cases you may want to maintain these files under source control, in order to
optimize performance.

m Theli b subfolder contains compiled class files for repository objects.

In some cases you may want to maintain these files under source control, in order to
optimize compile times.

m Thelocal subfolder includestemporary files used by the system. You should never need
to maintain these files under source controls.

Note: For information about managing repository files in a source control systemin ateam
development environment, see the Architecture and Project Guide.

Creating a new repository

You create a new repository with the File>New Repository menu option.

To create a new repository:
1. Start the Versata Logic Studio.
2. Choose File > New Repository to open the Create New Versata Repository dialog.

3. Navigateto the folder where you want to create the repository folder. You can click the
folder button to create a new folder.

4. Enter the name of the repository (<r eposi t ory. xm >) or accept the default name, then
click the OK button.

The new repository structure is created within anew subfolder of the same namein the
specified folder. This new subfolder MUST have a name identical to the repository name.

Upgrading an existing repository

The Versata Logic Studio provides a menu option you can use to upgrade an existing
repository for thisrelease. You may need to make further modifications after this conversion,
particularly to any custom code you added to repository objects. For information about related
migration issues, see the Getting Sarted Guide.

To upgrade an existing repository:
1. Start the Versata Logic Studio.
2. Choose File > Convert Repository to open the Convert to Versata 5.5 Repository dialog.
3. Navigateto the folder containing the repository.

58



DEVELOPING A DATA MODEL
BUILDING A DATA MODEL

4. Select the<repository. xm > file, then click the Open button.

Note: After converting your repository, Versata L ogic Suiterelease 5.5 validates all file names

at repository load time. This validation process ensures there are no name conflicts with
potential data object or query object artifacts. The following file names are checked:

s <file_name>. xm

m <file_name>Inpl.java

s <file_name>Basel npl.java
s <file_nanme>.csv

m <file_nanme>.java

s <file_nane>Hone.java

s <file_name>DD. xm

Using the Reengineering Manager

Reengineering, sometimes referred to as “reverse engineering,” is creating or modifying a
Versata Logic Suite data object or data model by converting a non-Versata L ogic Suite object
or database. Use the Reengineering Manager for reengineering data models and additional
wizards for reengineering objects.

When you reengineer adata model or data object, the system maps attribute data types
from their native server type to a Versata Logic Suite data type by using the mapping
entries in the repository data object V SVBImportDatatypes. For information about data
type mappings, see “ Data type mapping between the Versata L ogic Suite and RDBMSs’ on
page 40.

Typically, you reengineer a data model to start the process of defining anew model. After
you reengineer, you can modify the data model in the Versata Logic Studio, then you can
begin adding transaction logic and developing applicationsin it. You also can redeploy the
reengineered model as a new database or back to the same database, and the data from the
original database can be loaded into the new one afterwards.

You can reengineer data objects, which you are likely to do at any time in the devel opment
process.

To start the Reengineering Manager, choose Managers > Reengineering Manager.

Reengineering Manager user interface

The Reengineering Manager includes the following fields:

Selected Schema. Shows the database schema of the current RDBMS. This list box may
be empty until you are connected to a database.

59



DEVELOPING A DATA MODEL
BUILDING A DATA MODEL

60

m  Server Type. Showsthe server type of the RDBMS to connect to. To reengineer from an
Informix database, the user performing the reengineering must have dbalevel permissions
on the database. Also note that the Oracle7 option means Oracle7 or later.

= Database. Shows the databases on the current server. Thisoption isenabled only if you are
connecting to Microsoft SQL Server or Sybase.

m  Server Data Objects. Lists the data objects in the current database.

= Data Objectsto Import. Liststhe data objects you have selected to import into your data
model.

» Click the Connect button to login to the server. The Select Data Source dial og opens.
= Click Import Data Objects to begin the reengineering process.

Select Data Source dialog

Use the Select Data Source dial og to select the DSN (data source name) of the connecting
database.

m The System Data Source tab lists your system DSNs. A system DSN is a shared data
source. All network users may use it with the appropriate data driver.

Click the New button to define anew system DSN. The Create New Data Source wizard
opens.

= The User Data Source tab lists your user DSNs. A user DSN is adata source that may be
used only on the current computer. It may be auser DSN (specific to one user) or a system
DSN (any user).
Click the New button to define a new user DSN. The Create New Data Source wizard
opens.

Note: For help with the Create New Data Source wizard, see the help for your ODBC control

panel (s) or open the help file itself, usually found in
C:\ <W ndows>\ <Syst en»\ Odbci nst . hl p.

Reengineering data objectsinto a repository

To reengineer a data model from a relational database:

1. Open the repository where you will copy the data model.
2. Choose Managers - Reengineering Manager to open the Reengineering Manager.

3. Inthe Reengineering Manager, select the type of database server from the Server Type
drop-down list box.

If you want to reengineer from an Informix database, the user performing the
reengineering must have dba level permissions on the database.

Note that the Server Type “ Oracle7” means any Oracle database that isversion 7 or later.



8.
9.

DEVELOPING A DATA MODEL
BUILDING A DATA MODEL

Click the Connect button to initiate communication with the database server. The Select
Data Source dialog opens. For information about this dialog, see page 60.

Select a data source on the File Data Source or Machine Data Source tab, or define anew
one.

Log in to the database server.

When the connection is made, select a user schema from the Selected Schema drop-down
list box.

For Microsoft SQL Server and Sybase, you also must select a database.
In the Server Data objects list, select the data object(s) to import.

10. Click the > button to move the data object to the Data objects to Import list.
11. Click Import Data Objects to import the data objects into the data model. The Versata

System rebuilds the data model to add the new data objects.

12. Click the Disconnect button to end communication with the server.

If any portion of the reengineering process fails, the system cancels the entire process. Revise
the server data model and try again.

After you have compl eted the reengineering process, you should validate the reengineered data
model. For information, see “Validating a data model” on page 62.

Note: Reengineering is not supported for Oracle tables that include objects.

If you reengineer from an Informix database that contains two tables of the same name,
one in upper case, and one in lower case, only the table with the lower case nameis
reengineered successfully. Case-sensitive reengineering is not supported.

Notes on reengineering data models

The Reengineering Manager imports data models on a per-schema basis, with each import
occurring as a single transaction. There is no limit to the number of data objects or
schemas, but all data object names must be unique.

The Reengineering Manager does not import the following:

= Multiple schema relationship constraints (rel ationships that span data objectsin
different schemas)

= Data (records)
n  Defaults
= Views

Instead of views, you can use the New Query Object wizard to define query objects. For
instructions, see page 145.

61



DEVELOPING A DATA MODEL
BUILDING A DATA MODEL

62

= Indexes and relationships implemented using relationship constraints are imported along
with the data objects. Relationship constraints between the reengineered data objects are
imported; other constraints are not. As an example, suppose data object A on the database
server and data object B on the database server have relationship C between them. If you
reengineer data object A, relationship Cis not imported. If you later reengineer data object
B, relationship Cis still not imported. The only way to import relationship Cis to import
both A and B in the same reengineering.

= The Reengineering Manager imports relationships that are enforced in the database, if they
are enforced declaratively with reference constraints on children that refer to primary key
constraints in the parents. EXxisting triggers are not reengineered, so relationships enforced
by triggers are not converted.

» After reengineering, you can add any missing relationshipsin the Versata L ogic Studio.
For instructions, see “Adding relationships’ on page 113.

= You can add new attributes to data objectsin the Versata L ogic Studio. These attributes can
be either physically stored or derived attributes used to cal culate computations required for
business rules processing. These derived attributes, called virtual attributes, allow you to
take advantage of the Versata Logic Suite's derivation rules without denormalizing your
data model or storing unnecessary data. For information, see “ Adding attributes to data
objects’ on page 102 and “Virtua attributes’ on page 104.

Validating a data model

The Versata L ogic Studio provides a simple data model validation utility that can be run
against the currently open repository. You should validate your data model whenever you have
made substantive additions to the set of data objects and attributesin the repository through
reengineering. Also, validation can catch naming errors such as using SQL reserved words.

The validation utility produces both a Validate Repository Data Object/Attribute Names Log
that appears on screen and aModel Val i dati on. | og file located in the repository directory.
You can use either of these logsto review errors.

Thefile Model Val i dat i onConmands. t xt isan editable filein the Versata Logic Suite
installation directory that defines the various checks performed by the validation utility. By
default, thisfile defines checks for Microsoft SQL Server validation, checking data object and
attribute names in the entire data model for:



DEVELOPING A DATA MODEL
BUILDING A DATA MODEL

Embedded spaces
Reserved words

Invalid characters

Invalid first characters
Maximum name length
Unique leftmost characters

You can edit the commands file as required to match your data source requirements. Also, if
you are developing using quoted identifiers, you can ignore error messages for embedded
spaces, reserved words, and invalid characters or edit the data model validation utility
commands file to remove these checks.

Note: Another way to validate objectsis to attempt a build. For information, see “Building

and Deploying Business Objects’ on page 255.

To validate a data model:

1.

Launch the Versata L ogic Studio and open the repository for which you want to validate
the data model.
Choose File &> Validate Repository Model to run the utility.

The Validate Repository Data Object/Attribute Names Log appears when the validation is
complete. In thisdialog, review any errors in the data object and attribute namesin the
repository. You also can review thisinformation in the Model Val i dati on. | og file,
located in the directory that contains the repository file.

63



DEVELOPING A DATA MODEL
BUILDING A DATA MODEL

64

VYalidate Repository Data Object/Attribute Hames Log =] E3

Walidation Log File
IE:Wersataﬁ.D'xsamples'xsampleDB'xM odehsalidation. Log

ememmmeseese [ ata bModel Walidator Fun (3471400, at 10:33: 49 A ] s
Settings From Model alidationCormands. bt ..

b airiurm Length: 29

Walid Characters: abodefghijklmnoparatuswespz01 234567898 _

Invalid First Characters: 0220123456739

Unique Left Characters: 17

0 Errorfz] Detected

Figure 2 Validate Repository Data Object/Attribute Name L og

Note: If the disk isfull when you attempt to validate a repository, a run-time error occurs.

Editing the data model validation utility commandsfile

The Model Val i dati onCommands. t xt fileisan editable file in the Versata Logic Suite
installation directory that defines the various checks performed by the validation utility. By
default, thistext file defines checks for Microsoft SQL Server validation. You can edit thisfile
as required to customize the check commands for your data source.



DEVELOPING A DATA MODEL
BUILDING A DATA MODEL

To edit the Mbdel Val i dati onCommands. t xt file:

1. Open Model Val i dati onCommands. t xt (located in the product installation directory).

2. Modify the command lines (each begins with a!) to define the specific checks required for
your data source.

»  Specify invalid characters for data object and attribute names. For example, names
could be checked to ensure that they do not contain alphabetic, numeric, “#’, “$”, or
“_ characters.

= Specify invalid first characters for data object and attribute names. For example, names
could be checked to ensure that they do not begin with “$” or “#”.

= Specify maximum length of data object and attribute names.

= Specify the number of unique leftmost characters for data object and attribute names.
For example, if your datamodel truncates data object or attribute names that have more
than 10 characters, you could check to make sure that the first 10 characters of each
data object or attribute name is unique.

3. Modify thelist of reserved words at the end of the file to specify the reserved words you
want to check for in data object and attribute names. Note that reserved words are case
insensitive.

4. Savethe changes and exit Microsoft Notepad.

5. Onceyou have edited the Mbdel Val i dat i onCommands. t xt file as desired, make a copy
of it, since the edited file will be replaced by the default file automatically each time you
install a new version of the Versata L ogic Suite.

Using the Repository Exchange Manager

The Repository Exchange Manager allows you to import repository objects from other Versata
Logic Suite repositories to the current repositories. The Repository Exchange Manager copies
the repository definitions of data objects, relationships, query objects, and applications, but not
the data object data.

To use the Repository Exchange Manager, choose Managers - Repository Exchange Manager.
After you navigate to the folder containing repository to be imported, the Import dial og opens.

Note: If thedisk isfull when you attempt to use the Repository Exchange Manager, a Versata
termination error occurs.

Import dialog

Thisdialog displays objects (. xm files) in the source repository (where files will be copied
from) in the left list box and displays objects in the destination repository (where files will be
copied to) in the right list box.

65



DEVELOPING A DATA MODEL
BUILDING A DATA MODEL

66

The Data Objects tab lists the data objects in the source repository on the left and the
destination repository on the right.

The Relations tab lists the relationships.
The Query Objectstab lists the query objects.
The Applications tab lists the applications.

Choose the Show Groups option button to list repository groups only. Thisoption is
helpful if you plan to import objects by group. Choose the Show All option button to list
repository objectsindividually. This option is helpful if you plan to import individual
objects.

Enable the Maintain Groups for Import check box if you want objects’ containing groups
to be imported aong with the objects themselves.

Importing repository objects

Importing repository objects copies. xm filesfor data objects, relationships, query objects,
and applications from another Versata repository directory to the current repository directory,
also making changes to the repository . xnl file as needed. You can use the Repository
Exchange Manager for this task.

Note: No dataverification is performed during an import. Therefore, you should check first to

be sure that the import is not overwriting useful datain the current repository and that
the objects referenced by the new information are available to the current repository.

Also note that the Repository Exchange Manager does not preserve read-only flags for
imported object files.

To import repository objects:

In the Versata Logic Studio, open the repository to which you want to import.

2. Choose Managers - Repository Exchange Manager to open the Repository Exchange

Manager.

In the Import from dialog, navigate to the repository from which to import objects. The
Import dialog opens.

In the Import dialog, click the tab for the type of object you want to import. Enable the
Maintain Groups for Import check box if you want objects’ containing groups to be
imported along with the objects themselves. Enable the Show All or Show Groups options
as necessary.

. Select one or more objects in the left list box and click >>>Import>>>. Use SHIFT and

CTRL to select multiple objects.
Repeat step 5 on the same tab or other tabs to import additional objects as desired.



DEVELOPING A DATA MODEL
BUILDING A DATA MODEL

Note: If you import objects that have been deployed as EJBsto WebL ogic, or deployed to a
CORBA version Versata L ogic Server, the repository may contain extra deployment
descriptor files and interface files that are not usable.

67



DEVELOPING A DATA MODEL
WORKING WITH GROUPS

Working with groups

A group isacontainer for a subset of repository business objects. The creation of groups eases
work with large repositories. Groups usually correspond to functional areas or types of
objects. Each group serves asalogical container for repository objects and their filesin the
Versata Logic Studio, and as a physical container for object files on the filesystem.

= Inthe Versata Logic Studio Explorer, group subfolders are located within the Business
Logic folder on the Objects tab, and within the Versata Logic Server folder on the Filestab.

= Onthefilesystem, group subfolders are located within your repository’s Sour ce\ VI s
folder.

You can nest multiple levels of groups, so that group subfolders contain other, subgroup
folders. It isrecommended that you create groups early in the devel opment process to define
the basic structure for your repository. If you need to alter this structure, you can use the menu
options or the Business Objects and Files Manager provided by the Versata Logic Studio. For
information, see “Moving objects among groups’ on page 69.

Note: Groups may not be listed in strict al phabetical order in the Versata Logic Studio
Explorer. All groups with names beginning with upper case letters are listed before all
groups with names beginning with lower case |etters.

Adding groups

You can add a group to any business object folder in arepository, smply by going to that
folder and choosing aright-click menu option.

To add a group to a repository:
1. On the Objects tab of the Versata Logic Studio Explorer, right-click the Business Logic
folder or an existing group folder and choose New Group, or

On the Files tab of the Versata Logic Studio Explorer, right-click the Versata Logic Server
folder or an existing group folder and choose New Group.

2. Inthe Add New Group dialog, enter a name for the group and click OK.
A folder for the group appears in the Explorer.

Note: You are not alowed to enter a duplicate group name, but no checking is done against
object names, so you are allowed to create a group with the same name as a business
object.

68



DEVELOPING A DATA MODEL
WORKING WITH GROUPS

Moving objects among groups

The Versata Logic Studio provides right-click menu options and a Business Objects and Files
Manager that you can use to change the contents of repository groups. Use the menu optionsto
move a single business object, group, or user-defined file from one group to another. Use the
Business Objects and Files Manager to move multiple objects or files among groups.

Note: If the disk isfull when you attempt to move objects among groups, a“path not found”

€rror occurs.

Moving a single object

To move a single object from one group to another:

1.
2.
3.

On the Objects tab of the Explorer, right-click the object and choose Move.
If an informational dialog appears, click OK to dismissit.

In the Choose Group dialog, select the group where you want to move the object and click
OK.

If you want to move the object to a new group, select the group to contain the new group,
click the New button and complete the Add New Group dia og, then select the group and
click OK.

Moving a singlefile

You can move a single user-defined file from one group to another. Because all filesfor a
business object need to be contained in the same group, you cannot move a single generated
file. You can move al of an object’s files by moving the object, or you can use the Business
Objects and Files Manager.

Note: Explorer icons for user-defined files contain red lines, while Explorer icons for

generated files contain black lines.

To move a single user-defined file from one group to another:

1.
2.
3.

On the Files tab of the Explorer, right-click the file and choose Move.
If an informational dialog appears, click OK to dismissit.

In the Choose Group dialog, select the group where you want to move the file and click
OK.

If you want to move the file to a new group, select the group to contain the new group,
click the New button and complete the Add New Group dia og, then select the group and
click OK.

69



DEVELOPING A DATA MODEL
WORKING WITH GROUPS

Moving a group

When you move agroup, all of its contents, including any subgroups, are moved with it.

To move a group from one group to another:

1.
2.

On the Objects or Files tab of the Explorer, right-click the group and choose Move Group.

In the Choose Group dialog, select the group where you want to move the group and click
OK.

If you want to move the group to a new group, select the group to contain the new group,
click the New button and compl ete the Add New Group dial og, then select the group and
click OK.

Note: If the disk isfull when you attempt to move a group, “Could not create folder” and

“path not found” errors occur.

Using the Business Objects and Files Manager

Use the Business Objects and Files Manager to move multiple objects and files among
repository groups.

To use the Business Objects and Files Manager, from the Versata L ogic Studio main menu,
choose Managers - Business Objects and Files Manager.

The Objects tab of this manager lists repository business objects in the left list box and
repository groupsin theright list box.

The Source Files tab of this manager lists business object files and user-defined filesin the
left list box and repository groups in the right list box.

Choose the Show By Groups option button to list repository groupsintheleft list box. This

option is helpful if you need to see which groups currently contain particular objects and
files.

Choose the Show All option button to list repository objects or filesindividualy in
alphabetical order.

To move one or more objects or files:

1.

70

Select the object(s) or file(s) in the left list box.
= You can usethe SHIFT and CTRL keys to select multiple objects or files.

» |f the Show By Groups option is selected, double-click a group folder to make its
contained objects or files available for selection.



DEVELOPING A DATA MODEL
WORKING WITH GROUPS

2. Select agroup in theright list box.

= |f you do not select a group before you click the > button, the selected object(s) are
moved to the Business Logic folder, or the selected file(s) are moved to the Versata
Logic Server folder by default.

= |f youwant to move objects or filesto a new group, select the group where you want to
create the new group, then click New Group. Complete the Add New Group dialog,
then select the new group.

3. Click the > button.

4. Closethe Manager by clicking the x in the upper right corner. Then review the Explorer to
ensure moves were completed correctly.

Note: You cannot use the Business Objects and Files Manager to move a group from one
group to another. Use the right-click menu option for this purpose.

Renaming groups

To rename a group:

1. Onthe Objectstab or Filestab of the Versata L ogic Studio Explorer, right-click agroup and
choose Rename Group.

2. Enter the new name in the Rename Group dialog.

Deleting groups

When you delete a group, al of its contents, including any subgroups, are deleted.

To delete a group:
1. Onthe Objectstab or Filestab of the Versata L ogic Studio Explorer, right-click agroup and
choose Delete Group.
2. Toconfirm the delete, click Yesin thefirst Action Choice dialog that appears.

3. If the group contains objects or files, a second Action Choice dialog appears, asking
whether to move contained objects to the deleted group’s parent group.

= To move objects or filesto the parent group, preventing them from being deleted, click
Yes.

= To delete objects or files along with the deleted group, click No.

Note: If thedisk is full when you attempt to delete a group, “Could not create folder” and
“path not found” errors occur.

71



DEVELOPING A DATA MODEL
WORKING WITH GROUPS

Finding objects and files

The Versata Logic Studio includes a Find utility that can be helpful for locating business
objects and filesin alarge repository.

To use the Find utility:
1. On the Objects tab of the Explorer, right-click the Business Logic folder or one of its
subgroup folders, or

On the Filestab of the Explorer, right-click the Versata L ogic Server folder or one of its
subgroup folders.

2. Enter the name of the object or file that you want to find and click OK. (Thisdialog is not
case-sensitive.)

If the object or file existsin the repository, it is selected in the Explorer.

Building and compiling group files

You can eect to build and/or compile filesfor all objectsin a group. For more information
about building and compiling business objects, see “Building and Deploying Business
Objects’ on page 255.

To build all of a group’s objects:

1. OntheFilestab of the Versata Logic Studio Explorer, right-click and choose the Rebuild
menu option.

To compile all of a group’s objects:

1. OntheFilestab of the Versata Logic Studio Explorer, right-click and choose the Compile
menu option.

Note: Errors may occur if you choose this option before all objects in the repository have
been compiled at least once. Because classes may reference each other, you may have
to compile the entire repository before you can compile an individual group.

72



DEVELOPING A DATA MODEL
WORKING WITH ATTRIBUTE TEMPLATES

Working with attribute templates

You can include attribute templates in your repository to implement the inheritance of an
abstract attribute’s properties by multiple attributes in referencing data objects. You thus
should consider whether to include attribute templates as you are developing your data model.
You need to understand the following terms.

= Attribute Template: An attribute that does not belong to a particular data object.
Attributes in referencing data objects can inherit the properties of this attribute.

= Attribute Group Template: A named collection of attributes that do not belong to a
particular data object. Attributes in referencing data objects can inherit properties of this
group of attributes asif it were an attribute template, and the entire group is inherited.

m Propagate: To forceinherited properties in the inheriting attributes to be set to the same
values as those in the referenced attribute templates or attribute group templates.

Attribute templates and attribute group templates can be referenced by any data objectsin a
repository. Definition information about attribute templates and attribute group templatesis
stored at the repository level. Each attribute template and attribute group template hasits own
.xm files. These. xm filesconformtothe At tri but eTenpl at e. dt d and

Attribut eG oupTenpl at e. dt d files provided with this release. Reference (inheritance)
information is stored in new propertiesin. xni files for data objects, relationships, and query
objects. For information about these files, see the Reference Guide.

= To create an attribute template or attribute group template, you createan . xmi filefor it.

= To designate data object attributes to inherit from attribute templates or attribute group
templates, you define propertiesin dataobject . xni files, and as appropriate, relationship
and query object . xni files.

= You specify that adata object attribute inherits from an attribute template by setting the
I nst anceOF attribute of the attribute element in the data object . xm file. For
information about issues to consider, see “1ssues with attribute templates’ on page 75.

= You specify that a data object inherits from an attribute group template by adding an
Attribut eG oupl nst ance element and setting its attributes in the data object . xni
file. For information about issues to consider, see “Issues with attribute group
templates’ on page 77.

m To set properties in inheriting attributes to the same values as those in the referenced
attribute templates or group attribute templates, usethe At t r i but ePr opagat or . exe
provided with this release. For information, see “ Propagating templates’ on page 74.

73



DEVELOPING A DATA MODEL
WORKING WITH ATTRIBUTE TEMPLATES

74

Propagating templates

The At t ri but ePr opagat or . exe utility isinstalled in the root installation directory when
you install Versata Logic Studio. You can run this utility to propagate values from attribute
templates and attribute group templates to inheriting attributes in the Versata Logic Suite
repository.

Be sureto close the Versata L ogic Suite repository before you run the utility.

To propagate attribute template and attribute group template values to a repository:

1.
2.

Create or update . xm filesfor attribute templates and attribute group templates.

Add or update inheritance information as necessary in data object and relationship . xm
files.

Createa<repository>\ AttributeG oupTenpl at es\ Del et edAttri butes. txt
fileto list attributes that are missing from an attribute group template and should be treated
as deleted. The format for listing should be:

<Attribute_G oup_Tenpl ate_Nane>. <At tri but e_Name>, with onelisting per line.

Run At t ri but ePr opagat or . exe.

In the first dialog, enter the name of the repository where propagation is to occur. You can
click the button to browse to the repository . xni file.

The propagation utility will create two log files:
m  <repository>_propation.| og containsthe changes madeinall .xml files.

m <repository> propagation_errors. | og containsany errorsthat occur during
propagation.

By default, these files are displayed on screen after the propagation processis complete, as

well aswritten to the folder containing the repository . xm file. You can disable the check

boxes to skip this display.

Click the OK button to start the propagation process.

A Synchronization Process dialog displays status information. After propagation
completes, amessageis displayed. If enabled, log files also appear.

Note: Missing reference errors may occur if you delete or rename an attribute template or

incorrectly specify the attribute template name in the data object . xm file. These
errors are written to the log during propagation.

For information about specia processing and errors that may occur as part of attribute
group template propagation, see “Propagation of attribute group template changes’ on
page 78.



DEVELOPING A DATA MODEL
WORKING WITH ATTRIBUTE TEMPLATES

| ssues with attribute templates

This section describes issues related to attribute templ ates.

You specify that a data object attribute inherits from an attribute template by setting the

I nst anceOF attribute of the attribute element in the data object . xm file.

= You can change an uninheriting attribute to one inheriting from an attribute template.

= You can change an inheriting attribute to an uninheriting attribute.

= You can change the attribute template from which an attribute template inherits.

You can use inheriting attributes in the same manner as other data object attributes. They can
be used in indexes, as relationship primary keys or foreign keys, in rules, in query objects, and
in forms or pages by using containing data objects or query objects as RecordSources (with
presentation design only).

Property inheritance

When a data object attribute inherits from an attribute template, some attribute properties are
always inherited from the attribute template, other properties are never inherited, and other
properties may or may not be inherited in particular cases. The following sections describe
property inheritance, listing properties according to their XML elements and attributes.

Always inherited properties
The following properties in inheriting attributes always must have the same values asin the
attribute template.
= Val ueRequired
» Dat aType element

= DataType

= Size

m Precision

m Scal e
= Validation element

= ValidationType

m CodedVal uesLi st

m Condition

= ErrorMessage

Never inherited properties

The following propertiesin inheriting attributes can never be inherited from the attribute
template:

75



DEVELOPING A DATA MODEL
WORKING WITH ATTRIBUTE TEMPLATES

= Nane
m Persistence
= Layout ByDef aul t
= Server Dat aType element
s Type
= Size
s ServerOFQOrigin
= Derivation element
m DerivationType, if other than None, For nul a, or Def aul t (all types available for
local customization)
m Rel ationshipSurrid
m Parent Replicat el sMai nt ai ned
m SourceAttribute
s QualificationExpression
s ExtendedProperties
= HiddenProperties

Sometimes inherited properties

Thefollowing propertiesin inheriting attributes may or may not be inherited from attribute
templates. Inheritance must be identified per inheriting attribute case. If a property is not
inherited but is specified in the attribute template . xm file, the property needsto belisted in
the data object . xm fileasan Overri de element value for the attribute. Otherwise the value

will be inherited.
= Caption

s For mat

m McroHel p

m  Archet ypeNane

s Description

= Comments

s Prevent UserUpdate

m DerivationType, if None, Def aul t, or For nmul a

Data type changes

Data type changes that occur in . xm files as aresult of inheritance changes currently do not
appear in the Versata Logic Studio.

= These changes may create invalid relationships if the primary key and foreign key data
types do not match after changes. The Versata L ogic Studio reports when this problem
occurs.

76



DEVELOPING A DATA MODEL
WORKING WITH ATTRIBUTE TEMPLATES

These changes may make expressions in query objectsinvalid. If this problem occurs, you
need to edit the query expressions.

These changes may make rulesinvalid. If this problem occurs, you need to edit rules.

Implementing changes in RecordSources

If adataobject or query object containing inheriting attributes is used as a RecordSource and
propagation causes changes in these attributes, you need to either rebuild the form or page
containing the RecordSource, or drop and re—add the attribute to the form or page in order to
implement changes.

| ssues with attribute group templates

This section describes issues related to attribute group templates.

You specify that a data object inherits from an attribute group template by adding an
Attribut eG oupl nst ance element and setting its attributes in the data object . xni file.

A data object cannot inherit individual attributes from an attribute group template, but can
inherit only the entire group.

A dataobject can inherit from an attribute group template more than once. For example, an
attribute group template representing an address can occur twice in a data object, oncefor a
home address and once for awork address.

For each instance of inheritance from an attribute group template, an
Attribut eG oupl nst ance element with aunique Name must be added to the data object
.xm file.

Individual attributes in an attribute group template will be able to be referenced in SQL
queries, to be referenced in business rule expressions, and to have locally customized
properties as provided in attribute templ ates.

If both data objectsin arelationship inherit from an attribute group template, and you want
the relationship to inherit from the attribute group template, then the relationship’s . xni
file must identify the Par ent At t ri but eG oupl nst ance and the

Chi | dAttri but eG oupl nst ance attribute for the Rel at i onshi p element, and these
must inherit from the same attribute group template.

If attributesin an index inherit from an attribute group template, the instance name must be
specifiedinthe At t ri but eGr oupl nst ance attribute for the | ndex element in the data
object . xni file.

If aquery object includes an attribute inherited from an attribute group template, all
attributes in the attribute group template instance must be included in the query object.

77



DEVELOPING A DATA MODEL
WORKING WITH ATTRIBUTE TEMPLATES

78

Propagation of attribute group template changes

Thesame At t ri but ePr opagat or . exe that propagates changes from attribute templates to
repository data objects also propagates changes from attribute group templates. The
propagation of attribute group templates presents some additional features.

Propagation of grouping

n Ifthel nherit G oupi ng attribute of the At t ri but eG oupl nst ance elementinthe
data object . xm file has avalue of Tr ue, the group of inheriting attributes in the data
object is placed together wherever the first attribute from the attribute group template is
encountered.

= [fthel nherit G oupi ng attribute hasavalue of Fal se, the placement of attributesin the
object is not affected by the propagation process.

Propagation of order

n Ifthel nherit O der attribute of the Attri but eGr oupl nst ance element in the data
object . xnl file hasavalue of Tr ue, the group of inheriting attributes in the data object is
placed in the same order asin the attribute group templ ate.

» [fthel nherit O der attribute hasavalue of Fal se, no ordering of attributesis enforced.

Propagation of missing attributes
= |f grouping isinherited and order isinherited, the new attribute is placed in the proper
order within the group.

» |f grouping isinherited and order is not inherited, the new attribute is placed at the end of
the group.

= |f grouping is not inherited, the new attribute is placed at the end of the data object.

Potential propagation errors

The following errors may occur during propagation from attribute group templates:

= Missing attribute group template instance name: Can occur when you delete or rename an
attribute group template instance or incorrectly specify an instance nameinan. xni file.
The propagation utility reports this error.

= Missing attribute group template name: Can occur when you delete or rename an attribute
group template or incorrectly specify an attribute group template nameinan. xm file.
The propagation utility reports this error.

» Missing attribute name in the attribute group template: Can occur when you delete or
rename an attribute in the attribute group template or incorrectly specify the attribute name
from the attribute group template in the inheriting attribute.



DEVELOPING A DATA MODEL
WORKING WITH ATTRIBUTE TEMPLATES

You can create an optional

<repository>\AttributeG oupTenpl at es\ Del et edAttri but es. txt filethat
contains references to attributes in attribute group templates for which missing references
should be deleted automatically during propagation.

= |f the missing referenceis not in thistext file, then the propagation utility reports an
error and you have a chance to correct the reference and prevent the loss of
customizations.

» |f themissing referenceisin thistext file, it is deleted, deletions are propagated, and
any related customizations are lost. |f the deletion causes the deletion of the last
attribute in anindex, the index is deleted.

Implementing changes in RecordSources

Thereis no explicit specification of inheritance from attribute group templates into
RecordSources. RecordSourcesindirectly inherit based on inheritance into the data objects and
query objects used as RecordSources.

If propagation of attribute group template changes into data objects results in new
RecordSource attributes, these are displayed, by default, if any other attributes from the same
attribute group template instance are displayed on the form or page.

HTML pages inherit changes to attribute group templates by rebuilding page layouts, just as
changes to attribute templates are inherited. Additional attributes may appear on rebuilt pages
as aresult of changes. Customized archetypes can be used to control the appearance of the
generated page so no further customization is required. The archetypes can apply to entire
pages or to portions of pages, with some pages never being rebuilt and others being rebuilt
whenever attribute template changes are propagated. Attribute group templates can be set up as
portions of pages that can be rebuilt at will.

79



DEVELOPING A DATA MODEL
WORKING WITH ATTRIBUTE TEMPLATES

80



Working with Data Objects

81



WORKING WITH DATA OBJECTS

CHAPTER OVERVIEW

Chapter overview

82

Read this chapter to understand how to compl ete tasks to create and modify data objectsin the
Versata Logic Studio. This chapter includes the following:

“Data object overview” on page 83, provides an introduction to Versata data objects.
“Adding data objects’ on page 84, explains different ways to add data objectsto a
repository.

“Modifying data objects’ on page 87, explains how to modify data objects, including
setting optimistic locking and other properties and defining coded values lists.
“Working with attributes’ on page 98, describes how to add and modify data object
attributes, including defining virtual attributes.

“Working with relationships’ on page 107, describes how to add and modify data object
relationships.

“Working with indexes and primary keys’ on page 117, describes how to add and modify
data object indexes.

Note: For information about importing data objects from other Versata repositories, see

“Using the Repository Exchange Manager” on page 65.

For information about importing data objects from supported RDBM Ss, see “Using the
Reengineering Manager” on page 59.

For information about deploying Versata repository data objectsto RDBMS
database(s), see “ Deploying Data Models’ on page 121.



WORKING WITH DATA OBJECTS
DATA OBJECT OVERVIEW

Data object overview

Data objects correlate to objectsin a physically stored database. Data objects, their attributes,
and their relationships provide the basic input for application and business rule design. They
are the first thing to define in your repository.

You can reengineer data objects from an RDBMS or add data objects and define their
characteristicsin the Versata Logic Studio. After definition, each data object is represented in
therepository asan . xnl file(<dat a_obj ect _name>. xm ). The format of thisfile conforms
to the Dat aQbj ect . dt d file included with the product, located in the product installation
directory. The. dt d filelists all of the nested elements and attributes that define the
characteristics of each data object. Each dataobject . xnl file includes values for these nested
elements and attributes. For more information about VersataLogic Suite. dt d and . xni files,
see the Architecture and Project Guide.

Once you have defined adata object in the Versata L ogic Studio, you can use its definition asa
basi s to define business rules and applications. To use data objects in running applications, you
need to build them into usable files that can be copied to the database server and application
servers.

The Versata Logic Studio includes a Server Manager wizard to deploy data objectsto the
database server. The Server Manager compiles information from data object . xmi filesinto
SQL scriptsthat can be run against a supported type of RDBM S to create corresponding tables
there. For more information, see “Deploying a datamodel to a database server” on page 126.

Note that the. xmi file for a data object stores the data object’s metadata, not its data. Data,
including coded values list values and test data, are stored separately in a. csv file named for
the data object. If you want to work with test data for a data object, you can input data through
Microsoft Excel or some format compatible with . csv files. During data object deployment to
the database server, the Server Manager provides an option to automate test data transfer.

The Versata Logic Studio also provides menu options to build and compile each data object
definition into files that run on the application server(s). The next step isto deploy these files
to adevelopment Versata Logic Server on IBM WebSphere Application Server Single Server
Edition for testing purposes. The Versata Logic Studio includes a Versata Logic Server
Deployment wizard that handles this deployment. You set a deployment property in the
Transaction Logic Designer to indicate whether to deploy data objects as Enterprise JavaBeans
(EJBs) or simply as Java class files. The deployed files contain data object definition
information as well as transaction logic information defined as business rules. After they have
been tested in the devel opment environment, you can copy files to a production Versata Logic
Server on IBM WebSphere Application Server Advanced Edition. For more information about
building and deploying data objects, see “Building and Deploying Business Objects’ on page
255.

83



WORKING WITH DATA OBJECTS

ADDING DATA OBJECTS

Adding data objects

84

You may add data objects to arepository in the following ways:

Create. Build the object in the Versata Logic Studio.
Import. Use adataobject . xm file from another Versata L ogic Suite repository.

Reengineer. Use an object that has to be reengineered into an . xm file before it can be
imported. You may reengineer database tables, CORBA objects, COM abjects, and
JavaBeans and classes.

Add from XML. Import an . xm file representing an object created outside of the Versata
Logic Suite.

Note: You may need to create custom Versata Connectors for data objects after you create

them.

Before you create anew data object, review “Naming conventions for data objects and
attributes’ on page 38.

Create New Data Object wizard

Use this wizard to create data objects in the repository. They will be added as standard data
objects with standard interface files, unless you specify custom Connectors for them in the
Transaction Logic Designer.

To start the wizard, select the Data Objects folder in the Versata L ogic Studio Explorer. Then,
right-click and choose New Data Object, click the button in the toolbar, or choose the Edit
New Data Object menu option.

Creating a data object in the Vlersata Logic Sudio

To build a new data object in the Veersata Logic Sudio:

1.
2.
3.

Start the Create New Data Object wizard.

In the first dialog, choose Create.

In the Finished dialog, enter the name of the new data object.

Thereis no required syntax for the name, but it must be at least four charactersin length if
you intend to deploy the data object to the database server through Versata Logic Studio.
See “Working with coded valueslists’ on page 95 for information about naming
conventions.

When you click the Finish button; the Transaction Logic Designer opens to the Attributes
tab. Enter the attributes of the data object there. For instructions, see “ Adding attributesto
data objects’ on page 102.



WORKING WITH DATA OBJECTS
ADDING DATA OBJECTS

|mporting a data object from another repository

To import a data object:

1.
2.
3.

Start the Create New Data Object wizard.
In the first dialog, choose Import.

In the Finished dialog, click the Finish button to launch the Repository Exchange Manager.
Use the Repository Exchange Manager to import the data object. For instructions, see
“Importing repository objects’ on page 66.

Reengineering a data object

You can use the Reengineering Manager to reengineer adata object from arelational database.
You also can reengineer other types of objects to be data objects.

Note: Reengineering of EJBs currently is not supported.

To reengineer a data object:

1.
2.
3.

Start the Create New Data Object wizard.
In the first dialog, choose Reengineer.

In the Reengineer New Data Object dialog, choose the type of object to reengineer and
click the Next button. The appropriate dialog opens

If you choose the Database option, the Finished dialog opens, where you can click the
Finish button to open the Reengineering Manager and import a data object from a database.
For instructions, see “ Reengineering data objects into a repository” on page 60.

If you choose another type of object, the Use Registered Object dialog opens.
= Toreengineer aregistered object, select it in thelist box and click the Next button.

= Toreengineer an un-registered object, click Register New Object. A file browser opens.
Useit to select the object.

Thelist box and file browser only show files of the type selected in the previous dialog.

After you have completed this dialog, The Finished dialog opens. Click the Finish button to
reengineer and import the data object.

If there are no Connectors included with the Versata Logic Suite that can be used for the
new data object, you need to create one. You may create it now or later. To create it now,
select Create New XDA Connector before you click the Finish button.

85



WORKING WITH DATA OBJECTS
ADDING DATA OBJECTS

Adding a data object from XML

You can directly import an object created outside of the Versata Logic Studio as a data object,
if it can berepresented in an. xm file. The. xnl file for the external object must conform to
the Dat atbj ect . dt d thisfile. For information about this file, see the Reference Guide.

To add a data object from XML.:

1. Review the Dat aCbj ect . dt d and the. xmi file for the external object, to ensure that the
.xn file contains al values for all elements and attributes required by the .dtd.

2. Revisethe. xm file asnecessary to conformtothe. dt d. If the. xni file includes
elements not contained in the . dt d, you can make them into Hidden Property elements so
they can be maintained in the. xm  file for the Versata L ogic Suite data object.

3. Inthe Objects view of the Versata Logic Studio Explorer, right-click the Data Objects
folder and choose Add Existing.

4. Inthedialog that appears, select the. xm fileto be added as a data object.

Note: If the disk isfull when you attempt to add an . xml object , a Versata termination error
occurs and the Versata Logic Studio closes.
Thereis no validation for length of object names or for invalid characters when you
add an existing .xml file to the repository as a data object. Be sure that the data object
name is longer than four characters and its attribute names are shorter than 31
characters. Also, be sure that names do not contain special characters other than spaces
and underscores. For more information about object naming conventions, see “Naming
conventions for data objects and attributes’ on page 38.

86



WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS

Modifying data objects

Renaming data objects

The Rename menu option allows you to save a data object under another name, deleting the
currently named data object.

To rename a data object:

1.

In the Versata Logic Studio Explorer, expand the Business Objects folder, then the Data
Objectsfolder.

Right-click the data object you want to rename and choose Rename.

In the Rename Data Object dialog, enter a new name and click the OK button. The data
object is regenerated and its new name appearsin the Versata L ogic Studio Explorer.

Note: The Rename menu option is not available when the Transaction Logic Designer is open.

Once you rename a data object, you must rebuild any query objects based on the data
object.

You have the option of using the Save As menu option to save the data object under
another name when the Transaction Logic Designer is open. This option preserves the
existing data object and creates a copy of it under the new name. When you use this
option, be sure to choose the Save As option before you make any changes intended for
the newly named data object. The Transaction Logic Designer implicitly saves many
changes, so you may unintentionally alter the original object if you make changes
before choosing Save As.

If the disk is full when you attempt a Save As, afile of 0 KB iswritten and no retry
option isavailable.

A Save As of aread-only object does not create a read-only object.

Deleting data objects

To delete a data object:

1.
2.

In the Versata Logic Studio Explorer, expand the Business Objects and Data Objects fol der.
Right-click the data object you want to delete and choose Del ete.
Any open applications are closed, to avoid reference problems.

Click the Yes button in the Action Choice dialog. The data abject is removed from the
Versata Logic Studio Explorer listing.

87



WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS

88

Note: The Delete menu option is not available when the Transaction Logic Designer is open.
If you delete a data object, you can no longer use any query objects based on the data
object.

If you delete a data object from a Versata repository, source control integration does not
automatically delete it from your source control management system. You need to
manually delete the object from the source control system. For information about
Versata Logic Studio’s integration with source control management systems, see the
Architecture and Project Guide.

If you delete a data object that has been made remotely accessible, meaning it has been
set to be deployed as an EJB, some of its files may not be deleted automatically. If you
attempt to create another data object with the same name, a“ potential conflict with
existing data object” may occur. You can avoid this problem by checking for any
remaining data object files after the deletion and manually removing them.

Generating an Impact Analysis Report

Before you make changes to a data object such as renaming it, deleting it, or renaming or
modifying attributes, it is a good ideato determine which other repository objects are
dependent on the data object.

To obtain this information, generate an Impact Analysis Report, which provides a“Where
Used” analysis of the data object. Thisanalysisincludes information about data objects related
to the selected data object, attributes dependent on a data object for use as a coded values ligt,
guery objectsthat include attributes from the sel ected data object, and applications that display
data from the selected data object. Review this report to determine the other objects that may
be affected by your data object change and then you can determine how to deal with these
effects.

To generate an Impact Analysis Report:

In the Versata Logic Studio Explorer, right-click a data object and choose Impact Analysis
Report.

The report process checks all data objects, query objects, and applications in the repository,
displaying a Data Object Dependency Log when the processis complete.

Data Object Dependency Log

When you run an Impact Analysis Report to determine possible consequences of changesto a
data object, the Data Object Dependency Log is created. It appears on your desktop and alsois
saved as

<repository_directory>\<repository>_JavaFi | es\ Conponent s\ <dat a_obj ect
>. Log. You can open the saved file in Notepad.



WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS

Thislog lists the following:
= Dataobjects that are related to the selected data object
= Name of each data object
= Type of relationship
= Query objects that include attributes from the selected data object
= Name of each query object
= Application forms/pages that use query object as RecordSource
= Name of application
= Name of form/page
= Application forms/pages that use data object as RecordSource
= Name of application
= Name of form/page

If you decide to make changesto the dataobject, it isagood ideato review the objectslisted in
this report to determine whether changes are necessary.

Setting properties for data objects

You can set properties for repository data objects on the Properties tab of the Transaction
Logic Designer.
To set properties for a data object:

1. Inthe Versata Logic Studio Explorer, double-click the data object to open it in the
Transaction Logic Designer.

2. Click the Propertiestab of the Transaction Logic Designer.
3. Click the appropriate subtab and complete fiel ds as necessary, then save.

89



WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS

Properties tab of the Transaction Logic Designer

The Properties tab has six tabs to define data object presentation properties and other data
object characteristics.

Buszinezs Rules Dezigner - CUSTOMERS Ed

Aftributes I Eelatiunshipsl Congtraints I Actions  Pr

Data.&ccessl F'resentatiunl Natesl Coded Yalues Listl Keys:'lnde:-:esl Extendedl

— D4 Connectar
501 [T Quaoted Deployment
£ Custom
Lock Mode |4l Applicable Attributes R
— SuperClazs

Hame ICorpFl euzeE #tRulesD ataObject

— Deployment

™ Deploy &tribute Security D ata
™ Deploy & an EJB Entity Bean

Figure 3 Transaction Logic Designer Propertiestab

90



WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS

Data Access tab

The Data Access tab on the Properties tab in the Transaction Logic Designer alows you to
specify the type of data source that the selected data object represents. By default, a data object
represents arelational database table, uses SQL data access, and is a subclass of the

ver sat a. vl s. Dat aCbj ect superclass.

If data objects contain data from sources other than relational database tables, you need to add
custom Connectors to the repository. Once you have added these Connectors, you should
select the Custom option on thistab, click the browse button and select the new one from the
Choose XDA Connector dialog.

If you want a group of data objects to have additional methods that are not defined in the
Dat abj ect superclass, you can create a subclass of Dat aQbj ect , define new methods for
this class and enter this new class as the superclass for the data object.

For a data object that uses a standard Versata Connector, the Quoted Deployment check box
indicates whether the object has been deployed to a database server with quoted identifiers.
This check box is hot editable here; its value gets set by Server Manager deployment choices.
For information about deploying with quoted identifiers, see “ Generating quoted identifiers’
on page 139.

Thistab allows you to indicate alock mode that determines the level of optimistic locking for
the object. You can specify whether to compare values for all applicable attributesin the data
object; compare the attributes changed by the current update action; or perform no optimistic
locking. For more information about this property, see “Data type mapping between the
Versata Logic Suite and RDBMSs’ on page 40.

Also on thistab, you can set the data object’s deployment properties for the Versata Logic
Server. You can indicate the following:

= Whether to enable attribute level security management for the data object. When you
enable this option, additional information must be deployed to the Versata Logic Server, so
deployment is slower and application performance can be slower. If you do not enable this
option, you will need to assign permissions for the data object as awhole, rather than being
ableto assign different permissions for different attributes.

= Whether to implement the data object as an EJB. When you enabl e this option, the data
object definition is deployed to the Versata Logic Server and IBM WebSphere Application
Server as an entity Bean, so it is remotely available to any applications that can
communicate with EJBs. If you do not enable this option, the data object definition is
deployed as a Java class only. Deployment as an EJB requires more time than deployment
asaJavaclass.

91



WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS

92

Presentation tab

Note: Thistabisnot availableif you have not purchased presentation design capabilities with
the Versata L ogic Suite.

The Presentation tab allows you to override system-supplied defaults by specifying
customized singular and plural captions for the selected data object. These captions appear on
generated forms or pages where the data object is used as a RecordSource.

Thistab also enables you to associate an image with the selected data object. Thisimage
appears on generated command buttons on the StartupForm/Page for transitions to aform or
page based on this RecordSource. Note that to delete an image reference, you must select its
name in the text box and press BACKSPACE or DELETE.

Notes tab

The Notestab allows you to record a description and comments about the selected data object.
Thisinformation is especially useful in ateam development environment.

Coded Values List tab

The Coded Values List tab allows you to indicate that the selected data object should be used
asacoded valueslist. To do so, enable Use this Data Object as a Coded Values List. A coded
valueslist isatable of values used to restrict valid values for attributes.

After you enable this option, the Coded Values List Attributes dial og appears. Use this dialog
to specify an attribute to provide stored values (the values stored in a database) and an attribute
to provide display values (the values shown in controls or elementsin applications) for a
coded values list.

Values from the stored value attribute are stored in the database to represent values from the
displayed value attribute. Values from the displayed value attribute are displayed in the
generated application as potential values for attributesin any data object that has a validation
rule referencing this coded values list.

»n  Select an attribute from the Attributes list and click an unfold button to enter the attribute
in the Stored Value Attribute field.

= Select an attribute from the Attributes list and click an unfold button to enter the attribute
in the Display Value Attribute field.

= When you have populated both fields, click the OK button. The selected attributes appear
on the Coded Values List tab.

= You can modify these values by clicking the browse button to reopen the Coded Values
List Attributes dialog.

After you have specified stored value and display value attributes, atable appears where you
can enter valid values for attributes.



WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS

» Toenter avalid value for an attribute, place the cursor in one of its fields and type the
value.

= Tomodify avalue for an attribute record, select it and type a new value.
= To add an attribute to the coded values list, click Add Column.

= Torename an attribute, select it in the table and click Rename Column.
»  Todelete an attribute, select it in the table and click Delete Column.

For more information about coded values lists, see “Working with coded valueslists’ on page
95.

Keys/Indexes tab

The Keys/Indexes tab allows you to review information about indexes defined for the data
object, modify these indexes, add indexes, and delete indexes. For information about working
with keys and indexes, see page 117.

Extended tab

The Extended tab allows you to add data object properties other than those explicitly specified
in the Versata Logic Studio. Extended properties are useful in cases where you plan to add
custom Java code to a data object. Code for these extended propertiesis generated in the data
object’s Javaimplementation file. For each extended property, astatic string variableis created
inside the data object’s constructor code.

The data object’s extended properties perform asimilar function to the extended properties for
controls on application forms or pages: the properties provide additional behavior to data
objects. You can add Java code to a data object that refersto the value for an extended property
variable, where each different value causes different behavior in run time. Examples of
variables that could be defined as extended propertiesinclude: an initialization variable for a
class called by the data object, or the name of a DB2 database server.

To add an extended property, click the Add button and complete the dialog. Then, enter a
property value in the grid.

To delete an extended pProperty, place the cursor in the grid row for the property and click the
Delete button.

For information about the Java files that the Versata L ogic Studio generates for data objects,
see “Understanding Business Object Files’ on page 285. For information about customizing
code in data object files, see “ Extending Business Object Code” on page 321.

93



WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS

94

Setting optimistic locking for data objects

The Versata Logic Suite provides support for optimistic locking-based concurrency control to
prevent users from overwriting each other’s changes when they update the same data. You can
configure the type of locking so that you can achieve the right balance between maintaining
dataintegrity without sacrificing performance. By default, the system retrieves data and
displaysit to the end user of the application without locks. When the end user updates the
application by committing changes using the save action, the optimistic locking mechanismis
invoked.

On the Properties: Data Access tab, you can choose an option from the Lock Mode drop-down
list to determine the level of optimistic locking to be provided for adata object. The following
options are available:

= All Applicable Attributes. All attributes that are updateable by users and easily compared
(non-float datatypes) are included in the Wher e clause. Thisis the default setting.

= Changed Attributes. Any attributes that have been modified in the current update action
areincluded inthe Wher e clause.

= No Optimistic L ocking. No optimistic locking is provided for updates.

This flexible optimistic locking mechanism uses aWer e clause in the internal update
statement that is executed when a user saves an update to one or more rows of datain the data
object to determine whether the update should be completed. The attributes in this Wher e
clause are compared to the matching attributes in the database to determine if another user has
modified the data. This mechanism avoids the placement of explicit locks on any datathat is
read. If another user has modified the datain the Wher e clause, the update fails and an error is
returned.

You can further customize the optimistic locking mechanism to include or exclude individual
attributes in the Wher e clause. You can write custom code using thei nOpt Lock methods of
thever sat a. conmon. VSMet aCol umm class.

Applicable attributes for optimistic locking are defined as all attributes that users can change
and that can be compared easily. This definition excludes derived attributes and attributes with
afloat datatype.

Note: For applications running against DB2 Univeral Database, the Versata Logic Suite
attaches alock to every auto-generated query issued to the DB2 database within a
transaction. Thislock prevents the current session from reading any uncommitted
changes caused by other sessions.

For applications running against Oracle, if adata object contains an attribute of data
type Time, no attribute on that data object can be updated. To work around this
problem, do not include the Time attribute for optimistic locking. The Time datatypeis
supported only for DB2.

You can set additional transaction isolation levels and optimistic locking properties on
data serversin the VLS Console. For information, see the Administrator Guide.



WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS

Enabling resynchronization with a persistent data source

The extended property, r ef r eshAf t er Updat e, indicates whether or not to resynchronize
data between a business object and its persistent data source after a transaction is committed. If
this property is set, it overrides the default values for business objects. The possible values are
true andf al se. By default, data objects are specified asf al se. To override thisdefault, you
can add the extended property to a query object and set itsvalueto t r ue.

To enable resynchronization of a data object with its persistent data source:

1. Inthe Versata Logic Studio Explorer, double-click the data object to open it in the
Transaction Logic Designer.

2. Click the Properties tab, then the Extended tab.
3. Onthe Extended tab, click the Add button.

4. Inthedialog that appears, enter r ef r eshAf t er Updat e and click OK. Thisentry appears
in the Property Name column of the extended properties table.

5. Inthe Property Value column of the table, enter f al se.
6. Click the Save toolbar button.

Working with coded values lists

Coded values lists are data objects containing lookup values that can be used to validate user
entries. Almost any set of finite and relatively permanent datais appropriate for acoded values
list. For example, U.S. state abbreviations, credit limit categories, and payment methods are
typical uses of coded valueslists.

Coded values lists consist of pairs of corresponding values. Each pair has a stored value and a
display value. The stored values are stored on the database server; the display values are shown
in acombo box to the user. When the user runs the application, he or she selects adisplay
value, and then the corresponding stored value is written into the row and validated on the
database server.

We recommend that you use all capital letters for the names of coded values lists and prefix
each name with VALID _, asin the sample repository. To use a coded values list, define a
validation rule with it in the Transaction Logic Designer.

You can use a data object both as a RecordSource in run-time applications and as a coded
values list. Attributesin an existing data object may be used as a coded values list without
interfering with the attributes’ primary usein the data object. In this case, Versata Logic Studio
generates code that checks attributes to maintain referential integrity as well as code that
checks the attributes to validate against the coded values list data.

95



WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS

96

Coded values list values are stored in a.. csv file with the same name as the data object. You
can enter and modify valuesin the Versata L ogic Studio or in another program. To deploy
coded values list values to the database when you deploy a data model, be sure to enable the
transfer of test data for these objects.

Note: If you make changesto coded values lists, you should use the Rebuild All command to
register the changes in applications that display coded values list values.

Defining a coded values list

You can specify that an existing data object should be used as a coded valueslist on its
Properties:Coded Values list tab. You also can enter valid attribute val ues on this tab. For
information, see “ Coded Values List tab” on page 92.

To designate a data object as a coded values list:

1. Double-click the data object in the Versata Logic Studio Explorer. The Transaction Logic
Designer opens.

2. Select the Properties:Coded Values List tab.

3. Enablethe Use this Data Object as a Coded Values List option. The Coded Values List
Attributes dialog opens.

4. Select the attribute whose values will serve as the coded values list's stored values and
click the > button to copy it to the Stored Value Attribute text box.

5. Select the attribute whose values will serve as the coded values list’s display values and
click the > button to copy it to the Display Value Attribute text box.

6. Click the OK button to close the dialog.

7. If desired, enter or modify valid values for attributes. Also, you can add, rename, and
delete attributes as necessary by using the tab’s command buttons.

8. Choose File > Save Transaction Logic.

Caching coded values lists

It isimportant to note that all coded values are cached in the Versata Logic Server. This
improves performance because starting a new instance of the application does not require
requerying the database. Any business objects that are based on coded values will
automatically flush the cache when they get updated. In addition, once the coded valueslist is
cached on aparticular Versata Logic Server, al clients using that Versata L ogic Server will
share the cache. You can determine whether a coded values list isin the cache by checking in
the VLSout . | og file.



WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS

In arunning client application, coded values are cached in the client as well, and these values
are not automatically updated unless you stop and restart the application. In a situation where
you want to update a running application with new coded values, use the following API to

refresh the client cache from the server:

VSMet aManager . r ef reshCodeTabl e( <coded_val ues_| i st _nanme>)

97



WORKING WITH DATA OBJECTS
WORKING WITH ATTRIBUTES

Working with attributes

98

When you build adata model in the Versata L ogic Studio, you create a data object to represent
each data source for which you need to store records in the database. For each data object, you
create attributes to represent characteristics for which you need to store valuesin the database.

Define data object attributes as completely as possible before you convert your datamodel to a
Versata Logic Suite repository, but as you define declarative business rules and applications,
you may discover that you need to make some changes. If you have already opened the data
model in the Versata Logic Studio, use the Transaction Logic Designer to add, delete, or
rename the attributes of data objectsin your data model.

The attribute information from the Versata Logic Studio isincluded in each dataobject’s . xni
file. For more information about Versata Logic Suite. xm files, see the Reference Guide.

Note: If you need to make changes to the attributes included in query objects, use the Query
Object Designer. You can include attributes that exist in an underlying data object or
define formulas for computed attributes to be in the query object. For information, see
“Adding query objects’ on page 152.

Before you add or make changes to attributes, review “Naming conventions for data
objects and attributes’ on page 38.

If multiple data objects need to share the same attributes, these attributes can be
inherited from attribute templates. For information, see “Working with attribute
templates’ on page 73.

Attributes and declarative business rules

The Versata L ogic Suite’s declarative business rules allow you to define transaction logic for
changes to attribute values, so that when a user changes one attribute’s value, the values of all
related attributes are recal culated automatically. You can use derivation rules to calculate the
values of related attributes across multiple data objects.

= Sum and count rules calculate the values of parent data object attributes based on the
values of child data object attributes.

= Formularules calculate the values of attributes based on the values of other attributesin
the same data object.

» Parent replicate rules calcul ate the values of child data object attributes based on the values
of parent data object attributes.

For more information about derivation rules, see “ Types of business rules’ on page 189.

Asyou define rules, you may need to create new attributes to store cal culations that can be
used to calculate the value of other related attributes. These newly created attributes may store
information that is already stored in other attributes el sewhere in the data model, and
information that users will never need to see. In these cases, you can create virtual attributes.



WORKING WITH DATA OBJECTS
WORKING WITH ATTRIBUTES

The system calculates values for virtual attributes only when these values are required to
determine the values of other attributes, storing the values temporarily in cache, but not saving
them to the physical database. Virtual attributes allow you to take advantage of derivation rules
without denormalizing your data model or storing unnecessary data. For more information
about virtual attributes, see “Virtual attributes’ on page 104.

Attributes tab of the Transaction Logic Designer

You can add, delete, or modify attributes for data objects on the Attributes tab of the
Transaction Logic Designer. You also can define derivation, validation, and presentation rules
for attributes on this tab. For information about these rules, see page 189.

@5 Business Rules Designer - CUSTOMERS =

Attributes | Belatinnshipsl Eunstraintsl .ﬁ.ctinﬂsl Properties

M ame Derivation Walidation ﬂ
Marne Required _
ActB alance SumlhazOrders [ORDERS] OrderTotal]  Prewent Uzer Update
TatalS ales SumlhazOrders [ORDERS] OrderTotal]  Prewent Uzer Update
SumdutoBucksE SumlhasOrders Fresent User Update
SumdutoBucksl SumlhasOrders Fresent User Update
CuztMum Required, Prevent User Update j
v

| Walidation # Data Type | F'resentgtiu:un| Motes | Extended

Derivation Type |N|:|ne j [W | Persistent

Figure 4 BRD Attributestab

99



WORKING WITH DATA OBJECTS
WORKING WITH ATTRIBUTES

100

The Attributes tab of the Transaction Logic Designer has aread-only grid of all the attributes
in the selected data object, with their attribute-level rule information. Rules are not input
directly into the grid. Thistab also contains a tab control with tabs for each type of attribute-
level rule, aswell as atab where you can enter notes about the attribute.

When the Attributes tab is selected, the Add Attribute, Delete Attribute, and Rename Attribute
options are available from the Edit menu, and buttons on the main toolbar become enabled for
Add Attribute and Delete Attribute. Choosing Add Attribute opens the Add Attribute dialog.
Choosing Rename Attribute opens the Rename Attribute dialog.

The Extended tab allows you to add attribute properties other than those explicitly specifiedin
the Versata Logic Studio. Extended properties are useful in cases where you plan to add
custom Java code for an attribute. Code for these extended properties is generated in the
attribute data object’s Javaimplementation file. For each extended property, a static string
variableiscreated. To add an extended property, click the Add button and compl ete the dial og.
Then, enter a property value in the grid. To delete an extended property, place the cursor inthe
grid row for the property and click the Delete button.

Add Attribute dialog

To add an attribute, complete the following fields in this dial og:
= Name. Observe the following conventions.

= The attribute name can be up to 64 characters and can include a phanumerics and
underscores.

m  Thefirst 19 characters are used for code generation so these should be unique.

= Spaces are permitted in attribute names, but not recommended. If your attribute names
have spaces, you must use quoted identifiers when you deploy to the server, and many
third party tools do not work with quoted identifiers.

= Type. Choose from the following data types.
s Text
= Memo
= Number
= Date/Time
= Yes/No
= Currency
= LongBinary
= AutoNumber

» Size Thisfield appears only if you select a Text data type. Enter the number of characters
permitted for the attribute value in the Size field. Up to 255 characters are permitted.



WORKING WITH DATA OBJECTS
WORKING WITH ATTRIBUTES

m  Sub Type. Thisfield appearsif you select a Text, Number, or Date/Time data type. Choices
vary according to which type you selected.

If you selected a Text data type, choices are:

» Variablelength (the default)

= Fixedlength

If you selected a Number data type, choices are:
= Byte

= Integer

= Long Integer

= Double

s Single

= Decimd

If you select Decimal, you need to enter a precision and ascale. Precision isthe
total number of digits stored for an attribute. Scale is the total number of decimal
places stored for an attribute.

If you selected a Date/Time data type, choices are:
» Date and Time (the default)

= Date

n Time

Note: For attributes with formularules, datatype, subtype, and length information is not used,

except to determine the archetype for presentation formatting.

Note about binary data types

Currently, the Transaction Logic Designer does not support binary data types other than
LongBinary. By default, values for attributes of this data type are not retrieved at run time
during query execution, due to performance optimization. To work around thisissue, do the
following:

» Inthebef or eQuery event for the data object containing a binary attribute, add the
following code:

query. set Col umPr oj ecti onLevel ( Dat aConst . ALLTYPES) ;

This code enables queries of all binary data types, including binary, varbinary, and
longvarbinary.

101



WORKING WITH DATA OBJECTS
WORKING WITH ATTRIBUTES

102

In addition, you may need change the following linesin the
<instal |l _directory\Runti neJava\ Archet ypes
\ j avaMet aQuer yCol ummCt or Ar chet ype. t pl file:

<<if val ue(VSVBCol umm! Dat aType) = "LongBi nary">>
¢ = new VSMet aCol um( " <<Nane>>",
Dat aConst . LONGVARBI NARY) ;

You need to change Dat aConst . LONGVARBI NARY to Dat aConst . VARBI NARY or
Dat aConst . Bl NARY to map to the corresponding data type in the database.

Adding attributes to data objects

To add an attribute to a data object:

1.

5.

In the Versata Logic Studio Explorer, expand the Business Objects and Data Objects
folders, then select the data object to which you want to add an attribute.

Choose Edit > Add Attribute or click the Add Attribute toolbar button. The Transaction
Logic Designer and Add Attribute dialog open.

In the Add Attribute dialog, enter a name for the attribute. From the Type drop-down list
box, choose a data type. For a Text attribute, enter asize. For a Text, Number, or Date/
Time attribute, select a sub-type. Click the OK button.

In the Transaction Logic Designer, define derivation, validation, and/or presentation rules
for the attribute. For information, see “Understanding the Transaction Logic Designer” on
page 220.

Choose File > Save Transaction Logic.

Note: If you are adding a derived attribute to store calculations used in rules processing but

you do not want to physically store the attribute in the data model, you can disable the
Persistent option on the Derivations tab of the Transaction Logic Designer.

If you are adding an Autonumber type attribute, be sure to enable the Prevent User
Updates check box on the Validation/Data Type tab.

Also, indexed attributes that you plan to deploy to an Informix database must have a
length (size) of lessthan 255. You cannot deploy to Informix if any attributes have
indexed attributes greater than or equal to 255.



WORKING WITH DATA OBJECTS
WORKING WITH ATTRIBUTES

Deleting attributes from data objects

To delete an attribute from a data object:

1. Inthe Versata Logic Studio Explorer, expand the Business Objects fol der, the Data Objects
folders, and the data object where you want to delete an attribute. Select the attribute you
want to delete.

2. Choose Edit = Delete Attribute, click the Delete Attribute toolbar button, or right-click the
attribute and choose Delete Attribute. The Transaction Logic Designer opens and a dialog
appears asking you to confirm the deletion.

3. Click the Yes button.

Note: You cannot delete an attribute that is used in arelationship unless you delete the
relationship first.

Renaming attributes

To rename an attribute:

1. Inthe Versata Logic Studio Explorer, expand the Business Objects folder, the Data Objects
folder, and the data object where you want to rename an attribute. Select the attribute to
rename.

2. Choose Edit > Rename Attribute, click the Rename Attribute toolbar button, or right-click
the attribute and choose Rename Attribute. The Transaction Logic Designer opens.

3. If the attribute is used in arelationship, a dialog appears informing you that you cannot
rename the attribute. Click the OK button.

4. If the attribute is not used in arelationship, a dialog appears asking you to confirm the
renaming. Click the Yes button.

5. In the Rename Attribute dialog, enter a new name and click the OK button.

Note: When you rename an attribute, references to the attribute in applications, constraints,
and query objects may not be updated. You may need to update these references
manually.

Changing an attribute's data type

Use the Transaction Logic Designer to change the data type for an attribute.

For information about data type mappings between Versata L ogic Suite and supported
RDBMSs, see page 40.

103



WORKING WITH DATA OBJECTS
WORKING WITH ATTRIBUTES

104

To change an attribute’s data type:

1. Double-click a data object in the Versata Logic Studio Explorer to open the Transaction
Logic Designer.

2. Click the Attributes: Validation / Data Type tab.

3. Select the attribute.

4. Select anew datatype from the Data Type drop-down list. For a Text data type, enter the
number of characters permitted. For a Text, Number, or Date/Time datatype, select the sub
type.

5. Choose File > Save Transaction Logic.

6. You may want to change the presentation format for the attribute, to fit with the new data

type. You can do this on the Attributes:Presentation tab of the Transaction Logic Designer
For information, see “Presentation tab” on page 225.

Note: If you attempt to alter the presentation format after changing from a Data Time data
type and before saving the change, format choices are not correct. Save the data type
change, then retry.

Virtual attributes

Virtual attributes are available in al Versata L ogic Studio designers and can be placed on
application forms or pages, but they are not deployed to the database server. You can project
virtual attributes into query objects. Virtual attributes may be referenced by namein rules,
including derivations, constraints, and action rules. Virtual attributes also may be used in
Wher e clauses for other derived attributes.

When you design your data model, you need to make decisions about which attributes should
be stored and which should be virtual. You need to be conscious of the balance between the
benefits of virtual attributes and the performance impact of in-memory cal culations performed
to obtain virtual attributes’ values. Your data model should have a mix of stored and virtual
derived attributes.

To define an attribute as virtual, you must define a derivation rule for it, then you must disable
the Persistent option on the Derivations tab of the Transaction Logic Designer.

Virtual attributes are recommended for the following:

s Most attributes with formularules.

= Parent replicates of stored attributes.

» Other derived attributes that are not displayed on application forms or pages.
There are four absol ute restrictions on the use of virtual attributes:

» Virtual attributes may not be used as primary or foreign keys.

= Attributes that are unmaintained replicates may not be virtual.



WORKING WITH DATA OBJECTS
WORKING WITH ATTRIBUTES

» Attributes with default rules may not be virtual.
= No: ol dvalueisavailablefor virtual attributes.
In addition to the above restrictions, observe the following limitations:

= Do not use virtual attributes as search criteria on aform or page that uses the Grid Select
RecordSource archetype.

= You cannot sort on avirtua attribute in agrid.
= You cannot apply functionsto virtua attributes.

Because avirtual attribute is not stored, it is comparable to afunction. So as you are designing
rules and determining whether attributes used in rule calculations should be stored or virtual,
you should keep in mind where it is appropriate to reference afunctionin rules. You can apply
similar principles to determining where to use virtual attributes.

A virtual attribute will need to be recalculated each timeit is used, and this recal culation can
slow performance in certain cases. Consider the following factors:

= Whether the derivation of the attribute is complex.

= Whether the derivation of the attribute requires the calculation of one or more virtual
attributes.

s Whether the attribute is used in many other rules.

= How frequently the value of the attribute must be recal cul ated.

»  Whether the attribute is displayed on application forms or pages, particularly in grids.
= Whether other rules require access to the previous value of the attribute.

If the derivation of an attribute is complex or already involves the input of one or more virtual
attributes, it is probably best to store the attribute, to avoid the time necessary for repeated
recalculations. Also, if the attribute needs to be recal cul ated frequently, either to serve asinput
for other rules, or to be displayed on forms or pages, it may be best to storeiit, particularly if
the attribute is displayed in one or more grids. Conversely, ssmple cal cul ations that do not need
to be performed frequently are good candidates to be virtual attributes.

= Do not create virtual attributes that are sums of other virtual sums. Thisis called cross-
object aggregation and can have severe performance implications.

n [f attributeswill be displayed on forms or pages, do not make them virtual. When you place
data objects or query objects on aform or page, by default the virtual attributesin the
objects are generated on the form or page. To avoid the placement of virtual attributes on
forms or pages, you can create query objects that filter out the virtual attributes in data
objects.

= Avoid using virtual attributes in the Wher e clauses of sums and counts in which the value
of thevirtual attribute must be recal culated for each record in the data object to evaluate the
condition.

= Avoid using virtual attributes that are sums or countsin Wer e clauses or formula
eXpressions.

105



WORKING WITH DATA OBJECTS
WORKING WITH ATTRIBUTES

Example - virtual attributesin sumand count rules

An account balance attribute for a customer, which is used to ensure that the customer does not
exceed its credit limit, is a good example of an attribute which normally should remain
persistent because it needs to be recomputed every time an order is added or modified or paid.
For example, if you write a credit card payment tracking application, you would definitely
want this attribute to be persistent, since the alternative is to review the entire transaction
history.

If you are writing software for a car dealership, however, where there might be an average of
two transactions per customer in a calendar year, making the attribute non-persistent might be
an excellent design choice because the need to recompute it is low. Even then, if the account
balances must be displayed on agrid of customers, then it would be wise to storeiit.

Defining an attribute as virtual

Generally, you define an attribute to be virtual when you define a derivation rule for that
attribute.

To define an attribute as virtual during rules definition:
1. Inthe Versata Logic Studio Explorer, double-click a data object to open the Transaction
Logic Designer.
2. On the Attributes tab of the Transaction Logic Designer, select the attribute in the grid.
3. Select atype of derivation rule from the drop-down list.
4. Enter data object, attribute, and/or expression as appropriate.
5. Click the Persistent check box to remove the check.
For more information about defining derivation rules, see page 232.

Note: Computed attributes in query objects are different from virtua attributes. The values
for computed attribute records are calculated by the database server where the
underlying data object is stored, while the valuesfor virtual attributes are calculated by
the Versata Logic Server. For information about computed attributes, see “ Computed
Attribute Details frame” on page 165.

106



WORKING WITH DATA OBJECTS
WORKING WITH RELATIONSHIPS

Working with relationships

It isagood ideato define relationships as completely as possible before opening a data model
in the Versata Logic Studio. As you define transaction logic and design application user
interfaces, you may discover that you need to make changes to relationships. Sum, count, and
replicate derivation rules are based on rel ationships among data objects. Some archetypes for
display of data on forms/pages and navigations among forms also are based on relationships. If
you have already opened the data model in the Versata Logic Studio, use the Transaction Logic
Designer to add, delete, or change keys for the relationships in your data model.

After definition in the Versata Logic Studio, each relationship’s definition is represented in the
repository asan . xnl file (REL_<dat a_obj ect __nanme><dat a_obj ect __name>. xni ).
The format of thisfile conformsto the Rel at i on. dt d fileincluded with the product, located
inthe product installation directory. The. dt d filelistsall of the nested elements and attributes
that define the characteristics of each relationship. Each relationship. xn file includes values
for these nested elements and attributes. For more information about Versata L ogic Suite . dt d
and . xm files, seethe Reference Guide.

Note: If you need to make changes to the relationships for query objects, use the Query Object
Designer. Relationships for a query object are based on the relationships of its
childmost data object. For information, see page 160.

The Versata Logic Studio incorporates relationship information into the scripts and files it
generates to deploy data objects in locations availabl e to run-time applications. For instance,
when you deploy related data objects to the database server, relationship metadatais deployed
at the same time. Data object Javafiles that are deployed to the Versata Logic Server also
include information about data object relationships.

Types of relationships supported

For the purpose of database server enforcement, the Versata Logic Studio presumes that all
rel ationships are equi-joins. You may choose to define join options other than equi-joins if
your client application requiresiit, but be aware that the relationship rules for these joins will
be enforced as equi-joins on the database server.

If you use outer joins to ensure that child rows with null foreign keys are retrieved by queries,
users will be able to search on blank attributes.

The most common kind of relationship in Versata data models is one-to-many (1:N). For
example, one customer can have many orders, one order can have many order items. Versata
data models also support many-to-many (N:M) relationships. In addition, the Versata L ogic
Suite supports Super/Sub relationships, where a super type of object contains subtypes that
inherit the behavior of the supertype and extend it.

107



WORKING WITH DATA OBJECTS
WORKING WITH RELATIONSHIPS

108

Many-to-many relationships

A many-to-many relationship (N:M) is arelationship where many rows in one data object can
be related to many rowsin another. For example, Parts and Suppliers data objects would
generally have a many-to-many relationship. Many parts may be provided by many suppliers
and many suppliers may provide many parts.

Many-to-many relationships typically are implemented indirectly, through a third data object
called ajunction data object or intersection data object. Both primary data objects have a
direct one-to-many relationship with the junction data object. They do not have adirect, many-
to-many relationship with each other. For example, a PartsSuppliers junction data object
would provide an indirect many-to-many relationship.

Because of thisimplementation, you may want to use query objects to build forms or pages
based on many-to-many relationships.

For example, to build aform or page that displays one supplier and all the partsit sells, start
with aform that displays one supplier from the Suppliers data object. Then define a query
object that joins the Parts data object and the PartsSuppliers junction table. The query object
selects al parts sold by the current supplier.

Add the query object to the form or page. If you simply add the Parts data object, it will
display al parts, not the parts of a selected supplier.

Type hierarchies

In addition to one-to-many and many-to-many relationships, Versata L ogic Suite data models
also support Super/Sub relationships, where a supertype of an object contains subtypes that
inherit the behavior of the supertype and extend it. A Super/Sub relationship, commonly
referred to as atype hierarchy, is not arelationship by the traditional relational definition,
because it does not join two data objects.

Thefollowing is an example of atype hierarchy: the supertype is Employee and the subtypes
are Salaried, Hourly, and Commissioned. A supertype can be concrete or abstract. A concrete
supertype can contain records that are not members of any subtype. For example, if Employee
is concrete, an employee that is neither Salaried, Hourly, nor Commissioned can exist. If
Employeeis abstract, all employees must be one of the subtypes.



WORKING WITH DATA OBJECTS
WORKING WITH RELATIONSHIPS

You can define type hierarchies in your data model in one of the following ways:

= Sorewith Super. All dataremain in one data object. A type attribute identifies the subtype
of each row. For example, the data model could include an Employees data object with a
Type attribute, containing avalue of Sfor salaried employees, H for hourly employees, and
C for commissioned employees. By definition, some of the other attributes in the row
would be NULL. For example, the salary attribute would be NULL for hourly employees
because they receive wages, while the HourlyWage attribute would be NULL for the other
employees, because they receive salaries.

=  SoreAlone. Common data are stored in a supertype data object and the data specific to
each subtype are stored in separate subtype data objects. For example, the data model
contains an Employees data object, and also Salaried, Hourly, and Commissioned data
objects. No attributes are NULL by definition. This way works well for type hierarchies
with concrete supertypes.

m  SoreSeparate. A variation of Store Alone where no supertype data object exists. Separate
subtype data objects duplicate the supertype definition, and also contain type specific
attributes. No attributes are NULL by definition. This way works well for abstract
supertypes.

We generally recommend that you implement type hierarchies in Store with Super data
objects, but guidelines vary according to circumstances.

I mplementing type hierarchies

The generally recommended way to implement type hierarchiesin Versata data modelsis Store
with Super. In most cases, Store with Super produces the simplest and best performing design.
For example, the sample database includes an EMPLOY EES data object with an EmpType
attribute. In this example, an EMPLOY EE is an abstract supertype.

If you use Store Alone rather than Store with Super, you could not easily refer to attributesin
the supertype data object except through replication. You would need to create foreign keys
that point to multiple data objects, and reused foreign keys can cause errors. Also, form or
page generation is more complicated, because you might need to place multiple data objects
instead of one on aform or page. Further, using Store Alone requires the join input/output
required for dataretrieval.

109



WORKING WITH DATA OBJECTS
WORKING WITH RELATIONSHIPS

In the following circumstances, you may need to use Store Alone:

= |f you want to use indexes to enforce the uniqueness of an attribute that is null for some
subtypes. A workaround isto use event code to enforce uniqueness and use Store with
Super.

» |f your data source has limits on the number of attributes you can define in arow or the
total number of bytesarow can contain. In this case, Store with Super can cause your
design to exceed these limits.

= |f the supertypeis abstract and has few attributes or relationships and you rarely need to
display subtypes together on forms or pages. In this case, you could use the Store Separate
way to create separate data objects for the subtypes, duplicating the few supertype
attributes and relationships in each subtype data object.

Guidelines for Sore with SQuper type hierarchies

Review the following guidelines before you implement atype hierarchy as Store with Super in
a Versata datamodel. The Versata Logic Suite sample repository contains a Store with Super
type hierarchy in the EMPLOY EES data object.

= Define atypeindicator attribute for the supertype data object. Typically you should limit
the values for this attribute to those in a Coded Values List. For instructions, see “ Defining
acoded values list validation rule” on page 234.

» Define subtype specific attributes to allow NULL values. If you want to make an attribute
required for one subtype, define a constraint rule.

= Toenforce arelationship that is specific to a subtype, define arelationship to the supertype
data object, and define areplicate or a sum to limit the relationship to records with the
appropriate subtype. You can replicate the type indicator attribute in the related child data
object, and add a constraint to this data object that rejects inapplicable types.

» To enforce aconstraint that is specific to a subtype, include a check of the type indicator
attribute in the constraint definition.

110



WORKING WITH DATA OBJECTS
WORKING WITH RELATIONSHIPS

Relationships tab of Transaction Logic Designer

You can add, delete, or modify relationships between data objects on the Rel ationships tab of
the Transaction Logic Designer. You also can define referential integrity rules and

rel ationship-level presentation properties on this tab. For information about these rules, see
page 197 and page 194.

Buzine:s Hules Dezigner - LU IUMEES

Gota Belated |

= Felatiorehps ta Child Data Objects
+ aa:0-derz [CRDERS]

4 Uz=rs [CUSTOMER_USER|
= FRelatiorehips to Parent Data Objects
9p CodeT dbleCiedit fALID_CREDIT]

Referential Integriy | Presentation| Estendsd

[ Enlorce Referential [ntegnty

O Parent Update O Parent Delete O Child Inzen/ pdale
i Pievent If Childran i Prevent || Children

i* Lpdate Children i Delete Childen
" Mull Childen Foreign Eey

* PreventIf Ho Parent

(" Inzert Parent |f Mane

Errar Mezzages Whik Prevenbng

Inzest Al pdate Child |N ot awalid Cusgloms

Chid Ralke |hag-]:||'da'g Parert Role |pla-:;acE_l.I|:ust|:-rrer
Mame Marme

Figure 5 Transaction Logic Designer Relationshipstab

111



WORKING WITH DATA OBJECTS
WORKING WITH RELATIONSHIPS

112

When the Relationshipstab is selected, Add Relationship, Modify Relationship, and Delete
Relationship are available from the Edit menu and from the right-click menu for the
relationships outline.

The relationships outline lists the parent and child relationships for the selected data object,
and lists the primary and foreign keys for each relationship. Click the + sign next to a
relationship to view its key(s). Select arelationship from this outline to modify it.

The Extended tab allows you to add relationship properties other than those explicitly
specified in the Versata L ogic Studio. Extended properties are useful in cases where you plan
to add custom Java code for arelationship. Code for these extended propertiesis generated in
the related data objects’ Javaimplementation files. For each extended property, a static string
variableiscreated. To add an extended property, click the Add button and compl ete the dial og.
Then, enter a property value in the grid. To delete an extended property, place the cursor inthe
grid row for the property and click the Delete button.

Note: All changes to relationships are saved immediately, so there is no need to explicitly
save these changes.
The childmost data object is not updated automatically when the relationship between
underlying data objects changes. After such a change, review the childmost data object
for any affected query objects and modify it as necessary.

A relationship is deleted automatically if both the parent and child data objects are
deleted.



WORKING WITH DATA OBJECTS
WORKING WITH RELATIONSHIPS

Relationship Editor

The Relationship Editor appears when you select a relationship and choose Edit > Modify
Relationship, and after you complete the Create Relationship dialog when adding a
rel ationship.

Relationzhip Editor
— Key Pairz

CUSTOMERS OFDERS
| Custhum (LONG) = || Busthum

k. Cancel

Figure 6 Relationship Editor

In the Relationship Editor, you can make the following changes:

m To change keysin an existing key pair, select attributes from the drop-down lists for data
objects.

= Toadd akey pair, click the Add button and select attributes from the drop-down lists.

m Todelete akey pair, select apair and click the Delete button.

Click the OK button to confirm the changes and close the Relationship Editor.

Adding relationships

You can add parent and child relationships for a data object.

113



WORKING WITH DATA OBJECTS
WORKING WITH RELATIONSHIPS

114

To add a relationship for a data object:

1.

6.

In the Versata L ogic Studio Explorer, expand the Business Objects folder, the Data Objects
folder, and double-click the data object where you want to add a relationship. The
Transaction Logic Designer opens.

In the Transaction Logic Designer, click the Relationships tab and choose Edit->Add
Relationship.

In the Create Relationship dialog, select an option button for Parent or Child relationship.
In the Related Data Object list box, select the other data object for the relationship. Click
the OK button.

In the Relationship Editor, click the Add button. From the drop-down lists, select akey
attribute for each data object. Repeat to add more key pairs as desired. Click the OK
button.

On the Relationshipstab, enter referential integrity rules and presentation rules for the new
relationship.

Choose File> Save Transaction Logic.

Note: If you have chosen to enforcereferential integrity, the datatypesfor each key pair must

beidentical. If the data type is Number with a Size of Decimal, then Precision and
Scale al'so must match. The following data types are not supported for keys: Yes/No,
Memo, and LongBinary.

You may encounter errors if one key has a Text data type with fixed length sub-type,
and the other key has a Text data type with variable length sub-type.

You may encounter data type mismatch errorsif you attempt to create arelationship
between a reengineered data object and a data object imported with Repository
Exchange Manager, as a result of data type remapping that occurs during deployment
and reengineering. For example, a Currency attribute that is deployed to DB2 is
mapped to Decimal, then reengineered as Decimal.

Adding a relationship from XML

You can directly import an object created outside of the Versata Logic Suite as arelationship,
if it can berepresented inan. xm file. The. xnl file for the external object must conform to
theRel ati on. dt d file. For information about thisfile, see the Reference Guide.

To add a relationship from XML:

1.

Review the Rel at i on. dt d and the. xm file for the external object, to ensure that the
.xm file contains all valuesfor all elements and attributes required by the .dtd.

Revisethe . xm file as necessary to conformto the. dt d. If the. xnl file includes
elements not contained in the . dt d, you can make them into Hidden Property elements so
they can be maintained inthe . xm  file for the relationship.



3.

4.

WORKING WITH DATA OBJECTS
WORKING WITH RELATIONSHIPS

In the Objects view of the Versata L ogic Studio Explorer, right-click the Business Logic
folder, or one of its subgroup folders, and choose Add Existing.

In the dialog that appears, select the. xm  file to be added as a relationship.

Deleting relationships

To delete a relationship for a data object:

1.

3.

In the Versata L ogic Studio Explorer, expand the Business Objects folder, the Data Objects
folder, and double-click the data object where you want to delete arelationship. The
Transaction Logic Designer opens.

In the Transaction Logic Designer, click the Relationships tab and choose Edit—-> Delete
Relationship.

In the Action Choice dialog, click the Yes button to confirm the deletion.

Note: To delete an attribute that is used in arelationship, you must delete the relationship first.

Changing keys for relationships

You can modify arelationship between data objects by changing the attributes used as keysfor
the relationship.

For information about primary keys, see page 117.

To change keys for a relationship:

1.

In the Versata L ogic Studio Explorer, expand the Business Objects folder, the Data Objects
folder, and double-click the data object where you want to change keys. The Transaction
Logic Designer opens.

In the Transaction Logic Designer, click the Relationships tab and choose Edit—>Modify
Relationship.

In the Relationship Editor, you can change keys:

m To change keysin an existing key pair, select attributes from the drop-down lists for
data objects.

= Toadd akey pair, click the Add button and select attributes from the drop-down list
boxes.

m Todelete akey pair, select apair and click the Delete button.
Click the OK button to confirm the changes and close the Relationship Editor.

115



WORKING WITH DATA OBJECTS
WORKING WITH RELATIONSHIPS

Note: Every relationship must have at least one key pair. Do not delete the last key pair for a
relationship. Create anew key pair first, or delete the relationship instead. If you have

chosen to enforce referential integrity, the data types for each key pair must be
identical. If the data type is Number with a Size of Decimal, then Precision and Scale

also must match. The following data types are not supported for keys: Yes/No, Memo,
and LongBinary.

116



WORKING WITH DATA OBJECTS
WORKING WITH INDEXES AND PRIMARY KEYS

Working with indexes and primary keys

It isagood ideato define data object indexes as completely as possible before you open your
data model in the Versata Logic Studio. As you define declarative business rules, you may
discover that you need to make changes to indexes. If you have already opened the data model
in the Versata L ogic Studio, use the Transaction Logic Designer to add, delete, or make
changesto indexes.

Note: Asof release 5.5, object naming conventions are enforced for index names. However,

invalid index names may exist in repositories created before this rel ease and these
names are not validated when data objects are |oaded into the repository. For
information about naming conventions, see “Naming conventions for data objects and
attributes” on page 38.

Primary keys

The Versata L ogic Suite does not support data objects without primary keys. Such data objects
are treated as "read only" and cannot be updated. For Microsoft SQL Server, the primary key
attributes must be NOT NULL. In addition, observe the following guidelines when defining

keys:

Do not use floating point numbers as primary keys. Using floating point numbers for
primary keys or foreign keys may cause unpredictable results, depending upon the Java
Virtual Machine being used.

Do not define non-unique indexes on primary keys. When you create indexes, do create
them on foreign keys. Note that foreign key indexes are created automatically during the
rel ationship enforcement process.

Do define aprimary key for every data object in the data model. Note that indexes for
primary keys are not defined automatically; you must explicitly define each index.

Do determine the correct datatype for attributes that are keys early in your devel opment
process. You cannot change the datatype of akey inthe Versata L ogic Suite. If you need to
change the data type for an attribute that is a key, you need to drop the key, change the data
type, then recreate the key and itsindex. You also need to review any relationships
involving that key and any rules dependent on those relationships, and recreate them if
necessary.

It may be necessary to review primary key indexes' names and modify them for uniqueness
across a database, particularly if they are likely to be truncated. For information about
Versata's truncation rules, see “Naming conventions for data objects and attributes’ on

page 38.

117



WORKING WITH DATA OBJECTS
WORKING WITH INDEXES AND PRIMARY KEYS

Index Editor

The Index Editor appears when you click the Add or Modify buttons on the Propertiestab, or
the Keys/Indexes tab in the Transaction Logic Designer.

Index Editor |

Index Hame IEityInde:-:

— Properties

[~ Brimary [~ Unique [ lgnare Mulls

— Coluninz

Arvailable Attributes Index Attributes

M amne - City
ActBalance
TatalSales
SuméutoBucksE arned
SumdutoBucksl sed ‘
Cuszthum

CreditCode =l

™| bescending St

k. Cancel

Figure 7 Index Editor

In the Index Editor, you can:
»  Enter aname for the index.
= Indicate whether the index is primary, unique, and/or ignores nulls.

= Indicate how the index will be sorted by selecting one or more attributes in the Available
Attributeslist box and clicking the unfold button to move them to Index Attributeslist box.

= Enable the Descending Sort check box. (By default, the sort is ascending.)
Click the OK button to save the additions or modifications.

Note: All changes to indexes are saved immediately, so there is no need to explicitly save
these changes.

118



WORKING WITH DATA OBJECTS
WORKING WITH INDEXES AND PRIMARY KEYS

If adata object has more than ten indexes, it is not currently possible to modify the data
object’sindexesin the Index Editor. Inthiscase, it is necessary to modify the data
object’'s. xm file directly.

Adding indexes

To add an index to a data object:

1.

o g M wD

8.

In the Versata L ogic Studio Explorer, expand the Business Objects folder, the Data Objects
folder, and double-click the data object where you want to add an index. The Transaction
Logic Designer opens.

In the Transaction Logic Designer, click the Properties tab and the Keys/Indexes tab.
Scroll down in the Transaction Logic Designer window and click the Add button.

In the Index Editor, enter a name for the index.

Indicate whether the index is primary, unique, and ignores nulls.

Indicate how the index will be sorted by selecting one or more attributes in the Available
Attributes list box and clicking the unfold button to move them to Index Attributeslist box.

By default, the sort is ascending. If you would like a descending sort, enable the check box.
Click the OK button.

Note: Indexed attributes that you plan to deploy to an Informix database must have a length

(size) of lessthan 255. You cannot deploy to Informix if any indexed attribute has a
length greater than or equal to 255.

DB2 UDB does not allow the creation of a unique index on a nullable attribute.

Asyou create an index, you may encounter errors with unclear, confusing messages.
These are Versatainternal errors and are not fatal.

Deleting indexes

To delete an index from a data object:

1.

In the Versata L ogic Studio Explorer, expand the Business Objects folder, the Data Objects
folder, and double-click the data object where you want to delete an index. The Transaction
Logic Designer opens.

In the Transaction Logic Designer, click the Properties tab and the Keys/Indexes tab.

Scroll down in the Transaction Logic Designer window, select anindex, and click the
Delete button.

In the Action Choice dialog, verify that you have selected the correct index to delete, then
click the Yes button to continue.

119



WORKING WITH DATA OBJECTS
WORKING WITH INDEXES AND PRIMARY KEYS

120

5.

If theindex is being used to enforce a relationship, you receive a message that it cannot be
deleted. Click the OK button to close the dialog.

Changing index definitions

You can modify an index on adata object by changing its name, changing the attributesit uses
for sorting, changing the type of sort, indicating whether the index should ignore null values,
and indicating whether the index is primary or unique.

To make changes to an index:

1.

In the Versata L ogic Studio Explorer, expand the Business Objects folder, the Data Objects
folder, and double-click the data object where you want to modify an index. The
Transaction Logic Designer opens.

In the Transaction Logic Designer, click the Properties tab and the Keys/Indexes tab.

In the table on the Keys/Indexes tab, double-click an Index record. The Index Editor
opens.

Make changes to the index. You can:
= Enter anew name.
= Enable or disable the Primary, Unique, and Ignore Nulls options.

= Change the attributes the index uses to sort data object records by selecting attributes
and clicking the unfold buttons to move them between the Available Attributes and
Index Attributes lists.

= Indicate that the index should sort records in descending order by selecting an attribute
in the Index Attributes box and enabling the Descending Sort option.

Click the OK button.



Deploying Data
Moddls

121



DEPLOYING DATA MODELS
CHAPTER OVERVIEW

Chapter overview

122

Read this chapter to understand how to compl ete tasks to deploy a data model from the Versata
Logic Studio to a supported RDBMS.

This chapter includes the following:
=»  “Deployment overview” on page 123, describes the deployment process.

= “Setting up asystem DSN” on page 124, explains how to set a data source name for the
RDBMS database(s) where Versata data objects will be deployed.

»  “Deploying adata model to a database server” on page 126, provides step-by-step
instructions for copying Versata data model information to one or more RDBMS
databases. This chapter explains how to deploy directly from the Server Manager wizard,
aswell as how to generate and use deployment scripts.



DEPLOYING DATA MODELS
DEPLOYMENT OVERVIEW

Deployment overview

Deployment is the process of setting up the components of an application so that the
application can be run by users. The files that compose each of the parts must be placed in
locations available to users.

Versata Logic Studio-generated applications are built for athree-tier environment. In this
environment, the data model is deployed to a database server, such as Microsoft SQL
Server™, Oracle®, Sybase®, Informix®, or DB2 UDB.

To deploy your data model, use the Server Manager wizard to install the repository’s data
model and optionally, test data, onto a database server. Also, you can generate script files

instead of deploying to the database server, and then later run the scriptsto install the data
model on the database server.

Generally, you should deploy the datamodel and transfer test data to the database server before
you deploy business objects containing transaction logic to the Versata L ogic Server. You must
deploy the data model and the business objects in order to test an application and review its
user interface.

If you need to retarget your application(s) to run against a different type of database server, the
Versata Logic Studio automates the retargeting process. You can deploy the repository data
model to the other database server, then redeploy transaction logic to the Versata Logic Server.
Also, you can check connection properties for the redeployed data objects in the Versata L ogic
Server Console. Once connection properties are set to the correct database server, you simply
run the application.

The Versata Logic Studio also enables you to deploy individual data objects to different
database servers so that applications can run against multiple data sources simultaneously. For
information about this type of situation, see “Deploying to multiple databases’ on page 142.

Note: This chapter includesinformation about all RDBM Ss supported by the Versata Logic
Suite. Every release of the Versata Logic Suite may not support every RDBMS
discussed in this chapter. For information about the RDBM Ss supported by thisrelease,
see the Getting Sarted Guide.

123



DEPLOYING DATA MODELS
SETTING UP A SYSTEM DSN

Setting up a system DSN

124

Before you can deploy a data model to a database server, you need to set up an ODBC data
source name (DSN) for the database server. The Server Manager uses the DSN to connect to
the database server. Versata Logic Studio-generated applications and the Versata L ogic Server
may also use the DSN for database server connectivity.

A DSN stores information about how to connect to a specified data provider. A user DSN is
visible only to the user who setsit up and can be used only on the current machine. A system
DSN isvisibleto all users on the machine, including Windows NT services.

It isagood ideato give a meaningful name to each DSN. For example, you could set up a
DSN called Sanpl e for the database server where you deploy the Versata L ogic Suite sample
data model.

To set up a system DSN:

O~ 0N e

Choose Start > Settings > Control Panel.

In Windows NT, double-click ODBC.

In the ODBC Data Source Administrator dialog, click the System DSN tab.

On the tab, click the Add button.

In the Create New Data Source dialog, select a supported driver for the type of database
server you are using, then click the Finish button. A dialog for the selected driver appears.

= Microsoft SQL Server or Sybase. Enter a name for the DSN (such as Sanpl e) and
the server name of the server for the data model deployment. The server nameis
usually the name of the machine aswell. Review fields on subsequent tabs. You can
leave the defaultsfor all of them. You may want to specify adefault database other than
master if you want to set up the DSN for that specific database.
m Oracle. Enter aDSN and theser ver name: SQL*Net connect string—for example,
t: dat abase_server:orcl.
s SQL*Net version 1. The SQL*Net connect string has the format:
<prot ocol >: <host nane>: <Oracl e SID>.
m  SQL*Net version 2. The SQL*Net connect string has the format: <nanme of
Oracl e service>.



DEPLOYING DATA MODELS
SETTING UP A SYSTEM DSN

= Informix®. Enter aDSN, the name of the host machine on which the Informix server is
running, the name of the TCP service identifying the port on which the server is
listening (usually turbo, but it can be set differently with the set net 32. exe Utility),
the name of the Informix server as defined with the set net 32. exe utility, and the
name of the protocol type. Also, enable the Insert Cursors option.

= DB2 UDB. You can select an aias for a database from the drop-down list or click the
Add Database button to use a different database as the target of the DSN. If you choose
Add Database, you need to complete the fields in the Add Database Smart Guide. The
Smart Guide allows you to use a database access profile provided by an administrator,
search the network for a database, or manually configure a connection to the database.
On the Smart Guide tabs, you need to select atarget database, enter an alias for the
database, and register the database as an ODBC data source. If you are manually
configuring the connection, you need to enter additional information, including the
communications protocol to be used for the connection and the type of operating
system on the machine where the database server islocated.

6. Click the OK button to create the DSN.

7. After you have completed the dialogs to add the DSN, review the list of DSNs to verify
that anew DSN has been created, and click the OK button.

Note: If the Create New Data Source dialog does not list a supported driver for your database
server, you may need to install anew driver.

125



DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER

Deploying a data model to a database server

126

To deploy a data model to a database server, use the Server Manager part of the Deployment
Manager. For information about Server Manager dialogs and options, see “Working with the
Server Manager” on page 128.

Note: During deployment, you are asked to enter a user name and password for the database

where the data model is to be deployed. If you are deploying to DB2, you may
encounter an issue where you are asked to enter thisinformation for every object. This
problem has not been encountered with DB2 7.1 Fixpack 3 and later.

To deploy a data model to a database server:

1.

Start the Deployment Manager (choose Managers - Deployment Manager, click the
Deployment Manager toolbar button, or press F8).

In the Choose Deployment Target dialog, select Database Server deployment.
Choose the type of database server where the data model will be deployed, and click Next.

Choose whether you would like the Server Manager to automatically select changed
objects for deployment. If thisis your first data model deployment, do not enable this
option. If you have previously deployed the data model, it is a good ideato enable this
option.

» |f you do not enable Auto-Select, click the Next button.

= |f you enable Auto-Select, a dialog appears where you need to confirm this choice,
enter database connection information, and click OK.

Another dialog appears where you need to choose a DSN for the server. You may need
to set up anew DSN. For instructions, see “ Setting up a system DSN” on page 124.
Choose a DSN and click the OK button. A login dialog for the database server may
appear. Enter required information, and click the OK button.

The Server Manager connects to the database server and compares the tables in the
database with the data objects in the repository data model, selecting any repository
data objects that are different.

Note: If aprevious datamodel deployment resulted in problems or was not complete, the

5.

Auto-Select option will not work properly.

If you enabled Auto-Select, review the selected objects for deployment and make changes
asdesired. If you did not enable Auto-Select, move objects that you want to deploy from
the All Objects list box to Selected Objects. Then, click the Next button.

Select the Deploy to the Server option, and click Next. (For information about creating
scripts rather than deploying directly to the server, see “Generating deployment scripts
instead of deploying to server” on page 135.)



10.

11.

12.
13.

14.
15.

DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER

Choose whether to deploy test datato the server. Any repository data object containing data
hasa. csv file. You should transfer test dataif you want to transfer stored and displayed
valuesfor coded values lists.

Choose whether to enforce referential integrity on the database server.

Generally you do not need to enforce referential integrity on the database server. The
Versata Logic Server always enforces referential integrity. In some cases, if you are
expecting direct updates to the database, you may enable this option in order to ensure that
referential integrity is enforced for these direct updates.

Choose whether to grant all permissions to public. In adevelopment environment, you can
enable this option to save time. For more information about this option, see “ Granting
permissions manually” on page 138. Click Next.

Choose whether to drop and recreate the data model on the database server or make
incremental updates to it. The Synchronize option requires that you connect to the database
server. If aconnection is not possible, select the Drop and Recreate option. Click Next.

Choose whether to generate quoted identifiers. For more information about this option, see
“Generating quoted identifiers’ on page 139. Click Next.

Review the choices displayed in the final dialog, and click Finish.

If necessary, select aDSN. You may need to set up a new DSN. For instructions, see
“Setting up a system DSN” on page 124.

If necessary, log on to the database server.

Review the contentsin the Server Deployment Preview dialog and continue the
deployment.

Caution

For deployments to Informix®, the user performing deployment must have connect
and r esour ce permissions. If you plan to synchronize the repository with the existing
database, the user performing deployment also must have dba permission on the
database. In addition, it isagood ideato use the set net 32. exe utility to set the

DELI M DENT environment variable to “y” before you begin your deployment. You
must set this variable if you plan to generate quoted identifiers.

For deploymentsto DB2 UDB, the user performing deployment must have alogin with
no more than eight characters and must have the following DB2 administrator
privileges. connect database, create tables, create schemas implicitly, and database
administrator authority.

Note: If an error is encountered during data model deployment, the Server Manager attempts

toroll back any transactions committed to the database server up to that point.
However, the rollback may not be complete. If the deployment encounters errors, your
best recourse is to fix any problemsin the repository and redeploy with the Drop and
Recreate option.

127



DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER

128

Indexed attributes that you plan to deploy to an Informix database must have alength
(size) of lessthan 255. You cannot deploy to Informix if any attributes have indexed
attributes greater than or equal to 255.

During data model deployment, data objects that are not abstracted from the RDBMS
areignored.

In redeployments to Microsoft SQL Server, changes of attributes’ Value Required
properties may not be reflected accurately. The Server Manager attempts to alter the
table to add anot null constraint, which is different from the behavior that occurs when
acolumn is changed from null to not null in the SQL Server Enterprise Manager.

Working with the Server Manager

Use the Server Manager to deploy the application’s data model to a database server, such as
Microsoft SQL Server, ORACLE, Sybase, Informix, or DB2 Universal Database.

To start the Server Manager, start the Deployment Manager by choosing Managers -
Deployment Manager, clicking the Deployment Manager toolbar button, or pressing F8. In the
Choose Deployment Target dialog, choose Database Server.

The following sections describe the dial ogs that appear to lead you through the data model
deployment process.

Server Manager Introduction dialog

In thisdialog, choose the type of RDBMS (relational database management system) where the
data model will be deployed. Versata System-generated applications currently run against the
following RDBMSs:

= Microsoft SQL Server

s Oracle

= Sybase

= Informix

= DB2 Universa Database

Note: Every release of the Versata Logic Suite may not support every RDBMS discussed in
this section. For information about the RDBM Ss supported by this release, see the
Getting Sarted Guide.

Connect for Auto Selection dialog

If you have previously deployed the data model, you can enable the Server Manager to
connect to the database server, and to select automatically any data objects that have changed
since the last deployment. The selected objects are to be deployed this time.



DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER

If you have not previously deployed the data model, or if you currently cannot connect with
the database server, do not enable Auto Select.

When you enable Auto Select, a dialog appears for you to log in to the database server. The
dialog varies, depending on the type of RDBMS to which you are deploying. You also must
specify the data source name (DSN) for the server to which you are connecting.

Auto-select Changed Data Objects

When you choose Auto-select in the Connect for Auto Selection dialog, an Auto-select Data
Objects dialog appears in which you must log in to the appropriate database server. The dialog
has different formats depending upon the target database server for deployment. Complete this
dialog, then click the Yes button to confirm that you want auto selection to proceed. Next, you
will need to choose a DSN.

Auto-select Changed Data Objects for Oracle dialog
If you selected Oracle as your database server type, the dialog has the following fields:

Server Type Oracle should be selected from this drop-down list.

Schema/User Enter the user's schema/user name to use to deploy the objects.

Auto-select Changed Data Objects for SQL Server or Sybase dialog

If you selected SQL Server or Sybase as your database server type, the dialog has the
following fields:

Server Type SQL Server or Sybase should be selected from this drop-down
list.

Login Name Enter the user login name to use to deploy the objects.

Database The database name. The designation Default means that you
will connect to the default database.

Auto-select Changed Data Objects for Informix dialog

If you selected Informix as your database server type, the dialog has the following fields:

Server Type Informix should be selected from this drop-down list.

Schema/User Enter the user's schema/user name to use to deploy the objects.

129



DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER

130

Auto-select Changed Data Objects for DB2 UDB dialog

If you selected DB2 Universal Database as your database server type, the dialog has the
following fields:

Server Type DB2UDB should be selected from this drop-down list.
Schema/User Enter the user's schema/user name to use to deploy the objects.
Select Data Objects dialog

In this dialog, you can select data objects to be deployed.

If you have enabled Auto Select in the previous dialog, any data objects that have changed
since the last deployment automatically are placed in the Selected Objects list box.

To move a single data object between the two list boxes, select the data object and click the
> or < button. (Use the SHIFT or CTRL key to select multiple objects.)

To move al data objectsin one list box to the other list box, click the >> or << button.

Note: To prevent database anomalies, the Versata Logic Studio automatically orders the data

objects in the Selected Objects list box. Parent data objects are listed before their
children data objects, to prevent referentia integrity errorsif you transfer test data after
you deploy therules.

Deploy to Server or Scripts dialog

In this dialog, choose whether to deploy selected data objects directly to the database server or
to generate deployment scripts.

Deploy To The Server. Copies information about the selected data objects from the
repository directly to the database server by creating deployment scripts and running them
against the server.

Generate Scriptsfor DDL . Creates deployment script files and places themin a
<reposi tory nane>_<dat abase_server_nane>_Scri pt s subdirectory in the
directory where the repository islocated. You can run these scripts against the database
server using atool such asi sql .

= Usethisoption to review and debug deployment scripts or if the database server
currently isunavailable.

= When you use this option, the script includesi nsert statements that create data rows
for any coded values lists in your data model.




DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER

What to Deploy dialog

In this dialog, you can make decisions about what is deployed to the database server.

Transfer Test Data from Repository to Server. Copies any existing data (. csv) filesin
the repository to the database server. This option is available only if you selected the
Deploy to the Server option in the previous dialog. Use this option for first-time
deployments and test deployments. Also, you should elect to transfer test dataif you want
to transfer stored and display values for coded values lists.

Enforce Referential Integrity on DBM S. Copies referential integrity rulesto the database
server. Other rules are deployed to the Versata Logic Server, but referential integrity rules
are considered part of the data model so that you have the option of deploying them to the
database server. (You can review these rules on the Relationships tab of the Transaction
Logic Designer.)

Generally you do not need to enforce referential integrity in the database. The Versata
Logic Server always enforces referential integrity. In some cases, if you are expecting
direct updatesto the database, you may enable this option in order to ensure that referential
integrity is enforced for these direct updates.

DB2 Universal Database supports different referential integrity options from RI options
available in the Versata Logic Suite. If you used Reengineering Manager to import aDB2
UDB data model into the Versata Logic Suite, the DB2 UDB referential integrity
information is stored in metadata and can be deployed back to the database server.
However, the Versata L ogic Suite does not distinguish between No Act i on and

Restri ct ed, and usesthe default No Act i on for deployment.

Note: You may encounter problemsif you attempt to deploy referential integrity information

to Oracle. Cascade constraints are not being generated correctly.

Grant All Permissionsto Public. Allows full accessto all objects on the database server
to al users. Use this option for test deployments to avoid spending alot of time assigning
permissions to specific users. For more information, see “ Granting permissions manually”
on page 138.

131



DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER

132

Data Model Deploy Options dialog

In this dialog, choose how the deployment will alter the data model on the database server.

Synchronizethe Repository with the Server. Checksfor changes that have been madeto
the datamodel in the repository and updates the corresponding data objects on the database
server.

Use the Synchronize option when you do not want to replace the entire data model but just
want to add to or edit one or more data objects in the data model. For example, if you
added attributes to a data object in the repository, choose Synchronize to add those same
attributes to the data object on the server.

Do not use Synchronize if you are transferring data.

Drop and Recreate. Creates a new data model on the database server by deleting the
existing data objects on the server and replacing them with the data objects from the
repository.

Use this option when you first deploy or if you need to replace the data model on the

server. Use this option with caution if you are unsure, as it overwrites the data model
currently on the server.

The Drop and Recreate option applies only to data objects located on the server. Drop and
Recreate does not apply to extended data objects, which cannot be deployed to the server.

Note: For deploymentsto Informix where you plan to synchronize the repository with the

existing database, the user performing deployment must have dba permissions on the
database.

If you are deploying to SQL Server or Sybase after adding any Autonumber attributes
to data objects, you may encounter errors like the following: “1 ncorrect synt ax
near the keyword ‘Identity’”.For moreinformation about issues with the
|dentity property, see “Identity Columns’ on page 54.

Be careful if you synchronize repositories that have quoted identifiers enabled. Newly
created tables on the database resulting from the synchronizing may not be created
properly with quoted identifiers. Also, an error has been observed where the
synchronize fails after addition of a primary key on DB2 7.2.

Configuration Options dialog

In this dialog, choose whether to enable the Generate Quoted Identifiers option.

When you enable this option, double quotation marks are placed around identifiersin
deployment scripts before the scripts are run.

Oracle. Quoted identifiers indicate that the names of database objects are case-sensitive.
For more information, see “ Quoted identifiers for Oracle” on page 139.



DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER

m  Microsoft SQL Server or Sybase. Quoted identifiers allow you to avoid the special
handling of reserved words so that database objects may be created with those words as
names. You also can use spaces and underbars in namesif you use quoted identifiers. For
more information, “ Quoted identifiers for Microsoft SQL Server and Sybase” on page 139.

= Informix. If you enable this option, you must use the set net 32. exe utility to set the
DELI M DENT environment variabletoy before you begin your deployment. In general, itis
agood ideato set thisvariable toy even if you do not plan to generate quoted identifiers.
For more information, see “ Quoted identifiers for Informix” on page 140.

= DB2 Universal Database. Quoted identifiersindicate that the names of database objects
are case-sensitive. For more information, see “Quoted identifiers for DB2 Universal
Database” on page 140.

Note: Only use quoted identifiersif they are necessary. Once you start using quoted identifiers
in the Versata L ogic Suite, you must always use them; and some front-end database
server tools do not support quoted identifiers.

Ready to Deploy dialog

This dialog lists the choices that you have made in previous Server Manager dialogs. Review
these choices to ensure that you have selected the right deployment options, then click the
Finish button to begin the data model deployment.

Server Deployment Preview dialog

The Server Deployment Preview dial og displays the contents of the Deployment Log file
(Ser ver Depl oy. | og). Review your deployment choices before connecting to the server and
deploying. If there are errorsin thelog file, cancel the deployment and correct the problems. I
problems are encountered after you deploy, fix the repository and redeploy with the Drop and
Recreate option.

Data model deployment files

Files generated by the Server Manager are placed under the directory where the Versata L ogic
Suite repository islocated, in a subdirectory named

<reposi tory>_<dat abase_server _type>_SCRI PTS\, where <r eposi t or y> isthe
name of your repository and <dat abase_ser ver _t ype> iSSQLSERVER, ORACLE,
SYBASE11, | NFORM X, or DB2UDB.

133



DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER

Script files provided with the Versata L ogic Studio are located in the root installation directory.
The following table describes data model deployment script files.

File Creation Description

<SERVER>_server Provided with Thereis one copy for Oracle, onefor Informix,
_setup. sql the Versata one for Microsoft SQL Server or Sybase, and
where <SERVER> is Logic Studio one for DB2 Universa Database. Run this

sql ,oracl e, db2, script once on each database where you plan to
ori nf or mi x generate scripts for deployment, and then run
the scripts—rather than using the Server
Manager. This script must be run before
running any deployment-generated scripts.

Ser ver Depl oy. Generated Contains logged information about the
| og deployment. For more information, see
“Deployment log file" on page 134.

DDL. sql Generated Contains data object definitions. If you deploy
to SQL scripts, thisfile contains the complete
DDL for the deployed data objects. If you
deploy directly to a server, it contains only the
DDL for the last data object deployed.

RULEDDL. sql Generated If you choose to enforce referentia integrity in
the database server, contains check constraints.

Deployment log file

When you deploy data objects, warnings and informational messages generated by the system
are displayed in the Server Deployment Preview dialog. Then they are saved as the Server
Manager generates a deployment log file (Ser ver Depl oy. | og) inthe

\ <Reposi tory_nane>\ <r eposi t ory>_<dat abase_server _t ype>_SCRI PTS\
subdirectory.

Thelog lists all warnings and informational messages generated by the system, based on a
comparison of data objects in the repository and data objects on server. Use atext editor such
as Microsoft Notepad or WordPad to view the files.

The contents of the deployment log file initially appear during the deployment.

134



DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER

Generating deployment scripts instead of deploying to server

When you deploy a data model using the Server Manager, you can choose to deploy to scripts
instead of deploying to the server. Use this option if you cannot connect to the database server,
if you want to review deployment information before it isimplemented or if you do not have
required permissions for database updates.

To generate data model deployment scripts:

1.

Start the Deployment Manager (choose Managers > Deployment Manager, or click the
Deployment Manager toolbar button, or press F8).

In the Choose Deployment Target dialog, select Database Server deployment.
Choose the type of database server where the data model will be deployed, and click Next.

Choose whether you would like the Server Manager to automatically select changed
objects for deployment. If thisisyour first data model deployment, do not enable this
option. If you have previously deployed the data model, it is agood ideato enable this
option.

= |f you do not enable Auto-Select, click Next.

= |f you enable Auto-Select, a dialog appears where you need to confirm this choice,
enter database connection information, and click OK.

Another dialog appears where you need to choose a DSN for the server. You may need
to set up anew DSN. For instructions, see “ Setting up a system DSN” on page 124.
Choose aDSN and click OK. A logon dialog for the database server may appear. Enter
required information, and click OK.

The Server Manager connects to the database server and compares the tables in the
database with the data objects in the repository data model, selecting any repository
data objects that are different.

If you enabled Auto-Select, review the selected objects for deployment and make changes
asdesired. If you did not enable Auto-Select, move objects from the All Objectslist box to
Selected Objects. Then, click Next.

Select the Generate Scripts for DDL option, and click Next.

Choose whether to enforce referential integrity on the database server. (Generally, you do
not need to enforce referential integrity on the database server. The Versata Logic Server
always enforces referential integrity. In some cases, if you are expecting direct updatesto
the database, you may enable this option in order to ensure that referential integrity is
enforced for these direct updates.)

Choose whether to grant all permissions to public. In adevelopment environment, you can
enable this option to save time. For more information about this option, see “ Granting
permissions manually” on page 138. Click Next.

135



DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER

136

10.

11.
12.

13.

14.

Choose whether to drop and recreate the data model on the database server or make
incremental updatesto it. The Synchronize option requires you to connect to the database
server. If aconnection is not possible, select the Drop and Recreate option. Click Next.

Choose whether to generate quoted identifiers. For more information about this option, see
“Generating quoted identifiers’ on page 139. Click Next.

Review the choices displayed in the final dialog, and click Finish.

Review information in the Status Preview for Script Generation dialog, and click the
Deploy button to continue.

Review the generated script files. For information about these files, see “ Data model
deployment files” on page 133.

If you want to use the scripts to deploy to the database server, see “ Running deployment
scripts’ on page 136.

Running deployment scripts

Once you have used the Server Manager to generate deployment scripts, you can run the
scripts against your database server, using atool such asi sql or SQL*Plus. The scripts must
be runin the correct order.

Note that generated files are found in the scripts subdirectory and files provided with the
Versata Logic Studio are found in the root directory where the product isinstalled.

The procedures vary according to the type of database server you are running.

Running deployment scripts against Oracle

When you are running the scripts against Oracle, run them in the following order:

If you have not run them previously or if you are running the scripts against a server to
which you have never deployed, run:

oracl e_server _set up. sql

Run the following scripts each time you deploy:
= ddl. sql

= rul eddl.sql



DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER

Running deployment scripts against Microsoft SQL Server or
Sybase

When you are running the scripts against Microsoft SQL Server or Sybase, run them in the
following order:

= |f you have not run them previoudly or if you are running the scripts against a server to
which you have never deployed, run:
sql _server_set up. sql
= Run the following scripts each time you deploy:
= ddl. sql
= rul eddl. sql
Note: If you are using quoted identifiers, either add the following lineto the ddl . sql file
before executing the ddl:
set quoted_identifier on

or set the quoted identifier flag on in the Query Analyzer (sglplus) tool.

Running deployment scripts against Informix

When you are running the scripts against an Informix database, run them in the following
order:

= |f you have not run them previoudly or if you are running the scripts against a server to
which you have never deployed, run:
i nform x_server _set up. sql
= Run the following scripts each time you deploy:
= ddl. sql
= rul eddl. sql

Running deployment scripts against DB2 Universal Database

When you are running the scripts against a DB2 UDB database, run them in the following
order:

= |f you have not run them previoudly or if you are running the scripts against a server to
which you have never deployed, run:
db2_server _set up. sql
= Run the following scripts each time you deploy:
= ddl. sql
= rul eddl. sql

137



DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER

138

Granting permissions manually

If you want to grant permissions on data objects created during deployment, you can either use
the Grant ALL Permissions to Public option in the What to Deploy dialog, or you can create a
script to manually grant specific permissions to groups defined in your database. When the
Grant ALL Permissions to Public check box is enabled, all usersincluded in the database
server group Public are granted full permissions to the data objects deployed to the database
server. Statements are generated to grant all access permissionsto the group public. Usethis
option with care, especially in a production environment.

If you want to manually grant permissions to certain groupsinstead of using this option, you
should review the following guidelines for your database server before you write the script to
grant permissions.

Permissions for Microsoft QL Server and Sybase

For Microsoft SQL Server and Sybase, you must grant permissions on tables and stored
procedures. Usei sgl  or asimilar tool to query your SYSOBJECTS table for the tables and
stored procedures owned by the user ID that you used to deploy, and grant permissions on
them to the appropriate users.

Note that you can create a group that includes all the appropriate users, and then grant
permission to that group. For more information, see the documentation provided with your
database server.

Permissions for Oracle

In Oracle, you must grant permissions on tables and packages. Use SQL* Plus or asimilar tool
to query your data dictionary for objects owned by the user 1D that you used to deploy and
include them in a grant statement.



DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER

Generating quoted identifiers

You can produce quoted identifiers by enabling the Generate Quoted Identifiers option during
data model deployment. When you generate quoted identifiers during deployment to a
database server, the Versata L ogic Studio inserts quotes around the names of attributes and data
objects.

The effect of quoted identifiers varies according to the type of database server.

Caution: Once you start using quoted identifiers, you have to use them throughout the Versata
Logic Studio to refer to the named data objects; and all applications and tools which reference
the data objects must use quoted identifiers.

Note: If objects to be deployed contain custom code that dynamically builds Wher e clauses,
and you are changing whether quoted identifiers are generated during deployments, you
will need to modify this custom code between deployments. Once you have deployed
using quoted identifiers, it is best to continue deploying in this manner, in order to
avoid problems running applications.

The following sections explain the effects of quoted identifiers on different types of servers.

Quoted identifiers for Oracle

By default, Oracle generates all identifiers in upper case. To preserve mixed case identifiers,
you must use quoted identifiers. Quoted identifiers also allow the use of spaces and underbars
inidentifiers. Note that some database server tools do not support quoted identifiers.

When you deploy to the database server and generate quoted identifiers, the Versata Logic
Studio inserts quotes around the names of attributes and data objects. If you enable the
Generate Quoted I dentifiers option when deploying to Oracle, occurrences of identifiersin
generated SQL statements are enclosed in double quotation marks before the data objects and
rules are deployed. The quotation marks ensure that the case of the identifiersis preserved. For
example, the data object named Customers will be named “Customers’ after deployment.

If you disable the Generate Quoted Identifiers option in Oracle, occurrences of identifiersin
SQL statements are automatically generated in upper case upon deployment.

Quoted identifiers for Microsoft QL Server and Sybase

For SQL Server, generate quoted identifiers to bypass special handling of reserved words and
to allow spaces and underbars. Data objects created with this option can have reserved words
in their names. When you deploy to the server and generate quoted identifiers, the Versata
Logic Studio inserts quotes around the names of attributes and data objects.

139



DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER

140

For example, you could name a data object Table (areserved word), then enable the Generate
Quoted Identifiers option, and since occurrences of identifiers are enclosed in double
guotation marks, the name “ Table” is allowed as a data object name. If you name a data object
Table without enabling the Generate Quoted |dentifiers option, you receive an error indicating
that the data object name is not allowed. If you generate with quoted identifiers, all references
using any tool or application must use quotes.

For SQL Server and Sybase, quoted identifiers have nothing to do with case sensitivity.
During installation, the server is configured to be either case sensitive or insensitive. Object
names are deployed with the case asit istyped in the repository. If the server is configured to
be case sensitive, all queries must use the correct case. If the server is configured as case
insensitive, caseisignored for all queries.

Refer to your database server documentation for alist of reserved words.

Quoted identifiers for Informix

By default, Informix generates all identifiersin lower case. To preserve mixed case identifiers,
you must use quoted identifiers. Quoted identifiers also allow the use of spaces and underbars
in identifiers. Some database server tools do not support quoted identifiers. When you deploy
to the database server and generate quoted identifiers, the Versata Logic Studio inserts quotes
around the names of attributes and data objects.

If you enable the Generate Quoted Identifiers option when deploying to Informix, occurrences
of identifiersin generated SQL statements are enclosed in double quotation marks before the
data objects and rules are deployed. The quotation marks ensure that the case of the identifiers
is preserved. For example, the data object named Customers will be named “ Customers” after
deployment.

If you disable the Generate Quoted I dentifiers option in Informix, occurrences of identifiersin
SQL statements are automatically generated in lower case upon deployment.

Note: If you want to enable this option for Informix, you must usethe set net 32. exe utility
to set the DELI M DENT environment variable to y before you begin your deployment.
In general, it isagood ideato set thisvariable toy even if you do not plan to generate
quoted identifiers.

Quoted identifiers for DB2 Universal Database

By default, DB2 UDB generates all identifiersin upper case. To preserve mixed cased
identifiers, you must use quoted identifiers. Quoted identifiers also allow the use of spacesand
underbarsin identifiers. Some database server tools may not support quoted identifiers. When
you deploy to the database server and generate quoted identifiers, the Versata Logic Studio
inserts quotes around the names of attributes and data objects.



DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER

If you enable the Generate Quoted I dentifiers option when deploying to DB2 UDB,
occurrences of identifiersin generated SQL statements are enclosed in double quotation marks
before the data objects and rules are deployed. The quotation marks ensure that the case of the
identifiersis preserved. For example, the data object named Customers will be named
“Customers’ after deployment.

If you disable the Generate Quoted Identifiers option in DB2 UDB, occurrences of identifiers
in SQL statements are automatically generated in upper case upon deployment.

Testing the repository for quoted identifiers

We recommend that you test your repository for quoted identifiers before you start building
applications and remove the quoted identifiers, if possible. To test the repository, deploy it to
the database and look for naming errors. Where they appear, rename the objects with non-
quoted names. Or deploy to the target database server without using quoted identifiers. Any
invalid names return errors. You can change the invalid identifiers in the repository, and
redeploy with the Drop and Recreate option.

If you decide to change whether your repository uses quoted identifiers, redeploy enabling the
Drop and Recreate option and changing the Quoted Identifiers option. In addition, you must
rebuild any applicationsin the repository to ensure that they function properly. If you have
included additional Wher e clause information in properties sheets for the application, check
that the SQL includes the proper identifiers (either quoted identifiers or unquoted identifiers).

Example of quoted identifiers

This portion of asample DDL. sql file displays an example of SQL used to generate quoted
identifiers during deployment:

CREATE TABLE “W zar dDri ver Hel pLi nk” (
“Topi cl D’ NUMBER(10,0) NULL ,

“Topi cHel pI D’ NUMBER( 10, 0) NULL ,
“Topi cReady” FLOAT NULL )

Data model deployment errors

Errors may occur when you deploy. Some errors can be corrected by redeploying, while others
must be fixed manually, either in the repository or on the database server.

If you receive syntax errorsin Microsoft SQL Server, redeploy your data model. This
frequently fixes the problem.

141



DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER

142

You may encounter errors stemming from attempts to make changes that cannot be made using
the ALTER statement. ALTER has different functionality in Oracle and Informix than it doesin
SQL Server and Sybase, though there is some overlap:

= ALTER can always add a column.
= ALTER can never drop acolumn.
= ALTER can never change the name of a column.

In Oracle and Informix, ALTER s quite flexible, and can be used to increase or decrease the
width of a character column, increase or decrease the number of digits in a number column,
and increase or decrease the number of decimal placesin a number column. Note that you can
change the data type of a column or decreaseits width only if all valuesin the column are null.
In Microsoft SQL Server and Sybase, ALTER cannot

= Change column name

= Change column length

= Change column data type

= Change column nullability

If there are problems in your data model that cannot be fixed by the ALTER command, you
must make the changes manually. Depending on the type of change you want to make, you
might need to drop and recreate the table or select all the data out of the table and make any

changes. See your database server documentation for information on commands used to
change the structure of your tables.

Deploying to multiple databases

You can deploy data objects from a single repository to multiple databases, or schemas. For
instance, you might store all your customer information in one database and your employee
information in another. You need to run the Server Manager multiple times to deploy to each
database separately, logging in to the correct database server each time.

You should deploy to all databases before you deploy business objects to the Versata Logic
Server. The deployment database is stored separately for each data object, and isavailableasa
connection property for Versata L ogic Server deployment.

Note: If multiple data objects are used to build a single query object, all these data objects
must be deployed to the same schema or database.



DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER

Example of multiple schema depl oyment

The following example discusses afictional Sybase server containing a CUSTOMERS
database and an EMPLOY EES database.

The order of deployment would be:

1. Usethe Server Manager to deploy the CUSTOMERS data object to the CUSTOMERS
database on the database server. If you deploy as JISMITH, the CUSTOMERS data object
is created with the fully-qualified name CUSTOMERS.JSMITH.CUSTOMERS.

2. Usethe Server Manager to deploy the EMPLOY EES data object to the EMPLOY EES
database on the database server. If you deploy asJISMITH, the EMPLOY EES dataobject is
created with the fully qualified name EMPLOY EES.JSMITH.EMPLOYEES.

3. Usethe Versata Logic Server Deployment wizard to deploy the CUSTOMERS and
EMPLOY EES business objects to the Versata Logic Server.

The rules are generated to reference CUSTOMERS.JSMITH.CUSTOMERS and
EMPLOY EES.JSMITH.EMPLOY EES.

Itisagood ideato check connection properties for data objects in the Versata Logic Server
Console after you have completed data model and transaction logic deployment. These
connection properties indicate the database server where each data object is physically stored.
For information about viewing and modifying database server mappings, see the Administrator
Guide.

143



DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER

144



Working with Query Objects

145



WORKING WITH QUERY OBJECTS
CHAPTER OVERVIEW

Chapter overview

146

Read this chapter to get an introduction to how query objects are used by Versata Logic Suite
applications and to understand how to create and modify query objectsin the VersataLogic
Studio.

This chapter includes the following:

= “Query object overview” on page 147, provides an introduction to query objects, including
how to use them in applications, the definition of childmost data objects, and design
guidelines.

= “Adding query objects’ on page 152, explains how to use the New Query Object wizard to
create query objects.

s “Modifying query objects’ on page 159, explains how to use the Query Object Designer to
review and edit query object properties and SQL text.



WORKING WITH QUERY OBJECTS
QUERY OBJECT OVERVIEW

Query object overview

Query objects are reusabl e presentation objects that you can use as data sources on multiple
applications forms or pages. Query objects are available to all applicationsin the repository.
During run time, query objects are instantiated as needed by the Versata Logic Server. The
Versata L ogic Server retrieves datafrom one or more data objects. A query object isbased on a
SQL Sel ect statement. This statement defines the attribute val ues retrieved to create the
query object.

Query objects provide flexibility in the manner you choose to display data on application
forms or pages. Query objects are used as data sources more often than data objects. You can
use query objects to select a set of attributes from a data object, to specify the order in which
the attributes of a data object appear, or to select attributes from multiple data objects so that
they behave as a single data source. As your application models are dependent on queries, you
may need to go through an iterative process of defining query objects as you design your
applications.

Query object definition

The Versata Logic Studio provides a graphical wizard that allows you to create query objects
without being a SQL expert. The New Query Object wizard generates SQL text based on your
responses. For information, see “ Adding query objects’ on page 152. After you have used the
wizard to create query objects, you can use the Query Object Designer to modify them further.
For information, see page 160.

After definition, each query object is represented in the repository asan . xm file

(<quer y_obj ect _nanme>. xnl ). The format of thisfile conformsto the Quer yQhj ect . dt d
file included with the product, located in the product installation directory. The. dt d filelists
all of the nested elements and attributes that define the characteristics of each query object.
Each query object . xni fileincludes valuesfor these nested elements and attributes. For more
information about the Versata L ogic Suite.. dt d and . xm files, see the Reference Guide.

Query object deployment

To display query object data at run-time in applications, you need to build query objectsinto
usable files that can be copied to the application servers. (Query object information does not
need to be copied to the database server because query objects are not physically stored.)

147



WORKING WITH QUERY OBJECTS
QUERY OBJECT OVERVIEW

148

The Versata L ogic Studio also provides menu options to build and compile each query object
definition into files that run on the application server(s). The next step isto deploy these files
to adevelopment Versata Logic Server on IBM WebSphere Application Server Single Server
Edition for testing purposes. The Versata Logic Studio includes a Versata L ogic Server
Deployment wizard that handles this deployment. You set a deployment property in the Query
Object Designer to indicate whether to deploy query objects as Enterprise JavaBeans (EJBS)
or simply as Java classfiles. After they have been tested in the devel opment environment, you
can copy filesto a production Versata L ogic Server on IBM WebSphere Application Server
Advanced Edition. For more information about building and deploying data objects, see
“Building and Deploying Business Objects’ on page 255.

When to use query objects in applications

There are several reasons you normally would use query objects in building applications:

= Displaying parent data. For example, the Versata L ogic Suite sample repository contains
an OrderltemJoinPart query object. When this query object is selected to be a data source
on aform or page, data from two data objects (ORDERITEM and PART) are displayed in
one location. Along with ORDERITEM attributes, attributes of the parent data object
PART, such as the PART Name, can also be displayed.

»  Optimizing data transfer. If adata object has 200 attributes and the end user only needs
to see 30, using a query object to project only those 30 attributes resultsin smaller
messages to get data and improves performance.

= Optimizing virtual attribute performance. Imagine that you build aform or pageon a
data object, and then add several non-persistent attributes for transaction logic.
Applications built on this data object require the Versata Logic Server to instantiate these
attributes when the applications runs, even though the client has no need for the data. So,
an application can suddenly degrade in performance. However, if you use aquery object to
declare the specific set of attributes your application needs, then the Versata Logic Server
does not have to instantiate the non-persistent attributes. So, performance remains fast,
even after new non-persistent attributes are added.

If you build applications on data objects, then later realize you need to use query objects for
reasons of displaying parent data or optimization, the Versata L ogic Studio provides a property
you can use to retarget aform or page RecordSource from a data object to a query object (with
presentation design only).



WORKING WITH QUERY OBJECTS
QUERY OBJECT OVERVIEW

Childmost data object

The Versata L ogic Studio uses the childmost data object in a query object to determine the key
features of the query object, including:

= Relationships
»  Properties
= Whether you can insert, update, or delete rows in data objects returned by the query object

For a query object with attributes from only one data object, that data object is the childmost
data object. For a query object with attributes from one or more related data objects, the data
object that is lowest in the relationship hierarchy or has no children in the query object isthe
childmost data object. The data from the childmost data object are unique in every row of the
query object’s result set. Generally, any insert to a query object resultsin an insert to its
childmost data object.

For example, the sample query object OrderltemJoinPart includes attributes from
ORDERITEM and PART data objects. ORDERITEM isa child of PART, which makesit the
childmost data object. Child objects are on the many side in a one-to-many relationship.

If the data objects in the query object are not joined along relationships, there may be no
childmost data object. If no childmost data object has been set, users can update existing rows
from the query object but cannot insert new rows.

Design the query objects so that their childmost data objects have the relationships that you
want the query objects to have. Query objects inherit relationships from their childmost data
objects.

You can review and modify the childmost data object on the Propertiestab of the Query Object
Designer. For information, see page 171.

Note: You can set an extended property for a query object in order to enable insertsto an
underlying data object that is not the childmost data object. For information, see
“Enabling inserts to a parent data object” on page 179.

Query object relationships

The relationships of a query object are inherited from the keysin its childmost data object. If
the key for a childmost data object relationship isalso in the query object, the query object also
has the relationship. If the key is not in the query object, the childmost data object has the

rel ationship but the query object does not.

For exampl e, the OrderltemJoinPart query object in the SanpDB1. xnl repository isachild of
the ORDERS data object because the childmost data object ORDERITEMS is a child of
ORDERS; and the query object includes the key for the parent-child relationship between
ORDERITEM and ORDERS (OrderNum). OrderltemJoinPart is also a child of the PART data
object, for the same reason.

149



WORKING WITH QUERY OBJECTS
QUERY OBJECT OVERVIEW

150

Query objects can have rel ationships with other query objects aswell as with data objects. The
type of relationship between two query objects must be consistent with the type of relationship
between their childmost data objects.

Note: Do not define relationships for query objectsin another datamodeling tool. The Versata

Logic Studio deduces al possible relationships between query objects from the

rel ationships between the base data objects on which the query objects are built. You
can review aquery object’s relationships on the Joins tab of the Query Object Designer.
For more information, see page 167.

Query object design guidelines

Follow these recommendations when you define query objects:

If you are using an existing relational database asyour data model, define the query objects
after you convert the database to a Versata Logic Suite repository.

Define only Sel ect query objects that do not use any parameters. Query objects with
unions and Cross-Tabs do not appear in the Versata Logic Studio Explorer.

Do not use queries based on queries. If you want to use these, you must open the query
object in the Query Object Designer, delete the SQL text that appears, and re-enter the
subquery in the SQL Text attribute.

Use only the following functions: M N, MAX, AVG COUNT, and SUM If a query uses other
functions, the SQL text is left empty and you must enter it manually in the Query Object
Designer.

When you define aliases for attributes and data objects, ensure they are less than 30
charactersin length. Use square brackets to enclose problematic text or characters. Do not
use double quotes.

The Versata Logic Studio generates default ODBC SQL text for each query object. You
may view and edit the text on the SQL tab of the Query Object Designer.

In general, use outer joins to build the queries for query objects. The use of outer joins
ensures that child rows for optional parent rows can be retrieved. That is, they return all
rows from the childmost data object regardless of whether the rows meet the join
condition, thereby enabling usersto search on NULL attributes. If you do not use outer
joins, queries will not return rows that do not meet the join condition.

For example, suppose users are alowed to define orders with no customer. Query objects
defined with outer joins would return all orders, whether or not a customer was associated
with the order. Query objects defined without outer joins would return only orders with
customers.

Microsoft SQL Server does not support outer joins greater than two levels. A workaround
isto use replicates instead.



WORKING WITH QUERY OBJECTS
QUERY OBJECT OVERVIEW

»  Project all required attributes for the data object into which you want to insert records on
the application forms or pages. Typicaly, you only insert rows into the childmost data
object. The Versata Logic Studio warns you if you select a childmost data object that does
not have all required attributes projected into the query object. In this case, you cannot
insert rowsinto that data object.

Required attributes may not have NULL values. Therefore, make attributes required only if
you are sure that users will provide values for them in all queries. A safer alternativeisto
define default values for required attributes. You can define default derivation rules on the
Attributes: Derivation tab of the Transaction Logic Designer. For instructions, see
“Defining aderivation rule” on page 232.

= Project foreign keysinto query objects so that picks function properly.

= You can replace adata object with a query object as a RecordSource in your application. If
the form or pageisalready customized when you make the replacement, attributes from the
data object reappear, but are made Unbound (Dat aFi el d = None). You must delete such
attributes from the form or page, or you will be warned at run time that the Dat aFi el d is
set to None.

= You may encounter errorsif you use non-persistent attributesin Or der By, \Wer e, or
Havi ng clauses forquery objects. Currently, the Query Object Designer does not stop you
from using these.

» |f aquery object contains a non-persistent attribute, then the query object also must contain
the primary key attribute(s) for the data objects containing the attributes necessary to
calculate the non-persistent attribute. The Query Object Designer currently does not
enforce this requirement. If a query object definition fails to meet this requirement, all
query object records display the same value in run-time applications.

System validation of query objects

When changes to underlying data objects or their groups occur, query objects may need to be
updated. These changes include conversion of pre-5.5 repositories, rebuilds of data objects,
moves of data objectsto new groups, and certain changes to underlying data objects, their
relationships, or their groups. When query objects are loaded after these types of changes, the
Versata Logic Studio displaysadialog listing al of the affected query objects, asking whether
they should be updated to incorporate the most recent changes. Generally, you should click OK
to update the query objects and continue. However, if you have manually customized query
text in the Query Object Designer, you may want to click Cancel in order to preserve the
current text. In this case, you can make changes manually to reflect changesin underlying data
objects without overwriting other query text.

151



WORKING WITH QUERY OBJECTS
ADDING QUERY OBJECTS

Adding query objects

152

Use the New Query Object wizard to create new query objects in your repository. It isbest to

define query objects before devel oping applications, but you may define query objects at any

timein the development cycle. You most likely will discover the need for new query objectsas
you define your applications.

To create a new query object:

1.

In the Versata Logic Studio Explorer, select the Query Objects folder. Right-click and
choose New Query Object.

Complete the dialogs in the New Query Object wizard.

Indicate whether you are importing a query object from another repository or creating a
new query object. For details about this dialog, see page 154.

If you are creating a new query object, complete the Choose Data Objects for the New
Query Object dialog. Inthisdialog, you indicate the data objects that supply attributes to
the query object, define the join condition that limits the records to be retrieved for the
guery object, and, optionally, define aliases for the included data objects. For more details
about this dialog, see page 154.

Complete the Choose Attributes for the Query Object dialog. In this dialog, you select
attributes from the included data objects to be in the query object. You a so have the option
of defining expressions for computed attributes in the query object. Computed attributes
are not physically stored in the database; their values are computed by the database from
the values of other attributes that are physically stored. You also can define aliases for
included attributes and functions used to aggregate values for attributes. For more details
about this dialog, see page 156.

Complete the Specify Where/Order By Clause for the Query Object dialog. In this dialog,
you can enter criteriato restrict or sort records returned for the query object. If you do not
want to enter these criteria, click the Next button to leave the dialog blank and continue.
For more details about this dialog, see page 157.

If you defined an aggregate for one or more attributes included in the query object,
complete the Specify Having/Group By Clause for the Query Object dialog. The Havi ng
clause, which defines criteriato restrict records, is optional. The G oup By clause groups
records into sets according to attribute values. You have the option of reordering the
attributes used for grouping. For more details about this dialog, see page 157.

Complete the Finished dialog. In this dialog, you select the childmost data object and add
any description or comment information. You also have optionsto add the Di st i nct
keyword to your query and to use a custom superclass to build the query object. For more
details about this dialog, see page 158.



WORKING WITH QUERY OBJECTS
ADDING QUERY OBJECTS

New Query Object wizard

The New Query Object wizard leads you through the process of adding a query object to a
repository. You point and click in its dialogs and it generates the SQL text for the query object
so that you avoid making syntactical errors.

Figure 8 New Query Object wizard

The New Query Object wizard includes the following dialogs:
= Welcome to the Query Object Wizard

»  Choose Data Objects for the New Query Object

m  Choose Attributes for the Query Object

153



WORKING WITH QUERY OBJECTS
ADDING QUERY OBJECTS

Specify Where/Order By Clause for the Query Object
Specify Having/Group By Clause for the Query Object
Finished

Wel come to the New Query Object Wizard

In this dialog, you indicate how you want to create a new query object in the repository.
Choose one of the following:

Create. Continue with the wizard to define characteristics of anew query object. When
you choose this option and click the Next button, the Choose Data Objects for the New
Query Object dialog opens, where you can begin defining the query object.

Import. Copy an existing query object from another repository into this one. When you
choose this option and click the Next button, an Import From dialog opens, where you can
browse for the query object’s. xnl file so it can be copied to the repository.

Choose Data Objects for the New Query Object

In this dialog, you indicate the data objects that will supply attribute values for the new query
object.

154

Show Data Objects frame. This frame allows you to indicate whether to display al data
objectsin the Available Data Objects list box or only those related to the data object(s) in
the Selected Data Objects list box. The Related option becomes available after you have
moved a data object to the Selected list box.

Available and Selected Data Objects List Boxes. To choose a data object, select it in the
Available Data Objects list box and click the > button to move it to the Selected Data
Objectslist box. You can then choose the Rel ated option in the Show Data Objects frame if
desired.

To choose another data object, select it in the Available Data Objectslist box ,and click the
> button to move it to the Selected Data Objects list box. The Select Joins dialog opens.
Complete this dialog.

Alias. If desired, add an alias for the data object for more description or conciseness. To
enable entry of an alias, select a data object in the Selected Data Objects list box.

Edit Joins. Click this button if you want to make changes to the join(s) for the data
objects. The Define Joins for the Selected Data Objects dialog opens.



WORKING WITH QUERY OBJECTS
ADDING QUERY OBJECTS

Select Joins dialog

This dialog opens when you choose more than one data object to supply attributes to a query
object. In thisdialog, you select the attributes whose values will be compared to join records
from the data objects. Joins for query objects are based on attributes that are keys for data
object relationships; therefore, this dialog lists the relationshi ps between the chosen data
objects and the key pair for each relationship.

In many cases, only one relationship exists between the chosen data objects. In these cases,
thisrelationship is checked and you simply click the OK button to accept it. In cases where
multiple relationships exist between the chosen data objects, select arelationship from the list
so that a check appears next to it, then click the OK button.

Define Joins for the Selected Data Objects

Use this dialog to add, modify, or delete ajoin condition for a query object.

= Toadd ajoinin the top drop-down lists, choose data objects to be joined. For each data
object, choose an attribute to be included in the join condition. Then, choose an option
button to define the type of join, indicating the records to be retrieved from the referenced
data objects to populate the query object.
= Equal. Anequal join joins on matching values for the specified attributes, returning

only records that satisfy the join condition.

n  Left. A left join isatype of outer join. Thistype of join returns all records from both
data objects that satisfy the join condition plus all records from the first-named data
object.

= Right. A right joinis also atype of outer join. It returns al records from both data
objects that satisfy the join condition plus all records from the second-named data
object.

Generally, it isagood ideato define an outer join that includes all records from the

childmost data object. For information about the concept of childmost data object, see page

149.

Click the Add button to add the join condition. It appears in the Joins text box in the lower

part of the dialog.

s Tomodify ajoin, select it in the Joins text box. You can change the attributes and/or the
join type. Then click the Modify button. The modified condition appears in the Joins text
box.

= Todeeteajoin, select it in the Joinstext box and click the OK button.

When you have completed your changes to joins, click the Next button.

155



WORKING WITH QUERY OBJECTS
ADDING QUERY OBJECTS

156

Choose Attributes for the Query Object

Use this dialog to indicate the attributes from each selected data object to be included in the

query object.

= Data Object. From the drop-down list, select one of the data objects designated to supply
attributes to the query object. Its attributes are listed in the Available Attributes list box.

m Attributes. To choose an existing attribute to be retrieved, select it in the Available
Attributeslist box, and click the > button to move it to the Selected Attributeslist box. You
can use the SHIFT or CTRL keysto select multiple attributes. You can click the >> button
to select all available attributes.

After you have moved an attribute to the Selected Attributes list box, you can select it and
enter additional characteristics for it including:

m Alias. If desired, add an alias for the attribute, for more description or conciseness.

= Aggregates. You can elect to use an aggregate to retrieve summary values for the
attribute rather than all values for each individual record. Aggregates are applied to sets
of rows and are generally used along with aG oup By clause. The drop-down list
displays aggregate functions that can be used with each attribute, according to the
attribute’s data type.

= COUNT. Reportsthe number of records with non-null values for the attribute.
= AVG Reportsthe average value for the attribute.

= M N. Reportsthelowest value for the attribute.

= MAX. Reportsthe highest value for the attribute.

m SUM Reportsthetota of al values for the attribute.

= Computed Attributes. To create a computed attribute to be retrieved for the query
object, click the Computed attributes/Expressions button. A computed attribute’'s
values are cal culated based on values of attributes stored in referenced data object(s).
When you click the button, the Expression Builder opens. Note that when you define
the expression for a computed attribute, no error message is displayed when the
attribute’s data type is incompatible with the specified SQL function.

When you have finished adding attributes, click the Next button.



WORKING WITH QUERY OBJECTS
ADDING QUERY OBJECTS

Soecify Where/Order By Clause for the Query Object

Use this dialog to define the Wier e clause and Or der By clause included in the Sel ect
statement for the query object, if any. The Wher e clause limits the records retrieved for the
query object to those that meet the specified condition (separate from the join condition). The
Or der By clause sorts the records retrieved for the query object.

= Whereclause. To enter selection criteriafor the Wher e clause, click the browse button to
open the Expression Builder.

= Order By clause. To define a sort attribute, select it in the Available Attributeslist box and
click > to moveit to the Order By attributeslist box. You can usethe SHIFT or CTRL keys
to select multiple attributes. You can click the >> button to select all available attributes. To
change the order of sort attributes, select an attribute and click one of the arrows. To
indicate a descending or ascending sort, select an attribute and click the Desc or Asc
button. By default, sorts are ascending.

Soecify Having/Group By Clause for the Query Object

Thisdialog appears if you have defined any aggregate functions for query object attributesin
the Choose Attributes for the Query Object dialog. Use thisdialog to definethe Havi ng clause
and G oup By clauseincluded inthe Sel ect statement for the query aobject, if any. The

G oup By clausedivides recordsinto sets, while aggregate functions produce summary values
for each set. The Havi ng clauseisawher e clausefor groups; it defines a condition that limits
the groups of records to be retrieved for a query object.

s Group By attributes. Lists the order of attributes used to group sets of records. The first-
listed attribute provides totals while other listed attributes provide subtotals. To change the
order of G oup By attributes, select an attribute and click one of the arrows.

= Having clause. To enter selection criteriafor the Havi ng clause, click the browse button to
open the Expression Builder.

When you have finished, click the Next button.

Note: You cannot selectively group totals for a subset of query object attributes. All attribute
values or none must be aggregated.

157



WORKING WITH QUERY OBJECTS
ADDING QUERY OBJECTS

158

Finished

Usethisdialog to provide general information about the query object. It includes the following

fields:

= Name. Enter aname for the query object.

»  Distinct Rows Only. Enable this option to add the Di st i nct keyword to the Sel ect
statement for your query object. You can usethe Di sti nct keyword to retrieve only
unique values for the attributes included in the query object, eliminating duplicates. Also,
you can usethe Di sti nct keyword with aggregate functions to include only unique
valuesin the calculation of summaries.

= Childmost Data Object. Of the data objects supplying attributes to the query object, the
data object that has a parent by no child. The childmost data object is updated when users
modify query object records. Select from the drop-down list.

When you have completed these fields, click the Finish button to create the query object in
your repository.

Note: After you have created a query object, use the Query Object Designer to view or
modify its properties and SQL text. For information about the Query Object Designer,
see page 160.



WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

Modifying query objects

The Versata L ogic Studio provides agraphical editor to review and modify properties of query
objects. This editor, the Query Object Designer, allows you to make changes without being a
SQL expert. The Versata Logic Studio generates changes to SQL text based on your
modifications. The Query Object Designer displays SQL text for the query object so that you
have the option of editing it directly. The designer also provides a validate functionality. You
can use thisfunctionality to test your SQL against the Versata Logic Server and ensure that the
query object isinstantiated correctly.

To modify a query object:
1. Inthe VersataLogic Studio Explorer, double-click the query object to open it in the Query
Object Designer.

2. Choose the appropriate tab in the designer and make changes. For details about tabsto use
for different tasks, see “ Query Object Designer” on page 160. For instructions for specific
tasks, see page 173.

3. When you have completed the changes, click the Save toolbar button.

After you have saved the changes, you can validate the new SQL text for the query object. For
instructions, see page 177.

159



WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

Query Object Designer

Use the Query Object Designer to modify query objects.

o Query Object Designer - OrderltemJ oinPart

' Ettributesl -;h:ninsl “WheredOrder By | Having/Group Eyl EDLI Properties

[uem Data Objects

Drata Object Aliaz | Data Object Mame

DORDERITEM ORDERITEM

PaRT FART

4| | 2

— D ata Object Source Information

Name [ORDERITEM _|

Aliaz |DHDEHITEM

Descrption |Line items for the order ﬂ

Figure 9 Query Object Designer

160



WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

Note that the Query Object Designer does not provide an implicit save, so any changes you
make there are not saved until you choose File > Save, or click the Save button.

On the Data Objects tab, you can:

= Add or delete a data object supplying attributes to the query object.
= Definean aiasfor adataobject.

» Provide a description of a data object.

For more information, see “Data Objectstab” on page 162 and “Modifying underlying data
objects for a query object” on page 173.

On the Attributes tab, you can:

= Add or delete attributes to be included in the query object. These attributes may exist in
an underlying data object or may be computed from values of attributesin an
underlying data object.

= Definean diasfor an attribute.

» Provide adescription for an attribute.

= Define aformulaexpression for acomputed attribute.
» Define afunction to aggregate values for an attribute.

For more information, see “ Attributes tab” on page 164 and “Modifying attributes for a
query object” on page 174.

On the Joins tab, you can:

= Add, delete, or modify the join condition for selecting records to be in the query object.
= Review relationships between the data objects underlying the query object.

For more information, see“ Joinstab” on page 167 and “Working with joins’ on page 175.
On the Where/Order By tab, you can:

= Define a selection condition to limit the records included in the query object.

= Indicate one or more attributes to use to sort query object records.

For more information, see “Where/Order By tab” on page 168 and “Adding selection and
sort criteriafor query object records’ on page 176.

On the Having/Group By tab, you can:

= Define a selection condition to limit the records included in a query object containing
aggregates.

= Indicate the attributes to use to group records for aggregated functionsin a query
object.

For more information, see “Having/Group By tab” on page 169 and “ Adding selection and
sort criteriafor query object records’ on page 176.

161



WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

162

= Onthe SQL tab, you can:

View and modify generated SQL text for the query object. You can change text to
conform to adifferent SQL dialect or to customize in some way. For more information,
see“SQL tab” on page 169.

Validate the SQL text against the Versata Logic Server and database server to ensure
the query object is created as expected. For more information, see “Validating query
object syntax” on page 177.

= On the Properties tab, you can:

Define a custom superclass for the query object to provide it with specialized methods.
Define achildmost data object for the query object.
Define the query abject to include distinct rows only.

Indicate whether to deploy attribute-level security information to the Versata Logic
Server.

Set the deployment property for the query object indicating whether it should be
deployed as an EJB or a Javaclassfile.

Provide description or comment information about the query object.

For more information, see “Propertiestab” on page 171.

Data Objects tab

Thistab includes information about the data object(s) that supply attributes to the query
object. It includes the following:

»  Query Data Objectsgrid. Thisgrid lists the alias and name for each data object that
supplies attributes to the query object.

To add or del ete a data object to supply attributes, right-click in the grid and choose Add
Data Object or Delete Data Object. These options are also available from the Edit menu.
If adding, the Add Data Object dialog opens. For information about this dialog, see 163.

To review or edit information about a data object, select its aliasin the Query Data
Objects grid. You can then make changes in the Data Object Source Information frame.

m Data Object Source Information frame

Name. The name of the data object. To enter a different data object to supply attributes
to the query object, click the browse button, then select a data object from the Choose
Data Object dialog. For information about this dialog, see 163.

Alias. By default, the alias is the same as the data object name. You can changeit to be
more descriptive or more concise. To change the alias, typein the new alias.

Description. Optional details about the data object. To add or change, type in the
information.



WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

To save the new or renamed data object, click the Save button or choose File > Save
Query Object. If this change causes any query attributes to become invalid, the Query
Object Validation Log appears. For information about this log, see pagel63.

When you click the OK button in this dialog, the new dataobject islisted in the Query Data

Objects grid. If you do not want to save the changes to the data object, close the Query
Object Validation Log and close the Query Object Designer without saving.

Add Data Object dialog
Use this dialog to add a data object that supplies attributes to a query object.

Choose an option button to display either al data objects or only data objectsthat are related to
the data object(s) currently referenced by the query object.

To add a data object, select it in the Available Data Objects list box and click the > button to
move it to the Selected Data Objects list box. The Select Joins dialog opens. Compl ete this
dialog. For information about this dialog, see page 155. Then, if desired, add an alias. Click the
OK button to compl ete the addition of the data object.

To modify information for the newly added data object, select it in the Query Data Objects
grid. You can then edit the alias or description.

Choose Data Object dialog

Thisdialog lists dl dataobjectsin the repository. You can choose a data object from thislist to
supply attribute(s) to aquery object.

To choose a data object, select it from the list and click the OK button.

Query Object Validation Log

The Versata Logic Studio includes a Query Object Validator. This validator runs when you
attempt to save a modified query object. If the validator encounters invalid attributes, the
Query Object Validation Log appears before the modified query object is saved. This dialog
displays any attributes included in the query object that do not exist in the referenced data
objects. SQL cannot be generated for an invalid query object. To avoid errors, you must either
remove these attributes or reference a different data object that includes them.

To save the changes to the query object, click the OK button in this dialog. Be sure to go to the
Attributes tab and remove any problematic attributes.

To avoid saving the changes to the query object, close the Query Object Validation Log and
close the Query Object Designer without saving.

A copy of the Query Object Validation Log is saved in the
<reposi tory> JavaFi | es\ Conponent s folder as<query_obj ect _nane>. | og.

163



WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

164

Choose Attribute dialog

Thisdialog lists all attributesin the source data object. You can choose an attribute from this
list to be included in the query object.

To choose an attribute, select it from thelist and click the OK button.

Attributes tab

Thistab provides information about the attributes from which datais retrieved for the query
object. It includes the following:

Query Object Attributesgrid. Thisgrid lists the name for each attribute included in the
query object.

To add or delete an attribute, right-click in the grid, and choose Add Attribute or Delete
Attribute. These options are also available from the Edit menu. If adding, the Add
Attribute dialog opens. For information about this dialog, see page 166.

To review or edit information about an attribute, select it in the grid. You can then make
changes to any of the following objects:

Alias. By default, the alias is the same as the attribute name. You can change it to be more
descriptive or more concise. To change the alias, typein the new alias.

Derivation Type. Indicates whether an attribute is computed or not. A value of ( None)
indicates that the attribute is physically stored in the referenced data object. A value of
For nul a indicatesthat the attribute's values are cal culated by the database server based on
values of attributes stored in the referenced data object(s).

Aggregation Type. Indicates whether to use an aggregate to retrieve values for an
attribute. Aggregates are functions you can use to get summary values. Aggregates are
applied to sets of rows and are generally used along with a G oup By clause. The drop-
down list displays aggregate functions that can be used with each attribute, according to
the attribute’s data type.

= COUNT. Reportsthe number of records with non-null values for the attribute

» AVG Reportsthe average value for the attribute.

= M N. Reportsthelowest value for the attribute.

s MAX. Reportsthe highest value for the attribute.

= SUM Reportsthetota of al values for the attribute.

If the selected attribute is physically stored in areferenced data object, more information is
displayed in the Query Object Attribute Source Information frame.

If the selected attribute is computed, more information is displayed in the Computed Attribute
Details frame.



WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

Query Object Attribute Source Information frame

This frame isincluded on the Attributes tab of the Query Object Designer when the attribute
selected in the grid is physically stored in a data object. You can view and modify the
following:

Sour ce Data Object. The name of the data object supplying this attribute. To enter a
different data object to supply this attribute to the query object, click the browse button,
then select a data object from the Choose Data Object dialog.

To save the new or renamed data object, click the Save button or choose File Save Query
Object. If this change causes any attributes to become invalid, the Query Object Validation
Log appears.

Source Attribute. The name of the attribute included in the query object. To choose a
different attribute from the selected source data object, click the browse button. The
Choose Attribute dialog opens, displaying all attributesin the current source data object.
Select an attribute and click the OK button.

Description. Optional details about the attribute. To add or change, typein the
information.

Computed Attribute Details frame

This frame isincluded on the Attributes tab of the Query Object Designer when the attribute
selected in the grid is computed rather than physically stored in areferenced data object. You
can view and modify the following:

Expression. The formula used to derive a value for the computed attribute, consisting of
attributes from the referenced data objects, operators, and/or SQL functions. To review or
modify details about this formula, click the browse button to open the Expression Builder.
For information about the Expression Builder, see page 166.

Data Type. The nature of the datain the computed attribute, determining how the bits
representing the attribute values are stored. A drop-down list provides alist of available
data types. Text, Number, and Date/Time types require the definition of a sub type. Text
types also require the definition of asize. Defaults are provided. The data typeis used to
determine presentation properties for the attribute. Note that no error message is displayed
when the selected data type is incompatible with the specified SQL function.

Description. Optional details about the computation. To add or change, type in the
information.

165



WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

166

Add Attribute dialog

Use this dialog to add either an attribute that is physically stored in the referenced data object
or an attribute whose values are computed based on values of attributes stored in the
referenced data object.

To add a physically stored attribute, first select a referenced data object from the drop-
down list, then select the attribute in the Available Attributeslist box and click the > button
to move it to the Selected Data Objects list box. Then, if desired, modify the alias.

To add a computed attribute, click the Computed attributes button. Compl ete the fieldsin
the Expression Builder.

Click the OK button to complete the addition. To modify information for the newly added
attribute, select it in the Query Attributes grid.

Query Object Expression Builder

Complete this dialog to:

Define acomputed attribute to be included in a query object. A computed attribute’s values
are calculated by the database server based on values of attributes stored in referenced data
object(s).

Define aWer e clause or Havi ng clause that limits the records retrieved for the query
object.

Note: Some fields do not apply for both purposes, and are grayed out when not applicable.

Thefollowing fields apply only to computed attribute definitions:

Attribute Alias. Name for the computed attribute.

Data Type. The nature of the data in the computed attribute, determining how the bits
representing the attribute values are stored. A drop-down list provides alist of available
data types. Text, Number, and Date/Time types require the definition of a sub type. Text
types a so require the definition of a size. Defaults are provided. The datatypeis used to
determine presentation properties for the attribute.

Thefollowing fields apply to computed attribute, Wher e clause, and Havi ng clause
definitions:

(Formula) Expression. The formula used to derive values for the computed attribute, or
the condition used to limit records. Use the following objects to construct an expression:

m  Operator buttons. To include an operator in the expression, place the cursor in the
Expression text box, and click an operator.

= Attributesfrom thereferenced data objects. Attributes are listed under the data
objects in which they are physically stored. Attributes included in the query object are
listed as #Query attributes. To include an attribute in the expression, place the cursor in
the Expression text box and double-click the attribute.



WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

= Functions. To include a function in the expression, place the cursor in the Expression
text box and double-click the function. Note that only SQL functions can be used in
formula expressions for computed attributes.

You can click the Undo button to remove the last entry in the Expression field.

To save, click the OK button. For computed attributes only, if you want to add another
computed attribute, click the New button, save the defined computed attribute, then complete
the Expression Builder again to define another one.

Note: Novalidation is performed for Wer e clauses, Havi ng clauses, computed attribute
formula expressions, or data type compatibility with SQL function.

Joinstab

Thistab includes information about the join condition used to retrieve records from two
referenced data objects to populate a query object.

Thejoin condition lets you retrieve and manipul ate data from more than one data object in a
single Sel ect statement. You define the join condition by specifying an attribute from each
data object whose values can be compared. The Versata Logic Suite query objects’ joins
generally are based on relationship key pairs and are equijoins—sel ecting records where
values for the two join attributes match. The join condition isin the Wher e clause of the

Sel ect statement.

The Joins tab includes the following information:

= Query Object Joins. This panel diagrams the joined data objects. Click the + sign to view
the attributes used in the join condition.

To add ajoin, right-click in the grid and choose Add Join. The Add Join dialog opens. For
information, see page 167. To modify or delete ajoin, select ajoin condition and right-
click. If modifying, the Modify Join dialog opens. For information, see page 168. These
options are al so available from the Edit menu.

= Relationships. This panel lists al of the relationships between the referenced data objects
and other data objectsin the repository. Expand the relationship to view its key pair.

Add Join dialog

Use thisdialog to add ajoin condition for a query object.
= Data aobjects. In the top drop-down lists, choose data objects to be joined.
= Attributes. For each data object, choose an attribute to be included in the join condition.

167



WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

168

= Typeof join. Choose an option button to define the type of join, indicating the records to
be retrieved from the referenced data objects to populate the query object.

= Equal. Anegual joinjoins on matching values for the specified attributes, returning
only records that satisfy the join condition.

n  Left. Aleft joinisatype of outer join. Thistype of join returns all records from both
data objects that satisfy the join condition plus all records from the first-named data
object.

= Right. A right joinis also atype of outer join. It returns al records from both data
objects that satisfy the join condition plus all records from the second-named data
object.
Generally, it isagood ideato define an outer join that includes all records from the childmost
data object.

Click the OK button to add the join condition.

Modify Join dialog
Use this dialog to modify ajoin condition for a query object.
» Data objects. The top drop-down lists display the data objects to be joined.

= Attributes. For each data object, you can change the attribute to be included in the join
condition.

= Typeof join. You can change the type of join.

= Equal. Anegual joinjoins on matching values for the specified attributes, returning
only records that satisfy the join condition.

n  Left. Aleft joinisatype of outer join. Thistype of join returns all records from both
data objects that satisfy the join condition plus all records from the first-named data
object.

= Right. A right joinis also atype of outer join. It returns al records from both data
objects that satisfy the join condition plus all records from the second-named data
object.

Click the OK button to confirm the modification of the join condition.

Where/Order By tab

Thistab provides information about the Wher e clause and Or der By clause included in the
Sel ect statement for the query object, if any. The Wher e clause limits records retrieved for
the query object to those that meet the specified condition (separate from the join condition).
The Or der By clause sorts records retrieved for the query object.

Thistab includes the following frames:



WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

m  Selection Condition. Displays the condition that must be met by retrieved records. To add
or modify this expression, click the browse button to open the Expression Builder.

= Sort Order. Liststhe attribute whose values are used to sort records. To define a sort
attribute, select it in the Query Attributes list box and click > to moveiit to the Order By
attributes list box. You can define multiple attributes to use in the sort. To change the order
of sort attributes, select an attribute, and click one of the arrows. To indicate a descending
or ascending sort, select an attribute, and click the Desc or Asc button. By default, sortsare
ascending.

Having/Group By tab

Thistab provides information about the Havi ng clause and Gr oup By clauseincluded in the
Sel ect statement for the query object, if any. The G oup By clauseis used with aggregate
functions. The G oup By clause divides records into sets, while aggregate functions produce
summary values for each set. The Havi ng clauseis aWer e clause for groups; it definesa
condition that limits the groups of records to be retrieved for a query object.

Thistab includes the following frames:

= Having Condition. Displays the condition that must be met by retrieved groups of records.
To add or modify this expression, click the browse button to open the Expression Builder.

m  Group By Order. Liststhe order of attributes used to group sets of records. The first-listed
attribute provides totals while other listed attributes provide subtotals. To change the order
of group by attributes, select an attribute, and click one of the arrows.

Note: You can define aggregate functions on the Attributes tab of the Query Object Designer.
For information, see page 164.

L tab

Thistab displays the SQL text used to instantiate the query object for your run-time
applications, and alows you to test whether the SQL correctly generates the expected query
object. Thistab includes the following:

= Run-time SQL. Displaysthe SQL text to be generated based on your choicesin the New
Query Object wizard or the Query Object Designer. You have the option of manually
editing the text here to customize it. Click the Reset button to return to the default
generated SQL. Custom SQL should be the last change ever made to a query object, as
changes that regenerate the query object will cause the custom SQL to be overwritten with
generated SQL. For information about generated SQL text, see “ Database and schema
referencesin SQL text” on page 178.

m  SQL Dialect. Select from the drop-down list to change the syntax to be database-
specific. The dialect is not important unless the query object includes outer joins. For
examples of outer join syntax, see page 170.

169



WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

170

Note: If you changethe driver at run time, SQL text is not modified accordingly. You need to
manually change thistext here, then redeploy the query object to the Versata Logic
Server, in order to modify run-time SQL text. If you do not do this, SQL errors occur in
the run-time application.

SQL generation for Informix and ODBC dialectsis not supported for queries
containing mixed inner and outer joins.

= Reset. Thisbutton isenabled if you make any changes to the Run-time SQL text. Click
it to return the text to the original, generated text.

= Show Default. This button is enabled if you make any changes to the Run-time SQL
text. Click it to open the Default SQL dialog, which allows you to view the default
query object SQL text for different dialects.

m  Test/Validate. You can validate the query object by executing the SQL against a Versata
Logic Server and aphysical data source to verify that the query object is instantiated as
expected. Enter the following:

= Username. Login for the Versata Logic Server.
» Password. Password for the Versata Logic Server.
s VLS Server. Name of the Versata Logic Server.

» Data Server. The name of the data server in the Versata Logic Server Console that
represents the database server to which you are connecting.

= Max Rows. Maximum number of records to be returned for the query object.
m  Test SQL. Click this button to execute the test.

Example SQL dialects for outer joins in a query

Thefollowing examples of query text illustrate the differences between SQL dialects for outer

joins. You can select the correct dialect in the drop-down list on the SQL tab of the Query

Object Designer. The dialect is not important unlessthe query includes outer joins. If the query
contains outer joins and you do not select the correct dialect (for example, Oracle Native if

you are using Oracle Thin JDBC driver, Sybase Native if you are using Sybase JConnect

JDBC driver), syntax errors occur.

ODBC

SELECT DEPARTMENT. Nane AS " DEPARTMENT. Name", EMPLOYEES. Nanme AS

" EMPLOYEES. Nane", ORDERS. Or der Nunber AS O der Nunber FROM {oj
<dbschenma>. DEPARTMENT DEPARTMENT RI GHT QUTER JO N

<dbschema>. EMPLOYEES EMPLOYEES LEFT OUTER JO N <dbschena>. ORDERS
ORDERS ON EMPLOYEES. Enpl D = ORDERS. Sal esRepl D ON

DEPARTMENT. Dept Num = EMPLOYEES. Wor ksFor Dept Nunt WHERE

( (EMPLOYEES. Nane) Like '%A%)  ORDER BY DEPARTMENT. Dept Num ASC




WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

Oracle Native

SELECT DEPARTMENT. Nane AS " DEPARTMENT. Nane", EMPLOYEES. Nane AS
"EMPLOYEES. Nane", ORDERS. Order Nunber AS O der Nunber FROM
<dbschena>. DEPARTMVENT DEPARTMENT, <dbschema>. EMPLOYEES EMPLOYEES,
<dbschema>. ORDERS ORDERS WHERE EMPLOYEES. Enpl D =

ORDERS. Sal esRepl D (+) AND DEPARTMENT. Dept Num (+) =

EMPLOYEES. Wor ksFor Dept Num AND ( ( EMPLOYEES. Nane) Li ke ' %A% )
CRDER BY DEPARTMENT. Dept Num ASC

Sybase Native

SELECT DEPARTMENT. Name AS " DEPARTMENT. Nane", EMPLOYEES. Nane AS
"EMPLOYEES. Nane", ORDERS. Or der Number AS O der Number FROM
<dbschenma>. DEPARTMVENT DEPARTMENT, <dbschema>. EMPLOYEES EMPLOYEES,
<dbschema>. ORDERS CORDERS WHERE EMPLOYEES. Enpl D *=

ORDERS. Sal esRepl D AND DEPARTMENT. Dept Num =*

EMPLOYEES. Wor ksFor Dept Num AND ( ( EMPLOYEES. Nane) Li ke ' %A% ) ORDER
BY DEPARTMENT. Dept Num ASC

Propertiestab

The Properties tab has two subtabs: General and Extended.

General Properties tab

The Properties.General tab provides general information about the query object. It includesthe
following fields:

Superclassfor the Java Component. For each query object, the Versata Logic Studio
creates a Java class file, which inherits from a general query object superclass. By default,
thissuperclassisver sat a. vl s. Quer yObj ect . If you want to provide additional
methods functionality in your query object, you can define another subclass of the default
superclass, add methodsto it, and enter the name of this new subclass as the query object’s
superclassin the field on the Properties:General tab of the Query Object Designer.

Childmost Data Object. Of the data objects supplying attributes to the query object, the
data object that has a parent but no child. The childmost data object is updated when users
modify query object records. Select from the drop-down list. For more information about
the concept of childmost data object, see page 149.

171



WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

172

Note: The childmost data object is not updated automatically when the relationship between
underlying data objects changes. After such a change, review the childmost data object
for any affected query objects and modify it as necessary.

= Distinct Rows Only. You can usethe Di sti nct keyword to retrieve only unique values
for the attributesincluded in the query object, eliminating duplicates. Also, you can use the
Di sti nct keyword with aggregate functions to include only unique valuesin the
calculation of summaries. Note that aggregate functions are defined on the Attributes tab.
For information, see page 164. Enable this option to add the Di st i nct keyword to the
Sel ect statement for your query object.

= Deploy Attribute Security Data. Enable thisoption to copy attribute namesto the Versata
Logic Server in order to enable assignment of privileges at the attribute level. Deployment
of thisinformation requires more time. Enable this option only for query objects where
you plan to implement attribute-level security.

= Deploy as EJB Session Bean. Enable this option to implement the query object as an
Enterprise JavaBean (EJB) rather than as a Java class. A query object should be deployed
as an EJB when its methods need to be remotely accessible. Deployment as an EJB
requires more time. Enable this option only as necessary for remote access.

m  Description. Optional details about the query object. To add or change, type in the
information.

= Comment. Optional details about the query object. To add or change, typein the
information.

Extended Properties tab

The Properties.Extended tab allows you to add query object properties other than those
explicitly specified in the Versata Logic Studio. These extended properties are useful in cases
where you plan to add custom Java code to a query object. Code for extended propertiesis
generated in the data object’s Java implementation file. For each extended property, a static
string variable is created inside the query object’s constructor code.

The query object's extended properties perform a similar function to the extended properties
for controls or elements on forms or pages in Versata L ogic Studio-generated applications: the
properties provide additional behavior to query objects. You can add Java code that refersto
the value for the variable (extended property), where each different value causes different
behavior at run time.

= To add an extended property, click the Add button and complete the dialog. Then, enter a
property value in the grid.

= To delete an extended property, place the cursor in the grid row for the property and click
the Delete button.



WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

Modifying underlying data objects for a query object
Use the Data Objectstab of the Query Object Designer to make changes to the data objects that
supply attributes to a query object.

To modify data objects, in the Versata Logic Studio Explorer, double-click the query object to
open the Query Object Designer.

Adding a data object

To add a data object:

1.
2.
3.

Right-click in the Query Data Objects grid, and choose Add Data Object.
Select adata object in the Available list box and click > to move it to the Selected list box.

Select from the list of attribute key pairs to indicate which should be compared when
retrieving records for the query objects, and click the OK button.

If desired, enter an alias for the new data object.
Click the OK button. The data object appearsin the grid.

Deleting a data object

To delete a data object:

1.
2.

Right-click in the Query Data Objects grid and choose Delete Data Object.
Click the Yes button to confirm the deletion.

Note that any attributes included from the deleted data object are deleted from the query
object.

Changing a data object

A common reason for changing the data object to supply attributes to the query object isthat
the data object has been renamed.

To change a data object:

1.

In the Data Object Source Information frame, click the browse button next to the Name
field.

Select adata object, and click the OK button.
Save the change.

173



WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

174

Review the Query Object Validation Log that listsinvalid attributes. Click the OK button
to dismiss the log. For information about the Query Object Validation Log, see page 163.

Indicate whether you want to make changes to invalid attributes before saving, and make
changes to attributes as necessary.

Modifying attributes for a query object
Use the Attributes tab of the Query Object Designer to make changes to the attributes for a
query object.

To modify attributes, in the Versata L ogic Studio Explorer, double-click the query object to
open the Query Object Designer. Click the Attributes tab.

Adding an attribute

You can add an attribute that exists in an underlying data object or add an attribute that is not
physically stored, whose value is computed based on values of attributesin an underlying data
object.

To add attributes from an underlying data object:

1.
2.
3.

Right-click in the Query Object Attributes grid and choose Add Attribute.
Select a data object from the drop-down list.

Choose one or more attributes from the Available list box and click > to move the
attribute(s) to the Selected list box.

If desired, enter an dias for the attribute.

Click the OK button. The attribute appearsin the grid, and its detail s appear in the Query
Object Attribute Source Information frame.

If you want to display summary values, select a function from the Aggregation Type drop-
down list. For more information, see page 164.

To add a computed attribute;

1.
2.
3.

Right-click in the Query Object Attributes grid and choose Add Attribute.
Select a data object from the drop-down list.
Click the Computed Attributes button.



WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

4. Enter anamefor the attribute in the Attribute Aliasfield. Choose a datatype from the drop-
down list. Click operator buttons and double-click attributes to define the formula
expression used to calculate values for the new attribute. (Note that you can click the +
signsto expand data objects and display their attributes.) For more information about the
Expression Builder, see page 166.

5. Click the OK button to close the Expression Builder. Then, click the OK button to close the
Add Attribute dialog. The attribute appears in the grid and its details appear in the
Computed Attribute Details frame.

Note: The Versata Logic Studio may crash after you modify an attribute alias. This problem
occursinfrequently. If it occurs, restart the Studio, then retry the change.

Deleting an attribute

To delete an attribute:
1. Right-click in the Query Object Attributes grid, and choose Delete Attribute.
2. Click the OK button to confirm the deletion.

Note: If you delete a query object attribute that no longer exists in an underlying data object,
the Versata L ogic Studio crashes.

Working with joins
You can view and modify the details of the join conditions on the Joins tab of the Query Object
Designer.

To work with joinsin the Versata L ogic Studio Explorer, double-click the query object to open
the Query Object Designer. Click the Joins tab.

Adding ajoin condition

To add a join condition:

1. Right-click in the Query Object Joins frame, and choose Add Join.

2. Select from the list of attribute key pairs to indicate which should be compared when
retrieving records for the query objects, and click the OK button.

Deleting a join condition

To delete a join condition:
1. Inthe Query Object Joins frame, highlight ajoin, right-click, and choose Delete Join.
2. Click the Yes button to confirm the deletion.

175



WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

176

Caution: If you delete the last join condition in a Query Object drawing from multiple data

objects, the resulting query object could generate a “ Cartesian resultset” —
producing an extremely large result set containing every possible permutation of
the joined data objects.

Modifying a join condition

You can change a join condition to be a different type of join (equal, right, or left) or change
the attributes whose values are compared to retrieve records. For information about the
different types of joins, refer to “ Add Join dialog” on page 167, or view the context sensitive
help in the wizard.

To modify a join condition:

1.
2.

In the Query Object Joins frame, select ajoin, right-click and choose Modify Join.
Make changes in the Modify Join dialog as desired. For more information, see page 168.

Adding selection and sort criteria for query object records

You can view and modify selection and sort criteriafor query object records on the Where/
Order By and Having/Group By tabs of the Query Object Designer.

Wher e clauses are expressions that limit the records retrieved for a query object.

Or der By clauses are expressions that indicate attribute values to use to sort query object
records.

Havi ng clauses are expressions that limit the groups of recordsretrieved for a query object
that displays summary values. These clauses are used when you define aggregates for one
or more attributes in a query object.

G oup By clausesindicate how to group summary values for query objects with
aggregated attributes by designating the order of included attributes.

To add selection or sort criteria:

1.

2.

3.

In the Versata L ogic Studio Explorer, double-click the query object to open the Query
Object Designer. Click the Where/Order By tab or the Having/Group By tab.

To add selection criteria, click the browse button near the Selection Condition or Having
Condition field and complete the Expression Builder. Click operator buttons and double-
click attributes to define the formula expression used to cal culate values for the new
attribute. (Note that you can click the + signs to expand data objects and display their
attributes.) For more information about the Expression Builder, see page 166.

Click the OK button to close the Expression Builder.



4.

5.

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

To add sort criteriafor individual records, on the Where/Order By tab, select one or more
attributes in the Query Attributes list box and click > to move the attribute(s) to the Order
By list box. You can click the up or down arrow buttons to change the order of sort
attributes, and click the Asc or Desc buttons to indicate the type of sort.

To define how to group records to calculate summary values, on the Having/Group By tab,
click the up or down arrow buttons to change the order of included attributes.

Validating query object syntax

On the SQL tab of the Query Object Designer, you can review and modify the SQL text
generated to instantiate a query object. For information about this tab, see page 169. Thistab
provides a test button that you can use to retrieve records from the database server for the
query object. Use thistest function to ensure that no syntax errors occur and that the data you
expect is returned for the query object. When you execute the test, the records for the query
object appear in agrid for your review.

For information about syntax for references in query object SQL text, see “ Database and
schemareferencesin SQL text” on page 178.

Note: If you use the New Query Object wizard to define a query object, the wizard generates

the SQL text and there should not be any syntax errors. However, you may still need to
check to ensure query object data matches your requirements. If you modify SQL text
yourself and/or use outer joinsin the query object, you need to check for possible
syntax errors.

To validate query object syntax:

1.

Ensure that the data model has been deployed to a database server. For instructions, see
page 126.

Ensure that the business objects have been deployed to a Versata Logic Server. For
instructions, see page 268.

In the Versata Logic Studio Explorer, double-click the query object to open the Query
Object Designer. Click the SQL tab.

Complete the fields in the Test/Validate frame, entering the following:
= Your user name for the Versata Logic Server.

= Your password for the Versata Logic Server.

» The VersataLogic Server name.

= The name of the data server in the Versata L ogic Server Console that represents the
database server to which you are connecting. For information about setting up data
serversin the Versata Logic Server Console, see the Administrator Guide.

= The maximum number of query object rows to return from the database server in the
test result set. By default this valueis set to 100.

177



WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

178

5. Click the Test SQL button.

Note: If thereis no datain the database when you the TestSQL is executed, a null pointer
exception occurs. If thiserror occurs, verify that the targeted data source contains data,
review settings for the data server in the Versata Logic Server Console, and verify that
atest connection from the Versata L ogic Server Console works properly.

Database and schema referencesin SQL text

In the SQL text for each query object, the Versata Logic Studio provides <dbschenma> tagsin
each data object reference. Each tag is replaced at run time with the database and/or schemato
which the data object is currently deployed. This convention provides flexibility, allowing
applications to execute queries against varying data sources.

Following is an example of query object SQL text:

Sel ect SKILL. Skill Nanme AS Skill Nanme, EMPLOYEESKI LL. Rating AS
Rati ng, EMPLOYEESKI LL. SkillNum AS Skil | Num EMPLOYEESKI LL. Enpl D
AS Enpl D FROM <dbschema>. SKI LL SKILL, <dbschema>. EMPLOYEESKI LL
EMPLOYEESKI LL WHERE SKI LL. Ski | | Num = EMPLOYEESKI LL. Ski | | Num

The <dbschema> is always replaced with the properties supplied for the database and/or
schemain the data object’s data server in the Versata Logic Server Console.

For example, if a CustomerOrders query object selects from CUSTOMERS and ORDERS
data objects that are attached to a data server named MySQL, and the MySQL data server has
thepropertiesdb = t est andschema = or der ent ry, then <dbschema>. CUSTOMVERS and
<dbchenma>. CRDERS in the SQL text would becomet est . or der ent ry. CUSTOVERS and
test. orderentry. ORDERS.

The <dbschema> tag is detected the first time the query object is executed in a session. The
tag values are replaced with the appropriate values once per session as follows:

s The<dbschema> tag is replaced by the database value for the data object’s data server.
Then, thisis concatenated with the schema value for the data object’s data server.

» |f the Databasefield is blank, no database qualifier is produced for the data object. If the
Schemafield is also blank, <dbschema> isremoved from the SQL text and thereis no
qualifier for the data object name.

= |ngenerated text for query objects, the Versata Logic Studio prefixes all data object
references, except those in subqueries, with <dbschema>. For any customized SQL, you
can use the same tags in front of any data object name references to get the same run-time
behavior. You can choose to edit the SQL to either remove the <dbschenma> prefixes or to
change them to hardcoded database or schema names that will not be overridden by
Versata Logic Server'srun time.




WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

Defining a custom superclass for a query object

By default all query objects are subclassed from ver sat a. vl s. Quer yObj ect . If youwant to
provide additional methods to your query object, you can define a subclass of the default
superclass, add methods to it, and enter the name of this new subclass as the query object’s
superclassin the field on the Properties:General tab of the Query Object Designer.

Note: You need to add the Java source file for the custom superclass to the repository. For
information, see “Adding filesto arepository” on page 308.

Enabling deployment of attribute-level security data for a query
object

To define permissions at the attribute-level rather than only at the object level, enable the
check box on the Properties:General tab of the Query Object Designer. This setting copies the
query object attribute names to the Versata L ogic Server when you deploy business objects.
Enable this option only when you plan to use attribute-level permissions, asit slows
deployment.

Enabling inserts to a parent data object

Generally, aninsert to aquery object resultsin an insert to its childmost data object, and inserts
to other underlying data objects are not allowed. However, you can set an extended property
for aquery object in order to enable query object inserts that result in inserts to an underlying
data object other than the childmost data object. This underlying data object can be referred to
as the parent data object. For example, you can set this property on the sample query object,
OrderltemJoinPart, in order to allow users modifying the OrderltemJoinPart RecordSource in
an application to cause an insert to the PART data object.

This extended property iscalled Par ent | nsert abl e. You can add it to a query object and set
itsvaluetot r ue on the Query Object Designer’s Properties:Extended tab. Formerly, this
property was available as an extended security property in the Versata Logic Server Console,
that has now been deprecated.

Note: You also have the option of writing custom code to set the Par ent | nsert abl e
property tot rue. ThePar ent | nsert abl e( bool ean flag) method of the
VSMet aQuer y interface is available for this purpose. For information, see the Versata
ClassLibraries Help (vst udi o. hl p).

179



WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

180

When a query object includes a setting of t r ue for the Par ent | nsert abl e property,
behavior that is different from the default occursin the query object’s RecordSourcesin run-
time applications. The system inserts a new parent data object record whenever a user
modifies any parent fieldsin a query object RecordSource, unless these changes occur as a
result of apick selection. The user’s selection from a pick object modifiesthe foreign key field
and all other parent fields, but asit is based on selection of an existing parent data object
record, no insert is required.

Setting the Parentlnsertable property in the Query Object Designer

To enable inserts to a query object that insert to a parent data object:

1. Inthe Versata Logic Studio Explorer, double-click the query object to open it in the Query
Object Designer.

2. Click the Properties tab, then the Extended tab.

3. On the Extended tab, click the Add button.

4. Inthedialog that appears, enter Par ent | nser t abl e and click OK. This entry appearsin
the Property Name column of the extended properties table.

5. Inthe Property Value column of the table, enter t r ue.

6. Click the Save toolbar button.

Notes about the Parentl nsertable property

The previous implementation of Par ent | nser t abl e through a Versata Logic Server
Console property provided unconditional parent inserts that potentially caused problems for
pick support. The new implementation of Par ent | nser t abl e provides a conditional logic
that allowsfor full and proper support of picks. Thisimplementation allows end usersto either
enter parent datafields, in which case anew parent record isinserted, or to select aparent from
apick object, in which case no parent insert occurs and the operation succeedsiif rules such as
referential integrity are not violated.



WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

The following pseudo code illustrates the conditional logic supported by the current
implementation:

I f pkey for for parent columm is not null
try to insert parent

el se {
if(foreignkey is not null)
ski p parent
el se {

i f(parent pkey is autonunber)
try to insert parent

el se
ski p parent

The population of the child's foreign key is automatic when the parent’s primary key is one
autonumber column; the value of this column is copied to the child’s foreign key column. If
the parent’s primary key includes multiple columns, you must add a method to the query object
to indicate which column of the child's foreign key is the target for replication of the parent’s
autonumber column value. The following code provides an example method:

protected bool ean isForei gnKeyCol um(String tbl Nane,
VSMet aCol umm col ) {
bool ean resul t;
if ( col.getNane().equal sl gnoreCase("PTYM.ID K") )
result = true;
el se
result = fal se;
Systemerr.println("isForeignKey for " + col.getNane() + ",
rtn: " + result);
return (result);

This method is called for each child attribute. The col parameter represents the metadata for
the child column. The method returnst r ue for only one column, the child column matching
that parent autonumber column.

Note: If you still require additional control over updates and inserts resulting from user
modifications to query objects, you can override the save() method for the query
object. You can examine the collection of updates to be started on underlying data
objects and add custom code to control them, for example, by removing updates or
setting fields.

181



WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS

Disabling resynchronization with a persistent data source

The extended property, r ef r eshAf t er Updat e, indicates whether or not to resynchronize
data between a business object and its persistent data source after a transaction is committed.
If this property is set, it overrides the default values for business objects. The possible values
aretrue andf al se. By default, query objects are specified ast r ue. To override this default,
you can add the extended property to a query object and set itsvaluetof al se.

To disable resynchronization of a query object with its persistent data source:
1. Inthe Versata Logic Studio Explorer, double-click the query object to open it in the Query
Object Designer.
2. Click the Properties tab, then the Extended tab.
3. Onthe Extended tab, click the Add button.

4. Inthedialog that appears, enter r ef r eshAf t er Updat e and click OK. This entry appears
in the Property Name column of the extended properties table.

5. Inthe Property Value column of the table, enter f al se.
6. Click the Save toolbar button.

182



Understanding
Transaction Logic

183



UNDERSTANDING TRANSACTION LOGIC
CHAPTER OVERVIEW

Chapter overview

This chapter provides an introduction to the business rules that implement transaction logic in
the Versata L ogic Server. Read this chapter to get an understanding of what transaction logicis
and how business rules represent transaction logic. This chapter includes the following:

= “Transaction logic overview” on page 185, introduces declarative businessrules,
describing the benefits they provide.

»  “Typesof businessrules’ on page 189, detailsthe different types of business rulesyou can
define.

= “Transaction logic processing” on page 200, outlines the order of processing for
transaction logic at run time.

= “Analyzing business requirements’ on page 206, discusses the mapping of business
requirements to rules.

This chapter isintended as background to read before you begin defining transaction logic.
For procedures for logic definition, see the following:

= For instructions on defining business rules in the Transaction Logic Designer, see
“Procedures for defining business rules’ on page 232.

= For information about building and compiling Java files for business objects that contain
transaction logic, and deploying the objects to the Versata Logic Server and the IBM
WebSphere Application Server, see “Building and Deploying Business Objects’ on page
255.

= For information about generated business object files and the code they include, see
“Understanding Business Object Files’ on page 285.

= For information about extending and customizing transaction logic code, see “Extending
Business Object Code” on page 321.

184



UNDERSTANDING TRANSACTION LOGIC
TRANSACTION LOGIC OVERVIEW

Transaction logic overview

Versata Logic Studio allows you to define transaction logic for the objects in your data model.
This transaction logic applies to objects across applications. You define thislogic in terms of
declarative business rules.

What are declarative business rules?

Declarative business rules are simple, unambiguous statements that define the derivation,
validation, referential integrity enforcement, and presentation of data (with presentation design
only). Business rules defined in the Versata L ogic Studio are declarative rather than procedural
because you design applications in terms of what the application needs to do, not how it does
it.

For example, in designing the appearance of an application user interface, you can specify the
data to appear on each form or page, and the navigations, without having to code how the data
gets displayed or how users move from one form or page to another. In the same manner, when
you define business rules, you design transaction logic in terms of what data values should or
should not be, based on calculations or restrictions. You do not need to write code to arrive at
these data values; the Versata L ogic Studio generates this code based on your declarative
definitions.

You define declarative business rules for the data objects in your data model, using graphical
tools and simple language in the Transaction Logic Designer. Rules are properties of data, and
fire only when data changes state. Business rules are stored in the repository, along with the
datamodel.

The Versata Logic Studio allows you to extend and customize declarative rulesin avariety of
ways. The Transaction Logic Designer allows you to define action rules that call system-
supplied or user-defined Java methods. You also can reference methods in rule expressions.
You can use the Code Editor to edit the code generated for rules. Your edits can range from
event-handling code to modify the default handling provided for the Versata Logic Suite’'s
exposed server events, to subclassing the Versata Logic Server Classes that provide the
building blocks for rules and other business object code.

The biggest issues to solve when you are defining arule are:

= |dentifying which data should own the rule.

»  Gathering the datainto the right object.

= Figuring out how to change datato fire therule.

The basic operations provided by declarative businessrules are:
= Replication

= Formulation

185



UNDERSTANDING TRANSACTION LOGIC
TRANSACTION LOGIC OVERVIEW

186

= Aggregation
= Constraints

For detail s about the different types of declarative businessrules, see “ Types of businessrules’
on page 189.

The Versata L ogic Studio provides menu options that you can use to build and compile
business rulesinto the Javafilesthat are generated for each data object. You have the option of
deploying each data object and query object to the middle tier as a Java class or as an
Enterprise JavaBean (EJB). Every business object file includes marked sections where you
can add custom code that is preserved when object files are rebuilt and recompiled.

Why use declarative business rules?

The Versata L ogic Studio automates the procedural implementation of transaction logic that is
defined declaratively in business rules. When you deploy your business rules to the Versata
Logic Server, the system automatically generates and compiles Java component files that
contain the required logic. Each rulefires automatically whenever an application action affects
the dataelement (attribute, relationship, or data object) to which the ruleis attached. Thefiring
of onerule can affect related data elements and cause the firing of the rules attached to these
other data elements.

Every transaction in a generated application automatically reuses all business rules applicable
to the data elements affected by the transaction, regardless of the user action that initiates the
transaction. Because the Versata Logic Studio automates all of the required processing,
business rules can be shared among multiple business transactions, or functions, and even
among multiple applications running against the same database. If the requirements for
transaction logic change, declarative business rules can be atered and redepl oyed without
consideration of the processing implications.

Business rules provide integrity enforced by the Versata L ogic Server. The implementation of
business rules as a middle tier also reduces network traffic to make performance scalable.
Rules processing can be distributed across multiple Versata Logic Servers on different
machines to improve performance further.

Defining declarative business rules generates a large amount of code that would otherwise
need to be handwritten. This automatic generation of code shortensinitial development,
reduces debugging, and simplifies maintenance. You can easily extend declarative business
rules by incorporating calls to your own methods within rule expressions, adding your own
event-handling code, or subclassing system-supplied classes used to build rule component
files. The Versata L ogic Suite's J2EE-enabled architecture allows your custom additionsto be
preserved as you modify rules and regenerate rule component files.



UNDERSTANDING TRANSACTION LOGIC
TRANSACTION LOGIC OVERVIEW

Declarative business rules enable application development with a business orientation that
focuses on the big picture. Devel opers and end users alike can devote more attention to the
desired behaviors for an application, rather than on the details of how to implement the
behaviors.

The modularity and reusability of business rules encourage a flexible approach to business
requirements definition and implementation. One standard approach is to work with end users
to develop an inventory of application business functions, analyze each function to determine
transaction logic requirements, and define rules that enforce each requirement. You can
integrate your existing requirements, definition process, and modeling tools into the Versata
Logic Suite development process.

When you change arule, you do not have to model all of the potential effects on al related
requirements and functions. The Versata L ogic Suite's automation of rules processing
addresses the dependenci es between business rules. As aresult, modifying the transaction
logicisafairly short and simple procedure.

To sum up, declarative business rules offer the following advantages:
= You can concentrate on requirements rather than on implementation.

= Businessrules are easy to communicate to management and users so that you can work
more effectively with them.

» Testing and maintenance are simplified because procedural implementation is automated.
You need to maintain only the statement of the rule rather than all the procedural code.
Rules are order independent and automatically applied to all relevant transactions in the
generated code.

Business rules functionality compared to spreadsheet
functionality

One way to understand business rules is to compare their functionality to that of spreadsheets.
The following table provides this anal ogy.

Spreadsheet functionality Declarative business rules functionality

The formulato determine a spreadsheet cell | The rule to determine an attribute value may refer to
value may refer to many other spreadsheet many other attribute values, each determined by its
cell values, each determined by its own own rule.

formula.

187



UNDERSTANDING TRANSACTION LOGIC
TRANSACTION LOGIC OVERVIEW

Spreadsheet functionality Declarative business rules functionality

A changeto the value or the formulafor a A changeto the value or rule for an attribute, or
spreadsheet cell, or insertion or deletion of insertion or deletion of records, may cause automatic

spreadsheet rows, may cause automatic changes to many other attribute valuesthat refer to the
changes to many other cell valuesthat refer | changed attribute value in their own rules. Each

to the changed cell value in their own declarative business rule is defined on a single data
formulas. object. Because cascading rules automatically cause

other rulesto fire, business rules can be combined to
implement update processing across multiple data
objects.

A changeto asingle cell in aset of linked A change to one business rule may affect many
spreadsheets may cause changesto cellsin business processes, which are implemented through
many other spreadsheets. that rule.

188



UNDERSTANDING TRANSACTION LOGIC
TYPES OF BUSINESS RULES

Types of businessrules

The Versata Logic Studio allows you to define the following types of business rules:
= Derivation rules
= Validationrules

= Presentation rules, including captions (available for applications designed in Versata Logic
Studio only.

= Referential integrity rules
s Constraints
= Actions

The business rules that may be applied to an element in adata model depend on the element’s
object type, as shown in the following table.

Type of business rule Applicable data element
Derivation, Validation, and Presentation Attribute

Constraints, Actions, and Presentation Data object

Referential Integrity and Presentation Relationship

Derivation rules

Derivation rules define how an attribute’s value is computed when a database update occurs.
Derivations can be aggregations of child record values (sums or counts), replicates of parent
record values, or formulas based on values of other attributesin the same record. You define
derivation rules on the Attributes: Derivation tab of the Transaction Logic Designer.

You can create derived attributes that are used for calculation of other attributes’ values but are
not stored in the database. These attributes are called virtual attributes. A virtual attributeis
calculated on the Versata L ogic Server as heeded rather than being physically stored inthe data
source. The Persistent check box on the Derivations tab indicates whether an attributeisvirtual
or stored. The decision of whether to make a derivation virtual or stored has significant
implications for optimization of your applications. For information about defining and using
virtual attributes, see “Virtua attributes’ on page 104.

Whenever an attribute has a derivation rule, the Versata L ogic Studio by default generates a
validation rule to prevent user updates. This validation rule can be changed, if necessary.

Each derivation rule can cause other derivation rules to fire. This cascading of rules enables
complex update processing across multiple data objects. For an example of this process, see
“Multiple data object updates through cascading rules’ on page 192.

189



UNDERSTANDING TRANSACTION LOGIC

TYPES OF BUSINESS RULES

Thefollowing are types of derivation rules.

Rule type

Explanation

Sum

A sum rule derives aparent attribute value by adding values of aspecified attribute
in achild data object. A sum rule optionally can include a qualification expression
that restricts child records included in the sum.

The generated component code for asum rule:
* Initializes the parent sum attribute value to be 0 on insert of parent record.

» By default, raises an error when a user triesto insert or update the parent sum
attribute directly. (This default can be overridden by changing the Prevent User
Updates validation rule.)

» Adjusts the sum attribute value by subtracting values of deleted child rows,
adding values of inserted child rows, and subtracting or adding the changes to
values of updated rows. (Note that most processing occurs in the child data
object’s component.) Defining sums as described here results in superior
performance because it does not result in aggregate queries every time the
summed val ue heeds to be changed.

Count

A count rule derives a parent attribute value by counting the number of recordsin
aspecified child data object. A count rule, optionally, can include a qualification
expression that restricts the child records included in the count.

The generated component code for a count rule:
« Initializes the parent count attribute value to 0 on insert.

» By default, raises an error when a user tries to insert or update the parent count
attribute directly. The default can be overridden by changing the Prevent User
Updates validation rule.

» Adjuststhe count attribute value: decreases the value by one for each deleted
child row and each updated child row that no longer meets the specified
condition, and increases the value by one for each inserted child row and each
updated child row that newly meets the specified condition. (Note that most
processing occurs in the child data object’s component.) Defining counts as
described here resultsin superior performance because it does not result in
aggregate queries every time the counted value needs to be changed.

190



UNDERSTANDING TRANSACTION LOGIC
TYPES OF BUSINESS RULES

Rule type Explanation

Parent Replicate | A parent replicate rule derives a child attribute value by copying avalue from an
attribute in arelated parent data object. A replicate occurs when anew child record
isinserted or when anew parent is assigned to an existing child.

Additionally, a Maintained option is available to specify whether updates to the
replicated attribute in the parent should be cascaded to related children. By defaullt,
replicates are not maintai ned.

Replicates are useful in reducing joins, and in making parent data values available
for usein other businessrules.

The generated component code for a parent replicate rule:
» Copiesthe parent attribute value to the child replicate attribute on insert.

» Copiesthe new parent attribute value to the child replicate attribute if aforeign
key is changed in the child.

» Changesthe child replicate attribute value to NULL if aforeign key isnullified.

 Cascades updates to parent attribute to child replicate attribute, if replicateis
maintained. (Note that most processing occurs in the parent data object’s
component.)

» By default, raises an error when a user triesto insert or update the child replicate
attribute directly. The default can be overridden by changing the Prevent User
Updates validation rule.

Formula A formularule derives an attribute value by evaluating an expression on other
attribute values from the same record. Formula rules can reference data
modification operations (I nserti ng, Updati ng, Del eting),include
system-supplied or devel oper-defined methods that return a value, and include
i f-then-el se conditiona structures.

The generated code for aformularule calculates attribute value on insert or
update.

Default A default rule specifies the value of an attribute when a user does not enter avalue
on insert. This specification can be aliteral number value, a quoted string, or a
method that returns a value. Subsequent user updates can change a default value.

The generated code for adefault rule:
* Oninsert, checksif an attributeis NULL.
» |If an attributeis NULL, inserts the default attribute value.

Note: Derivation rules other than defaults are not supported on primary or foreign keys.

191



UNDERSTANDING TRANSACTION LOGIC
TYPES OF BUSINESS RULES

192

Multiple data object updates through cascading rules

A derivation rule fires when a user action changes the value of an attribute used in the rule.
Thefiring of one rule often resultsin changes to other attributes, causing the firing of rules
that use those attributes’ values. Because of this cascading of rules, one user action can result
in updates to multiple data objects, including changes that start in a parent and cascade to its
children. The cascading can begin with a number of user actions, including a change in the
value of a primary key, the deletion of a parent record, and the deletion of achild record.

Child to parent cascade

A change to the value of achild record that is used to provide a sum, used as a qualification
condition in avalidation rule, or used as a foreign key, can cause an adjustment to a parent
record. The change in the parent record may trigger other rulesin turn. For example, in the
sample applications included with the Versata Logic Suite (with presentation design only),
when a user changes the value of the QtyOrdered attribute for an ORDERITEM, many other
attribute values change.

s PART.QtyUnshipped is adjusted, because its derivation rule uses
ORDERITEM.QtyOrdered as a summed attribute.

»  ORDERITEM.Amount is recalculated, because its derivation rule uses
ORDERITEM.QtyOrdered.

=  ORDERS.Amountltemsis recalcul ated, because its derivation rule uses
ORDERITEM.Amount as a summed field.

s  ORDERS.OrderTotal is adjusted, because its derivation rule uses ORDERS.Amountltems
inaformula.

= CUSTOMERS.ActBalance is recalculated, because its derivation rules uses
ORDERS.OrderTotal as a summed field.

= A constraint on the CUSTOMERS data object isfired by this recal culation. The change to
PART.QtyUnshipped also causes the firing of other rules for the PART data object.

Parent to child cascade

A changeto a parent record that is used in a maintained replicate rule may cause an update to
child records to receive the new value. For example, when a user changes the value of the
ShippedFlag attribute for an ORDER, the value of the ShippedFlag changes for each
ORDERITEM in the ORDER. The change to ShippedFlag values for ORDERITEM records
adjusts the values of the QtyShipped and QtyUnshipped attributes for related PART records.

Parent-to-child cascades also may result from referential integrity updates.

Note: The sample database includes examples of how different types of derivation rules can
cascade to implement updates across multiple data objects.



UNDERSTANDING TRANSACTION LOGIC
TYPES OF BUSINESS RULES

Attribute validation rules

Validation rules define limitations for attribute values. These limitations can be based on a
developer-defined condition or on a coded valueslist. The Versata L ogic Studio also alows
you to restrict attributes’ updatability and nullability through validation rules.

You define validation rules on the Attributes: Validation / Data Type tab of the Transaction
Logic Designer. On this sametab, you can review and change attributes' datatypes. For details
about working with attribute data types, see “ Changing an attribute's data type” on page 103.

Note: Dataobject validation rules are defined as “ constraints’ in the Transaction Logic
Designer. For information about these, see “ Constraints’ on page 198.

The following are types of validation rules.

Validation rule type

Explanation

Condition

A condition validation rule limits values in an attribute to those that meet a
defined conditional expression. For each condition validation rule, the
Transaction Logic Designer allows you to enter a custom error message that
appears when a violation occurs.

Condition validation rules can:

« reference data modification operations (I nserti ng, Updati ng,
Del et i ng);

« usethe: A d function to reference attribute values prior to update;

* include system-supplied methods and devel oper-defined methods (that are
registered and listed in the Enterprise Object Browser.)

The generated code for avalidation condition rule raises an error if the
condition is not met.

Coded valuesllist

A coded valueslist validation rule limits attribute values to the values in a
coded valueslist. A coded values list consists of pairs of corresponding
values. Each pair hasastored value and adisplay value. The stored values are
stored on the database server. The display values are shown in a combo box
to the user.

The generated code for acoded valueslist validation rule validates attribute
data against stored values. In addition, acoded valueslist rule on an attribute
drivesthe client application to build either acombo box (by default) or option
buttons for the attribute (with presentation design only).

For more information about coded values lists, see “Working with coded
valueslists’ on page 95.

193



UNDERSTANDING TRANSACTION LOGIC

TYPES OF BUSINESS RULES

Validation rule type

Explanation

Nullability

The Transaction Logic Designer provides a Value Required validation rule
with a system-supplied error message. You can specify in thisrule that an
attribute value cannot be NULL.

The generated code for a Vaue Required rule defines the attribute as not
NULL, and nullability is checked in the client application during update
processing.

Updatability

The Transaction Logic Designer provides a Prevent User Updates validation
rulewith a system-supplied error message. You can specify in thisrulethat an
attribute value is not updatable by users.

The Versata Logic Studio automatically defines a Prevent User Updates
validation rule for an attribute in the Transaction Logic Designer if the
attribute has a derivation rule. You can override this default, even for non-
persistent, derived attributes.

The generated code for a Prevent User Updates validation rule raises an error
when auser triesto update the attribute directly. (A user can enter an attribute
valuefor anewly inserted record. If the attribute is derived, the newly entered
valueis overridden by the derivation when the record is saved.) In Java
applications, non-updatable fields are built as disabled on forms (with
presentation design only). In HTML applications, non-updatable fields
display as empty at design time, while at run time, text displaysin the field
but is not editable (with presentation design only).

Datatype

The Transaction Logic Designer displays the data type of each attribute, and
allows you to change data types for attributes displayed in scalar fields. For
Text, Number, and DateTime types, you aso indicate a sub type. In the case
of Text attributes, you also can change the size.

The Transaction Logic Designer checks data type changes, prohibiting
changes between mismatched types, changes to indexed attributes and key
attributes, and changes to AutoNumber when data already existsin an
attribute. Data type checking is performed on both the client and the server.

Presentation rules

Presentation rules define certain aspects of Versata L ogic Studio-generated application user
interfaces. Archetypes and application diagrams define other aspects. Presentation rules are
not implemented through business object code and do not affect server processing.

194



UNDERSTANDING TRANSACTION LOGIC
TYPES OF BUSINESS RULES

The following table lists the types of presentation rules.

Rule type

Explanation

Attribute presentation

Define attribute presentation properties on the Attributes. Presentation
tab of Transaction Logic Designer. These properties include:

» A caption that appears as alabel for the field on generated forms or
pages.
* A format for text in thefield.

» A status bar message that appears in the window status bar when the
attribute receives focus (for Java applications only).

» An archetype to be associated with the attribute, that determines the
control or element to be used for the field on generated forms or pages.

Definition of these presentation propertiesis optional. The Versata Logic
Studio provides a default caption and archetype for each attribute.

Data object presentation

Define data object presentation properties on the Properties: Presentation
tab of Transaction Logic Designer.

The Versata Logic Studio provides default presentation properties for
data objects. You may change the defaults. These properties include:

» Singular and plural captions that appear on generated forms or pages
where the data object is aroot RecordSource. In Java applications,
these captions are used for controls and appear as referencesin the
status bar. In HTML applications, these captions are used for page
elements.

» Animage to be added to the data object. The image appears on toolbar
buttonsin Java applications.

Relationship presentation

Define relationship presentation properties on the Relationships:
Presentation tab of Transaction Logic Designer.

The Versata Logic Studio provides default presentation properties for
relationships. You may change the defaults. These propertiesinclude:

A caption that appears as alabel for datain transitions from parent to
child forms or pages.

A caption that appears as alabel for datain transitions from child to
parent forms or pages.

« A child role name used in APIsthat retrieve child data for the parent
data object in the relationship.

« A parent role used in APIsthat retrieves parent data for the child data
object in the relationship.

195



UNDERSTANDING TRANSACTION LOGIC
TYPES OF BUSINESS RULES

196

Captions

The Versata L ogic Studio uses captions to generate RecordSource labels and command button
labels on the applications it builds. Generated captions are based on defaults for data objects
and relationships. You can override most of the defaultsin either the Transaction Logic
Designer and/or the forms or pages.

There are three kinds of captions:
= Attribute captions

= Dataobject captions

= Relationship captions

Note: If you change captions in the Transaction Logic Designer after you have generated an
application, modified captions do not appear on forms or pages until you rebuild the
form or page layout.

Attribute captions

Define attribute captions on the Attributes: Presentation tab. The attribute names are the
defaullt.

In forms and pages, attribute captions are the default label captions for fields and attributes.

Data object captions

Define singular and plural data object captions on the Properti es:Presentation tab. The singular
caption defaults to the data object name and the plural caption defaults to the data object name
with an appended “(s)”. For query objects that are used as RecordSources, the childmost data
object in the query is used to derive the default caption.

The singular data object caption is the default 1abel for display forms or pages where the data
object isaroot RecordSource. The plural data object caption isthe default label for grid forms
or grids on pages where the data object isaroot RecordSource. Plural data object captions also
are used as RecordSource references in the status bar.

Relationship captions

Define relationship captions on the Rel ationships: Presentation tab. Target data object captions
are used by default. The parent-to-child relationship caption defaults to the child's plural data
object caption. The child-to-parent relationship caption defaults to the parent’s singular data
object caption.

On forms in Java applications, relationship captions are the default captions for command
buttons that execute form transitions.



UNDERSTANDING TRANSACTION LOGIC
TYPES OF BUSINESS RULES

Referential integrity rules

Referential integrity rules preserve rel ationships between data objects when data manipulation
language (DML) updates occur. You define referential integrity rules on the Relationships tab
of the Transaction Logic Designer. For each relationship in your data model, you can indicate
whether you want to enforce referential integrity; however, you must enforce it to use the
relationship in rules.

You can define separate rules for parent updates, parent deletes, and child inserts/updates. The
Versata Logic Suite supports standard referential integrity rules with additional provisions for
Cascade Update, Cascade Delete, and Cascade Nullify.

The generated code for a default referential integrity rule rolls back the entire user update
request if areferential integrity violation occurs. The rollback reverses all changesto data
objects that were caused by the update request. By default, the Versata Logic Server enforces
referential integrity. You have the option of enforcing referential integrity in the database
server as well; you select this option when you deploy the data model to the database server.

The following table lists the types of referential integrity rules available in the Versata Logic

Studio.
Rule type Explanation
Restrict There are three Restrict rules:

1) Prevent parent updateif children are present.
2) Prevent parent delete if children are present.
3) Prevent child insert/update if parent is not present.

Each of these rules can be defined separately. You may edit the rules and the
system-supplied error messages.

Cascade Update A cascade update rule, or Update Children on Parent Update, indicates that
foreign key valuesfor child records should be updated to match an updated
parent key value.

Cascade Delete A cascade delete rule, or Delete Children on Parent Delete, indicates that rel ated
child records should be deleted when a parent is del eted.

Cascade Nullify A cascade nullify rule, or Null Children Foreign Key on Parent Delete, indicates
that foreign key fields for related child records should be nullified when a parent
key is deleted.

Cascade Insert A cascade insert rule, or Insert Parent If None on Child Insert/Update, indicates
that if an inserted or updated child record has no parent record, a record should
beinserted into the parent data object with a primary key that matches the child
foreign key. Note that this option is available only if the parent object does not
have required fields other than the primary key fields.

197



UNDERSTANDING TRANSACTION LOGIC
TYPES OF BUSINESS RULES

198

Constraints

Congtraints are object-level rules you can use to enforce value changes to attributes.
Constraints consist of a condition (such as whether the Account Balance exceeds the Credit
Limit), an action (either to accept or reject the pending change), and an error message. When
the condition evaluates to true, then the action is taken, and a specified error mesageis
returned, along with a specified field to be highlighted. The condition is evaluated whenever
any attribute specified in the condition is going to change.

Whilethisis similar to avalidation, an attribute can have multiple constraints but only asingle
validation.

Constraints can:
» Reference data modification operations (I nserti ng, Updating, Del eting).
= Usethe: A d function to reference attribute values prior to update.

= Include system-supplied and devel oper-defined methods. (These methods must be
registered and listed in the Enterprise Object Browser.)

= Govern derived attributes.

All attributes, derived or otherwise, in the conditional expression of a constraint must be
located in the same data object.

You define constraints on the Constraints tab of the Transaction Logic Designer. You may
define multiple constraints on a data object. All constraints are evaluated when an update to a
data object occurs. The generated code for aconstraint rolls back the entire user update request
if a constraint violation occurs during the update. The rollback reverses al changesto data
objects that were caused by the update request. A transaction isrolled back when the
conditional expression for a Reject When constraint eval uates to true or when the conditional
expression for an Accept When constraint evaluates to fal se.

The Versata Logic Studio provides a default error message, but you may enter a customized
message to display when the constraint prevents a user transaction from committing. You also
may define the attribute where the cursor is placed after the error is raised. The error attribute
is client-side information only.

Note: Constraints are inherently unordered. We do not recommend that you attempt to reorder
them.

Business rule actions

Business rule actions extend the transaction logic processing capability of the Versata Logic
Suite by incorporating your procedural code into the declarative model. Actions enable you to
customize the Versata L ogic Studio-generated business objects through calls to devel oper-
defined methods. Action customizations are preserved automatically when businessrule
components are regenerated.



UNDERSTANDING TRANSACTION LOGIC
TYPES OF BUSINESS RULES

An action rule executes acall to an external method when certain conditions are met. You can
pass parameters from the attribute values of the current row.

You must register an object for it to be available to a method call from an action rule. To

register an object, click Add in the Enterprise Object Browser, or choose Tools > Add Object
to Registry in the main menu.

199



UNDERSTANDING TRANSACTION LOGIC
TRANSACTION LOGIC PROCESSING

Transaction logic processing

200

After you declare business rules for each data object, you can build and compiletheruleslogic
into a Java business object for each data object, choosing implementation as either a Java class
or an EJB for each one. In Versata L ogic Studio you define derivations and constraints on data,
not transactions, because the system automatically generates transaction-specific transaction
logic when you build and compile business rules into the business objects. Code generated to
implement business rules is added into the business objects that execute on the Versata Logic
Server and IBM WebSphere Application Server. The Versata Logic Server provideslogic
execution services and acts as an EJB container for any business objectsimplemented as EJBs,
while IBM WebSphere Application Server provides application execution services. The
execution of transaction logic code on the middle-tier Versata L ogic Server guarantees data
integrity and reduced network traffic, enhancing performance.

Also, because the Versata L ogic Suite centralizes the transaction logic execution on the
Versata Logic Server, each application automatically inherits transaction logic. Thereisno
need to recode or even recompile business rules for each application, whether for rapid
iterative development, or simple maintenance. When you redeploy business rules, the Versata
Logic Studio automatically analyzes all data dependencies, rebuilding to achieve a correct and
optimal processing order. This rebuilding protects against a gradual loss of coding efficiency
due to multiple patches.

Most of the processing logic for rules resides in the business object files, in pure Java code.
The object files have pluggable data access modules, and separate files called Versata
Connectors execute data access. The Versata Logic Suite includes default Connectors for

SQL -based data sources, like RDBMSs. You must obtain specialized Connectors separately or
write your own Connectors to provide data access to non-SQL data sources.

Thefour basic activities of rules processing on the Versata L ogic Server are:
= Analyzetheupdate. Thefirst step isto determine the values that the user has changed.

= Adjust dependent data. The dependencies among data are computed when business rules
are compiled, so the generated components automatically adjust the correct data when
users change val ues. Dependencies are recomputed each time you ater the rules, so they
are always correct, complete, and consistent. Queries and Wher e clauses within rule
expressions are implemented in SQL and passed to the data source.

= Check constraintsand datarestrictions. These include referential integrity, coded value
lists, attribute constraints, and nullability. Basic referential integrity enforcement for
RDBMS objectsis supported in the database server in the form of DDL constraints, if this
option was selected during data model deployment.

= |nvokeevents. Each dataobject’s Javaimplementation file exposes server events. You can
add code to these events to modify server processing. Your server event code may extend
the logic for the client application and/or the Versata Logic Server. The system calls any
event handlers you have defined to extend declarative rules processing with your own
procedural code.



UNDERSTANDING TRANSACTION LOGIC
TRANSACTION LOGIC PROCESSING

Order of rule processing operations

To use rules effectively, you should understand the order in which they are executed. Asin a
spreadsheet, the processing order isimplicit, and cannot be modified directly by you, although
you can nest rules to model complex behavior among multiple objects. For some information
about nesting, see “Nest levels’ on page 204.

The Versata Logic Server's Transaction Logic Engine processes business rulesin a defined
order. This ordered dependency enables rules to be captured declaratively and implemented
procedurally. To achieve this, business objects interact with each other to enforce rules across
objects at a predefined stage of the dependency graph.

When amodification (insert, update, or delete) is made to a business object and then saved, a
set of operations are carried out in the business object. The following table summarizes these

operationsin the order in which they occur. Specific information about each operation follows
the table.

Note: You can change the sequence that therulesfireinthej avaConponent . t pl file, which
is the template used during building and compiling.

Operation Scope Insert Update Delete
Before Insert/Update/Del ete Event local X X X
Set Defaults local X

Attribute Alterability Check local X

Parent Check / Fetch Parent Replicate local X X

Evaluate Formula locd X X

Coded Value Constraint Check local X X

Attribute Validation Check loca X X X
Business Object Constraint Check local X X X
Nullability Check loca X X

Conditional Action local X X X
Child Cascades child X X X
Parent Adjustment parent X X X
After Insert/Update/Delete Event loca X X X

201



UNDERSTANDING TRANSACTION LOGIC
TRANSACTION LOGIC PROCESSING

202

Each type of modification (insert, update, or delete) enforces the set of rules indicated by an
‘x". For each modification, all local calculations and validations are done first. These are
followed by modifications to related objects in the form of cascades to child objects and
adjustments to parent objects. Each of these related modifications then implements the
dependency graph in its entirety aswell.

Rules processing also includes defined nest levels and modification state flags.

Before insert/update/del ete event

Before any generated transaction logic is executed, devel oper-supplied event code is executed.
Thisisrecommended for setting up conditions or capturing data to be used later.

Set defaults

For inserts, default values are inserted into attributes.

Attribute alterability check

For updates, a check is made to verify that any attributes that are modified by the user are
modifiable.

Parent check/fetch parent replicate

For inserts and updates, areferential integrity check is performed to verify that child rows
have related parent rows. If the “Insert Parent if None” ruleis declared, anew parent row is
created and inserted using the child foreign key asthe parent primary key. Other attributes
must have defaults or formulas associated with them, or they must be nullable.

Also, if there are any parent replicatesin the child, the value is fetched from the parent.

Evaluate formula

For inserts and updates, all formula values are calcul ated.

Coded value constraint check

For inserts and updates, if any attributes have Coded Values Lists validations, it is verified that
the attribute value isin the Coded Values List.

Attribute validation check

For inserts, updates, and deletes, it is verified that all attribute validation conditions are met.



UNDERSTANDING TRANSACTION LOGIC
TRANSACTION LOGIC PROCESSING

Business object constraint check

For inserts, updates, and deletes, it is verified that all constraints within the business object are
satisfied.

Nullability check

For inserts and updates, it is verified that any attributes with null values are not required.

Conditional action

After al local modifications have been made in the business object, a devel oper-supplied
condition istested. If the condition is true then a devel oper-supplied method call is made. This
is recommended when there are other declarative rulesin the business object or related
business objects.

Child cascades

After local calculations and validation checks are performed, child cascades are done. This

appliesto insert, update, and delete. For each related child business object, one or more of the

following may occur:

m Cascade updateforeign key. If the parent primary key has changed, the change is
propagated to each related child.

= Nullify foreign key. If thisruleis declared and a parent is deleted, the foreign key is set to
null in all related children.

m Cascadedeete. If thisruleis declared and a parent is deleted, all related children also are
deleted.

= Cascade update parent replicates (M aintained). If the value of areplicateis modifiedin
the parent, the new value is cascaded to the children. Note that the parent business object
performs the change on the child and then saves the child. This causes the scope of logic
execution to be nested in the child.

203



UNDERSTANDING TRANSACTION LOGIC
TRANSACTION LOGIC PROCESSING

204

Parent adjustments

Parent adjustments are done if a child row participatesin an aggregate calculation in one or
more related parent objects. When an attribute in the child affects a sum or a count in a parent,
the change is passed to the parent and the parent is adjusted by the amount of the change. The
following conditions may cause a parent adjustment:

= A changed attribute in the child may be avalue that is summed in the parent. In this case,
the net value of the change is transmitted to the parent, which adds that to the existing
aggregate value.

= A changed attribute in the child may participate in aqualifying Wher e clause for a sum or
acount. In this case, the row with the changed attribute may no longer qualify for the
aggregate where once it did, or it may now qualify where it did not previously. In either
case, the aggregate must be adjusted accordingly.

= A changed attribute in the child may be part of aforeign key that has caused the child to be
‘re-parented’. If achild isre-parented, both the old and new parents must be adjusted to
reflect the change.

Note that the child business object transmits the change to the parent and then savesthe parent.
This causes the scope of logic execution to be nested in the parent. Each of the parent
adjustmentsis done one at atime from the child. If the resulting change in a parent resultsin a
new parent replicate value for the child, the value will be cascaded (and therefore the child
business object code will be re-entered) from within the scope of the parent update.

After insert/update/del ete event

After all generated transaction logic is executed, developer-supplied event codeis executed. It
is recommended that you add event code here for cleanup of other conditions or for capturing
audit data.

Nest levels

When changes are propagated across multiple business objects, the scope of execution is
nested. Within each nest level, rules are reexecuted in the same order of operations. Business
rules can be reentered multiple times across nesting levels. The same object (row) instanceis
used to prevent lost updatesin complex recursive cases. After al of the nest levels are
completed, the transaction logic returnsto its starting point at thefirst nest level. The examples
used to illustrate nested rules processing are based on the sample repository:



UNDERSTANDING TRANSACTION LOGIC
TRANSACTION LOGIC PROCESSING

For example, if a user updates an ORDERITEM form or page, local modificationsto the
ORDERITEM business object take place at nest level 1. This modification causes a parent
adjustment to the ORDERS business object (for example, update the ORDERS Total Amount).
In this case, the ORDERS transaction logic is processed at nest level 2. This modification, in
turn, causes another parent adjustment to the CUSTOMERS business object (for example,
update the CUSTOMERS A ccount Balance). The CUSTOMERS transaction logic is
processed at nest level 3.

It ispossible for transaction logic to be re-entered. In the exampl e above, suppose that there are
volume discounts that apply a 10% discount to all ORDERITEMS under $50 in any ORDER
that hasin excess of 100 ORDERITEMS. When an ORDERITEM business object (nest level
1) adjusts an ORDER so that the 100 ORDERITEM condition is met, the discount isreplicated
from the ORDERS object (at nest level 2) back down to the ORDERITEM object (whichisre-
entered at nest level 3).

After necessary calculations are made to each ORDERITEM under $50 (using a conditional
formula), the ORDERS Total Amount would need to be recal culated with another parent
adjustment (nest level 4). Finally, the CUSTOMERS Account Balance would be adjusted
again (nest level 5). After each nest level is completed, the transaction logic ‘unwinds’ like
function calls being popped off of a stack, until the transaction is completed back at nest
level 1.

Modification state flags

Logic code in a business abject can determine whether an insert, update, or delete istaking
place on it by using the following methods: i sl nserted(),i sUpdat ed(), and

i sDel eted().Itispossiblefori sl nserted() andi sUpdat ed() to return different
Boolean (Yes/No) values depending upon the current nest level. The operation on the
component differs depending upon the context, as shown in the next example.

For example, if arow is being inserted, and transaction logic execution has entered a rel ated
object (thus incrementing the nest level), and then the logic re-enters the original object
(incrementing the nest level again), i sl nserted() would return True in the first nest level
and i sUpdat ed() would return False. However, upon re-entry in the third nest level,

i sl nserted() would return False and i sUpdat ed() would return True.

Ingenera, i sl nserted() returns Trueonly if the current nest level is equal to the nest level
inwhich the insert actually wasinitiated. Thisnest level isnot necessarily nest level 1, because
an ‘Insert Parent if None' rule or custom code could be doing an insert from within some other
nest level.

Thereisamethod available called i sChanged() to determine whether or not an attribute has
changed. This method returns True if this attribute has changed, or if other attributes that it
depends upon have changed, asin the case of aformula. For example, if aformulasaysa + b
= ¢, and a changestheni sChanged(“c”) returns True, even if the formula has not yet been
reevaluated.

205



UNDERSTANDING TRANSACTION LOGIC
ANALYZING BUSINESS REQUIREMENTS

Analyzing business requirements

206

Before you can begin defining business rules in the Versata L ogic Studio, you need to spend
some time defining the business functions and requirements related to your applications.

Thisanalysis can occur outside of the Versata L ogic Studio development environment. You
can use whatever methods and tools you would like for requirements analysis and definition.
What is different with the Versata Logic Suiteis that after you have analyzed and defined
business requirements, you need to translate requirements to declarative businessrules. This
process does not have an explicit road map, because you can completeit in avariety of ways.
This section provides some hints and guidelines for this process. For more information about
the Versata L ogic Suite devel opment process, see the Architecture and Project Guide.

Business function definition

A business function is a business operation to be supported by one or more applications. It
corresponds to or includes one or more database transactions. Entering a new order and
deleting a customer are examples of business functions.

You may need to break down business functions by business areas. For example, you could
define business functions for the area of order processing that would include entering an order,
adding an order item, and so on.

Generally, you should express business functions with verbs to describe the operations or
actions, the tasks someone would need to perform using the application(s).

Business requirements definition

A business requirement is a condition or statement to be satisfied or enforced in the
application. This requirement can be high-level or low-level.

Generally, each requirement indicates what must be done or satisfied in carrying out one or
more business functions. When defining a requirement, you should state what your customers
or users want in terms that you and they can understand. To continue with the example begun
with business functions, you cannot add an order item unless the part on the item is recognized
by the application.

Declarative business rules can serve as the specifications that support your business
requirements. Some requirements map to a single rule each, while others require multiple
rules.



UNDERSTANDING TRANSACTION LOGIC
ANALYZING BUSINESS REQUIREMENTS

Mapping requirements to rules

Thislist of tasks provides general suggestions for steps to follow in mapping requirements to
rules:

1. List business functions to be addressed by applications.

2. List business requirements for each function. (Some requirements may apply to more than
one function.)

3. Break down requirements to their simplest level.

4. Maplowest level requirementsto the datamodel objects and attributes to which they apply.
(If necessary, add objects and/or attributes to the data model.)

5. Declare one or more business rules for the applicable objects and attributes.

6. ldentify key transactions of the business function for testing and performance analysis
purposes.

Top-down approach

Thetask list above uses atop-down approach to mapping requirements to rules. This approach
starts with the big picture and breaks down high-level processesinto tasks, defining what must
be checked or calculated for each task. An alternative approach isto start from the bottom with
individual actions and move upwards to more complexity.

With the top-down approach, you break down requirements into their simplest level. The
following are examples of simple requirements that can be translated into rules:

= Customer account balance cannot exceed the customer credit limit.
= Customer account balance is the sum of unpaid order totals.

m  Order total isthe amount of order items plus freight.

= Amount of order itemsisthe sum of order item amounts.

= Order item amount is price times quantity ordered.

The following are examples of larger requirements that have been broken down to asimpler
level:

m  Check credit limit for each customer upon order entry.
= Customer account balance is the sum of unpaid order totals.
»  Customer account balance cannot exceed customer credit limit.

= Compute order total for each order entry.
»  Order total isequal to freight plus tax plus the total amount for order items.
= Total amount for order itemsis the sum of the amount for each order item.
» Each order item amount is equal to the quantity ordered timesitem price.
= Order item priceis equal to the part price at the time of order.

207



UNDERSTANDING TRANSACTION LOGIC
ANALYZING BUSINESS REQUIREMENTS

208

Selecting rules

After you have stated requirements at their simplest level, you need to select arule or rulesto
implement each requirement. When you have decided the type of rule(s) to use to implement a
requirement, you are ready to define it in the Transaction Logic Designer. For instructions on

defining rules, see “Procedures for defining business rules’ on page 232.

You can analyze requirements and use categories to limit the possible choices of rules. The
language of the requirement can help you to choose the type of rule. The words “have” or “is
in” usually point to arelationship. Definitions often are derivations, sometimes constraints. If-
then-else wording is available in formula expressions. Note that parent replicates are not
always explicitly stated, but are often implied by another requirement that needs parent datato
be availablein child records.

Your answers to the following questions can help you to select the rule or rules for
implementing a business requirement:

» Istherequirement covered aready by the data model and referential integrity?

= Doesthe requirement have to do with the dataitself (uniqueness, nullability, updatability)?
s What data element(s) are needed to satisfy the requirement?

= Does the requirement involve a single object or multiple objects?

» |f therequirement involves asingle object, doesit involve a single attribute or multiple
attributes?

= |f the requirement involves multiple objects, in what direction is the calculation: up
from children to parents (sum, count), or down from parent to children (replicate)?

The following table provides some further guidelines about translating regquirements into
rules:

Object/Attribute Involvement Type of Rule

Single Object, Single Attribute Default
Validation Condition
Coded Values List

Single Object, Multiple Attributes Formula
Constraint

Multiple Objects Sum (Cal culate up from children to parent)
Count (Calculate up from children to parent)

Parent Replicate (Bring down from parent to child)




UNDERSTANDING TRANSACTION LOGIC
ANALYZING BUSINESS REQUIREMENTS

Mapping requirements to the data model

As stated at the beginning of this chapter, the biggest issues to solve when you are defining a
rule are;

= |dentifying which data should own the rule.

»  Gathering the datainto the right object.

= Figuring out how to change datato fire therule.

To solve these issues, map requirements to the data model as part of mapping requirements to
rules. You should be able to map each term in a requirement to an object or attribute in the
logical datamodel. (Thisdatamodel is considered logical, because some attributesin it may be

non-persistent, meaning they are virtual rather than physically stored.) If the requirement
involves more than one object, look for relationships between objects.

You may need to modify the data model if you are unable to map some requirement terms. You
can add data objects, attributes, and/or relationships. If you need to define arule that uses a
rel ationship between two objects, such as a sum, count, or replicate, referential integrity must
be enforced for the relationship. For example, if you derive the customer account balance as
the sum of order totals, the relationship between customers and orders must be enforced. For
each derived attribute you add, you need to decide whether it is stored or virtual. This decision
has implications for performance.

= For information about adding data objects, see “ Adding data objects’ on page 84.

= For information about adding attributes, see “ Adding attributes to data objects’ on page
102.

= For information about adding relationships, see“ Adding relationships’ on page 113.
= For information about virtual attributes, see “Virtual attributes’ on page 104.

Rules design patterns

In many cases, you may heed to combine rules to enforce a business requirement. The
following combinations are common design patterns:

m  Constraining derived attributes.

Start with the desired constraint, then define derivations to gather data required for
constraint comparison into attributes that can be compared.

209



UNDERSTANDING TRANSACTION LOGIC
ANALYZING BUSINESS REQUIREMENTS

»  Gathering required data from other attributes in the same data object or from related data
objects.

= Formulate. Value for attribute cal culated from other attributes in same data object.

= Replicate. Value moves downward, copied from attribute in a parent data object into
an attribute on the child data object.

= Aggregate. Value moves upward into parent data object, summed or counted from
child data object attribute values.Using count rules as existence checks (determining if
count greater than zero).

» Using count rules as existence checks (determining if count greater than zero).
= Comparing old and new values to determine if state transition occurred.

The sample repository included with the Versata L ogic Suite includes many examples of these
common design patterns as well as others. In addition, this Guide provides examples; see
“Transaction Logic Examples’ on page 397.

Recognizing non-declarative patterns

As you map requirementsto rules, it is important to recognize requirements that cannot be
translated to declarative business rules. These types of requirements, called non-declarative
patterns, include the following:

= More complex relationships than parent-child such as siblings, cousins.
= Quantity-based discount schedules.

» Batch driver loops.

= Workflow, including time-based and cal endar-driven rules enforcement.
n Dataretrieval with a user-defined business function.

The Versata Logic Suite provides a variety of ways for you to extend and customizerulesin
order to meet these non-decl arative requirements, including extending rules with method calls,
adding event-handling code, adding custom Java methods, and subclassing the Versata Logic
Server Classes included with the product. For information about these techniques, see
“Extending Business Object Code” on page 321. For examples of these techniques, see the
sample repository and “ Transaction Logic Examples’ on page 397.

210



Defining Busness Rules

211



DEFINING BUSINESS RULES

CHAPTER OVERVIEW

Chapter overview

212

This chapter discusses the process for defining declarative business rules to implement
transaction logic. After you read this chapter, you should have a basic understanding of how to
use the Transaction Logic Designer to define rules. This chapter includes the following:

“Overview of business rules definition” on page 213, provides background information
about business rules definition tasks, including the following:

»  “Businessrulesdesign issues’ on page 213, describesissues you need to consider
before you definerules.

= “General process for defining business rules’ on page 216, outlines the steps for
defining all of your business rules as part of an iterative process.

“Understanding the Transaction Logic Designer” on page 220, describes the user interface
available for rules definition.

“Procedures for defining business rules’ on page 232, provides specific procedures for
defining different types of rules.

“Businessrule syntax” on page 244, describes the syntax supported for rules expressions.



DEFINING BUSINESS RULES
OVERVIEW OF BUSINESS RULES DEFINITION

Overview of business rules definition

After you have analyzed business requirements for your system and built a data model in a
Versata repository, you are ready to begin the business rules definition process. You need to
break down requirementsinto rules, recognizing design patterns for rules combinations. Also
you need to recognize non-declarative patterns in your requirements. To satisfy non-
declarative requirements, you can extend business rules, modifying generated code for
transaction logic. But before you begin customizing with your own code, you should fully
define declarative rules in the Versata Logic Studio.

Defining declarative business rulesin the Versata Logic Studio is an iterative rather than a
rigidly sequential process. You have alot of flexibility in determining the order in which you
complete tasks. You most likely will define rules in stages. As users review the application
prototype and you refine and add to requirements, you will need to modify and add to rules
definitions. In many cases, rules definition and data modeling tasks will overlap.

In order to review rules as you define them, you need to build and compile the business object
filesthat include code for rules’ logic execution, then deploy these to the Versata L ogic Server
and the IBM WebSphere Application Server. For information about these tasks, see “Building
and Deploying Business Objects’ on page 255.

After you have iteratively refined declarative rules, you can begin extending generated
transaction logic code as necessary to fulfill your requirements. For information about
generated code, see “Understanding Business Object Files’ on page 285. For information
about how to extend this code, see “Extending Business Object Code” on page 321.

Business rules design issues

Consider the following general issues when you are defining business rules for your Versata

repository:

= You define business rules on data objects and their attributes, not on query objects. The
system enforces rules for both query objects and data objects during run-time execution.
Query objects inherit rules from underlying data objects and projected attributes. During
logic execution, query objects are decomposed to data objects so rules can be enforced.

= Datamodel definition and rule definition often overlap. You may discover as you attempt
to define rules that you need to refine the data model. You can use the Transaction Logic
Designer to add, delete, and rename data objects; add, delete, and modify relationships;
add, delete, and modify indexes; and add, delete, rename, and change data types for
attributes. For information, see “Developing a DataModel” on page 31.

213



DEFINING BUSINESS RULES
OVERVIEW OF BUSINESS RULES DEFINITION

214

After you have deployed the business objects that include rules execution code, rules are
executing against the data source(s) so that any data values entered subsequently conform
to rules or cannot be saved. However, preexisting data values may not conform to rules. To
address thisissue, the system provides ar econput eDer i vat i ons() function that you
can execute to modify preexisting data so that it does not violate rules. You can create an
administrative application that incorporates this APl in its client event coding. For
information about recomputing, see “Recomputing derivations’ on page 354.

A key decision as you define derivation rulesis whether to make derived attributes
persistent (stored) or non-persistent (virtual). For information about virtua attributes, see
“Virtual attributes’ on page 104. Consider the following guidelines as you define
derivation rules:

For attributes with sum and count derivation rules, it is usually wise to keep these
attributes persistent, since the storage overhead is minimal. The reason is that
recreating the value requires reading all child records. Thereislittle harm in making
sum and count attributes non-persistent if these attributes are not included in displayed
RecordSources and if they tend to have a small number of children. If the attribute is
displayed in agrid, or is part of a query used to display agrid, or if its base data object
isdisplayed in a grid, the attribute should definitely remain persistent. It should also
remain persistent if the record is updated often, and its value is compared against an
attribute that often changes in a constraint.

If an attribute is non-persistent, you cannot examine its old value. If you have
constraints or other expressions anywhere in your business rule repository that need to
access the old value of this attribute, for instance, to check if it has just been updated,
then do not make the attribute non-persistent.



DEFINING BUSINESS RULES
OVERVIEW OF BUSINESS RULES DEFINITION

Be aware that if you are redesigning a production system that a change from persistent
storage to non-persistent storage is a change to the data model. Any existing tables will
have to be recreated. If production datais stored in those tables, it will have to be
converted using a SQL database tool, or by writing conversion programs.

= For attributes with parent replicate rules, there is no easy, general ruleto follow.
Instead, the decision to store a parent replicate is the same as the decision to
denormalize a physical database model, which is based upon performance trade-offs.
Thefirst thing to look for, as with sums and counts, is whether the attribute is displayed
or retrieved as part of adisplayed RecordSource. If it is displayed, it might be best to
keep the attributes persistent. Next, you might want to look at where the values
originate. If they are stored in the parent, asingle read is all that isrequired to retrieve
them, but if they are actually stored in grandparents, or great-grandparents, there must
be aread at each level of the hierarchy.

= Attributeswith formularules are usually the best candidates for non-persistent storage,
aslong as al the inputs into the formula are persistent. Then no additional database
reads are required to reconstruct the value, so even displayed attributes can be
recal culated quickly. Of course, you may find exceptionsto this general principle if
your formulas reference methods which are computationally complex. If the source
attributes are not persistent, these must be calculated before the formulais cal culated,
and that can be costly.

If you need to display formulavalues but not the derived attributes used asinputs, an
interesting design strategy isto make the formula a persistent attribute, but not the
inputs. Then no recal culation will be necessary because displayed values are stored.

Attribute referencesin rule expressions must be local to the data object on which theruleis
being defined. For sum and count qualification expressions, attributes must be local to the
child data object that the rule references, rather than the parent data object on which the
rule is defined. You can use derivations to reference attributes from related data objects.
For more information about syntax for rule expressions, see “ Businessrule syntax” on page
244,

215



DEFINING BUSINESS RULES
OVERVIEW OF BUSINESS RULES DEFINITION

216

General process for defining business rules

The following steps provide an overview of the tasks you perform to define declarative
business rulesin the Versata L ogic Studio. Review these steps to get a sense of the order in
which you should perform tasks. For more detailed instructions for specific tasks, see
“Procedures for defining business rules’ on page 232.

Completing the prerequisites for business rule definition

1.

Define the business processes to be automated and the business requirements to be
enforced in your applications. For information about getting started with business
requirements definition, see the Architecture and Project Guide.

Make sure you understand the different types of business rules available and how they can
be used to implement business requirements. Then break down requirementsinto business
rules that can enforce them. For overview information about business rules, see
“Understanding Transaction Logic” on page 183.

Produce a data model in a Versata repository. You can import a data model from an
RDBMS database or create the data model in the Versata Logic Studio. For information,
see “Developing a DataModel” on page 31.

Defining basic declarative business rules

Double-click a data object to open it in the Transaction Logic Designer.

Indicate which data objects are to be used as coded valueslists by opening each data object
in the Transaction Logic Designer, selecting the Properties:Coded Values Lists tab,
enabling the option, and completing dial ogs as prompted.

Determine how attribute values will be calculated by entering attribute derivation rules for
each data object. You can use derivations to reference attributes from related data objects.
Asyou build rule expressions to define derivations, keep track of any new attributes you
may need to add in order to automate cal culations and other data model changes that may
be necessary. Determine which derived attributes you want to physically store and which
you want to define as virtual. Also note where you need to reference methods within rules
expressions.

Determine restrictions for single attribute values by entering attribute validation rules for
attributes in each data object. You can build a conditional expression to limit values, or
select a coded values list to provide valid val ues. Define which attributes can be null and
which can be updated by users.

Define constraints that validate data against conditions involving multiple attributesin a
data object. You build arule expression to define the condition and have the option of
defining a custom error message.



DEFINING BUSINESS RULES
OVERVIEW OF BUSINESS RULES DEFINITION

6. On the Relationships tab of the Transaction Logic Designer, indicate whether referential
integrity will be enforced for each data object’s relationships and how it will be enforced
for each type of data change.

7. Inmany cases, rules are automatically saved when you move the cursor within the
Transaction Logic Designer or when you closeiit. To explicitly save rules entries, choose
File > Save Transaction Logic.

Defining presentation rules

Presentation rules determine characteristics of the user interface for applications designed in
the Versata L ogic Studio. The Versata Logic Studio provides default rules, but it is a good idea
to define your own rules early in the development processin order to obtain user feedback.
Define attribute-level rules on the Attributes: Presentation tab. Define data object-level ruleson
the Properties:Presentation tab. Define relationship-level presentation rulesin the Presentation
frame of the Relationships tab.

Testing business rules and obtaining user feedback

1. Toreview therulesthat you have defined, you can generate a business rules report to
analyze your rulesinput at any time. Thisfunction is available from an option in the File
menu. For information about business rules reports, see “ Generating business rules
reports’ on page 239.

2. Deploy the data model and business object files so rules can execute against data and you
can review the results. For instructions, see “ Deploying Data Models’ on page 121 and
“Building and Deploying Business Objects’ on page 255.

3. Build atest application that you can run to review business rules execution. Thistest
application should include operations required for the production application to ensure that
rules are firing as expected for these operations. For information about defining
applicationsin the Versata L ogic Studio, see the sections on designing Javaand HTML
applicationsin the Application Developer Guide.

4. Run the application to test the rules and illustrate their execution to users.

217



DEFINING BUSINESS RULES
OVERVIEW OF BUSINESS RULES DEFINITION

218

The VersataLogic Studio provides several ways for you to obtain additional information about
rules.

= Once you have built and deployed business object Java files that include rules execution
code, you can view and print the component file for a data object by choosing optionsin
the File menu.

= You can fire rules for run-time applications without immediately saving the resultant data
changes, by adding arules test button to your applications. You can run the applications,
make changes, and click the button to see which rules fire for which data changes and the
results of firing. In this manner, you can ensure rules are firing when expected with the
expected results. For more information, see “ Computing results without saving” on page
355.

= The VersataLogic Server includes arule tracing utility that you can use to debug rule
errors that may not be apparent in run time. For information, see the Administrator Guide.

= You can use athird party debugger to step through business objects’ rules code. For
information about supported debuggers, see “ Debugging business object code” on page
279.

Redefining the data model and rules

User feedback and test results may cause you to change the data model, define additional
businessrules, or redefine rules. Versata Logic Studio allows you to iterate through the rules
definition process. You can add, delete, and rename attributes, change attributes' data types,
add, delete, and modify relationships, and add, delete, and modify keys and indexes. You can
add data objects, including those that are abstracted from standard relational tables and those
that have other types of data sources. You can define additional rules and refine previously
defined rules.

After you make changes to the data model and rules, redeploy the data model to the database
server, then redeploy transaction logic to the Versata Logic Server. Then you can retest your
rules and refine them until they meet your needs.



DEFINING BUSINESS RULES
OVERVIEW OF BUSINESS RULES DEFINITION

Defining extensions and customizations for rules

The following steps list tasks you can perform to extend and customize decl arative business
rules. For more detailed information about these tasks, see “ Extending Business Object Code”
on page 321.

1.

Identify the methods to be referenced or called in rule expressions. These may include
those supplied by the Versata L ogic Suite and those you write yourself. You can view
system-supplied methods in the Enterprise Object Browser. The ones you will use most
frequently arethosein thever sat a. vl s. Dat aCbj ect class.

Write your own methods. You can add them to an existing class or create anew classfile,
for example, asubclass of ver sat a. vl s. Dat aCbj ect . If you create anew classfile, you
can add the classfileto your repository, so its methods are available to be referenced in that
repository’srules. Or you can add the file to the registry, so its methods are available to all
repositories system-wide.

Define action rules that call methods and build other rule expressions that reference
methods. If the method does not exist in the current data object, you must specify its class
name. By default, ver sat a. vl s. Dat aQbj ect isthe superclassfor al data objects, so
they inherit all its members. If methods are members of a Dat athj ect subclass that you
created, you can define this subclass as the superclass for a data object on the
Properties:Data A ccesstab of the Transaction Logic Designer. Then the subclass's methods
exist in the data object.

Add event-handling code to the server events exposed by the Versata Logic Studio. To
view adataobject’s events, click the Filestab in the Versata Logic Studio Explorer, double-
click an implementation file to open the Code Editor, click the right button to display
events, and select an event from the drop-down list. You can review or add to the code in
the designated section.

Set up data objects so you can define rules on data from sources other than relational
tables. After you have added data objects to the data model you can define specialized data
access by choosing the Custom option on the Properties:Data Access tab. You then must
write custom Versata Connectors, add them to the repository, and provide their name on
this tab.

219



DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER

Understanding the Transaction Logic Designer

220

The Transaction Logic Designer provides agraphical user interface to define transaction logic
in the form of declarative business rules and to modify your data model from within the
Versata Logic Studio. Data modeling tasks you can complete in the Transaction Logic
Designer include adding, deleting, renaming, and changing data types of attributes; adding,
deleting, and modifying relationships; and adding, deleting, and modifying indexes and keys.
For information about these tasks, see “Developing a Data Model” on page 31.

'E Tranzaction Logic Designer - CUSTOMERS

Attributes | Eelatiunships.l Ennstraints.| .-i‘-.cticugs.| Ernperties.l

MHame Derivation

SuméutoBucksE Sum(hazOrders
SuméutoBucksl Sum(hazOrders

" alidation

ActB alance SumlhazOrders [ORDERS]. OrderTotal]  |Prevent User Update
Total5alez SumlhazOrders [ORDERS]. OrderTotal]  |Prevent User Update

Prevent Uzer Update
Prevent Uzer Update
Fequired, Prevent Uzer Jpdate

-

Il

-

| Walidation / Data Twpe | F'resentgtiu:un-| Nu:utes.| Extended

Derivation Type |Mone ﬂ

-

Figure 10  Transaction Logic Designer

The Transaction Logic Designer consists of several overlapping tab sheets where you can
define different types of business rules and data object properties, and a Rule Builder, where
you can graphically build expressions. Once you have defined business rules, you can print
business rules reports by choosing File > Print Reports > Business Rules.



DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER

Attributes tab

The Attributes tab of the Transaction Logic Designer has aread-only grid of all the attributes
in the selected data object, with their attribute-level rule information. Rules are not input
directly into the grid. Thistab also contains a tab control with tabs for each type of attribute-
level rule. To define an attribute-level rule, select an attribute in the grid, and click one of the
following tabs: Derivation, Validation / Data Type, Presentation, or Notes.

Also on this tab you can add, modify, and del ete attributes, and define extended properties for
them. For information about these tasks, see “Working with coded valueslists’ on page 95.

Note: The Presentation tab is not available if you have not purchased presentation design
capabilities for the Versata L ogic Suite.

Derivation tab

The Derivation tab allows you to enter rules that define how an attribute's value is derived
when inserts or updates to the data object occur.

Select an option from the Derivation Type box. Types of derivation rules available include
sums and counts (which are aggregates of child record values), parent replicates, formulas, and
defaults.

Individual combo boxes list valid data objects and/or attributes to build sum, count, or parent
replicate rules.

= Sum Rules. A combo box lists children of the selected data object. A second combo box
lists attributes in the selected child data object.

= Count Rules. A combo box lists children of the selected data object.

»n  Parent Replicate Rules. A combo box lists parents of the selected data object. A second
combo box lists attributes in the selected parent data object.

For all derivations other than default, a Persistent check box appears next to the derivation type
box. The setting of this option determines whether the attribute is stored or virtual. By default,
the check box is enabled, indicating the attribute is stored. For information about virtual
attributes, see “Virtual attributes’ on page 104.

For parent replicates, a Maintained check box appears. The setting of this option determines
whether previously cal culated replicates are recal culated when the parent data object's attribute
is updated. Enable the Maintained option if you want updates to the parent attribute named in
the parent replicate rule to cascade to child attributes. Disable this option to prevent cascading
updates to children, if you want the parent replicate to occur on theinitial value only. This
option is disabled by default.

221



DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER

222

For sums and parent replicates, a dfn (definition) button is available. Click this button to go to
the derivation rule for the referenced attribute in the parent data object.

For sums, counts, defaults and formulas, two other buttons are available, a browse button that
invokes the Rule Builder, and a syntax checker button that opens the Syntax Checker.

= Inthe Rule Builder you can point and click to enter a qualification expression for the sum
or count, aliteral number value or quoted string for the default, or a calculation expression
for the formula. For more information, see “Rule Builder” on page 230.

= The Syntax Checker checks whether the expression you entered is syntactically correct. If
an error exists, amessage is displayed to aert you. The Syntax Checker verifiesthe
internal consistency and correctness of the rule expression. It does not check for
inconsistencies or errors between rules, such as cyclical dependencies. It does not verify
the compatibility of attribute data types.

Validation/Data Type tab

The Validation / Data Type tab alows you to enter rules that define limitations for attribute
values. These limitations can be based on a user-defined condition or on a specified list of
valuesin a Coded Values List, asindicated in the Validation Type box.

= |f you select Condition in the Validation Type box, you can enter a conditional expression
to limit the valid values for the attribute. Click the browse button to open the Rule Builder,
where you can enter the expression. After writing the expression and closing the Rule
Builder, you can verify the syntax of your condition is correct by clicking the syntax
checker button.
You also can enter abrief error message to display to users when data they enter causes the
specified validation condition to be evaluated as FAL SE.You can use the system-supplied
error message of "Rul e <condi tion-text>: Validation violation" byleaving
the Validation Error text box blank

= |f you select Coded Values List in the Validation Type box, you can complete the Coded
Values List Manager.

Coded Values List Manager

Use the Coded Values List Manager to select a coded valueslist to provide valid values for an

attribute.

m To select an existing coded values list, select it in the Coded Values Lists list box on the
right and click OK.

= To select adataobject that isnot yet designated as a coded values list, select it in the Data
Objects in the Repository list box and click the unfold button to move it to the Coded
Values Listslist box. Then select it and click OK.



DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER

» To create anew coded values ligt, click the New button. The Create Coded Values List
dialog opens. Enter a name and stored value type and click OK. The new data object
appears in the Coded Values List list box. Select it and click OK.

Prevent User Updates check box

The Validation/ Data Type tab allows you to specify updatability for attributes. Enable Prevent
User Updates to make this attribute non-modifiable by users running the application. This
option is the default for derived attributes that the Versata Logic Server calculates and for
virtual attributes, but it can be used for any attribute in which you do not want end usersto
enter values. This option should always be enabled for attributes with an Autonumber data
type.

When this check box is enabled, end users running the application will see this non-
customizable error message if they try to make an entry in the field: At tri but e
<attribute_nane> in data object <data_object_nane> is not alterable.

You can disable this option for any attribute that has it enabled by default, including virtual
attributes. For an attribute with this option enabled, a user can enter an attribute value for a
newly inserted record. If the attribute is derived, the newly entered value is overridden by the
derivation when the record is saved.

Value Required check box

The Validation/ Data Type tab allows you to specify nullability for attributes. Enable Value
Required to require usersto provide avalue in any field representing this attribute at run time.
Disable this option to permit NULL values to be stored in the server.

When this check box is enabled, end users running the application will see this non-
customizable error message if they try to save without making an entry in the field:
‘ <Fi el d_Nane>" Requires Non NULL Val ue.

Data Type combo box

The Data Type combo box identifies the data type defined for this attribute in the data model.
You can make a selection from the combo box to select a different data type. Available data
types are:

m Text. For a Text attribute, you need to enter the number of characters permitted for the
attribute value in the Size field. Up to 255 characters are permitted. The defined attribute
size is used to determine the width of the attribute’s controls or elementsin run-time
applications.

You also need to enter a sub type. The following sub-types are supported:
s Variable Length. Thisisthe default sub type.
= Fixed Length.

223



DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER

224

= Memo.

= Number. For aNumber attribute, you need to enter asub type. The following sub typesare
supported:

= Byte

= |nteger.

= LonglInteger.

= Double.

= Single

= Decimal. For a Decimal, you need to enter values for precision, the total number of

digits stored for the attribute, and for scale, the total number of decimal places stored
for the attribute.

» Date/Time. For aDate/Time attribute, you need to enter a sub type. The following sub
types are supported:

= Dateand Time. Thisisthe default sub type.
= Date.
= Time

= Yes/No.

= Currency.

s LongBinary.

= AutoNumber.

The Transaction Logic Designer checks data type changes, prohibiting changes between
mismatched types, changes to indexed attributes and key attributes, and changesto
AutoNumber when data already existsin attributes.

For information about data type mappings between the Versata L ogic Suite and supported
RDBM Ss, see “ Data type mapping between the Versata Logic Suite and RDBMSs’ on page
40.



DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER

Presentation tab

Note: Thistabisnot availableif you have not purchased presentation design capabilities with
the Versata L ogic Suite.

The Presentation tab allows you to define presentation properties for an attribute in generated
applications, including:

= Caption. Appears asalabdl for the attribute.

m Format. Specifiesthe appearance of numeric and date fields at run time. Specifiesaformat

that determines how this attribute’'s data is displayed to users. For example, a currency
format might be $#,##0.00; ($#,##0.00).

The format you specify here is used by default wherever this attribute is displayed on
application forms or pages. For Java applications, Versata Logic Studio also allows you to
modify the format through a property sheet for the attribute's graphical control.

For more information about supported formats and modifying them, see the appendix on
localization in the Application Developer Guide.

Note: Users can enter values for Date Time attributesin any form. When the cursor leaves the
attribute cell, the value is formatted to fit the assigned format, by default the universal
form (yyyy-mm-dd hh:mm:ss).

n  SatusBar Message. Appearsin the status bar at the bottom of the application window
when the attribute is selected (Java applications only).

= Archetype Name. Determines the control or element to be used for the field.

= Layout by Default. De-select this check box if you do not want the attribute to appear on
forms or pages by default. Thisis particularly useful for derived attributes that are used in
calculations but do not need to be displayed.

Notes tab

The Notes tab allows you to record descriptions and comments for each attribute in the
selected data object. Thisinformation is especially useful in ateam devel opment environment.

Relationships tab

The Relationships tab provides information about parent-child relationships for the selected
data object. Thistab alows you to modify referential integrity rules, specify customized error
messages to appear when referential integrity violations occur, and specify relationship-level
presentation properties.

Also on this tab you can add, modify, and del ete relationships, and define extended properties
for them. For information about these tasks, see “Working with relationships’ on page 107.

225



DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER

226

Referential Integrity tab

The Referential Integrity tab allows you to modify Versata Logic Server's default referential
integrity rulesto preserve relationships between data objects when updates occur. This tab
contains an Enforce referential integrity check box. Separate sets of referential integrity rule
option buttons exist for parent updates, parent deletes, and child inserts/'updates:

On Parent Update

»  Choose Prevent If Children to prevent changing the primary key in arecord in the parent
data object if there are related records in child data objects.

For example, you establish arelationship between a Customers (parent) data object and
an Orders (child) data object. If a user tries to update the primary key for a customer that
has outstanding orders, the update is not permitted.

»  Choose Update Children to update the foreign key in all related records in the child data
object when the primary key in a parent record changes.

For exampl e, you establish arelationship between a Customers (parent) data object and an
Orders (child) data object. If the primary key in arecord in the Customers data object is
updated, the foreign keysfor all order records for that customer are also updated.

On Parent Delete

= Choose Prevent If Children to prevent deleting the record in the parent data object if there
are related records in a child data object.

For example, you establish arelationship between a Customers (parent) data object and an
Orders (child) data object. If auser triesto delete arecord for a customer that has
outstanding orders, the deletion is not permitted.

= Choose Delete Children to del ete related records in a child data object when arecord in the
parent data object is deleted.

For example, you establish arelationship between a Customers (parent) data object and an
Orders (child) data object. If auser deletes arecord in the Customers data object, all order
records for that customer are also updated.

= Choose NULL Children Foreign Key to nullify the foreign key in related recordsin achild
data object when arecord in the parent data object is deleted. This option deletes the child
record’s pointer to the parent while preserving child data.

For example, you establish arelationship between a Department (parent) data object and
an Employees (child) data object. If adepartment is deleted, each employee record that has
aforeign key value corresponding to the deleted department’s primary key is updated by
setting the foreign key (for example, the WorksForDeptNum field) to NULL. Those
employees with the WorksForDeptNum field set to NULL can be reassigned to a new
department and employee records can be updated with new foreign key values.



DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER

On Child Insert/Update

m  Choose Prevent If No Parent to prevent inserting arecord into a child data object when the
appropriate related record does not exist in the parent data object.

For exampl e, you establish a relationship between a Customers (parent) data object and an
Orders (child) dataobject. If a user triesto insert an order for a customer who does not yet
exist in the Customers data object, the insert is not permitted.

m  Choose Insert Parent If None to add arecord in the parent data object and fill in the foreign
key when a user adds a related record in a child data object. This option provides a good
way to implement time-based summary data, for example monthly forecasts.

For example, you establish arelationship between a Daily Orders (parent) data object and
an Orders (child) data object. You can automatically maintain summary datain the parent
based on order activity by creating asum rule for aDailyTotal attributein the Daily Orders
data object based on the Amount attribute in the Orders data object, for example,
DailyTotal = sum(Orders.Amount).

Error Messages While Preventing frame

The Error Messages While Preventing frame allows you to enter custom messages that appear
when a user attempts a parent update, parent delete, or child insert/update that violates a
prevent referential integrity rule. A blank text box appears in the frame for each prevent rule
you define. If you do not enter amessage, Versata L ogic Server uses the default error message.

Delete Parent Error Message

If you enable Prevent If Children on Parent Delete, you can enter a brief message to display
when a user attempts to perform an invalid operation.

You can use the system-supplied error message of " Del et e Rej ect ed Because There
are existing <child-data object-nane> found for <parent-data object-
name>" by leaving the Delete Parent error text box blank. For example, if an end user tried to
delete a customer with unpaid orders, a system-supplied error message similar to this example
would appear:

"Del ete Rejected Because There are existing ORDERS found for

CUSTOMERS'

Update Parent Error Message

If you enable Prevent If Children on Parent Update, you can enter a brief message to display
when a user attempts to perform an invalid operation.

You can use the system-supplied error message of " Updat e Rej ect ed Because There
are existing <child-data object-nane> found for old <parent-data
obj ect - name>" by leaving the Update Parent error text box blank.

227



DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER

228

Insert/Update Child Error Message

If you enabled Prevent If No Parent on Child Insert/Update, enter a brief message to display
when a user attemptsto perform an invalid operation.

You can use the system-supplied error message of " <par ent - dat a obj ect - nane> not
found for <chil d-data object-name>" by leaving the"Insert/Update Child" error text
box blank.

Presentation tab

The Relationships:Presentation tab allows you to specify customized captions for transitions
from parent to children and for transitions from children to parent.

Note: Thistabisnot availableif you have not purchased presentation design capabilities with
the Versata Logic Suite.

Extended tab

The Relationships:Extended tab allows you to define extended properties for the relationship.
For information about this task, see “Relationships tab of Transaction Logic Designer” on
page 111.

Constraints tab

The Constraints tab allows you to define data object-level constraints that enforce multiple
attribute conditions for data validation. This tab provides a grid that lists information for all
constraints defined for the selected data object. When the Constraints tab is selected, Add
Constraint and Delete Constraint are available in the Edit menu.

= The Constraint Name field allows you to specify a unique name for a constraint.
= The Condition field allows you to enter an expression describing the constraint's condition,
optionally using the Rule Builder. The condition can be one of two types:
= An Accept When type indicates that an update to the data object is rolled back if the
condition is not true.
= A Reject When typeindicates that an update to the data object isrolled back if the
condition istrue.

= The Error Message field alows you to specify a customized error message that appears
when the constraint is violated. You can use the system-supplied error message of
"Constraint: <constraint-condition> is violated" by leavingthe Error
Message text box blank.

» The Error Attribute field allows you to specify the attribute in which the cursor is placed
after aconstraint is violated and the error message is dismissed.



DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER

Actions tab

The Actions tab allows you to incorporate custom code into Versata L ogic Studio-generated
business rule components. Action rule code calls a specified action (method) to be executed
when a defined condition evaluates to true. This tab provides agrid that lists a name and
description for each business rule action defined for the selected data object. Action
information is not input directly into the grid.

When the Actions tab is selected, Add Action and Delete Action are available in the Edit
menu.

The Action Name field enables you to specify a unique name for the action rule. Code
generated by Versata L ogic Suite refers to the action rule by this name.

In the Event Condition field, enter an expression to define the condition that must evaluate
to True for acall to be executed to the specified action (method call). The Rule Builder is
available to complete this field as necessary. The Syntax Checker button also is available.

In the Action (Method Call) field, specify the method to be executed when the condition
evaluates to True. The Rule Builder’s Methods list box and the Enterprise Object Browser
are available for you to select amethod. The method can be local, inherited, or from an
object outside the data object's hierarchy. If the method isfrom an outside object, you must
referenceit in thisformat: <obj ect name>. met hod. Note that such methods must be
static.

The Description field is available for documentation of the action's purpose and
implementation. Thisinformation is especially useful in ateam devel opment environment.

Note: For information about using the Rule Builder to complete the Event Condition and

Action (Method Call) fields, see “Rule Builder” on page 230.

229



DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER

Properties tab

The Properties tab has tabs to define data object presentation rules (with presentation design
only) and other data object characteristics. For information about using this tab, see
“Properties tab of the Transaction Logic Designer” on page 90.

Rule Builder

Use the Rule Builder to create business rule expressions graphically, limit typographical
errors, and help to ensure that rule syntax is correct. The Rule Builder has lists and buttons
with expression elements. Click alist item to include it in an expression. The Rule Builder’s
contents vary according to the type of rule being defined when it is opened.

E Rule Builder - Create Yalidation: [DRDERS]

Bule Expreszion

' e I I R I I 1 i A
Dll And | Betweenl Like | In | Is Tl | Mot
Attributes Keywords
OrderMumber & |Inserting
OrderTatal || Updating
ar  OrderPaid Deletlng
Amountitems ‘Oid
Tax
Freight

¢ ShippedFlag
SuméutoBucksE armed
AutoBucksl zed

ar  |sPaidBydutoBucks

Methods

DataDbject Methods... -
Object Browser...
currentEyent
date

uzer

izsChanged

isMull hd

LI 0K, Wrde Cancel

Figure 11  RuleBuilder

230



DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER

Rule expression elements may include the following:

Data object attributes. Click the attribute from the selected data object to enter it in the
Rule Expression text box. The list of attributes uses standard outline controls. Click the
plus (+) symbol to the left of an attribute name to display valid values for an attribute that
has a Coded Values List validation rule. You can click avalueto enter it in the Rule
Expression text box.

»  Thelist of attributes changes according to the data object selected.
» | an attribute name contains spaces, it is enclosed in quotes within the rule expression.

System-supplied or developer-defined methods. Listed methods include

current Event (), date(),i sChanged,isNull,andi sd dNul | . You also can click
listings to select from methods listed in the Enterprise Object Browser. You can open this
browser to display the methods from ver sat a. vl s. Dat aCbj ect, or you can open the
browser to display all methods. The Methods list box also includes many methodsthat start
or modify processes through the Process L ogic Add-On. For information about these
methods, see the Logic Integration Guide.

Methods can be included when you are entering qualification expressions for sum, count,
attribute validation, or constraint rules, formula expressions for formularules, default
expressions for default rules, or event conditions for action rules.

Note: TheisNull andisd dNul | methods can be used to indicate whether the value of an

attribute is NULL where the argument is of type String and provides the attribute name.

Keywords, including | nserti ng, Updati ng, Del eting,and : O d. Keywordsare
available when you are entering formula, sum, or count derivation rules for attributes or
data object constraints.

The: O d keyword allows you to differentiate between a changed attribute value and its
value before the transaction that caused the change. You can refer to the value that existed
before the change with a: A d prefix. For example, use: A d in the conditions for data
object constraints that prevent updates and deletes.

If-Then conditions, including | f - Then, | f - Then- El se, | f - Then- El sei f - El se, and
I I F() constructs. These constructs are available for formularules expressions only. Once
you have clicked a construct to include it in the expression, to complete the expression, fill
inthe <condi ti on> and <expr > parameters.

Note: When opened from the Actionstab of the Transaction L ogic Designer, the Rule Builder

includes a Process Model Browser button. Use this button only if you have installed the
Process Logic Add-On.

For more details about supported syntax for rule expressions, see “Business rule syntax” on
page 244. For instructions for building rule expressions, see “Building rules expressionsin the
Rule Builder” on page 239.

231



DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES

Procedures for defining businessrules

This section provides procedures for defining specific types of rules. For an overview of the
business rules definition process, see page 213.

Defining a derivation rule

Derivation rules define how an attribute is computed when an update occurs. Types of
derivation rules include sums, counts, parent replicates, formulas, and defaults.

For information about the Transaction Logic Designer tab where you define derivation rules,
see “Derivation tab” on page 221.

To define a derivation rule;
1. Double-click adata object in the Versata Logic Studio Explorer to open the Transaction
Logic Designer.
2. Click the Attributes:Derivation tab in the Transaction Logic Designer.
3. Select the attribute in the grid.

4. On the Derivation tab, select the type of rule from the Derivation Type combo box.
Different text fields appear according to the type selected.

5. Select or make entries to the fields that appear for the rule type you selected:
= Sumrules
= Select aparent data object and attribute from the combo boxes.

= Indicate whether the attribute whose value is defined by the sum rule is stored or
virtual. To indicate the attribute is stored, enable the Persistent check box. To
indicate the attribute is virtual, disable the check box.

= (Optional) Enter a qualification expression in the text box. A qualification
expression limits the records to be included in the sum to those that meet the
specified condition.

s Count rules
= Select aparent data object from the combo box.

= (Optional) Enter a qualification expression in the text box. A qualification
expression limits the records to be included in the count to those that meet the
specified condition.

232



9.

DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES

Parent replicate rules
= Select achild data object and attribute from the combo boxes.

» (Optional) Click the Maintained check box if you want changesin the parent record
to cascade to the child. This option is disabled by default, so parent record changes
do not cause the record to change.

Formularules

Enter aformula expression in the text box. This expression should be a calculation of
other attribute values from the same record.

Default rules

Enter a default expression in the text box. This expression can be aliteral number value
or aquoted string.

If you want the derived attribute to be virtual rather than stored, disable the Persistent
check box. For information about virtual attributes, see page 104.

For any rule where you enter an expression, click the browse button to write the expression
in the Rule Builder.

After defining the derivation rule and closing the Rule Builder, you may want to verify the
syntax with the syntax checker.

Choose File > Save Transaction Logic.
Note: All attribute referencesin arule expression must be local to the data object on which the

rule is being defined. Use derivations to reference attributes from related data objects.

When defining formula rules with divide operations, check to make sure that no divide
by zero equations will occur. This type of equation will cause an error.

If you define aformularule for an attribute, its data type, subtype, and length
information is not used, except to determine the archetype for presentation formatting.
When selecting an atttribute to be replicated for a parent replicate rule, be sure that its
data type matches the type of the attribute with the rule defined.

If you define a parent replicate rule where the attribute to be replicated has a data type
of LongBinary, invalid Java syntax may be generated, resulting in compile errors.

The syntax checker no longer perform attribute validation in formulas in order to allow
constants to be used. Any errorsareraised at run time rather than design time. Syntax
checking still occurs at design time.

233



DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES

234

Deleting a derivation rule

To delete a derivation rule;

1.

Double-click a data object in the Versata L ogic Studio Explorer to open the Transaction
Logic Designer.

Select the attribute with the rule to delete.

On the Attributes: Derivation tab, select None in the Derivation Type combo box.
Choose File > Save Transaction Logic.

Defining a condition validation rule

Condition validation rules enable you to enforce single attribute conditions for data validation.
For information about the Transaction Logic Designer interface for defining this type of rule,
see “Validation/Data Type tab” on page 222.

To define a condition validation:

1.

o M 0N

Double-click a data object in the Versata L ogic Studio Explorer to open the Transaction
Logic Designer.

Click the Attributes: Validation/Data Type tab.

Select the attribute in the grid.

Select Condition in the Validation Type frame.

Enter aqualification expression in the Condition text box to indicate the limitations for
valid attribute values. Click the browse button to use the Rule Builder.

In the Validation Error field, enter a customized error message or accept the system-
supplied message.
Choose File > Save Transaction Logic.

Defining a coded valueslist validation rule

Coded values list validation rules enable you to limit values for an attribute to a defined list of
valuesin another data object. In run-time applications, attributes with coded values list
validation rules display as drop-down lists where users can select from alist of values but not
enter adifferent value.

For information about designating a data object as a coded values list and entering valid
values, see “Defining a coded valueslist” on page 96.



DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES

To define a rule that uses a coded values list to validate user input:

1.

o > DN

6.

Double-click a data abject in the Versata L ogic Studio Explorer to open the Transaction
Logic Designer.

Select the Attributes:Validation/Data Type tab.

Select the attribute to be validated.

Select Validation Type:Coded Values List.

Click the browse button in the Coded Values List Validation text box to open the Coded

Values List Manager. Use this dialog to select the data object to be used as a coded values

list.

= To select adataobject that is already designated as a coded values list, select it in the
Coded Values Listslist box on the right and click OK.

m To select adata object that is not yet designated as a coded values list, select it in the
Data Objects in the Repository list box and click the > button to move it to the Coded
Values Listslist box. Then select it and click OK.

= To create anew coded values ligt, click the New button. The Create Coded Values List
dialog opens. Enter a name and stored value type and click OK. The new data object
appears in the Coded Values List list box. Select it and click OK.

Choose File > Save Transaction Logic.

Note: Thereisonly oneway to stop using a coded values list. On the Attributes:Validation/

Data Type tab, select the data object name in the Coded Values List text box and press
Backspace. If you previously have deployed the business rules, redeploy them so that
Versata Logic Studio generates new code without the coded values list.

If you choose the Coded Values List option button, but do not specify a data object to
use as acoded valueslist, the validation ruleisrecorded as a condition validation rule at
repository load time.

Defining a constraint

Congtraints enforce validation conditions on database updates. They apply to all updates of the
data object, rather than to updates of specific attributes.

For information about the Transaction Logic Designer tab where you can view, define, and
modify constraints, see “ Constraints tab” on page 228.

To define a constraint:

1.

Double-click a data abject in the Versata L ogic Studio Explorer to open the Transaction
Logic Designer.

Click the Constraints tab in the Transaction Logic Designer.

Choose Edit > Add Constraint.

235



DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES

236

9.

Enter the name of the constraint.

Enter the conditional expression in the Condition text box. The expression indicates when
the constraint fires.

Select Accept When or Reject When to indicate whether to roll back the update when the
condition evaluates to False (Accept When) or to roll it back when the condition evaluates
to True (Reject When).

Enter a customized error message or accept the system-supplied message.

Select the error attribute in which the cursor is placed after a constraint evaluatesto true
and the error message is dismissed.

Choose File > Save Transaction Logic.

Note: All attribute referencesin aconstraint’s conditional expression must belocal to the data

object on which the constraint is being defined. Use derivations to reference attributes
in related data objects.

You may define multiple constraints on adata object. All constraints are eval uated
when an update to a data object occurs. A transaction isrolled back when the
conditional expression for a Reject When constraint evaluates to True or when the
conditional expression for an Accept When constraint eval uates to False.

If you use the keyword NULL in the conditional expression for a constraint, keep in
mind that the: Newvalueisset to NULL on deleteand the: O d valueisset to NULL on
insert. These settings could cause unexpected errors if you do not take them into
account when defining the constraint.

Defining an action rule

Action rules are calls to methods that are executed when data meet certain conditions. They
allow you to extend Versata L ogic Suite-generated rule components from within the
Transaction Logic Designer. Creating audit records and notifying management when a
customer has placed alarge order are examples of processes that action rules can automate.

For information about the Transaction Logic Designer tab where you can view, define, and
modify action rules, see “Actions tab” on page 229.

To define an action rule:

1.

2.

Determine how to implement the method to be called by the action rule. You can use a
method from a packaged EJB component. You can create your own class and add the
method to it. You can subclassthever sat a. vl s. Dat aCbj ect class and add the method
toit. You can add the method directly to the data object where you are defining the action
rule.

Register the class so its methods are available in the Enterprise Object Browser.



DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES

3. If the method belongsto a subclass of ver sat a. vl s. Dat aObj ect , add the new subclass
to the repository in the Other Files folder.

4. Double-click the data object in the Versata L ogic Studio Explorer to open the Transaction
Logic Designer.

5. If therulewill be calling amethod from asubclass of ver sat a. vl s. Dat aCbj ect , record
this subclass as the superclass for the currently selected data object. Enter the superclass on
the Properties:Data Access tab.

Click the Actions tab.

Choose Edit > Add Action.

Enter a name for the action.

Use the Rule Builder to enter a conditional expression in the Event Condition text box. The
expression indicates when the action fires.

10. Enter the method to be executed, and any arguments, in the Action text box. Enter the
method name as the name of the action. If the method is not a member of the data object
itself or of its superclass, you must include the object name, in the following format:
<obj ect nane>. <met hod nane>.

The Rule Builder lists afew standard utility methods. You can double-click one of these
methods to enter it as the action. The Methods list box a so includes many methods that
start or modify processes through the Process L ogic Add-On. For information about these
methods, see the Logic Integration Guide.

11. You can click the browse button to open the Enterprise Object Browser and select a
method.

12. Enter a description of the action for other developers.

13. Choose File > Save Transaction Logic.

© © N o

Defining a presentation ruleto select a non-default archetype for
an attribute

Note: Thistype of ruleisnot available if you have not purchased presentation design
capabilities with the Versata L ogic Suite.

Archetypes define the controls or elements generated for attributesin an application. By
default, the archetype for an attribute or element depends on the attribute data type, but you
can override the default by changing the presentation rule to use another archetype.

Note: Archetypes and presentation rules are available in the presentation design only.

237



DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES

To specify a non-default archetype for an attribute at the repository level:

1.

5.
6.

Double-click a data object in the Versata L ogic Studio Explorer to open the Transaction
Logic Designer.

Click the Attributes:Presentation tab.

Select the attribute for which you are choosing an archetype.

Click the browse button for the Archetype Name field to open the Choose Archetype
dialog.

Select an archetype from the list in the dialog and click the OK button.

Choose File > Save Transaction Logic.

The archetype you selected is how the default archetype for this attribute for all applications
built from this repository.

Note: To specify anon-default archetype for an attribute in one application, use the Attributes

tab on the RecordSource properties sheet in the Application Designer.

Defining a presentation rule to add an image to a data object in
a Java application

Youmay useany . gi f or.j pg image to represent a data object on forms and appear on
toolbar buttons in a Java application. To do so, specify theimage in a presentation rule for the
data object.

Note: Thistype of ruleisnot available if you have not purchased presentation design

capabilities with the Versata L ogic Suite.

To assign an image to a data object:

1.

2.
3.
4.
5.

Double-click the data object in the Versata Logic Studio Explorer to open the Transaction
Logic Designer.

Click the Properties: Presentation tab.

Click the browse button for the Image Reference text box.

Navigate to the image file and double-click it.

Choose File > Save Transaction Logic.

Versata Logic Studio stores a copy of the selected image filein the \ | nages subdirectory of
the repository directory.

238



DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES

Building rules expressions in the Rule Builder

To avoid typographical and syntax errorsin rules, use the Rule Builder to build expressions
graphically.
For details about the Rule Builder interface, see “Rule Builder” on page 230.

To build arule expression:

1.
2.

6.
7.
8.
9.

Review the guidelinesin “Business rule syntax” on page 244.

From any place in the Transaction Logic Designer in which you are creating an expression,
click the browse button.

If you want to use conditional language in an expression for aformuladerivation rule, click
aconstruct from the | f - Then Conditions list to enter it in the Rule Expression text box.
Fill inthe<condi ti on> and <expr > parameters.

For all expressions, click the attributes, keywords, and/or operator buttons as necessary, to
enter each item that you need in the Rule Expression text box.

To include a method in arule, find it in the Methods box and double-click it. Enter
arguments as necessary. To include a method not listed in this box, click the DataObject
Methods listing or the Object Browser listing to open the Enterprise Object Browser and
select amethod.

If necessary, enter additional expressions to achieve the processing logic you need.
Repeat steps as needed to build your expression.

Click the OK button to save the definitions and close the Rule Builder.

Check the syntax of the expression by clicking the syntax checker button.

Note: Be sureto include spaces between variables and operatorsin rule expressions. If you do

not include a space between a variable and operator, the syntax checker returns an error.

Generating business rules reports

You can generate business rules reports that provide summary records of the data model and
business rule definitions in the Transaction Logic Designer. These reports can be a useful tool
for allowing usersto review the businessrules. You can generate reportsto the screen, to afile,
or directly to a printer.

Versata Logic Suite reports are generated using the Crystal Reportstool. The original reports
are located in the\ Report s subdirectory of the product installation directory.

239



DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES

240

To generate a business rules report:

1.
2.

5.

Choose File = Print Reports = Business Rulesto open the Business Rules Reports dial og.

In the dialog, move the data object(s) for which you want to generate reports into the
Selected Data Objects list box on the right.

Select the type of data object rules and/or attribute rules to include.

Select the report output. You may want to print to the screen first, in order to verify the
format and content before you saveit to afile or send it to the printer.

»  For file output, specify the output file name. The file name must be unique. You cannot
choose an existing file name and overwrite the previous report information with this
new report information.

= For printer output, you must have a default printer set in order to specify this option.

Click the Print button.

Note: To review the Java code that implements rules for a data object, open the data object’s

component file in the Code Editor. (To do so, in the Files view of the VersataLogic
Studio Explorer, click the Files button, and double-click the data object’s
implementation file.) Once the fileis open, press CTRL+P or choose File > Print
<file_name>.



DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES

Business Rules Report dialog

Buszinezs Rulez Report - E-A\¥ersatah DhzamplesizampleDB\S ampDB1.vdb

All Data Objects Selected Data Objects
MHame -
CUSTOMER LIS, > |
CUSTOMERS
DEPARTMENT e b3 |
EMPLOYEES
EMPLOYEESALL.. [ |
EMPLOYEESKILL
ORDER_IMAGE... << |
MRMNFRITER LI
— Print Data Object Hules—| — Privk Attribute Rules————— — Report Output———
V¥ Attributes ¥ Derivation 7+ window
Iv Fielationships v Storage Information = Printer
¥ Conshraints ¥ ‘alidation " File
¥ Ewvents ¥ Presentation
¥ Indexes v Motes
¥ Properties

Figure 12  Business Rules Report dialog

241



DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES

242

Printing data object rules

Choose one or more of the following types of business rules to be included in the business
rules report for one or more data objects.

Type of businessrule

Information in report

Attributes Attribute definitions for any or al of the attribute rules options
you select

Relationships Parent and child data object(s), and cascade optionsfor each of the
current data object’s parents and children

Constraints Constraint name (in bold typeface), condition type, rule, and
(optional) error message for each currently defined constraint

Actions Action name (in bold typeface), and one or more of the optionsfor
description, condition, and method call

Properties Singular and plural captions (with presentation design only)

Printing attribute rules

To print areport on attribute rules, enable the Attributes option in the data object ruleslist.
Then choose one or more of the following types of attribute rules to be included in the

business rules report.

Type of Attribute Rule

Information in Report

Attribute Type Information

Attribute data type and size, if appropriate

Derivation Defined sums, counts, parent replicates (including its maintained/
unmaintained status), formulas, and defaults

Validation The Coded values list or condition used to validate the attribute
and the validation error message, if applicable

Presentation Captions, formats, status bar messages, default archetypes, and
whether an attribute will appear in the default layout (with
presentation design only)

Notes Attribute descriptions and comments




DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES

Updating business rules

Asyou more clearly define the needs of users, as business requirements are updated, and as
you test and debug previously defined rules, you will need to update business rules defined in
the Transaction Logic Designer.

To update the business rules:

1.
2.
3.

Use the Transaction Logic Designer to make changes to businessrules.
Rebuild and compile rules.

If the rule changes include any of the following, you need to use the Server Manager
wizard to redeploy the data objects with changed rules to the devel opment database.

Constraints
Updatability validation rules
Nullability validation rules

Referential integrity (If you have elected to enforce referential integrity on the database
server)

Use the Versata Logic Server Deployment wizard to deploy the updated rules components
to the development Versata Logic Server.

If the rule changes include any of the following, rebuild and compile the client application.

Presentation rules (with presentation design only): attribute-level (captions, formats,
status bar messages), data object-level (captions, images), or relationship-level
(captions)

Data type definitions

Coded values list validation rules

Updatability rules

Run the application locally against the development database to test the changes.
If your application isin production, complete the following additional steps:

If the rule changes included types listed in step 3, use the Server Manager wizard to
deploy the data objects with changed rules to the production database.

To make the Server Manager automatically select for deployment the data objects
whose rules have changed, enable Auto-select Data Objects in the Connect for Auto
Selection dialog. Otherwise, in the Select Data Objects dialog, manually select the data
objects with changed rules. In the Data Model Deploy Options dialog, enable
Synchronize the Repository with the Server.

Use the Versata Logic Server Deployment wizard to deploy the updated rules
components to the production Versata Logic Server.

243



DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX

Businessrule syntax

244

Versata Logic Suite's declarative rules language provides conventions for you to enter SQL -
like rule expressions consisting of supported elements.

Rule expressions can be divided into four types:

= Conditional expressions (also known as qualification expressions)

= Formulaexpressions

» Default expressions

= Action expressions

Each type of rule expression has syntax particular to its use. Review the following general

syntax guidelines common to all rule expressions, as well as the specific syntax conventions
for each of specific types of expressions.

General guidelines for writing rules expressions

Follow these general principles when you write expressions in the Transaction Logic

Designer:

»  Rule expression syntax is not database-specific. The same rule expressions can be used
with all database servers supported by Versata Logic Suite.

= All languagein rule expressionsis case insensitive, except for attribute references that use
quoted identifiers.

» Attribute referencesin arule expression must be local to the data object on which the rule
is being defined. For sum and count qualification expressions, attributes must be local to
the child data object that the rule references, rather than the parent data object on which the
ruleis defined.

= Theuse of an attribute reference to an attribute value before an update is supported viathe
:ad prefix. An attribute reference with an: O d prefix indicates the value of the
attribute before the user update occurred. An attribute reference without this prefix
indicates the current value of the attribute after the update.

s TheisNull andi sO dNul I methods can be used to indicate whether the value of an
attribute is NULL where the argument is of type String and provides the attribute name.
You need to ensure there are no spacesin an attribute nameinani sNul | statement.

= Usethe Rule Builder to avoid syntax errors.



DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX

Syntax for conditional expressions

Conditional, or qualification, expressions are used in the following ways:

= [nsum rules, to define child condition(s) that limit child records to be summed

= In count rules, to define child condition(s) that limit child records to be counted

= [nvalidation rules, to define condition(s) that limit the valid values for an attribute
= Inconstraints, to define multiple attribute condition(s) for the constraint

= Inactionrules, to define a condition that causes the action to be executed

The expressions may consist of combinations of supported identifiers, tokens, reserved words,
methods that return a value, and/or constants.

Conditional expression syntax approximates the syntax of SQL Wher e clauses. The “Wher e”
isimplicit and does not have to be entered in the expression you define.

Note about using isNull in conditional expressions

If you are entering a conditional expression in the Rule Builder, and you put text like the
following in the expression:

isNull (’<argl>) = true

If you select <ar g1> and double-click an attribute to put the applicable attributein the rule, the
attribute is inserted with spaces on either side of it. These spaces cause the following error:

Nul | val ue encountered in '’ while validating constraint

This error does not occur if you manually remove the spaces.

Syntax for formula expressions

Formula expressions are used in formularules to cal culate the value of an attribute. The
expressions may consist of combinations of supported identifiers, tokens, reserved words,
methods that return avalue, and/or constants.

The ability to return a value based on a condition is supported through
s | f-Then,|f-Then-El se,|f-Then-El sei f - El se statements
= || F statements

Self-assignment is supported through the use of the $val ue keyword.

245



DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX

Syntax for default expressions

Default expressions are used in default rulesto provide the value of an attribute when there is
no user update. The expressions may consist of constants that return avalue.

Note: Do not use methods in default expressions. If you attempt to use a method in a default
expression, the literal string will be used instead of the value for the method. For
example, if you typed in the method VSSessi on. get User Nanme( ) , the column would
display the string “ VSSessi on. get User Name() ” instead of returning the value of
get User Nane.

Syntax for action expressions

Action expressions are used in action rules to define the method that is executed when a
specified condition is met. The expressions may consist of methods, keywords, and attribute
name identifiers passed as arguments.

Note about using LIKE in rule expressions
Use of the LIKE operator in conditional expressions for rules results in the Java compiler
issuing a syntax error.

You can use a Java method to get around most cases where you might want to use the LIKE
operator. You need to put the method code in and external Javafile and add the file to the
repository. Then you can reference the method in the rule expression.

So for example, instead of using rule text like the following:

Rej ect when UPDATI NG and PSWRD LI KE * %JSER _NW/4

You can use acall to a helper object like the following:

Rej ect when SoneQt her Obj ect. contai ns(PSWRD, USER NM) = true

246



DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX

For this example, code like the following isin an external file called SomeOtherObject.java
that has been added to the repository:

public class SomeQ her Qbj ect {

public static boolean contains(String s, String substring)
{

char [] master = s.toCharArray();

char [] sub = substring.toCharArray();

return foundSubString;

}
}

For more information about this workaround, see the KnowledgeBase.

Elements supported in rule expressions

dentifiers supported in rule expressions

Rule expression identifiers are used for method names and attribute names.

Identifiers may consist of alphanumeric or underscore (“_") characters. Identifiers may not
begin with a number.

Double-quoted identifiers are supported for use with attribute names and method names
that are case sensitive or contain spaces.

Reserved words in rule expressions

The following words are reserved:

AND END INSERTING OR
BETWEEN ESCAPE IS SOME
DELETING IF LIKE THEN
ELSE IF NOT UPDATING
ELSEIF IN NOT LIKE $VALUE
TRUE FALSE NULL :OLD

247



DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX

Constants supported in rule expressions

Rule expressions support integer, float, and string constants in standard formats, such asthe
following examples. Hex constants are treated asintegers. Single quotes are supported for use
with string literals.

Constant Value

Integer 0, 123, -45

Float 0.5, 5623, 45.2, 2.3e-2
String ‘astring’

‘astring with anew line’

Hex O0xA2, OxO0F

Tokens supported in rule expressions

The following tokens are supported:

Token Description

> Greater than

< Lessthan

( Left Parentheses

) Right Parentheses

* Multiply

/ Divide

+ Plus

- Minus

>= Greater than or equal to
<= Lessthan or equal to
= Equal to

<> Not equal to

, Comma

248



DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX

Token Description
; Semicolon
[*<text>*/ Comments
[0-9]* Integer
[0-]+""[0-0]* ([Ee][+]70-91+)? | [0-9] +[Ee][+- | Float
170-9]+

\‘'[AsciiChars] *\' String
Ox[0-9a-fA-F]+ Hex

> Greater than

249



DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX

250

BNF for rule expression syntax

BNF for Rule Expression
Syntax

<rule expression>

<statement>;

<statement>

<scalar expression or [1F>

<if then else statement>

<conditional expression>

<scalar expression or |IF>

<scalar expression>

<IIF>

<scalar expression>

<term>

<scalar expression> + <term>

<scalar expression> - <term>

<term>

<factor>

<term> * <factor>

<term> / <factor>

<factor>

<primary>

+ <primary> /*Unary Plus*/

- <primary> /*Unary Minus*/

<primary>

<litera constant>

<attribute reference>

<function reference>




BNF for Rule Expression
Syntax (Continued)

DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX

(<scalar expression>)

<IIF statement>

I1F (<conditional expression>,
<scalar expression or |1F>,
<scalar expression or |1F>)

I1F (<conditional expression>,
<scalar expression or |1F>)

<if then else statement>

IF (<conditional expression>) THEN
<self assign or ifelse>

<dselist>

END IF

<self assign or ifelse>

<self assignment>

<if then else statement>

<self assignment>

$value = <scalar expression>

<elselist> <else clause>
<eseif> <dselist>
<elseif>
<else clause> EL SE <sdlf assign or elseif>
<dseif> EL SElF<conditional expression> THEN

<sdlf assignment>

<conditional expression>

<Boolean term>

251



DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX

BNF for Rule Expression
Syntax (Continued)

<conditional expression> OR <Boolean term

<Boolean term>

<Boolean factor>

<Boolean term> AND <Boolean factor>

<Boolean factor>

<Boolean primary>

NOT <Boolean primary>

<Boolean primary>

<comparison predicate>

<between predicate>

<like predicate>

<test for NULL>

<in predicate>

INSERTING

UPDATING

DELETING

<comparison predicate>

<scalar expression> <compare ops> >scalar
expression>

<between predicate>

<scalar expression> BETWEEN <scalar
expression>
AND <scalar expression>

<scalar expression> NOT BETWEEN <scalar
expression>
AND <scalar expression>

252



BNF for Rule Expression
Syntax (Continued)

DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX

<like predicate>

<attribute reference> LIKE <literal constant>

<attribute reference> LIKE <literal constant>
ESCAPE <literal constant>

<attribute reference> NOT LIKE <literal
constant>

<attribute reference>NOT LIKE <litera
constant>
ESCAPE <litera constant>

<test for NULL>

<attribute reference> ISNULL

<attribute reference> ISNOT NULL

<in predicate>

<attribute reference> IN (<expression list>)

<attribute reference> NOT IN (<expression
list>)

<expression list>

<scalar expression>

<expression list>, <scalar expression>

<function reference>

IDENTIFIER (<expression list>)

DBMS_IDENTIFIERS (<expression list>)

<attribute reference>

IDENTIFIER

“:OLD”".IDENTIFIER

<compare ops>

“w_n

“ s

253



DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX

BNF for Rule Expression
Syntax (Continued)

| e

<literal constant> = INTEGER_CONSTANTS
[0-9]

FLOAT_CONSTANTS
[0-9]+"."[0-9]*([Ee][+-]?[0-9]+)? | [O-
9]+[Ee][+]?[0-9]+

| STRING_CONSTANTS
\‘[AsciiCharg]*\’

| HEX_CONSTANTS
0x[0-9a-fA-F]+

254



Building and Deploying
Busness Objects

255



BUILDING AND DEPLOYING BUSINESS OBJECTS
CHAPTER OVERVIEW

Chapter overview

256

Read this chapter to understand how the Versata Logic Studio allows you to package
transaction logic and data structure information into business object files. These business
object files make transaction logic operational against real data sources at run time.

After reading this chapter, you should have a basic understanding of how the files for Versata
Logic Server business objects are generated, compiled, and deployed to the Versata Logic
Server.

This chapter includes the following:

= “Overview of business object generation and deployment” on page 257, describesthe steps
involved in creating files for business objects and copying them to the Versata L ogic
Server, including the following:

= “Setting deployment options” on page 257

m “Filescreated during object generation” on page 259

= “Files created during object compilation” on page 259

= “Additional files for deployment” on page 261

= “Deploying to IBM WebSphere Application Server 4.0" on page 262

m  “Setting up deployed objectsin the Versata L ogic Server Console” on page 263
= “Redeploying business objects’ on page 264

= “Using menu options to build and compile business objects’ on page 265, provides
instructions for building and compiling business objects directly in the Versata Logic
Studio.

= “Using the Versata Logic Server Deployment wizard” on page 268, provides instructions
for using the Deployment wizard to package business object files and copy themto a
Versata Logic Server on IBM WebSphere Application Server 4.0 Single Server Edition.
This deployment to a staging area allows you to test transaction logic before a production
deployment.

m “Testing transaction logic” on page 279, provides an overview of how to test businessrules
once business objects have been deployed. More detailed information is available in the
Administrator Guide and in the supported third party debugger’sinformation.

= “Deploying business objects to a production environment” on page 281, provides
instructions for copying business object files' deployed packagesto a Versata L ogic Server

on IBM WebSphere Application Server 4.0 Advanced Edition and running a batch file to
register fileson WAS.

Note: For more detailed information about business object files' contents, see
“Understanding Business Object Files’ on page 285.



BUILDING AND DEPLOYING BUSINESS OBJECTS
OVERVIEW OF BUSINESS OBJECT GENERATION AND DEPLOYMENT

Overview of business object generation and
deployment

After you have defined data objects and query objects in the Versata L ogic Studio, you can
build and compile files for these business objects. These files package the rules logic code,
object instantiation code, and other required code into objects that can be accessible to running
applications. Javafiles that contain business object definitions are generated, then these files
are compiled into classfiles.

The next step is deployment, meaning packaging the compiled class files and copying them to
aVersata Logic Server, so that at run time, these files can instantiate business objects as
necessary. These instantiated business objects process changes to underlying data sources.
This processing includes the execution of transaction logic (business rules) defined in the
Transaction Logic Designer.

Deployment of business objects to the Versata Logic Server is atwo-step process.

= Thefirst step is deployment to a development environment. The Versata devel opment
environment is the Versata Logic Server on WAS 4.0 Advanced Edition - Single Server
option (AES) running on Windows.
The Versata Logic Studio provides awizard for this task. For a description of this wizard,
see “Deployment wizard user interface” on page 269. For instructions for development
deployment, see “ Deploying business objects to a devel opment environment Versata L ogic
Server” on page 273.

= The second step is deployment to a production environment. The production environment
isthe Versata Logic Server on WAS 4.0 Advanced Edition (AE) running on Windows,
AlX, or Solaris.
Thistask involves copying of the <r eposi t or y>_Depl oyed. ear file. For instructions,
see “Deploying business objects to a production environment” on page 281.

Setting deployment options

Each data object and query object has deployment options that you should set before you
build, compile, or deploy Versata Logic Server objects.

EJB deployment

Thefirst option relates to whether to deploy each object as an EJB. You can deploy each data
object as an entity bean and each query object as a session bean. By default, each object is
deployed as a Java classfile.

257



BUILDING AND DEPLOYING BUSINESS OBJECTS
OVERVIEW OF BUSINESS OBJECT GENERATION AND DEPLOYMENT

258

If you want to enable an object for remote access, deploy it asan EJB. Remote object accessis
required for another remote object to invoke remote methods on an object. For information
about remote method invocation, see “ Accessing remote objects from clients’” on page 350.

When you deploy an object as an EJB, the object’s files are added to the repository . j ar file
in the same manner as those for non-EJB objects, so the implementation files are available to
provide object instantiation and logic processing. I n addition, the object’sfiles are packaged to
create an object in compliance with the EJB standard for remote access, and the EJB object is
installed on the IBM WehSphere Application Server, with the Versata L ogic Server asits EJB
container.

Objects are not deployed as EJBs by default, because EJB capability is required only for
remote access, and each object that is deployed as an EJB slows the deployment process. To
mark a data object to be deployed as an EJB, enable the Deploy as EJB Entity Bean check box
on the Properties:Data Access tab of the Transaction Logic Designer. To mark a query object
to be deployed as an EJB, enable the Deploy as EJB Session Bean check box on the
Properties.General tab of the Query Object Designer.

Note: If you use the Deployment wizard to deploy an object as an EJB, and then later deploy
it without enabling EJB deployment, the original EJB files remain in the repository
. j ar file. This does not cause problems, because the EJB is removed from the
application server. To removethesefilesfrom the. j ar, uncheck theincremental check
box in the wizard dial og.

Attribute-level security deployment

For each data object and query object, you have the option of deploying the names of
attributes to the Versata L ogic Server so that attribute-level security can be set in the Versata
Logic Server Console. Enable this option only for objects where you plan to set attribute-level
security, asit can slow the deployment process.

To enable this option for a data object, enable the Deploy Attribute Security Data check box
on the Properties:Data Access tab of the Transaction Logic Designer. To enable this option for
aquery object, enable the Deploy Attribute Security Data check box on the Properties:General
tab of the Query Object Designer.

For information about setting up attribute-level security in the Versata Logic Server Console,
see the Administrator Guide.

Note: If you deploy attribute-level security information to the Versata Logic Server, then do
another deployment without this option enabled, the preexisting attribute security
information remains in the Versata Logic Server Console. You need to manually
remove thisinformation if you no longer want it to be used.

Also, if you delete an attribute for which security data has been deployed, its security
datais not deleted. This attribute is still displayed in the Versata Logic Server Console,
even after deletion.



BUILDING AND DEPLOYING BUSINESS OBJECTS
OVERVIEW OF BUSINESS OBJECT GENERATION AND DEPLOYMENT

Files created during object generation

Thefollowing table liststhe files that the Versata L ogic Studio creates for each data object and
query object when you elect to build objects. These files are located in the
<r eposi t or y>\ Sour ce\ M s directory, within group subdirectories, if applicable.

= For more details about each file's contents, see “ Generated files for business objects’ on

page 290.

= For information about using Versata Logic Studio menu options to build objects, see
“Using menu options to build and compile business objects’ on page 265.

File

Type

Purpose of file

<obj ect >Basel npl . j ava

Base implementation file

Contains system-generated code,
including rules.

<obj ect >l npl . j ava

Main implementation file

Contains devel oper-defined, custom
code.

<obj ect >. j ava

Remote interface file

(Generated only if object isto
be deployed as EJB)

Defines support for transactions,
threading, and security for the EJB.

<obj ect >Hon®. j ava

Home interface file

(Generated only if object isto
be deployed as EJB)

Defines methods called by remote
clients or objectsto create, find, and
remove instances of the EJB.

<obj ect >DD. xm

Deployment descriptor file

(Generated only if object isto
be deployed as EJB)

Defines basic properties that
determine characteristics of the
invoked EJB.

Note: If thedisk isfull when you attempt to build objects, an error occurs. This error message
incorrectly mentions aform; it should reference a data object.

Files created during object compilation

Thistable lists the files that the Versata L ogic Studio creates for each data object and query
object when you elect to compile objects. These files are located under the
<r eposi t ory>\ Li b directory.

= For information about using Versata Logic Studio menu options to compile objects, see
“Using menu options to build and compile business objects’ on page 265.

259



BUILDING AND DEPLOYING BUSINESS OBJECTS
OVERVIEW OF BUSINESS OBJECT GENERATION AND DEPLOYMENT

260

File Type Purpose of file
<obj ect >Basel npl . cl ass Object base class Executes system-generated code,
including rules, for the object.
<obj ect >l npl . cl ass Object class Extends the base class to implement
additional custom code.
<obj ect >. cl ass Compiled remoteinterface file | Used to invoke the business object’s
(Created only if object isto be methods after hpme interface has
deployed as EJB) been used to gain access to the EJB.
<obj ect >Hon®. cl ass Compiled home interface file Used to gain access to the EJB.
(Created only if object isto be
deployed as EJB)

Note: If the disk isfull when you attempt to compile objects, a Versata termination error
occurs.

Compiler defaults and option settings

By default, the compiler denoted by %I AVA_ HOVE% bi n\ j avac isused to compile Versata
business objects. You can specify adifferent compiler to be used on the Executablestab of the
Environment Options dialog. To open this dialog, choose Tools = Options from the Versata
Logic Studio main menu.

For this release, the default Java compiler is

<install _directory>\java\bin\javac. exe, where<instal | _directory> isthe
directory where IBM WebSphere Application Server isinstalled. Thisisthelocation wherethe
JDK 1.3.0isinstalled when you install it along with the IBM WebSphere Application Server.

Atinstalation time, abatch file caled set Ver sat aEnv. bat iscreated in the Versata Logic
Studio installation directory. Thisfile setsthe JAVA_HOME and JAVAC_OPTI ONS variables. If
you want to use acompiler other than the default, you can change these variables by manually
editing thisfile. To changethej avac variable, specify adifferent compiler on the Executables
tab of the Environment Options dialog.

Note: Changing variables might not work in all cases. You need to review the conpi | . bat
and other related files to ensure that the correct classpaths are picked up because they
may be hardcoded in some places.

It is possible to invoke compiler options to set the maximum heap size for the Java compiler
and to ensure that dependent Java files get compiled if necessary.



BUILDING AND DEPLOYING BUSINESS OBJECTS
OVERVIEW OF BUSINESS OBJECT GENERATION AND DEPLOYMENT

To set the maximum heap size for the Java compiler, specify the valuein the following registry
setting: LOCALMACHI NE/ Sof t war e/ <i nst al | _di r ect ory>/ Envi r onnent Opt i ons/
MaxHeap_For Java. The valueis specified in bytes with a default of 64000000.

Do not define avaluefor the - D option in the set Ver sat aEnv. bat file. This option specifies
where compiled files are saved and interferes with Versata L ogic Suite conventions.

For more information about batch files, see the Administrator Guide.

Additional filesfor deployment

You need to deploy some filesto the Versata L ogic Server in addition to those that are built and
compiled in the Versata L ogic Studio. This section summarizes these files.

Required Versata Logic Suite JAR files

During both Versata L ogic Studio and VersataLogic Server installations, several . j ar filesare
copied to the WebSphere installation directory. These . j ar files are necessary for your
Versata-generated applications to run. The following table provides the location and
description of each of thesefiles.

Class files

Location

Description

vl sEJB55. j ar

WMS_HOVE% | i b\ app

System classes - server runtime

vl sBeans55_Client.jar

%NS _HOVE% | i b\ app

System classes - client classes of
the context beans

vf cEJB55. j ar

WMS_HOVE% | i b\ app

System classes - client runtime

vl sBeans55. j ar

UW/ERSATA HOVE% vl s\ 1i b\
Versata_Logi c_Server.
ear

System beans - VLSCont ext and
PLSCont ext

<repository>.jar

WERSATA HOVE%
VLSConponent s\ Cl asses\
<repository>. ear

Business objects and business
objects as beans. The

<appl i cation>. xm filewill
have an entry for a Web module
even when thereareno HTML
application deployed.

Optional external dependent classes or JARfiles

When using external . cl ass or . j ar files, make sure that your applications can find the files.
You should also plan for whether the files will be referenced by a single Versata repository or

261



BUILDING AND DEPLOYING BUSINESS OBJECTS
OVERVIEW OF BUSINESS OBJECT GENERATION AND DEPLOYMENT

262

multiple Versata repositories. Doing so can prevent duplicate copies of the files, which can be
harder to manage.

Class files

If you have external dependent . cl ass filesfor a single repository, you can simply include
the. cl ass filesintherepository . j ar file. If the. cl ass files are for multiple repositories,
put the filesin the 9MAS_HOVE% | i b\ app folder.

JAR files

If you have external dependent . j ar files, you must decide if thefiles are needed for multiple
Versata repositories or asingle Versatarepository. If the. j ar filesare needed for multiple
repositories, put the filesin the 9MAS_HOVE% | i b\ app folder. For asingle repository, or to
keep external classesin aseparate. j ar file, use the following steps:

To keep external classesin a separate .jar:

1. Copytheexterna .j ar fileintheroot level of the. ear folder:
%/ERSATA_HOVE% VLSConponent s\ cl asses\ <reposi tory>. ear
2. Addthe nameof the. j ar inthe classpath entry of the war manifest file:

UW/ERSATA_HOVE% VLSConponent s\ cl asses\ <reposi tory>. ear\ <reposi t ory>.
war\ META- | NF\ mani f est . nf

3. Theexternal classes that are common for all the repositories should be copied to the
9MAS HOVE% | i b\ app folder.

Deploying to IBM WebSphere Application Server 4.0

Using the Versata Logic Suite with IBM WebSphere Application Server 4.0 gives you the
flexibility of deploying to either the Versata devel opment environment or the Versata
production environment.

The Versata devel opment environment is the Versata Logic Server on WAS 4.0 Advanced
Edition - Single Server option (AES) running on Windows. Use the Versata Logic Studio
development and deployment wizards to build, and then deploy your applications to this
environment. Doing so allows for fast application devel opment and deployment, enabling you
to quickly test and debug your applications before deploying them to the Versata production
environment.

When using the Versata Studio deployment wizards to deploy to Versata's devel opment
environment, you can hot deploy or dynamically reload application components without
having to restart the Versata Logic Server. Hot deploying and dynamic rel oading application
components also allow you to quickly test applications before deploying them to Versata's
production environment.



BUILDING AND DEPLOYING BUSINESS OBJECTS
OVERVIEW OF BUSINESS OBJECT GENERATION AND DEPLOYMENT

After you have sufficiently tested your application in the Versata development environment,
deploy your application <r eposi t or y>_Depl oyed. ear fileto Versata's production
environment. The production environment is the Versata L ogic Server on WAS 4.0 Advanced
Edition (AE) running on Windows, AlX, or Solaris. WAS 4.0 AE provides a highly scalable
Versata production environment, allowing for multiple VERSATA application server instances
and clones on both local and remote machines.

= For information about deploying to Versata's development environment, see “Using the
Versata Logic Server Deployment wizard” on page 268.

= For information about hot deploying to the development environment, see “Hot deploy and
dynamic reloading task reference” on page 276.

= For information about deploying to Versata's production environment, see “Deploying
business objects to a production environment” on page 281.

= For information about deployment of client application files, see the Application Devel oper
Guide.

Setting up deployed objects in the Versata Logic Server Console

After business objects have been deployed to the Versata L ogic Server, you can set up data
source connectivity and security in the Versata L ogic Server Console.

During deployment each business object is assigned to a Versata L ogic Server data server
whose type and connection properties match those used for the last data model deployment of
that object. Data objects from multiple repositories can share the same data server in the
Versata Logic Server Consoleif they are deployed using the same connection properties.

If no data server with matching connection propertiesis found, a new data server definition is
created with the name “ Data Server#”, and the object is associated with the new data server.
You then need to define a data server type and connection properties for this data server. This
situation occurs most often when the business object represents a non-supported data source
and requires a custom Versata Connector.

In the development environment, it is recommended that you use the default security manager
so you can perform all security tasks, such as defining users, assigning them to roles, and
assigning privileges to objects in the Versata Logic Server Console. Integration with IBM
WebSphere Application Server functionality is available primarily for use in production
environments.

For more information about administration and security for business objects, see the.
Administrator Guide.

263



BUILDING AND DEPLOYING BUSINESS OBJECTS
OVERVIEW OF BUSINESS OBJECT GENERATION AND DEPLOYMENT

Redeploying business objects

Business objects are often redeployed to the Versata Logic Server numerous times during
development, and sometimes in production as well. When you redeploy to the Versata L ogic
Server, you have the choice of deploying files only for business objects that have changed
since the last deployment. For this choice, enable the Incremental Build of Deployed Jar
option in the Choose Versata L ogic Server for Deployment dial og.

In cases of redeployment, objects are redeployed so that security datain the Versata Logic
Server Console need not be redefined. Thisis accomplished as follows:

During Versata Logic Server deployment, the system checks to see if the repository name/
object name combination for each business object already existsin the VersataLogic Server. If
amatch isfound, the determination of what happens depends on the type of object:

= Non-data server objects: new information overlays old information, but all security
references remain intact.

= Dataserver objects: are not explicitly deployed during the Versata Logic Server
deployment process. Instead, the Versata Logic Server deployment wizard creates new
data servers as follows:

» |f adataobject has never been deployed before, the wizard looks for an existing
connection that has the same connection properties (login, password, ODBC DSN,
schema, database), and if it finds a match, the wizard assigns the new data object to the
matching data server.

= |f adataobject has never been deployed before and the wizard cannot find an existing
connection that has the same connection properties, it creates a new data server and
assigns it the connection properties of the new data object.

» |f adataobject has already been deployed and is assigned to a data server, the wizard
does not try to match to an existing connection, nor does it cause the creation of a new
connection. Instead, the object remains assigned to its current data server to ensure that
no assignments made by the administrator are overwritten during deployment.

264



BUILDING AND DEPLOYING BUSINESS OBJECTS
USING MENU OPTIONS TO BUILD AND COMPILE BUSINESS OBJECTS

Using menu optionsto build and compile business
objects

The Build menu in the Versata Logic Studio provides the following options for building and
compiling business objects:
= Thetop section of the menu is context-dependent and contains the following options:

= Rebuild Selected (Ctrl+F9)

»  Compile Selected (Ctrl+F8)

These options apply to the currently selected object, file, or group.

= On the Objectstab of the Explorer, you can select an object and choose one of the top
menu options to rebuild or compile all of the files for that object.

= OntheFilestab of the Explorer, you can select afile for an object and choose one of the
top menu options to rebuild or compile that particular file.

= On either tab of the Explorer, you can select a group and choose one of the top menu
options to rebuild or compile all files for objects in the group.

= The second section of the menu contains the following options:
= Rebuild Components (Shift+F9)

Rebuild All Components

Compile Components (Shift+F8)

= Compile All Components

Select an “All” option to rebuild or compile all business objectsin the repository. Select an
incremental option to rebuild objects that have changed since the last build or to compile
objects that have changed since the last compile.

When agroup is selected in the Explorer, the incremental and “All” options operate on the
whole repository, not just the group. To rebuild or compile only objects in the selected
group, choose a“ Selected” option or an option from the group’s Files tab right-click menu.

= Thethird section of the menu, if any, applies to the currently open application. For
information about this section’s options, see the Application Devel oper Guide.

= Rebuild and Compile menu options also are available from the right-click menus of
individual files and groups on the Files tab of the Versata L ogic Studio Explorer.

Note: If you select aCompile menu option, the objects to be compiled are checked and rebuilt
as necessary before the compile occurs.

Errors may occur if you choose a Compile option for an individual file or group before
all objectsin the repository have been compiled at least once. Because classes may
reference each other, you may have to compile the entire repository before you can
compile anindividual file or group. If your repository directory or any of its
subdirectories are read-only, compilesfail.

265



BUILDING AND DEPLOYING BUSINESS OBJECTS
USING MENU OPTIONS TO BUILD AND COMPILE BUSINESS OBJECTS

266

In some cases, remote interface files may not be compiled when you choose the
Compile Components option. If this occurs, choose the Compile All Components
option to ensure remote interface files get compiled.

If you have made changes to column captions for a query object, an incremental build
option may not properly rebuild the query object. If this problem occurs, the
workaround is to close and reopen the repository, then retry the changes and the
rebuild.

If you havejust converted your repository to release 5.5, you may encounter generation
errors the first time you select the Rebuild All Components menu option. If this error
occurs, reselect this menu option. If errors continue to occur, you may need to correct
duplicate role names in the repository. For information, see the Migration Guide.

Saving changes to rebuilt query objects

Because query objects are dependent on data objects, changes to data objects may cause
changes to query objects. After you have rebuilt repository business objects, a dialog may
appear asking you whether to save changes to query objects. Generally, you should click OK
to save these changes and continue. However, if you have manually customized query text in
the Query Object Designer, you should click Cancel in order to preserve the current text. In
this case, you can make changes manually to reflect changes in underlying data objects
without unnecessarily overwriting other query text.



BUILDING AND DEPLOYING BUSINESS OBJECTS
USING MENU OPTIONS TO BUILD AND COMPILE BUSINESS OBJECTS

Hﬂueries Loaded During Component Generation

The lizted query objects have been updated ta reflect changes in related abjects. Do wou wish to zave ;I
changes?

1] Cuzttuendirtualz

21 Default5killzForEmpT vpe

3] DeptloinSubDept

41 Empd ainDept

5] EmpList

B] ErpSalaryHiztany

7] EmpSkillz

2] Emp5Skillz=DAStoredProcedure
9] Orderlterm ainPart

10] Order) oin pts alesRep

111 Order)ainS alesRep

121 Order) ains alesR epdndbd gr
13] Order)oinS alezRepCust
14] Order)oins alesRepForTree
18] OrdersMoVfirtuals

18] OrderT otalS alesByCust

Do pou want to Confinue? k. |

Figure 13  QueriesLoaded During Component Gener ation dialog

267



BUILDING AND DEPLOYING BUSINESS OBJECTS
USING THE VERSATA LOGIC SERVER DEPLOYMENT WIZARD

Using the Versata Logic Server Deployment wizard

When deploying business objects, use the Versata L ogic Server deployment wizard to deploy
to Versata's devel opment environment: the Versata L ogic Server on WAS 4.0 AES, running on

Windows.

The deployment wizard copies the business objects, and then registers the business objects to
WebSphere 4.0 AES. The registration information is stored as an enterprise application inside
the<ver sat a_| ogi c_sui t e>\ Confi g\ versat a- cf g. xnl file. Once you have deployed

your application, open the WebSphere Console to see that your VERSATA _<repository>

enterprise application is registered (Figure 14).

Note: Ensurethat theversat a-cf g. xm fileisin use and appears at the top left panel of the
WebSphere Console. If thever sat a- cf g. xm file does not appear, newly deployed

and updated repositories will not be recognized by the Versata Logic Server.

/2 1BM webSphere Application Server Administrative Console - Microsoft Internet Explorer

JFlIE Edt Wiew Favorites Tools  Help

=l81x|
[ & |

| ek - = - @ Q) | @search GiFavorites (HHstory | By S

| Adshess [] http: focathost:090/adminjserureflagon. dozaction=0k

j @G0 “L\nks &)

WebSphere Application Server

Console Home Configuration Preferences

g webSphere Administrative Domain =

- : R
B@ Nodes Enterprise Applications

@ cchuizals The JZEE applications (EAR files) installed on the application server

EH@ Enterprise Applications
. +For more information..

= el
< .BVERSATAfs‘ampDal
S — — start| stop| Restart | nstall | Uninstal | Exor | EwportpoL |
=B VERSATA, M 8 Server Administration  $(APP_NSTALL_ROQT}admin ear
E-gg Process Definition Application

@ Location Service Dasmo
B350 ORB Settings

s Transaction Service

i Trace Service

g% Server Security Configur

£ Custom Services

Bl Path Map

B Installed Resource Providers
(7 wirtual Hosts e

F-af Security =
4 | L'_I

# IBM Debug and OLT I $ VERSATA SampDE1 C:AwehSphered Oiversatas. 5_EJBALSComponents/Classes/SampDEB1 ear
By Web Container @ versata Logic Server WaHYERSATA_HOMERVLS/ID
% EIB Container

& [ [ BELocalintranet

Figure 14 WAS4.0 AESConsole

268




BUILDING AND DEPLOYING BUSINESS OBJECTS
USING THE VERSATA LOGIC SERVER DEPLOYMENT WIZARD

Deployment wizard user interface

To start the Versata Logic Server Deployment wizard, do one of the following:
= Choose Versata Logic Server - Deploy Transaction Logic.

»  Choose Managers - Deployment Manager, and in the Choose Deployment Target dialog,
choose Deploy Transaction Logic under Versata Logic Server.

In the wizard dialogs, you can click the Help button or press F1 to obtain more information
about the current task.

Deployment Options dialog

Asthefirst step in the deployment process, a dialog appears where you can elect options for
the rebuild and compile of business objects before they are deployed to the Versata Logic
Server:

Deployment Options I
—Rebuld—— [~ Compile
" Force " Force
& Incrementst @ Incremental
" Mone  Hone
k. Cancel

Figure 15  Deployment Optionsdialog

»  Choose the Force option buttons to indicate that business objects should aways be rebuilt
and/or compiled before deployment.

= Choose the Incremental option buttons to indicate that only business objects that have
changed since the last build and compile should be rebuilt and/or compiled before
deployment.

= Choose the None option buttons to indicate that business objects should never be rebuilt or
compiled before deployment.

269



BUILDING AND DEPLOYING BUSINESS OBJECTS
USING THE VERSATA LOGIC SERVER DEPLOYMENT WIZARD

After you have completed this dialog, objects are rebuilt and compiled, if indicated and
necessary.

Choose Versata Logic Server for Deployment dialog

The next step in the deployment process is to choose the Versata Logic Server where business
objects will be deployed, in the following dialog:

Chooze Yerzata Logic Server for Deployment

Choose location of the Yersata Logic Server install
Folder,

Yersata Logic Server install Folder:

IE:'I,'-.-'ersataS.S_EJB |

[ Incremental Build of Deployable Jar

Help | Cancel = Bath | Mext = I st

Figure 16  Choose Versata L ogic Server for Deployment dialog

= Inthisdialog, you choosethe Versata Logic Server where the J2EE Enterprise Application
(EAR) containing your repository’s business object fileswill be deployed. You indicate the
Versata Logic Server by entering the path of the folder where the Versata Logic Server is
installed. By default, thisis your Versata Logic Studio installation directory.

270



BUILDING AND DEPLOYING BUSINESS OBJECTS
USING THE VERSATA LOGIC SERVER DEPLOYMENT WIZARD

To select from available folders, click the Browse button in the dial og that appears, browse
until you find the right folder, then select it and click the Open button.Once you have
entered the path of afolder, click the Next button.

Note that you must not use spaces in the path name, or it will not work.

Also in this dialog, you have the option of choosing to deploy files only for changed
objects, by enabling the Incremental Build of Deployable Jar check box. This option causes
individual object filesto be added to the existing repository . j ar fileinstead of acomplete
regeneration of the. j ar. This option allows you to preserve anything you have added to
the. j ar fileaswell as save time during deployment.

271



BUILDING AND DEPLOYING BUSINESS OBJECTS
USING THE VERSATA LOGIC SERVER DEPLOYMENT WIZARD

Finished dialog

In this dialog, you confirm the Versata Logic Server, choose options for deployment
processing, specify a unique name for the Versata L ogic Server application server process on
IBM WebSphere Application Server, and then start the deployment processing.

Fimshed

The wizard is now ready to deploy to the Yersata Logic
Server. After deployment, wau may use the Yersata
Logic Server Console ko manage security on the
deploved objects,

Choose Finish ko deplay ta the server indicaked
below,

Huosk:
cindy_2183

SErver:
VLS CIMDY 2183

The Deplovment Manager can verify if the server is
running before copying the jar file, However this takes
significant time.

W Stop and Reskart WebSphere AppServer
¥ Register Beans to Wehsphere
WehSphere AppServer Mame; I'-.-'ERSF'.TF'.

Zancel | < Back | [Exh = | Einish

Figure 17  Deployment Finished dialog

= To confirm the Versata L ogic Server, review entries in the Host and Server fields.

s TheHost field displays the location of the machine where the Versata Logic Server is
installed.

= The Server field displays the name of the Versata Logic Server specified in the
configuration file you entered in an earlier dialog.

These fields are read-only. You cannot modify them directly. If the host or server nameis
not correct, click the Back button to return to the Choose Versata L ogic Server for
Deployment dialog and enter a different install folder.

272




BUILDING AND DEPLOYING BUSINESS OBJECTS
USING THE VERSATA LOGIC SERVER DEPLOYMENT WIZARD

= The option for the wizard to stop and restart the Versata L ogic Server on IBM WebSphere
Application Server ensures that business object changes are applied. By default, this option
is enabled. You need to start and stop the application server for changes to be applied, but
in some cases, it may be faster for you to do it manually from the IBM WebSphere
Administrative Console than for you to wait for the wizard to do it.

= The option for the wizard to register EJBs for business objectsin IBM WebSphere
Application Server uses WebSphere's XML Config tool for registration. By default, this
option is enabled. Registration process information is displayed in alog file, so you can
verify whether registration succeeded and use troubleshooting information in case of
failure.

= The WebSphere AppServer Name field displays the name of the selected Versata Logic
Server's application server process on the IBM WebSphere Application Server node where
it isrunning. By default, thisname is VERSATA. If you intend to run multiple instances of
Versata Logic Server on the WebSphere node, change this name to something unique.

If you have deployed previously, a confirmation dialog may appear asking you whether
existing files should be overwritten. When deployment is completed, a notification dialog

appears.

Note: The Versata Logic Server verifies whether you have access to the file system. If you
have problems deploying to the Versata Logic Server, check your permissions.

Deploying business objects to a development environment
Versata Logic Server

To deploy business objects to a development environment \ersata Logic Server:
1. Start the Deployment Manager and select Deploy Transaction Logic under Versata Logic
Server deployment.

2. Inthe Deployment Options dialog, indicate the cases in which business object files should
be rebuilt and recompiled before deployment:

= Forceindicatesthat files for al objects should always be rebuilt and/or recompiled
before deployment.

= Incremental indicates that only files for new or changed objects should be built and/or
compiled before deployment.
= Noneindicates that no files should be built and or compiled before deployment.

3. Inthe Choose Versata L ogic Server for Deployment dialog, enter the path of the folder
where the development Versata Logic Server isinstalled. By default, thisisyour Versata
Logic Studio installation directory path. Note that you must not use spacesin the path
name, or it will not work.

273



BUILDING AND DEPLOYING BUSINESS OBJECTS
USING THE VERSATA LOGIC SERVER DEPLOYMENT WIZARD

274

If you have previously deployed repository business objects to this Versata Logic Server,
and you want to redeploy only changed business objects without overwriting the whole
repository . j ar file, enable the Incremental Build for Deployable Jar check box. Click
Next.

In the Finished dial og, review the names of the host and of the Versata L ogic Server. Make
a note of these names, because you may need to record them as the server location in the
Application Properties dialog for Versata Logic Studio-generated applications using this
Versata Logic Server. Keep in mind that these names are case-sensitive.

Enable or disable the check box for the wizard to stop and restart the Versata L ogic Server

on IBM WebSphere Application Server. You can restart in order to ensure the objects are

registered already.
Enable or disable the check box for the wizard to register business object EJBsin IBM

WebSphere Application Server. These Beans must be registered.

If you want to run multiple instances of Versata Logic Server on the same |BM WebSphere

Application Server node, change the WebSphere AppServer Namefield from VERSATA

to aunique application server process name.

. Click Finish to execute the deployment.

If you encounter any problems with deployment, check the deployment log file for
troubleshooting information. Thisfileislocated in the
<instal |l _directory>\Logs\vl sdepl oy. | og folder.

Note: Customizations to the deployment descriptor (<obj ect >DD. xmi ) file, such asa

change to the jndi-name, may not be picked up during EJB deployment. To work
around this issue, make the necessary changes in the WebSphere Administrative
Console after deployment.

Note: Be careful to deploy only to arelease 5.5 Versata L ogic Server. The wizard allows you

to deploy to a 5.1 Versata Logic Server.



BUILDING AND DEPLOYING BUSINESS OBJECTS
HOT DEPLOY AND DYNAMIC RELOADING

Hot deploy and dynamic reloading

WebSphere 4.0 AES allows you to hot deploy and dynamically reload application components.
The Versata Logic Studio deployment wizards support both of these features. The following
sections provide information on hot deploying and dynamic reloading using the Versata L ogic
Server deployment wizard to deploy to Versata's devel opment environment (the Versata Logic
Server on WAS 4.0 AES, running on Windows).

For asummary of deployment scenarios involving hot deployment and dynamic rel oading, see
“Hot deploy and dynamic reloading task reference” on page 276.

Note: The hot deployment and dynamic reloading features are not applicable for deployment
to Versata's production environment (the Versata Logic Server on WAS 4.0 AE,
running on Windows, AlX, or Solaris).

Hot deploying to \Versata’s devel opment environment

Hot deployment is the process of adding new components, such as enterprise beans, servlets,
and JSP files to a running application without having to stop the VERSATA application server
instance, and then restart it again. Use Versata L ogic Studio deployment wizards to hot deploy
application components to Versata's devel opment environment.

= For business object hot deployment:

Business and query repository objects are packaged as. cl ass filesina

<reposi tory>.jar file. When you deploy the <r eposi t ory>. j ar filefor thefirst
time, you must stop and restart the WebSphere Application Server. However, if you change
any of the. cl ass fileswithinthe<r eposi t ory>. j ar filethat was previously deployed,
you can then hot deploy the updated <r eposi t ory>. j ar file. The Versata Logic Studio
deployment wizards will restart only the VERSATA application server instance and the
VERSATA_<repository> enterprise application, rather than the entire WebSphere
Application Server. This save significant time during deployment.

= For client application hot deployment:

With Versata-generated HTML applications, you can hot deploy client application
components (such as <ser vl et >. cl ass filesand <page>. cl ass files). If you do not
change any of your application . cl ass files, the Versata L ogic Studio deployment wizards
will copy all of the other changed files without re-starting the VERSATA application server
instance, allowing for even faster deployment.

In addition to hot deploying updated applications to Versata's development environment,
you can also hot deploy new applications that have not yet been depl oyed—uwithout having
to restart the VERSATA application server instance.

275



BUILDING AND DEPLOYING BUSINESS OBJECTS
HOT DEPLOY AND DYNAMIC RELOADING

Task

Dynamic reloading in Versata’s devel opment environment

Dynamic reloading allows you to change existing application components without having to
restart the WebSphere Application Server or the VERSATA application server instance in
order for the changes to take effect. Such changes can include:

= Changesto the settings of an application, such as changing the deployment descriptor for a
Web module.
= Changesto the implementation of a servlet.

Use the Versata Logic Studio deployment wizards to dynamically reload application
components in Versata's development environment.

Hot deploy and dynamic reloading task reference

The following table summarizes various tasks you can perform using the Versata Logic Studio
that will update Versata application components. The table describes the action you must take
to make the changes effective in the running VERSATA application server instance.

For additional information, refer to IBM’s documentation on WebSphere 4.0 hot deployment

and dynamic reloading. In particular, refer to IBM’s documentation on changes to application
components not listed in the table below, and how changes to these components affect the unit
that needs restarting (for example the module, application, or the application server instance).

WebSphere action

Versata Studio action

Notes

Initial deployment of a
Versata repository

Restarts

The Versata Logic Studio
deployment wizard detects
this scenario, and if the
Restart WebSphere
Applications check box is
checked, the wizard will
restart the VERSATA

application server instance.

Deploying business
objectsor an HTML
application for the first
time for each repository
requires restarting the
WebSphere Application
Server. Thisis so the
versat a- cf g. xm file
can recognize future
changesto arepository.

276



BUILDING AND DEPLOYING BUSINESS OBJECTS

HOT DEPLOY AND DYNAMIC RELOADING

Task WebSphere action Versata Studio action Notes
Changesto aservlet such as. | None Users must uncheck the
« Adding anew servlet, Restart WebSphere
including a new definition Applications check box in the
of the servlet in the Versata Logic Studio
web. xm deployment deployment wizard.
descriptor for the
application.
e Changingthe. cl ass file
of an existing servlet by
either editing or
recompiling it.
Changesto an HTML page None Users must uncheck the The Versatatemplate
Restart WebSphere (- ht mfile) is not loaded
Applications check box inthe | by WebSphere.
Versata Loglc.Studlo TheHTML pageisread by
deployment wizard. the corresponding Java
<page>. cl ass file
every timethe HTML
page changes.
Changestothe. j ava file Restarts the WebSphere | Users must check the Restart | The page classisloaded
for apage. Such achangecan | Application Server, the WebSphere Applications by the VLS runtime
include: Versata Logic Server, check box in the Versata supporting the
« Updating the and thg VERSATA_. ngic Studio deployment PL SContext bean.
<repository> enterprise | wizard.

implementation class for
an EJB.

¢ Updating a dependent
class of the
implementation class for
an EJB.

application.

These classes can be
thought of as dependent
class of the PL SContext
bean. However, to enable
dynamicreloading of these
dependent classes, these
classes are loaded by the
classloader instance that
|oads the bean itself.

277



BUILDING AND DEPLOYING BUSINESS OBJECTS

Task

HOT DEPLOY AND DYNAMIC RELOADING

WebSphere action

Versata Studio action

Notes

Changes to business objects
such as:

« Updating the
implementation class for
an EJB.

¢ Updating a dependent
class of the
implementation class for
an EJB.

Restarts the WebSphere
Application Server, the
Versata Logic Server,
and the
VERSATA_<repository
> enterprise application.

Users must select the Restart
WebSphere Applications
check box in the Versata
Logic Studio deployment
wizard.

Business object classesare
loaded by the Versata
Logic Server runtime
supporting the
VLSContext bean.

These classes can be
thought of as dependent
classes of the VL SContext
bean. However, to enable
dynamicreloading of these
dependent classes, these
are loaded by the
classloader instance that
|oads the bean itself.

278



BUILDING AND DEPLOYING BUSINESS OBJECTS
TESTING TRANSACTION LOGIC

Testing transaction logic

After defining transaction logic (business rules) and deploying business objects to the Versata
Logic Server, you can verify that the rules execute as you expected. The Versata Logic Server
Console provides arule tracing facility that you can use to review details of rules processing.
In addition, you can use athird-party debugger to step through business object code.

Using Versata Logic Server Console rule tracing

For further information about Versata L ogic Server Console functionality, see the
Administrator Guide.

To test business rules with the rule tracing facility:

1.

Start the Versata L ogic Server Console. Ensure that the guest user is set up with proper role
and privileges.
Execute an application, logging on as guest.

In the Versata Logic Server Console, expand the User Sessions object and select the guest
object. (This object represents your current session on the application.)

Enable the Trace user activity check box, and leave the Versata L ogic Server Console open.
Modify records in ways that should cause the business rules to fire.

Review the entries in the Versata L ogic Server Console trace window. Note that a number
of entries are written as the transaction is processed, and that most recent entries are at the
top. Scroll down through the trace window so you can see the first entries at the bottom,
then review the entries from the bottom up.

When an error israised, click More Details on the error dial og to find out which data object
and rule raised the error.

If the error isrelated to businessrules, return to the Transaction Logic Designer and review
the data object’s rule definitions.

= Asneeded, update your derivation, validation, or referential integrity rules.
= You also may need to update the data object constraints and action rule definitions.

After you have updated business rules, you can redeploy them to the Versata L ogic Server
and repeat the steps in this procedure to retest business rules.

Debugging business object code

The Versata Logic Suite allows you to use a third-party debugger designed specifically for
debugging Javaand HTML client applications as well as business objects deployed in a
supported application server platform.

279



BUILDING AND DEPLOYING BUSINESS OBJECTS
TESTING TRANSACTION LOGIC

This edition supports the use of IBM’s Object Level Trace (OLT) and Distributed Debugger.
For procedures explaining how to use IBM’s Distributed Debugger with Versata applications
and business objects, see the Application Developer Guide. To learn more about using the

tools featured in IBM’s Distributed Debugger, see the IBM Distributed Debugger User’s
Guide.

280



BUILDING AND DEPLOYING BUSINESS OBJECTS
DEPLOYING BUSINESS OBJECTS TO A PRODUCTION ENVIRONMENT

Deploying business objects to a production
environment

Once you have tested business objects in the development environment, you can deploy them
to a production environment Versata Logic Server running on IBM WebSphere Application
Server 4.0 Advanced Edition. Before you deploy business objects to the Versata production
environment, you must create a<r eposi t or y>_Depl oyed. ear file. The. ear file contains
all the business object . cl ass filesand HTML application files in the repository. Web server
files and security data are not contained in the . ear file.

To create the. ear file, use either the WebSphere Application Assembly Tool, or use the
Versataws EARCr eat e. bat script. Directions are provided for both methods.

Creating the .ear file

To create the <repository>_Deployed.ear file using the WebSphere Application Assembly Tool:

1.
2.

Run the WebSphere Application Assembly Tool.

Openthe<ver sat a_| ogi c_sui t e>\ VLSConponent s\ O asses\ <r eposi t or y>. ear
folder.

Do not add any filesinside the folder after you opened it in the WebSphere Application
Assembly Tool. The fileswill not be included in the output . ear file.

From the WebSphere Application Assembly Tool main menu, choose File - Save Asto
open the Save dialog.

Locatethe<versat a_| ogi ¢c_sui t e>\ VLSConponent s\ O asses folder in thelist box.
Type <r eposi t or y>_Depl oyed. ear inthe File nametext field.

Click the Save button.

The WebSphere Application Assembly Tool creates the output . ear file.

To create the <repository>_Deployed.ear file using the wsEARCreate. bat script:

1.
2.
3.

Open a DOS consol e window.
Gotothe<versata_l ogi c_suite>\VLS\ bi n folder.

TypewsEARCr eat e. bat -repository <repository> [-earfile <output ear
file>]

The -repository <repository>ismandatory, however the[ -earfil e <out put
ear file>] isoptional. If you do not specify the- earfi | e, thewsEARCr eat e. bat
script will createthe. ear fileinthe VLSConponent s\ O asses folder.

281



BUILDING AND DEPLOYING BUSINESS OBJECTS
DEPLOYING BUSINESS OBJECTS TO A PRODUCTION ENVIRONMENT

The two commands listed below create SanpDB1_Depl oyed. ear in

VLSConponent s\ O asses folder.

» WSEARCreate.bat -repository SanpDBl -earfile C\Versata\Suite-
5. 5- WebSpher e\ VLSConponent s\ d asses\ SanpDB1_Depl oyed. ear

» WSEARCreate.bat -repository SanpDBl

Deploying the .ear file

Once you have created the <r eposi t or y>_Depl oyed. ear file, you canthen deploy it to the
Versata production environment. You must also copy your application’s Web files and security

files over to the Versata production environment. Use the following steps to complete the
deployment process. For UNIX deployment, use the steps below, replacing \ with / and .bat with .sh.

To deploy the .ear file and copy the application Web and security files:

1. Copy your . ear fileover to the production platform into the
<versata_| ogi c_server >\ VLSConponent s\ d asses folder.

2. Copy thefolder <document _r oot >\ <r eposi t or y> over to the
<document _r oot >\ <r eposi t or y> in the production platform.

3. Copy dl the. dat filesinthe<versata_| ogi c_sui t e>\ VLSConponent s\ Adni n
folder over to <ver sat a_| ogi c_ser ver >\ VLSConponent s\ Adni n folder in the
production platform.

4. Goto<versata_|l ogi c_server>\Vl s\ bi ninaDOS console window.

5. TypewsEARDepl oy. bat -repository <repository>todeploy thecopied. ear file
to WebSphere 4.0 Advanced Edition.

ThewsEARDepl oy. bat fileislocated inthe<ver sat a_| ogi c_server >\ VLS\ bi n
folder. It'susageisasfollows:
s WSEARDepl oy. bat -repository <repository name> [-earfil e <out put
ear file>] [-logfile <output log file>]
The-repository <repository nanme> ismandatory, however the[-earfile
<output ear file>] andthe[-1ogfile <output log file>] areoptiona. If
you do not specify the - ear f i | e, the wsEARDepl oy. bat script will locate the
<versat a_| ogi c_server >\ VLSConponent s\ Cl asses\ <repository>
_Depl oyed. ear fileand deploy it to the
<versat a_| ogi c_server >\ VLSConponent s\
Cl asses\ <reposi t ory>. ear folder. If you do not specify the- | ogfi | e, the
ws EARDepl oy. bat script will put its progress datain
<versata_| ogi c_server >\ Logs\
ear depl oy. | og file.

282



BUILDING AND DEPLOYING BUSINESS OBJECTS
DEPLOYING BUSINESS OBJECTS TO A PRODUCTION ENVIRONMENT

The two commands listed below deploy SanpDB1_Depl oy. ear in
VLSConponent s\ Cl asses folder.

s WSEARDepl oy. bat -repository SanpDBl -earfile C\Versata\Suite-
5. 5- WebSpher e\ VLSConponent s\ d asses\ SanpDB1_Depl oyed. ear

s WsSEARDepl oy. bat -repository SanpDBl

Setting default deployment values

Usethedef depl oy. properti es file located in the VLS\ bi n\ directory to set the default
deployment values for the ws VL SDepl oy. bat and wsHTM_Depl oy. bat scripts. Setting the
default values for each property eliminates the need for repeatedly typing the values when
running the wsVLSDepl oy. bat and wsHTM.Depl oy. bat scripts.

The following example shows the new default values that have been set for the VLSFol der,
Host , and Node properties:

VLSFol der =D: \ Ver sat a\ VLS- 5. 5- WebSpher e

Host =cchui 2240

Node=cchui 2240

Port =900

AppSer ver =*

VebApp=*

Note: The* symbol used for the AppServer and WebApp propertiestellsthe

wsVLSDepl oy. bat fileto usethe valuesfrom thevl sdepl oy. properti es fileand
thewsHTM_Depl oy. bat fileto usethe values from appdepl oy. properti es file.

283



BUILDING AND DEPLOYING BUSINESS OBJECTS
DEPLOYING BUSINESS OBJECTS TO A PRODUCTION ENVIRONMENT

284



Understanding Business
Object Files

285



UNDERSTANDING BUSINESS OBJECT FILES
CHAPTER OVERVIEW

Chapter overview

286

Read this chapter to gain an understanding of the business objects generated and deployed by
the Versata L ogic Studio to the Versata L ogic Server. This chapter discussesthe files generated
to process run-time business objects and some of the code contained in these files. After
reading this chapter, you should have a clear understanding of the names and contents of
generated business abject files, and how to view them in the Code Editor.

This chapter includes the following:

m  “Overview of Versata L ogic Server business objects’ on page 287, outlines business object
definition and deployment, and introduces the basic architecture of business objects.

= “Generated files for business objects’ on page 290, lists the different types of generated
business object files, explaining naming conventions and providing details about the code
contained in each type of file.

s “Reviewing file properties’ on page 306, explains how to use the File Properties dialog to
view information about generated and external filesin the repository.

= “Working with external files’ on page 308, describes how to make external files available
in aVersata repository.

= “Using a code editor” on page 313, describes how to view and add custom code to
generated business object files in the Versata Code Editor and how to use an external code
editor for these purposes.



UNDERSTANDING BUSINESS OBJECT FILES
OVERVIEW OF VERSATA LOGIC SERVER BUSINESS OBJECTS

Overview of Versata Logic Server business objects

Versata L ogic Server hosts the business objects generated by the Versata L ogic Studio. You can
define two types of business objects in the Versata L ogic Studio: data objects and query
objects.

= Data objects. Process the logic defined in business rules and perform dataretrieval and
processing. For information about creating and modifying data objects, see “Working with
Data Objects’ on page 81.

= Query objects. Select attributes from one or more data objects to create a composite
object; they are similar to RDBMS views. By default, query objects provide only client
behavior (retrieval and modification) and delegate transaction logic enforcement to the
data objects on which they are based. For information about creating and modifying query
objects, see “Working with Query Objects’ on page 145.

Business object deployment

After you have defined data objects and query objects, you can build and compile these
business objects in the Versata Logic Studio in order to generate 100% Java objects. These
objects contain code to implement the business rules and other object definition information.
You have the choice of deploying business objects as Enterprise JavaBeans (EJBS) or simply
as Javaclassfiles. You should deploy an object as an EJB when you want to make it remotely
accessible. You mark a data object for deployment as an EJB by enabling a check box in the
Transaction Logic Designer. You mark a query object for deployment as an EJB by enabling a
check box in the Query Object Designer.

Deployment of the generated business objects places them in alocation accessible to the
Versata Logic Server and to IBM WebSphere Application Server, where they can execute
transaction logic for applications. These business objects provide the middle tier that links
client applications to data sources. For information about building and deploying business
objects, see “Building and Deploying Business Objects’ on page 255.

If you deploy a data object as an EJB, it as packaged as an entity bean. Each entity bean
encapsulates permanent data, which is stored in a data source such as a database or afile
system, and associated methods to manipulate that data. In most cases, an entity bean must be
accessed in some transactional manner. Instances of an entity bean are unique and they can be
accessed by multiple users. Entity beans for Versata Logic Server data objects implement
bean-managed persistence (BMP). Each EJB handles its own synchronization with its data
source. BMP allows Versata L ogic Server EJBs to run against awide variety of data sources,
both those for which IBM WebSphere Application Server provides data access and data
sources that the Versata L ogic Server can access through a system-supplied or custom Versata
Connector.

287



UNDERSTANDING BUSINESS OBJECT FILES
OVERVIEW OF VERSATA LOGIC SERVER BUSINESS OBJECTS

288

If you deploy a query object as an EJB, it is packaged as a session bean. Each session bean
encapsul ates nonpermanent data associated with a particular EJB client. Unlike the datain an
entity bean, the datain a session bean is not stored in a permanent data source, and no harm is
caused if this dataislost. However, a session bean can update data in an underlying database,
usually by accessing an entity bean. A session bean can also participate in atransaction. When
created, instances of a session bean areidentical. A session bean is always associated with a
single client; attempts to make concurrent calls result in an exception being thrown.

Business object basic architecture

The business objects inherit business-logic processing behavior from a common framework
that the Versata Logic Server provides. Any interactive GUI application (such as a Java stand-
alone application, Java applet, HTML client, or JSP client running in a browser) can interact
with Versata L ogic Server business objects. Applications developed outside of the Versata
Logic Studio can interact through standard API calls.

Versata Logic Server business objects also leverage the capabilities of the IBM WebSphere
Application Server, particularly if they are implemented as EJBs. These capabilities include
transaction management; business objects are fully compliant with the JTA standard using the
JTA API. Objects that are implemented as EJBs provide remote access and can be reached by
any EJB client using pure EJB APIs.

The Versata Logic Server itself manages state, transaction, and session information. All
common logic-processing behavior is abstracted in the Versata Logic Server automation
framework so that it is reusable across user components. This abstraction ensures that the user
components are as thin as possible.

The generated business object code includes arich set of common APIsthat provideintra-
object and inter-object access. So, when logic that is executing in one object needs to access
another object, the first object can call a published API that finds the related object based on
the state of the calling object. For example, logic executing in a customer’s business object
may need to find related orders objects.

The business objects also provide APIsto accesstheir state information. For example, suppose
acustomer’s object has a state in which properties such as name and address are defined.
When these properties’ values are changed for a customer, a new customer is created, or an
existing customer is deleted, an API call isissued to make the change permanent and the
system guarantees that the appropriate business rules are processed before the change can be
considered successful. This guarantee includes recursive processing of the rules across
multiple objects. For example, deleting a customer not only requires processing rules on the
customer but also on related orders, including deleting the customer’s orders.

Because the business objects are 100% Java, their behavior is extensible at several levels. For
example, the objects can provide event-handling behavior in a particular situation or create
subclasses that inherit and extend behavior from their superclasses.



UNDERSTANDING BUSINESS OBJECT FILES
OVERVIEW OF VERSATA LOGIC SERVER BUSINESS OBJECTS

Versata Connectors provide data access via pluggable modules. After logic processing is
completed, the Transaction Logic Engine passes the objects to appropriate Versata Connectors
to make the changes permanent in the data source. Using the Connectors instead of directly

accessing the data during transactions ensures that the data storage mechanism is completely
independent of the logic processing.

289



UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS

Generated files for business objects

290

The Versata Logic Studio generates the following files for each business object you build and

compile:

= Baseimplementation file, <obj ect _nane>Basel npl . j ava, isthe base class for the
object, that contains all system- generated code, including rules.

= Mainimplementation file, <obj ect _name>I npl . j ava, extends the base class and serves
asthe container for any devel oper-defined, or custom, code.

= Interna implementation file, <obj ect >I npl . bui I t, isnot listed in the Versata Logic
Studio Explorer and not described in detail here. These files are stored in cache and used
by the system to optimize when to rebuild and revalidate objects. You should not need to
edit these files or maintain them in source control, as they are used for internal purposes
only during design time and do not get deployed for run-time use.

If you indicate a business object should be deployed as an Enterprise JavaBean (EJB), the
following additional files also are created for the object:

= Remoteinterfacefile, <obj ect _nane>. j ava
»  Homeinterfacefile, <obj ect _name>Hone. j ava
= Deployment descriptor file, <obj ect _name>DD. xm

When you deploy business objects, al of thesefiles are added to arepository . j ar file, which
is packaged in a J2EE application that can be copied to alocation accessible to the Versata
Logic Server and to IBM WebSphere Application Server.

Note: Inaddition to the files described here, each business object also hasan . xnl file which
contains metadata for that object. These. xm files are not listed in the Versata Logic
Studio Explorer, asthey are in adifferent category from the generated files that execute
for run-time applications. For information about the . xnl metadata files, see the
Project Guide.

You can open these files and review their contents in the Versata L ogic Studio, from either the
Objectstab or the Filestab of the Versata L ogic Studio Explorer. The Filestab of the Explorer
lists files generated for repository objects as well asfiles that developers have added to the
repository. Each file has an icon next to it. File icons with black text indicate thefileis
generated by the Versata Logic Studio. Icons with red text indicate thefile is devel oper-
defined. An icon with an included satellite icon indicates the object has been configured for
remote access.

You can right-click afile and choose Properties to review information about it, including its
full path location. You can open files as follows:

= To open abase implementation file, on the Objects tab of the Explorer, right-click the
object and choose Open File > Base Implementation File. You cannot modify the contents
of thisfile, but you can copy code fromiit.



UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS

= To open an implementation file, on the Objects tab of the Explorer, right-click the object
and choose Open File > Implementation File. Or, on the Files tab of the Explorer, double-
click thefile.

= To open aremote interface, home interface, or deployment descriptor file, on the Filestab
of the Explorer, double-click thefile.

The selected file opens in the Code Editor. For information about modifying filesin the Code
Editor, see “Methods for instantiating business objects’ on page 326.

| mplementation files

For all deployed business objects, the Versata L ogic Server uses the implementation filesto
instantiate objects for logic processing and saves to the data source. Versata L ogic Server
provides“ Just-In-Time" (J.I.T.) business object instantiation, meaning objects are created only
when necessary, for example when updates must be saved. The implementation files also
contain logic execution code, which enforces rules during updates of object data.

The Versata Logic Studio generates by default most of the blocks of code for the business
object implementation files, except for event blocks in the implementation file and the
business object factory methods block in the base implementation file. The event blocks are
where you can add your custom event-handling code. Use the Code Editor to add custom code
to aparticular event for a business object. If you enable remote access for abusiness object, the
Versata Logic Studio generates code for this purpose in the business object factory methods
block of the base implementation file.

Data object implementation files

The base implementation file for each data object (<dat a_obj ect >Basel npl . j ava)
contains generated transaction logic. The implementation file for each data object

(<dat a_obj ect >l npl . j ava) contains custom server event handlers and custom server
methods (both new and overloaded).

By default, each data object base implementation file extendsver sat a. vl s. Dat aQbj ect .
Each data object implementation file extends the base implementation file. To provide
additional methods to a data object, you can create a subclass of the

versata. vl s. Dat aObj ect classto contain these methods, then specify this subclass asthe
superclass of the data object base class. You enter this property on the Properties.Data Access
tab of the Transaction Logic Designer. For more information about creating data objects with
additional methods, see “ Creating a DataObject subclass with specialized methods’ on page
339.

Blocks of code included in data object base implementation files and implementation files are
described below.

291



UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS

292

Component import blocks

Each data object base implementation and implementation file begins with imports of JDK
and Versata packages, asillustrated in the following examples:

/1 {{ COVPONENT_BASE_| MPORT_STMI'S
package SanpDB1;

i mport java.util.Enumeration;

i mport java.util.Vector;

i mport versata.common. *;

i nport versata.vls.*;

import java.util.*;

i nport java. math. *;

/ | END_COVPONENT_BASE_| MPORT_STMI'S} }

/1 {{ COVPONENT_| MPORT_STMI'S
package SanpDB1;

i nport java.util.Enuneration;

i mport java.util.Vector;

i mport versata.common. *;

i mport versata.vls.*;

import java.util.*;

i nport java. math. *;

/ / END_COVPONENT_| MPORT_STMTS} }

Data object declarations and constructors

After theimport statements, the base implementation file declares the data object base class as
asubclass of ver sat a. vl s. Dat aCbj ect or one of its subclasses. The implementation file
declares the data object as a subclass of the base class. In each file, this declaration isfollowed
by a constructor block that initializes the class, as shown in the following examples.

This example is from a base implementation file:

abstract public class CUSTOVERSBasel npl extends Dat aChj ect {
publ i ¢ CUSTOVERSBasel npl () {
super () ;
addLi st eners();




UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS

This exampleis from an implementation file::

/1 {{ COMPONENT_RULES_CLASS_DECL
public class CUSTOVERSI npl extends CUSTOVERSBasel npl
/ / END_COVPONENT_RULES CLASS DECL}}

{
/1 {{COW_CLASS _CTOR
publ i ¢ CUSTOMERSI npl () {
super () ;

}

publ i ¢ CUSTOVERSI npl ( Sessi on sessi on, bool ean makeDef aul t s)
{

super (sessi on, nakeDefaults);
/ / END_COWP_CLASS CTOR}}

293



UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS

294

Data definition block

The data definition block in adata object’s base implementation file defines the package name
and metadata (data objects and attributes). Also, for each attribute, the data typeis defined and
avariableis set to indicate whether the attribute is updatable, nullable, derived, or incremented
automatically, and a caption is defined. The following example illustrates the data definition
block for a data object with only one attribute, in order to conserve space.

/1 {{ COVPONENT_META_QRY
private final static String depl oyedFronRepository =
" SanpDB1";
private static VSQueryDefinition gqg= null;
public String getPackageName() {
return depl oyedFr onReposi tory;
}
static {
g= new VSQueryDefinition( "CUSTOVERS' );
g. set PackageNamne( depl oyedFr onReposi t ory);
/1 {{ META_QUERY_CCOLUWN_CTCR
¢ = new VSMet aCol umm( " Cust Nuni', Dat aConst. Bl G NT);
c.set Autol ncrenment (true);
c.setAlterability(fal se);
c.setNul l ability(VSMet aCol um. col umNoNul | s);
c.setCaption("Cust#");
t.addColum( c );
t . addUni queKeyCol utm( " CUSTOMERS Uni que Key", "CustNuni );

t.useQuotedldentifier(false);
t.set Opt Lock( Dat aConst. Opt Locki ngOnApplicable );

/] END_META_ QUERY_COLUWN_CTOR} }
g. addTable( t );
g. popul at eQCArray();
VSQueryDefinition gqTenp = (VSQueryDefinition)
get Met aQuery( " CUSTOMERS", depl oyedFronRepository );
if ( gTemp == null ) {
addMet aQuery(q, depl oyedFronmRepository);
}

el se
g = qTenp;// Keep the old query as it has cached object
/ | END_COVPONENT_META_QRY}}

Note: Theimplementation file for a data object does not contain a data definition block.




UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS

Rules blocks

Therules block is generally the largest block of code in the data object’s base implementation
file. Thisblock consists of processing code for inserts, updates, and deletes. The code that
enforces rulesis built into this processing code. The rules enforcement code is based on the
rulesyou defined in the Transaction Logic Designer. This block includes codeto instantiate the
object so that ruleslogic can be executed against it, including factory methods for data objects,
and get and set methods for each object attribute, code to cascade updates to related objects
records as necessary, code that adds default listeners for factory events, and code that creates a
default Versata Connector for the data object. This block also includes a

Reconput eDer i vat i ons() method, that executes rules logic against preexisting records.
See “Recomputing derivations’” on page 354 for more information. For more information
about factory methods, see “ Factory methods’ on page 326.

Because this block is lengthy and has diverse contents, an example is not provided here. To
view examples of this code, build and compile business objectsin the sample repository, then
open a data object base implementation file in the Code Editor and search for

/1 { { COMPONENT_RULES.

The rules block in a data object’s implementation file simply gets the object, as shown in the
following example:

/1 {{ COVPONENT _RULES
public static VSMetaQuery get MetaQuery() ({
//return CUSTOVERSBasel npl . get Met aQuery();
return get Met aQuery(" CUSTOVERS", " SanpDBl");
}
public static CUSTOVERSI npl get NewChj ect ( Sessi on
sessi on, bool ean nakeDef aul ts)

{
}

/ | END_COVPONENT_RULES} }

return new CUSTOVERSI npl (sessi on, makeDefaults);

295



UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS

Data object event blocks

Each data object implementation file provides event blocks where you can add your own
custom code that is executed at the specified event time. The Versata Logic Studio preserves
the code in these blocks whenever objects are rebuilt and recompiled. In addition to the event
handlers that you write, the Versata L ogic Studio generates listener code to register an object
as areceiver of the event callback.

Exposed events for data objectsinclude: af t er Conmi t, aft er Del et e, af terl nsert,
af t er Query, aft er Rol | back, af t er Updat e, bef or eCommi t, bef or eDel et e,

bef or el nsert, bef oreQuery, bef oreResul t Set Fi | | , bef or eRol | back, and
bef or eUpdat e.

For more information about the code in event blocks, see “Methods for instantiating business
objects’ on page 326.

The following event code example from the sample repository writes arecord to the
EMPLOY EESAUDIT data object whenever a salary change occursin the EMPLOY EES data
object:

public void afterUpdat e( Dat aCbj ect obj)

{

long enpld = ((EMPLOYEESI npl) obj).getEmpID(); // get values fromcurrent row
Bi gDeci mal newSal ary = getSal ary(); // running in Enpl oyees bject,

Bi gDeci nal ol dSal ary get A dSal ary(); /1 so this. is inplicit

EMPLOYEESAUDI Tl npl enpSal Hi st = EMPLOYEESAUDI Tl npl . get NewObj ect ( get Sessi on(),
true);

enpSal Hi st.setd dSal ary(ol dSal ary);

enpSal Hi st . set NewSal ar y( newSal ary) ;

enpSal Hi st . set Enpl oyeel D( enpl d) ;

enpSal Hi st . save(); }

/1 note that this server code uses objects, not rows. As a general rule:
I - client code: use rows (these consune fewer server resources)

I -- except when you need to i nvoke Renote Methods

I - server code: use objects (since you are already in the server)

Note: Data object base implementation files do not contain event blocks.

296




UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS

Other data object code blocks

Both the base implementation files and implementation files for data objects include some
additional blocks of code.

Each base implementation file contains an abstract custom methods block. This section
includes abstract prototypes for any custom methods added to the implementation file. The
following excerpt from the ORDERSBasel mpl file in the sample repository provides an
example:

/1 {{ ABSTRACT_CUSTOM METHODS

[/ Print abstract prototype for custom nethods.

abstract public void beforeCommit( Session session, Response
response );

abstract public void sendBi gOderMil ( |ong Sal esRepl D, | ong
Cust Num | ong Order Nunber ) throws Server Exception;

abstract public void purge( );

/ | END_ABSTRACT CUSTOM METHODS} }

Each implementation file contains an event add listeners block and a factory methods block.
The Versata Logic Studio generates code for the event add listeners block in files containing
custom event code. You can add your own custom factory methods to the factory methods
block. For information about factory methods, see “ Factory methods’ on page 326. You should
add any other custom methods after the factory methods block and before the end of the file.

Methods inherited from the superclass

Generated data objects share many common methods inherited from

ver sat a. vl s. Dat aObj ect , which isthe default superclass for data object base classes. You

should be aware of these methods, as they are used throughout data object implementation

files. These methods include the following:

= isChanged(AttributeName) method indicates whether the value of an attribute has
been modified in the current transaction.

m rai seExcepti on method throws an exception in the server.

= Methods to obtain context information, including current session, Versata Connector in
use, current user, and current date. Methods include get Sessi on, get XDAConnect or,
get User, and get Dat e. A set Sessi on method also is provided.

= Methods to demarcate transaction boundaries, including begi nTr ansact i on,
conmi t Transact i on, and abor t Tr ansact i on.

= IsNull andIsd dNul | methods that indicate whether the value of an attribute is null.

297



UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS

298

Query object implementation files

The base implementation file for each query object

(<quer y_obj ect >Basel npl . j ava)contains generated transaction logic. The
implementation file for each query object (<quer y_obj ect >I npl . j ava) contains custom
server event handlers and custom server methods (both new and overloaded).

By default each query object base implementation file extendsver sat a. vl s. Quer yQbj ect .
Each query object implementation file extends the base implementation file. To provide
additional methods to a query object, you can create a subclass of the

versata. vl s. Quer yQbj ect classto contain these methods, then specify this subclass as
the superclass of the query object base class. You enter this property on the Properties.General
tab of the Query Object Designer. For more information, see “ Properties tab” on page 171.

Blocks of code included in query object base implementation files and implementation files
are described below.

Component import blocks

Each query object base implementation and implementation file begins with imports of JDK
and Versata L ogic Suite packages, asillustrated in the following examples:

/1 {{ COVPONENT_BASE_| MPORT_STMI'S
package SanpDB1;

i nport java.util.Enuneration;

i mport java.util.Vector;

i mport versata.common. *;

i mport versata.vls.*;

import java.util.*;

i mport java. math. *;

/ | END_COVPONENT_BASE_| MPORT_STMI' S} }

/1 {{ COMPONENT _| MPORT_STMI'S
package SanpDB1;

i nport java.util.Enuneration;

i mport java.util.Vector;

i nport versata.comon. *;

i mport versata.vls.*;

import java.util.*;

i mport java. math. *;

/ | END_COVPONENT_| MPORT_STMTS} }




UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS

Query object declarations

After the import statements, the base implementation file declares the query object base class
asasubclassof ver sat a. vl s. Quer yObj ect or one of its subclasses. The implementation
file declares the query object as a subclass of the base class.

The following example is from a base implementation file.

abstract public class Oderltemloi nPart Basel npl extends
Quer yQbj ect

The following example is from an implementation file.

/1 {{ COVPONENT_RULES_CLASS DECL

public class Orderltemloi nPartl| npl extends
O der |t emJoi nPart Basel npl

/ / END_COMPONENT_RULES CLASS DECL}}

Query object constructors

The constructor block in each query object base implementation file includes code to populate
metadata for the query object, to define SQL text for the query object, and to create a Versata
Connector for the query object, aswell as factory method code. Some example excerpts of this
code appear on the following pages.

The constructor block in each query object implementation file simply gets the object, as
shown in the following example;

/1 {{COVMPCSI TE_COVPONENT_METHODS
public static VSMetaQuery get MetaQuery() {
return get MetaQuery("Orderltemloi nPart"”, "SanpDBl");

}

/ | END_COWPOSI TE_COVPONENT_METHCDS} }

299



UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS

The following code from the OrderltemJoinPart base implementation file popul ates metadata
for query object attributes:

{
/1 {{ BASE_COVPCSI TE_COVPONENT_METHODS
/] Constructors

static {

VSQueryDefinition q = new VSQueryDefinition(
"Orderltemjoi nPart" );

g. set PackageName(" SanpDB1") ;

/1 Construct a query colum definition.

/1 Syntax is:

/I new VSQuer yCol umbDefi ni tion( "<tabl eName>", "<tabl eAlias>",
"<col

umNane>", "<col umAl i as>" );

/1 Aternate syntax is:

I add( "<t abl eName>", "<tabl eAlias>","<col umNane>",

"<col umAlias>" );

/1 {{ QRYDEF_COLUMN_CTOR

g.add ("PART", "PART", "Nanme", "Name");

g. add ("ORDERI TEM', "ORDERI TEM', "QyOrdered", "QyOdered");
g.add ("ORDERI TEM', "ORDERI TEM', "PartPrice", "PartPrice");
g. add ("ORDERI TEM', "ORDERI TEM', "Amount", "Anount");

g.add ("PART", "PART", "InmageNane", "Il mageNanme");

g. add (" ORDERI TEM', "ORDERI TEM', "Part Aut oBucks",

" Part Aut oBucks");
g.add (" ORDERI TEM', "ORDERI TEM', "AutoBucksEarned", "AutoBuck
sEar ned");
g. add ("ORDERI TEM', "ORDERI TEM', "PartNum', "PartNuni);
g. add (" ORDERI TEM', "ORDERI TEM', " Shi ppedFl ag",

" Shi ppedFl ag") ;
g. add ("ORDERI TEM', "ORDERI TEM', "OrderNunt', "OrderNuni);
g. add ("ORDERI TEM', "ORDERI TEM', "Notes", "Notes");
g.add ("PART", "PART", "AutoBucks", "AutoBucks");
g. add ("PART", "PART", "Make", "Make");
g. add ("PART", "PART", "MNodel", "Model");
g. add ("PART", "PART", "UnitCf Sale", "UnitCOf Sal e");

/ | END_QRYDEF_COLUWN_CTOR} }

300



UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS

Thefollowing code from the OrderltemJoinPart base implementation file defines the SQL text
and childmost data object for the query object:

g.set SQL(" SELECT PART. Nane AS Name, ORDERI TEM QyOrdered AS Q yOrdered,
ORDERI TEM PartPrice AS PartPrice, ORDERI TEM Anobunt AS Anount,
CORDERI TEM Par t Aut oBucks AS Part Aut oBucks, ORDERI TEM Part Num AS Part Nuni +
", ORDERI TEM Shi ppedFl ag AS Shi ppedFl ag, ORDERI TEM Order Num AS Or der Num
ORDERI TEM Not es AS Not es, PART. AutoBucks AS Aut oBucks, PART. Mbke AS Make,
PART. Model AS Model, PART.UnitOfSale AS UnitOFS" +
"al e FROM <dbschema>. PART PART, <dbschema>. ORDERI TEM ORDERlI TEM WHERE
PART. Part Num = ORDERI TEM Par t Num') ;

g. set Chi | dvbst Tabl eNane(" ORDERI TEM') ;

Query object event blocks

Each query object implementation file provides event blocks where you can add your own
custom code that is executed at the specified event time. Versata Logic Studio preserves the
code in these blocks whenever objects are rebuilt and recompiled. In addition to the event
handlers that you write, Versata L ogic Studio generates listener code to register an object asa
receiver of the event callback.

Exposed events for query objectsinclude: af t er Query, bef or eQuery, and
bef oreResul t SetFi |l | .

For information about writing server event code, see “ Adding filesto arepository” on page
308.

Note: Query object base implementation files do not contain event blocks.

301



UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS

The following example event code is from the CustQueryVirtuals implementation file in the
sample repository:

/1 { { EVENT_CODE
/1 {{ COMP_EVENT_bef oreResul t setFi | |
public static void beforeResultsetFill (DataRow rowToBeAdded,
Response response)
{
Systemerr.println("CustQeryVirtual : " +
r owToBeAdded. get Dat a(" Nane").getString() );
Enunerati on e = rowloBeAdded. get Al | Col umVal ues() ;
Data d;
while ( e.hasMreEl enents())
{
d = (Data)e.nextEl enent(); // get Data Qbject
Systemerr.printin(" Data: " + d); }
Systemerr.println(" CustQeryVirtual : " +
r owToBeAdded. get Dat a( " Addr essLi ne"));
r owToBeAdded. get Dat a( " AddressLi ne").setString("lI11");
Systemerr.println(" CustQeryVirtual: " +
r owToBeAdded. get Dat a(" Nanme").getString() );
Systemerr.println("");
}
/ | END_COWP_EVENT_bef oreResul tsetFill}}
/ | END_EVENT_CODE} }

Other query object code blocks

The implementation files for query objects contain an additional block of code to contain any
custom factory methods that have been added to the object. You should add any other custom
methods after this block and before the end of thefile.

302



UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS

Remote and home interface files

The home and remote interface files, which are generated for each Versata Logic Server
business object, are used only for objects deployed as EIBs. These files allow remote clients
and objects to access business object methods.

Home interfacefile

The home interface file (<obj ect >Hone. j ava) defines methods called by remote clients or
objects to create, find, and remove instances of the EJB. Thisinterface is used to obtain a
reference to an EJB’s remote interface. It provides bean creation and is similar to aclass
factory in CORBA. Home interfaces for Versata Logic Server business objects extend

j avax. ej b. EJBHome. Thefollowing example from the samplerepository illustratescodein a
home interface file

package SanpDB1;

import java.rm.*;
i mport javax.ejb.*;
import java.util.*;
i mport versata.comon. *;

/*
** Home | nterface CORDERSHone
*/

public interface ORDERSHone extends javax.ejb. EJBHone {
publ i c ORDERS fi ndByPri maryKey (PrimaryKey key) throws
Renot eExcepti on, Finder Excepti on;
public Enuneration findObjects(SearchRequest sr) throws
Renot eExcepti on, Finder Excepti on;
publ i c ORDERS create(Properties values) throws
Renot eExcepti on, CreateException;

}

303



UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS

304

Remote interface file

Theremote interface file (<obj ect >. j ava) provides an interface that remote clients or
objects can use to invoke the business object’s methods after they have used the home
interface to gain access to the EJB. Thisinterface adds support for transactions, security, and
threading. Remote interfaces for Versata Logic Server business objects extend

ver sat a. conmon. Busi nessObj ect . Each remoteinterfacefileinheritsall generic methods
from ver sat a. conmon. Busi nessObj ect and may contain other methods that need to be
remotely accessible, such as instance methods. One of the most important generic methods
providedisasave() method that savesthe business object on the Versata Logic Server to the
data source and can throw a VSORBExcept i on.

The following example from the sampl e repository illustrates code in aremote interface file.
Thisfile does not include any remote methods. You need to add any methods you want to
make available remotely by copying them from the base implementation file or
implementation file.

i nport versata.vls.* ;
import java.util.* ;
i mport java.math.* ;
import java.rm.* ;

/*
** jinterface ORDERS
*/

public interface ORDERS extends Busi nessObject
{

}

public void purge() throws java.rm . RenoteException;




UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS

Deployment descriptor file

The deployment descriptor file (<obj ect >DD. xm ) contains attribute and environment
settings that define how the EJB container invokes EJB functionality. The Versata Logic
Studio generates a deployment descriptor that contains all required settings. The following
example from the sample repository illustrates deployment descriptor settings for an entity
bean. Note that session beans require a few additional attribute settings: a state management
attribute, which defines the state of the session bean as either STATEFUL or STATELESS, and
atime-out attribute which defines the bean’s associated idle time-out value in seconds.

<entity-bean dnanme="SanpDBl/ ORDERS. ser" >

<pri mary- key>ver sata. comon. Pri mar yKey</ pri mary- key>
<re-entrant value="fal se"/>

<hone-i nt er f ace>SanpDB1. ORDERSHone</ hore-i nt er f ace>
<renot e-i nt erf ace>SanpDB1. ORDERS</ renot e-i nt er f ace>
<ent er pri se- bean>SanpDB1. ORDERSI npl </ ent er pri se- bean>
<j ndi - name>SanpDB1/ ORDERS</ j ndi - name>

<transaction-attr val ue="TX REQU RED'/ >
<i sol ati on-1evel val ue="READ_COW TTED'/ >
<run-as-node val ue="SYSTEM | DENTI TY"/ >

<net hod- cont r ol >

<met hod- name>i ni t </ met hod- nane>

<par anet er>cl ass java. util.Properties</paraneter>
<par anet er>cl ass java. util.Properties</paraneter>
<transaction-attr val ue="TX MANDATORY"/ >

<i sol ation-Ilevel value="READ COW TTED'/ >
<run-as-node val ue="SYSTEM | DENTI TY"/ >

</ met hod- cont r ol >

</entity-bean>

Note: Customizationsto the deployment descriptor (<obj ect >DD. xmi ) file, such asachange
to the jndi-name, may not be picked up during EJB deployment. To work around this
issue, make the necessary changes in the WebSphere Administrative Console after
deployment.

305



UNDERSTANDING BUSINESS OBJECT FILES
REVIEWING FILE PROPERTIES

Reviewing file properties

306

The Versata L ogic Studio Explorer provides a dialog where you can review the properties of
repository business object files and user-defined files. This dialog, the File Properties dialog,
is available from both the Objects tab and Files tab of the Explorer.

The File Properties dialog displays the following information about the selected file:

Name

MS-DOS name

Full path location

Type (when opened from Files tab only)

Available typesinclude: Generated Component File, Home Interface, Remote
Interface, Deployment Descriptor, and External File. Each External File is defined as
one of the following subtypes: Interface, XDA Connector, or Other. This subtypeis
determined from comment text added by Versata L ogic Studio when you add the file to
the repository, based on the menu options you select to add the file.

Size (when opened from Files tab only)

Date of creation

Date of last modification

Date of last access

Whether it is a hidden, system, archive, or read-only file.

This dialog also allows you to modify the read-only attribute of the file.
Note: If afile's attributes are changed outside of Versata Logic Studio whileitsFile

Properties dialog is open, no notification is provided that the information in this dialog
is no longer accurate.

Reviewing file properties from the Objects tab

To open the File Properties dialog from the Objects tab of the Explorer:

1. Right-click an object and choose File Properties dial og.
The File Properties dialog opens, displaying alist of files associated with the object.

2.

Each dataobject hasan | npl . j ava fileand an. xni file. It may havea. csv filethat
contains its data, one or more . xm files for any of its relationships with other data
objects, and interface and deployment descriptor filesif it is deployed as an EJB.

Each query object hasan | npl . j ava fileand an. xni file. It may have interface and
deployment descriptor filesif it is deployed as an EJB.

In the dialog, select afile from thelist box.



UNDERSTANDING BUSINESS OBJECT FILES
REVIEWING FILE PROPERTIES

Reviewing file properties fromthe Files tab

To open the File Properties dialog from the Files tab of the Explorer:
1. Right-click afile and choose File Properties dialog.

Modifying a file's read-only attribute
The File Properties dialog alows you to modify arepository file's read-only attribute.

To modify a file's read-only attribute:
1. OpentheFile Propertiesdialog. If you have opened it from the Objects tab of the Explorer,
select afilein the list box.
2. Enable or disable the Read Only box.
= Click Apply to confirm the change and |eave the dialog open.
m  Click OK to confirm the change and close the dialog.
= Click Cancel to dismiss the dialog without any changes.

Note: A filethat is read-only appears with alock icon in the Versata Logic Studio Explorer.
After you make this file writable, the lock icon continues to display. To remove this
icon, choose Versata Logic Server > Refresh.

307



UNDERSTANDING BUSINESS OBJECT FILES
WORKING WITH EXTERNAL FILES

Working with external files

Files must be included in the repository or the classpath in order to be available for use with
Versata Logic Studio-generated applications. In certain circumstances, you may need to add
filesto the repository (for example, custom Versata Connectors and subcl asses of

ver sat a. vl s. Dat aObj ect ) . Generally, though, you need only add afile to the Versata
classpath so that the file can be located. For information about how you can make afile
available to Versata L ogic Server business objects and applications without actually adding it
to the repository, see “ Adding files and packages to the classpath” on page 310.

Adding filesto a repository

To make an existing file available to arepository, you can either add it as areference or copy it
into the repository. Referencing writes the location of the file into the repository metadata.
Copying writes the location of the file into the repository metadata and copies the fileinto a
standard subfolder for repository files. Copying afile makesit easier to manage as part of the
repository, for example when doing backups or compiling. Referencing afile allows you to
maintain the file in another location if you need it there for another purpose. In both cases, the
fileislisted in the Versata Logic Studio Explorer.

If you have not yet created afile and you want it to be available to arepository, you have the
option of creating it in the Versata Logic Studio.

The Versata L ogic Studio offers three menu options for making a file available to the
repository. These menu options are available on the Files tab of the Explorer when you right-
click the Versata L ogic Server folder or one of its contained group folders:

= New File/New XDA Connector. Creates anew filein the repository and opensitin an
editor for you to write code or text.

» Add Files. Adds areference to the existing file(s) in the repository.
= Add File Copies. Copiesthe existing file(s) into the repository.

Note: If you add a file with a name containing numbers, you may encounter compilation
errors.

Referencing an existing filein a repository (Add Files)

To reference a filein a repository:

1. OntheFilestab of the Versata Logic Studio Explorer, right-click the folder where you
want to reference the file, and choose Add Files.

2. IntheImport dialog, browse to the file, and click the Open button.

308



UNDERSTANDING BUSINESS OBJECT FILES
WORKING WITH EXTERNAL FILES

Thefileis added to the Versata L ogic Studio Explorer listing, with red linesin itsicon. The
fileremainsin its existing location on the filesystem and is not copied into a repository
subdirectory.

You can double-click the fileicon to open it for editing. If it isaJavafile, it opensin the
Code Editor. If it isatext file, it opensin Notepad.

Copying an existing file into a repository (Add File Copies)

To copy afileinto a repository:

1.

Onthe Filestab of the Versata L ogic Studio Explorer, right-click the folder where you want
to copy thefile, and choose Add File Copies.

In the Import dialog, browse to the file, and click Open.

Thefile is added to the Versata Logic Studio Explorer listing, with red linesinitsicons.
Also, thefileis copied into the appropriate repository subdirectory.

You can double-click the file icon to open it for editing. If it isaJavafile, it opensin the
Code Editor. If it isatext file, it opensin Notepad.

Creating a new filein a repository

To create a new filein a repository:

1.

Onthe Filestab of the Versata L ogic Studio Explorer, right-click the folder where you want
to create the file, and choose New XDA Connector or New File.

In the Choose File Name dialog, enter aname for thefile. If thefileisaJavafile, you can
omit the extension. For atext file, enter the extension.

If thefileisaJavafile, complete the Create XDA Connector Class or Create Java Class
dialog. This dialog provides the name of the package to include the new file, the name of
the interface it implements, and the name of the superclassit extends.

For Versata Connectors, this dialog displays defaults for the implemented interface
(XDAConnect or ) and extended class (XDAConnect or | npl ). For all Javafiles, thisdialog
displays adefault package name that matches the repository name. Edit these defaults and
make additions as necessary.

Click the Finish button when you are done.

Thefile is added to the Versata Studio Explorer listing. If it isa Javafile, it opensin the
Code Editor. If it isatext file, it opensin Notepad.

Write code or text in the file. To save the file, click the Save toolbar button, or choose the
Save menu option from the File menu.

309



UNDERSTANDING BUSINESS OBJECT FILES
WORKING WITH EXTERNAL FILES

310

Removing a user-defined file from a repository

The Versata Logic Studio Explorer provides aright-click menu option you can use to delete a
non-generated file from a Versata repository. This option allows you to completely delete the
file from the filesystem, or just to delete its reference from the repository and leave it on the
filesystem.

An optionto movefilesalsoisavailable. For information about this option, see “Working with
groups’ on page 68.

To remove a file from a \ersata repository:
1. OntheFilestab of the Versata Logic Studio Explorer, right-click the file and choose

remove.
Click abutton in the Versata Action Choice dialog:

= To removethefile reference from the repository and remove the actual file from the
filesystem, click Yes.

= Toremove only the file reference and leave the file on the filesystem, click No.
» To dismissthe dialog without any action, click Cancel.

If you have added a copy of the file or newly created it in the repository, you most likely
will want to click Yes. If you have added afile reference to the repository and thefile itself
islocated elsewhere on the filesystem, you most likely will want to click No. If you are not
surewherethefileislocated on the filesystem, review thefull path displayed inthe Action
Choice dialog.

Note: If you added a Javafile using the Add Files option, meaning you added a reference but

did not copy it to the repository, if you choose Remove and click Yes, not al classfiles
associated with the Java file are removed. The class file with the same name is
removed, but not all of the inner classes.

Adding files and packages to the classpath

You can set up and add files and packages to the classpath in the following ways:

Add files, folders, and packages that you plan to use globally for all Versata Logic Suite
projects to the Environment Options dialog. To open this dialog, choose Tools > Options
from the Versata Logic Studio main menu. The Classpaths tab in this dialog provides
separate text boxes to enter files and folders used by the client, those used by the server,
and those used by both. Files and folders entered in this dialog always appear in the class
path.



UNDERSTANDING BUSINESS OBJECT FILES
WORKING WITH EXTERNAL FILES

»  Register files that you plan to use sometimes in the Enterprise Object Browser. To register
afile, when it is open, choose Tools > Add Object to System Registry from the Versata
Logic Studio main menu. To open the Enterprise Object Browser, choose Tools >
Enterprise Object Browser.

Once you have registered afile in the Enterprise Object Browser, you can indicate whether
it is used by a Versata L ogic Studio-generated application by enabling or disabling its
check box in the Application References dialog. Open this dialog by choosing Application
- References from the Versata Logic Studio main menu.

You can indicate whether the file is used by business objects by enabling or disabling its
check box in the Versata Logic Server References dialog. Open this dialog by choosing
Versata Logic Server > References from the Versata Logic Studio main menu. For more
information about referencing objects, see “ Referencing registered objects’ on page 312.

Note: You cannot register afolder or package in the Enterprise Object Browser. You can only
register individual files.

Registering objects

Registering afile makes the objects in the file, and their locations, available to the system
environment. Registered object classes are available to all repositories for referencing and
copying, but their source code generally is not available.

You may register the following types of files: COM objects, Java classfiles, JavaBeans, and
Enterprise JavaBeans (EJBs). These files have the following extensions: . cl ass, . j ar,, .Zip
and.idl.

To register an object:
1. Inthe Versata Logic Studio, choose Tools > Add Object to Registry.

2. Inthedialog that appears, select the abject type, then click the Add button.
3. Inthe browser dialog that appears, browse to the file and click the Open button.

To view registered objects:

From the Versata L ogic Studio main menu, choose Enterprise Object Browser from the Tools
menu.

311



UNDERSTANDING BUSINESS OBJECT FILES
WORKING WITH EXTERNAL FILES

312

Enterprise Object Browser

The Enterprise Object Browser displays registered objects, including classes provided with
Versata Logic Suite and any other libraries registered by developers, aswell asall object
classes in the currently open repository. In the Enterprise Object Browser, you can select a
class and display its members (methods and variables). You can copy the name for a class or
member and copy the definition for a member, in order to paste it into afile. For classes and
members for objects contained in the repository, you also can view source code.

= The System and Repository options allow you to choose whether to view objects contained
in the currently open repository or other objects available on the system.

»  The Object Libraries drop-down list allows you to choose a category of registered objects
to display.

= The Methods and Variables frames allow you to specify which categories of membersto
display for a selected class.

» Todisplay membersfor aclass, select it in the Classes list box.

= Click the Refresh button to display objects that have been newly registered since the
Enterprise Object Browser opened.

= The Copy Name, Copy Definition, and View Source Code buttons are enabled according
to the item currently selected in the browser.

Note: Do not rename an object when the Enterprise Object Browser is open. If you do this,
the Enterprise Object Browser shuts down with no warning.

Referencing registered objects

Once you have added an object to the system registry for Versata Logic Studio, you can
reference it in repository objects. In order for the repository object to find the referenced
object in run time, you need to add it to the project classpath.

The Versata Logic Server dialog and the Application References dialog (with presentation
design only) in the Versata Logic Studio alow you to indicate objects to be referenced. All
registered libraries are listed in these dialogs. To open adialog, choose References from the
Versata Logic Server menu or Application menu.

» Local References. On thistab you can indicate registered Java classes and Beans that are
referenced. The Versata Logic Server ensures that the referenced objects are on the
classpath when applications are run locally. You need to manually copy the files to the
correct location when deploying, and set the classpath to that location.

= Remote References. On thistab you can indicate objects containing methods to be
invoked remotely. The objects on this tab contain the stub interfaces required for remote
access. The Application Deployment wizard for Versata Logic Studio-generated Java
applications can automate copying of the referenced package(s). For Versata Logic Server
references and HTML application references, you need to copy objects manually and set
the classpath to the correct location.



UNDERSTANDING BUSINESS OBJECT FILES
USING A CODE EDITOR

Using a code editor

The Versata L ogic Studio provides an integrated Code Editor that you can use to view code for
generated Java files and external Javafiles that you have added to the repository. You also
have the option of viewing and modifying Versata repository files' code in an external Java
code editor. You set this option in the Environment Options dialog. You can use each editor at
different times. If you pressthe SHIFT key while choosing a menu option to view afile's code,
the non-default editor is used.

Using an external Java code editor

The Executables tab of the Versata Logic Studio’s Environment Options dialog includes a
Default Java Code Editor option. Your selection for this option indicates which program to use
to display repository Javafiles whenever they are opened in the Versata Logic Studio. By
default, the option on thistab is set to use the Versata Code Editor.

To use an external Java code editor by default:

1. Choose Tools - Options from the Versata L ogic Studio main menu.

2. Inthe Environment Options dialog, choose External Java Editor for the Default Java Code
Editor option.

3. Enter or select the full path of the external Java code editor. You can click the Browse for
File button to find the file.

4. Click OK.

To use an external Java code editor when the default is the Versata Code Editor:
1. Ensurethat the full path of the external Java code editor is entered in the Environment
Options dialog, but leave the Versata Code Editor selected as Default Java Code Editor.
2. Asyou are choosing an Explorer menu option to view afile's code, pressthe SHIFT key.

Using the Versata Code Editor

The main purpose of the Code Editor is to write event-handling code, subclasses, and other
custom code in the Java code files generated by the Versata L ogic Studio. When you open
these files in the Code Editor, smart code blocking indicates which code is editable and which
code should not be modified. The Code Editor also may be used as a built-in text editor to edit
files not generated by the Versata Logic Studio, or to create new files. You can open multiple
instances of the Code Editor at one time in order to edit multiple files at once.

313



UNDERSTANDING BUSINESS OBJECT FILES
USING A CODE EDITOR

314

Note: You can edit generated files for business objects in the Versata Java Code Editor. You
also can edit files generated for application user interfaces. For details on the generated

files that can be edited, see“ Tips for editing code in the Versata Code Editor” on page
317.

Viewing code in the Vlersata Code Editor

Before you begin adding event handlers or writing other custom code in Versata Logic Studio-
generated files, it is a good ideato become familiar with their contents. The Versata Code
Editor allows you to view all code in generated files.



UNDERSTANDING BUSINESS OBJECT FILES
USING A CODE EDITOR

Full Mode View

Thefollowing screenshot illustrates the Full Mode View of the Versata Code Editor. Thisisthe
default setting. This view alows you to scroll through all of the object’s code from beginning
to end. To view code for a particular method or contained object, select it from the Members

drop-down list.

B Code Editor - EMPLOYEESImpl.java

[= = Members =|

A4 { {COMPOMENT _TMPORT _STHTS il

/END_COMPONENT_INPORT _STMTS))

A
== EMPLOYEES -
i E

EMPLOYE =
[+ Weizata H
[+ Yerzata WVl =

FTI
£

Figure 18  Full Mode View of Code Editor

315



UNDERSTANDING BUSINESS OBJECT FILES
USING A CODE EDITOR

Event Mode View

The following screenshot illustrates the Event Mode View of the Versata Code Editor. This
View allows you to view code for a selected event. To set the Code Editor to this View, click
the Event Mode view button, the right button of the two available. To view code for an event,
select it from the Events drop-down list. If the openfileisfor an application form or page, first
select an object from the Objects drop-down list.

E Code Editor - EMPLOYEESImpl.java

j Everits IeilarLlp-dalB j

public void afterlUpdate{latalbject obj)
1

4 code is re-mnerged into the result

BigDecinal newSalary = getSalary().
Bighecimnal oldSalary = getOldSalary():

db{ " rafterlUpdate(” + empld + °

J| _ : |

A#Write Event Code below this lins This code 1s pressrved over
¢ if you change Business Rules and the system rebuilds EMPLOYEE

long empld = ( (EHFLOYEESImpl) obj) . getEmpID(). - get walues frc

L4 running in Emp
s/ =0 this., i= in

if ((lisHull{"Salarv") && i=0ldHull("Salarv")} || (isHull("Salax
## thiz= statement places trace entries into the Enterprise

+ oldSalary + =3 + ne

s

EMPLOYE =
[ Versata H
+- Yerzata WVl =

miml

MK

Figure 19  Event Mode View of Code Editor

316

Note: The Event Mode View is not available for objects’ base implementation files, because

these files do not contain event blocks.



UNDERSTANDING BUSINESS OBJECT FILES
USING A CODE EDITOR

Smart code blocking

When you edit code generated by the Versata L ogic Studio, the Code Editor uses smart code
blocking to protect code that you should not change.

Code is generated in code blocks. Each code block is designated by these markers:

/1 {{Bl ockNane
<code>
/1 END_BI ockNane}}

To help you identify editable text within generated files, Versata Logic Suite color codes text.
Black text is editable; gray and green text is not.

Note: To edit generated code, always use the Code Editor. Other IDESs do not implement smart
code blocking and color-coding, so you may inadvertently make changesin a block of
generated code rather than in a block reserved for your additions. If you make changes
in ablock of generated code, the block is regenerated the next time the object is built
and your edits are lost.

Tips for editing code in the Versata Code Editor

Review the following tips before you begin editing code in the Versata Code Editor.

= Toinclude referencesto existing methods, variables, or other code, double-click the text in
the Code Editor Explorer to enter it automatically where the cursor is positioned.

»  The Code Editor Explorer provides syntax helpersthat you can use to set up expressions
correctly in your custom code. To add other text, typeit in asyou would in any other editor.

= Thefollowing expressions are available in the Syntax Helperslist in the Code Editor
Explorer: i f,while,switch,for,System out.println. Toadd helperstothelist,
edit the file VSSynt ax. t xt inthe Versata Logic Suite root installation directory.

» |f you are adding code to a generated file, ensure the cursor is positioned in the correct
block, usually an event block. To find an event block, click the Event Mode View buttonin
the Code Editor and select an event from the Events drop-down list.

= To edit event codein HTML applications, use one of the following methods. In the Code
Editor, click the Event Mode View button, and select a page object and an event from the
drop-down lists. Or in the application diagram, select a page node, and choose Application
- View Server Page Events from the popup menu, then in the Code Editor, select an event
from the drop-down list. In either case, add code in the designated area.

» Torestrict other devel opers from changing the methods and variablesin a class you have
written, declare the class using the f i nal keyword. A method declared with the f i nal
keyword cannot be overridden and a variable declared with the f i nal keyword cannot
change from itsinitialized value.

317



UNDERSTANDING BUSINESS OBJECT FILES
USING A CODE EDITOR

318

Opening the Versata Code Editor as a simple text editor

The File > New File and File > Open File commands open the Code Editor as a ssimple text
editor. Smart code blocking is disabled, so you should not use these commands to edit
generated files. The filesthat you edit using these commands are not associated automatically
with the repository or added to the metadata. If you want to add these files to the repository,
you must do so explicitly. For information, see “ Adding files to arepository” on page 308.

Printing code from the Ver sata Code Editor

When afileisopen in the Versata Code Editor, Versata L ogic Studio’s File menu includes two
print options you can use to print the code in the open file. The Print <File_Name> option
prints al code in the open file. The Print Custom Code option prints the code you have added
to thefile.

Types of files that can be edited in the Versata Code Editor

You can edit the following types of filesin the Versata Code Editor:

= Implementation filesfor data objects and query objects. From the Objects view of the
Versata Logic Studio Explorer, right-click an object and choose Open File>
Implementation. Or, from the Files view, right-click afile and choose Edit, or double-click
thefile.

To edit server event code in these files: in the Code Editor, click the Event Mode View
button and select an event from the drop-down list. Add code in the designated area.

Note: You cannot edit base implementation filesin the Code Editor. You can, however,
review their contents and copy from them.

» Javainterfacefilesfor data objectsand query objects. From the the Files view of the
Versata Logic Studio Explorer, right-click afile and choose Edit, or double-click thefile.

= Deployment descriptor filesfor data objectsand query objects. From the Files view of
the Versata Logic Studio Explorer, right-click a file and choose Edit, or double-click the
file. Note that the Code Editor does not provide Mode View buttons or drop-down lists for
this type of file, becauseit isin XML and does not contain methods or events.

m  Other filesin therepository. From the Files view of the Versata L ogic Studio Explorer,
right-click afile in the Other Files folder and choose Edit.

= Server pagefiles (p<page name>.java) for HTML applications. The application must
be open. In the application diagram, select a page node and choose Application 2> View
Server Page Code. Or from the Objects view of the Versata L ogic Studio Explorer, right-
click a page and choose View Server Page Code from the popup menu. Or from the Files
view, right-click a server page file and choose Edit.



UNDERSTANDING BUSINESS OBJECT FILES
USING A CODE EDITOR

To edit event code in thesefiles: in the Code Editor, click the Event Mode View button, and
select a page object and an event from the drop-down lists. In the application diagram,
select a page node, and choose Application > View Server Page Events from the popup
menu. In the Code Editor, select an event from the drop-down list. Add code in the
designated area.

= Form files (f<form_name>.java) for Java applications. The application must be open.
In the application diagram, select aform node and choose Application = View Code. Or
from the Objects view of the Versata Logic Studio Explorer, right-click aform and choose
View Code from the popup menu. Or from the Files view, right-click aform file and
choose Edit.

To edit event code in these files: in the Code Editor, click the Event Mode View button, and
select acontrol and an event from the drop-down lists. Or in the Form Designer, right-click
acontrol and choose Events. In the Code Editor, select an event from the drop-down list.
Add code in the designated area.

m  Other application user interfacefiles. The application must be open. From the Files view
of the Versata Logic Studio Explorer, right-click afile and choose Edit.

= Other existing Java files outside of the repository. From Versata Logic Studio’s main
menu, choose File > Open File. In the dialog that appears, browse until you find the file,
then double-click it to open it.

= New Java filesyou want to create. For example, you may want to create subclasses of
Versata classes, or create a custom Versata Connector. From the Versata Logic Studio’s
main menu, choose File > New File. Inthe dialog that appears, browse until you reach the
location where you want to save thefile, enter a name for the file, and click the Open
button. In the confirmation dialog, click the Yes button.

Note: Event codeis placed in the correct event block of the source code automatically. You do
not need to create listeners or adapters for events because the Versata Logic Studio
creates them as needed.

Some objects, such as data objects, can be edited in the Versata Code Editor but not
created there, because they are created with wizards. Other objects, such as archetypes
and data object attributes, have their own editors and cannot be edited in the Versata
Code Editor.

319



UNDERSTANDING BUSINESS OBJECT FILES
USING A CODE EDITOR

320



Extending BusnessObject
Code

321



EXTENDING BUSINESS OBJECT CODE
CHAPTER OVERVIEW

Chapter overview

Read this chapter for an introduction to extending business object code and examples of some
common extensions. After reading this chapter, if you have limited experience with Java and
EJBs, you should be able to copy some of the simpler event-handling code, and you should
have a basic understanding of other possible customizations. If you have more extensive Java
knowledge, you should be able to begin adding custom code to business objects.

This chapter includes the following:

m  “Typesof custom code” on page 323, provides atable listing the different types of
extensions possible for Versata L ogic Suite applications and objects, including those
documented outside of this chapter.

= “Methods for instantiating business objects’ on page 326, introduces the factory and
instance methods used by the Versata Logic Server to create objects from Transaction
Logic Designer definitions.

= “Server event-handling model” on page 333, introduces the event model for Versata L ogic
Server business objects and discusses how to add custom event code.

= “Subclassing business object classes’ on page 339, providesinstructions for subclassing
versata. vl s. Dat aObj ect , aswell as some general information about subclassing
Versata Logic Server classes.

m “Calling business object code from client applications’ on page 341, describes how client
applications created in the Versata L ogic Studio access data from Versata Logic Server
business objects, including the following specialized functionalities.

= “Remote object access’ on page 348
= “Recomputing derivations’ on page 354
= “Computing results without saving” on page 355
s “Javamail integration” on page 358
m  “SQL expression evaluator” on page 364, describes this Versata Logic Server feature.

= “Working with Versata Logic Server security properties’ on page 375, introduces Versata
Logic Server security APIs.

= “Working with JT'S transaction management” on page 377, explains the choice between
using the Versata Logic Server or IBM’s implementation of JTS for transaction
management.

322



EXTENDING BUSINESS OBJECT CODE
TYPES OF CUSTOM CODE

Types of custom code

The following table provides an overview of the types of custom code you can add to the files
generated by the Versata Logic Studio. Thistable includes user interface files aswell as
business object files. Many of these customizations can be completed in the Versata Code
Editor but not all of them. For more detailed information about editing user interface files, see
the relevant chaptersin Application Developer Guide.

Type of customization Whereto customize and effects of customization

Archetypes Create a copy of a system archetype and save it as arepository or
application archetype, then you can edit archetype macro code.
Editing techniques are different for HTML and Java applications.
Putting custom code into archetypes allows you to reuseit for all
objects of a certain type across your repository.

Extended properties When you set extended properties for an object, the Versata Logic
Studio generates custom code.

For data objects, set extended properties on the
Properties:Extended tab of the Transaction Logic Designer.

For attributes, set extended properties on the Attributes:Extended
tab of the Transaction Logic Designer.

For query objects, set extended properties on the
Properties:Extended tab of the Transaction Logic Designer.

For relationships, set extended properties on the
Relationships:Extended tab of the Transaction Logic Designer.

For HTML user interface objects, set extended propertiesin the
properties sheets in the Application Designer.

For Java user interface objects, set extended propertiesin the
properties sheet in the Form Designer; for transitions and picks,
you also can set properties in the Application Designer properties
sheets.

323



EXTENDING BUSINESS OBJECT CODE
TYPES OF CUSTOM CODE

Type of customization Whereto customize and effects of customization

Event-handling code The Versata Logic Studio exposes both transaction logic (server)
events and presentation (client) events. You can browse to the
appropriate event blocksin the Versata Code Editor, where you can
add code that is automatically preserved when objects are rebuilt.

Server code

Each data object and query object has events to which you can add
code. The event blocks are in the generated implementation files.
The events relate to data changes.

The Versata Logic Studio generates event listeners for server
events.

Client code

InHTML applications, client event coding is done in the generated
file for each server page. The events exposed vary according to the
type of HTML element.

In Java applications, each control on aform has eventsto which
you can add code, in the generated form file. The events exposed
vary according to the type of Java control.

Events generally relate to user actions. For data sources/data
controls, events relate to data changes.

When you add code to the event block, you ensure that it gets
iterated over changes and rebuilds to your application.

The Versata Logic Studio generates event listeners and event
adapters for client events.

324



Type of customization

EXTENDING BUSINESS OBJECT CODE
TYPES OF CUSTOM CODE

Whereto customize and effects of customization

Subclasses

The Versata Logic Suite supplies packages of many of the classesit
uses to generate business objects and applications. You can
customize behavior by creating subclasses of these and using the
subclasses to create some objects. To subclass, you need to create a
new file. In thisfile, you need to declare that the subclass extends
the class, and add custom variables or methods.

Server side

You can subclassver sat a. vl s. Dat aObj ect anduseitto
generate data objects with custom methods. For more information,
see “ Server event-handling model” on page 333.

Client side

For HTML applications, any element may be subclassed. Select the
Class Name in the properties sheet for the application object in the
Application Designer or usever sat a_cl ass inthe HTML text
for the page.

For Java applications, you can subclassver sat a. vf c. VSFor m
to create a custom form or subclass any of thever sat a. vfc. *
classes used to create custom Java controls. Set the ClassNamein
the properties sheet for the control in the Form Designer.

Other server methods

You can write your own methods. You then can add these methods
directly to a business object file as custom code. Or you can
reference the methods in the context of rule expressions.

Versata Connectors

If you add data objects for non-SQL data sources to your
repository, or you want to provide specialized data access for a
SQL data source, you need to write your own Versata Connectors.

The Versata Logic Studio provides awizard to set up the structure
of a Versata Connector and open it in a Code Editor where you can
add the code. You aso will need to set up a data server type for the
Versata Connector in the Versata Logic Server Console. For more
information, see “ Creating custom Versata Connectors’ on page
391

Importing third-party classes

You can import an entire library of classesto add or extend
functionality. Imported classes can modify the behavior of existing
methods or provide additional functionality. For example, you
could use an import statement to add a third-party class.

Write the custom import statement after the generated Import
block. Add all classesthat you are importing as packagesto the
classpath in order for them to be globally available for Versata
Logic Server objects and applications.

325



EXTENDING BUSINESS OBJECT CODE
METHODS FOR INSTANTIATING BUSINESS OBJECTS

Methods for instantiating business objects

326

This section describes system-supplied methods used to create instances of Versata Logic
Server business objects and popul ate their attributes. The methods used to instantiate objects
are called factory methods. The methods used to populate objects’ attributes are called
instance methods. For more information about these methods, see the Versata Class Libraries
help (vf c. hl p) installed with the product.

Factory methods

Versata Logic Suite factory methods are methods used to instantiate objects. They are static
methods that do not require an instance of a classin order to be invoked. Each implementation
file for a Versata Logic Server business object includes factory methods, used to produce an
object or objects against which rules code can be executed. The following are factory
methods:

»  get New(bj ect

» get Obj ect ByKey

s getObjects

= get Met aQuery

All of these methods throw VSORBEx cept i on when errors occur. Note that when clients need
to instantiate business objects for remote access, they use different techniques.

Theget NewObj ect methodiscalled in objects’ implementation files. The get Obj ect ByKey
and get Obj ect s methods are called in objects’ base implementation files. The

get Met aQuer y method is called in both the base implementation files and the
implementation files.

The following code examples from the sample repository show factory methods in the base
implementation file and implementation file for the CUSTOM ERS data object.



EXTENDING BUSINESS OBJECT CODE
METHODS FOR INSTANTIATING BUSINESS OBJECTS

This exampleillustrates the get Met aQuer y and get NewCbj ect methodsin an
implementation file:

/1 {{ COVPONENT_RULES
public static VSMetaQuery get MetaQuery() {
//return CUSTOVERSBasel npl . get Met aQuery();
return get MetaQuery(" CUSTOVERS", " SanpDBl");
}
public static CUSTOVERSI npl get NewChj ect ( Sessi on sessi on, bool ean
makeDef aul t s)

{
}

/ | END_COVPONENT_RULES} }

return new CUSTOVERSI npl (sessi on, nakeDefaul ts);

327



EXTENDING BUSINESS OBJECT CODE
METHODS FOR INSTANTIATING BUSINESS OBJECTS

Thisexampleillustrates the get Obj ect ByKey method in a base implementation file:

/**
* <pr>
* Factory nethod to create an object based on the uni que key val ue which
* returns an object matching the key val ue.
* @aram searchReq as SearchRequest : the key value as a SearchRequest object.
* @aram aSessi on as Session : object to be associated with the objects.
* @eturn the object matching the Uni que key.
*/
public static DataObject get(CbjectByKey( SearchRequest key, Session aSession )
throws Server Exception
{
if ( aSession.getSecurityCheck() ) {
try {
if
(!aSession. get MyPrivi | egeTohj ect Nane( Dat aConst . AppObj ect Pri vi | egel npl _READ,
" CUSTOVERS", Dat aConst. AppOhj ect TypeCodel npl _BUSI NESS_OBJECT) ) {
t hrow new Server Exception("", VSErrors.VSMSG SecurityNoReadAccess,
"busi ness"”, "CUSTOVERS","", null);
}
}
catch( VSORBException e ) { e.printStackTrace();}
}

rai seBef oreQueryEvent ( key, aSession );

if (aSession.isTransactionlnProgress()) {
return
aSessi on. get Transacti onl nfo() . get Obj ect ByKey( CUSTOVERSBasel npl . get Met aQuery(),
key);
} else {
return aSessi on. get Obj ect ByKey( CUSTOVERSBasel npl . get Met aQuery(), key);
}

328



EXTENDING BUSINESS OBJECT CODE
METHODS FOR INSTANTIATING BUSINESS OBJECTS

This exampleillustrates the get Obj ect s method in a base implementation file:

/**
* <pr>
* Factory nethod to get objects based on the filter (String), which returns
* an enuneration of objects matching the filter.
* @aram searchReq as SearchRequest : the filter as a String. (e.g. State =
"NY' ).
* @aram aSessi on as Session : object to be associated with the objects.
* @eturn Enuneration of objects matching the filter criteria.
*/
public static Enuneration getObjects(String filter, Session s) {
Sear chRequest searchReq = new Sear chRequest () ;
sear chReq. add(filter);
return get Obj ects(searchReq, S);

This exampleillustrates the get Met aQuer y method in a base implementation file:

/**
* <pr>
* Met aQuery on the component. This nethod returns a class defining
* the meta infornmation of the conponent.
* @eturn VSMetaQuery : Meta data info class for the conponent.
*/
public static VSMetaQuery get MetaQuery() ({
return g;

}

329



EXTENDING BUSINESS OBJECT CODE
METHODS FOR INSTANTIATING BUSINESS OBJECTS

Example of a custom factory method

You also can write your own factory methods that return an object or an array of components
other than the standard ones created in generated business objects. The following custom
factory method code is from the DEPARTMENTI npl . j ava file in the sample repository.

publ i ¢ Busi nessObj ect Col | ecti on get Al | SubDepartnents() ({
Vector depts = new Vector();
get MyDepart ment s(depts, this);
BOCol | ecti onl npl obj I npl = new BOCol | ecti onl npl (depts. el ement s(),
get MetaQuery());
try {
return
(Busi nessChj ect Col | ecti on) Server Envi ronnment . get Fact oryl npl () . makeRenot eRef er en
ce((nject)objlnpl);
}
catch (Exception e) {
e.printStackTrace();
}

return null;

}

public void get MyDepart ment s(Vect or depts, DEPARTMENTI npl dept) {
Enunerati on deplLi st = dept. get SubDepartnents();
whi | e (depList. hasMoreEl ements()) {
DEPARTMENTI npl dep = ( DEPARTMENTI npl ) deplLi st. next El enent () ;
dept s. addEl erment (dep) ;
get MyDepart ment s(depts, dep);

| nstance methods

Instance methods can be invoked after a class has been instantiated as an object. The Versata
Logic Studio generates instance methods for each data object. You also can write your own
instance methods. Instance methods are called on an object instance once a handle is obtained
to the object and objects have been gathered by the caller using a static method. These
methods sometimes are referred to as “getters’ and “ setters’.

Note: Instance methods are not provided for query objects. SQL text is used instead of
“getters’ for dataretrieval. No “ setters” are required, because query object attribute
values are stored only as part of underlying data objects.

330



EXTENDING BUSINESS OBJECT CODE
METHODS FOR INSTANTIATING BUSINESS OBJECTS

Business objects can be exposed to the client and to remote server objectsif they are deployed
as EJBs. Instance methods then can be made avail able remotely for remote method invocation
from clients. In this case, you can get an object instance by calling

r ow. get Busi nessQbj ect () onany row in aresult set before invoking an instance method.
For more information, see “ Calling business object code from client applications’ on page
341

System-supplied instance methods

The Versata Logic Suite provides methods for each data object instance that obtain and set
values for its attributes. These methods are contained in the rules block of the implementation
file. Each attribute hasaget <At t ri but e_Nanme>, set <At t ri but e_Nane>, and

get A d<Attri but e_Nane> method. Thislast method gets the value of the attribute before
the most recent update. Virtual attributes are exceptions, because they have only a get
method. Because their values are not stored, they cannot be set and old values cannot be
obtained.

The datatype for get and set methods is determined by the native data type for the attribute.
For example, if the attribute’s datatypeis astring, then the get and set methods return string
values.

The following are examples of get , get O d, and set methods from the CUSTOMERS data
object in the sample repository.

/**

* <pr>
* method to get the City attribute for the CUSTOVERS
* @eturn String : the value of the attribute City as String.

*/

public String getCty()

{
}

return getData("City").getString();

331



EXTENDING BUSINESS OBJECT CODE
METHODS FOR INSTANTIATING BUSINESS OBJECTS

332

/**

* <pr>

* method to get the old City attribute for the CUSTOVERS

* @eturn String : the value of the old attribute City as String.
*/

public String getd dCity()

{
return getData("City").getPreviousString();
}
/**
* <pr>

* method to set the City attribute for the CUSTOVERS

* @aram String : value of the attribute Gty as String.
* @eturn nothing

*/

public void setCity(String val ue)

Examples of custom instance methods

The following are example instance methods that could be added to a CUSTOMERS data

object:

= Public void placeOnHol d() Updatesthe CUSTOMERS data object. Other
mechanisms can accomplish this effect, such as calling the save method after the row
value changes, but this method makes client coding much simpler and adds functionality,
such as additional security constraints and removal of existing back orders.

m Public CustonerHi story() get12MnthCreditH story() Passesobjectstothe
client, which could display the information in an existing JavaBean or make it the data
source of aVSJavaDat aCont r ol in aJavaapplication.

= Public String getCreditReport() Connectsto acredit agency to get areport using
stored customer data as input, formats the result asan HTML string, and returns it to the
client. Presumably, the client would then fire a second browser instance to display the
information.

The calls to these routines might be added as event code on client buttons or included in client
batch programs. They can be called from other server code as well and can be called from a
business rule, although this would have to be routed through a utility class.




EXTENDING BUSINESS OBJECT CODE
SERVER EVENT-HANDLING MODEL

Server event-handling model

Most developers are familiar with the client-side event-driven programming model. This
model divides code into segments related to events, which are distinct actions that users can
initiate, for example, clicking a button. You can add code to an event in an application user
interface, in order to modify the way it an event is processed.

The Versata L ogic Server uses asimilar event-driven model to simplify the addition of custom
Java code that modifies business rules and data processing. Each business object exposes a
number of distinct eventsin Versata Logic Server processing, which are implemented as Java
listeners.

You will use these events to provide event handlers for specific situations. For example, you
could use the bef or eCommi t event for an order to enforce avalidation. Event handlers also
could be used to provide security handling.

Transaction logic event code blocks are located in the <busi ness_obj ect >I npl . j ava file
for the data or query object. The Versata Code Editor allows you to review the generated
transaction logic events for these business objects. You can use the Verata Code Editor to add
or modify event-handling code to be executed for each event. After you have added code, the
Versata Logic Studio incorporates it into the event blocks for the data object or query object.
This code is preserved when the files are rebuilt. For information about using the Versata Code
Editor or an external code editor, see “ Using a code editor” on page 313.

For a description and example of data object event code, see “Data object event blocks” on
page 296. For a description and example of query object event code, see “ Query object event
blocks’ on page 301.

How event-handling works

Objects receive events to which they have registered. They register to events by implementing
listener interfaces defining events. Listeners respond to an event by providing a callback
method that corresponds to the event.

Each server event object is subclassed from the superclassver sat a. vl s. VLSEvent . All
server listener interfaces are subclassed from ver sat a. vl s. VLSEvent sLi st ener.

Exposed events for data objectsinclude: af t er Conmi t, aft er Del et e, af terl nsert,
af t er Query, aft er Rol | back, af t er Updat e, bef or eCommi t, bef or eDel et e,

bef orel nsert, bef oreQuery, bef oreResul t Set Fi | | , bef or eRol | back, and

bef or eUpdat e.

Exposed events for query objectsinclude af t er Quer y, bef or eQuery, and
bef oreResul t SetFi |l | .

333



EXTENDING BUSINESS OBJECT CODE
SERVER EVENT-HANDLING MODEL

Types of events

Business objects expose two types of events:

= Transactional events. Occur when atransaction is processed, modifying data. These
events are exposed for data objects.

=»  Query events. Occur when data are retrieved. These events are exposed for both data
objects and query objects.

Type of event Event

Transactional af t er Conmi t
afterDel ete
afterlnsert
af t er Rol | back
after Updat e
bef or eCommi t
bef oreDel ete
bef orel nsert
bef or eRol | back
bef or eUpdat e

Query after Query
bef or eQuery
bef oreResul t Set Fi | |

Order of processing for commit events

Commit events fire before commit and after commit of data to the data source.

bef or eCommi t events occur after all rules processing for al objectsin the transaction is
complete. The following provides a rough outline of the processing sequence for saving two
objects and committing the transaction:

Objectl.save

Objectl.bef or eUpdat e events

*** rules processing (no database save)
Objectl.af t er Updat e events
Object2.save

Object2.bef or eUpdat e events

334



EXTENDING BUSINESS OBJECT CODE
SERVER EVENT-HANDLING MODEL

*** rules processing (no database save)
Object2.af t er Updat e events

***rai se before commits to all updated objects
Objectl.bef or eConmi t events

Object2.bef or eConmi t events

*** send updates to database

Objectl.save to database

Object2.save to database

*** commit the transaction

Objectl.af t er Commi t events

Object2.af t er Commi t events

Note: Codefor af t er Conmi t eventsis executed after each row is saved.

Adding server event-handling code

To review or modify event-handling code for a data object or query object:
1. Inthe Versata Logic Studio Explorer, click the Files button and double-click the object’s
implementation file to open it in the Versata Code Editor.

2. The Code Editor has two buttons in its upper left corner; click the right button. Select an
event from the drop-down list box.

3. Add event-handling code below thewords“Wite Event Code bel ow this |ine”.
4. Choose File > SaveFile.

Event-handling code examples

The sample repository includes examples of server event-handling code that you can use as
models to write your own event handlers. Event-handling code is added to a business object,
while code utilizing the server logic isin a sample application.

335



EXTENDING BUSINESS OBJECT CODE
SERVER EVENT-HANDLING MODEL

The following code from the EMPLOY EES data object in the sample repository records any
salary changesin the EMPLOY EESAUDIT data object. You can run the

Server _Event Acti on_Cr eat eChi | dren application in the sample repository to see how
this event-handling code executes.

public void afterUpdat e(DataCbhject obj)

{
//Wite Event Code below this |ine.

| ong empld = (( EMPLOYEESI npl ) obj). get Enpl IX);
Bi gDeci mal newSal ary = get Sal ary();
Bi gDeci nal ol dSal ary getA dSal ary();

if (('isNull("Salary") & & isOdNull("Salary")) || (isNull("Salary")
/&% lisOdNull ("Salary")) || (!newSal ary.equal s(oldSalary))) {

EMPLOYEESAUDI Tl npl enpSal Hi st =

EMPLOYEESAUDI TI npl . get NewObj ect (get Session(), true);
enpSal Hi st.setd dSal ary(ol dSal ary);

enpSal Hi st . set NewSal ar y( newSal ary) ;

enpSal H st . set Enpl oyeel D( enpl d) ;

enpSal Hi st . save(); }

336



EXTENDING BUSINESS OBJECT CODE
SERVER EVENT-HANDLING MODEL

The following code from the ORDERS data object in the sample repository prevents the
insertion of null orders (orders without any order items). This code is added to the

bef or eConmi t event, because its transaction logic can be executed properly only after
updates have been processed. You can run the Ser ver _Event _Commi t application in the
sample repository to see how this event-handling code executes.

public void beforeComit(Session session, Response response)

{

db(" Order>>bef oreCommit with getOrderTotal =" +
getOrderTotal ());

String i sUseTransFor Save =

sessi on. get Property("i sUseTransacti onFor Save") ;

if ( isUseTransForSave != null &&

i sUseTr ansFor Save. equal sl gnoreCase("true")) {

db("..checking Order Total to assure sone itens placed");

if ( getOrderTotal (). conpareTo(new Bi gDeci nal ("0.01")) == -

{ I/ less than 0.01

rai seException("Sorry, Oders must have Line Item
Information"); } }

}

337



EXTENDING BUSINESS OBJECT CODE
SERVER EVENT-HANDLING MODEL

338

The following code from the CustQueryVirtual s query object in the sample repository
provides an example of abef or eResul t Set Fi | | event handler. You can run the
Server _Event _QueryAttri but es application in the sample repository to see how this
event-handling code executes.

public static void beforeResultsetFill (DataRow r owToBeAdded,
Response response)

{
Systemerr.println("CustQeryVirtual: " +
r owToBeAdded. get Dat a( " Name").getString() );
Enunerati on e = rowloBeAdded. get Al | Col umVal ues() ;
Data d;
whil e ( e.hasMreEl enents())
{
d = (Data)e.nextElement(); // get Data Object
Systemerr.println(" Data: " + d); }
Systemerr.println(" CustQueryVirtual : " +
r owToBeAdded. get Dat a( " Addr essLi ne"));
r owToBeAdded. get Dat a( " Addr essLi ne").setString("lI11");
Systemerr.println(" CustQeryVirtual: " +
r owToBeAdded. get Dat a( " Name").getString() );
Systemerr.println("");
}




EXTENDING BUSINESS OBJECT CODE
SUBCLASSING BUSINESS OBJECT CLASSES

Subclassing business object classes

In addition to adding event-handling code to the implementation files for data objects and
query objects, you may want to make other sorts of modifications to server processing. To
make these kinds of modifications, you can subclass new server classes from classesin

ver sat a. vl s. *. To create a subclass, write the source code in the Versata Code Editor (or
another IDE toal), then compile the class file, and make the file available to applications. If
you create a subclass of another server class, you may add the file to the repository or add it to
a Versata Logic Studio classpath so that it can be used.

Experienced Java devel opers can use classes from other libraries or original classes that they
write themselves. When using any class that is not subclassed from the system-supplied
libraries, the class must implement the same interfaces that the comparable Versata L ogic Suite
classes implement, to ensure compatibility with the system-supplied libraries.

Subclassing versata.vlis.DataObject

The class that you most commonly will subclassisver sat a. vl s. Dat aCbj ect , whichis
used as a default superclass for all generated data object base classes.

Creating a DataObject subclass with specialized methods

Creating a data object subclass with specialized methods rather than adding them to a
particular data object renders the methods shareable among many business objects. When you
reference a method that is a member of ver sat a. vl s. Dat aCbj ect , you do not need to
specify aclass name, because it existsin the currently selected data object. You can create a
subclass to provide extra business services, such as date functions, financial operations, and
mail.

To create a subclass of DataObject with specialized methods:

1. Inthe Versata Logic Studio Explorer, click the Files button. Expand the Versata Logic
Server folder.

2. Right-click the Versata Logic Server folder or one of its group folders and choose New
File.

3. Inthe Choose File Name dialog, enter afile name and click the Next button. In the Create
Java Class dialog, enter ver sat a. vl s. Dat aCbj ect inthe Extendsfield and click the
Next button. In the Finished dialog, click the Finish button.

4. Inthe Versata Code Editor, add the specialized methods to the class file and save your
changes.

339



EXTENDING BUSINESS OBJECT CODE
SUBCLASSING BUSINESS OBJECT CLASSES

340

Note: Review the Cor pReuseExt Rul esDat aChj ect in the sample repository for an

example of data object subclassing to extend rules. To open the file for this object, on
the Files tab of the Versata L ogic Studio Explorer, expand the JavaExtensions folder,
and then double-click thefileto view its code in Code Editor.

Applying a DataObject subclass to data objects

After you have created a subclass of Dat aObj ect and added methodsto thisfile, you need to
determine which data objects need the methods from that subclass.

To specify a DataObject subclass as the superclass for a data object:

1.
2
3.
4

5.

In the Explorer, click the Objects button. Expand the Business Objects fol der.
Double-click the object to open the Transaciton Logic Designer.
In the Transaction Logic Designer, click the Properties:Data Access tab.

In the Superclass frame, enter the name of the new class file you created and save your
changes.

Repeat as necessary.

These data objects now include the new methods and you can reference these methods without
specifying a class name. (If arule expression references a method that does not exist in the
rule’s data object or any of its superclasses, the method name must include the class name.)



EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

Calling business object code from client applications

This section covers how applications created in Versata Logic Studio use business object
methods, including remote method invocation.

Theversat a. vl s. Dat aRow class has get Conponent , get Dat a, and get Met aCol um
methods that get a handle to arow of a specified business object, including attribute values and
metadata for the row.

Theinterfacever sat a. vf c. VSResul t Set hasasave method. This method takes all the
pending changesin the client and passes them to the Versata L ogic Server session object, using
the save( ORBr ow) method. The session object then creates a business object for each row
and callsthe save method on the data object.

Data accessto result sets

Applications can access data from data sources through the Versata L ogic Server's Transaction
Logic Engine. Its data access code executes direct queries on business objects to return
collections of objects as result sets. Collections are not scrollable; you can only move forward
through the results.

Object caching

Modulesin the run-time client and the Transaction L ogic Engineuse buffered updates and
object caching to optimize response time for individual clients while minimizing the load on
server and network resources.

Until a user saves the result set, update requests are buffered in the client by the current data
control using the result set. Because the system caches the changes in the client, it does not
have to call the server each time the user changes data in the client application. The system
makes a transaction request to the Transaction Logic Engine only when the end user explicitly
saves the updates. The Transaction Logic Engine instantiates the business objects during the
transaction and these objects are cached until the transaction compl etes.

341



EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

342

Caching parent data

The Transaction Logic Engine caches the parent objects while processing child objects. This
caching improves performance because only one trip to the databaseis required for getting a
parent object for multiple child updates, such as updating summed and counted attributes, and
verifying referential integrity.

Thistype of object caching can be monitored in the trace file in the Versata Logic Server
Consol€'s tracing monitor by reviewing updat e statements to the parent object. For example,
if a parent data object maintains the sum of a child attribute, there should be only one
statement to update the parent sum in the trace file. Any other processing should take placein
memory.

Caching security data
For information about caching security data, see the Administrator Guide.

How an application queries a database

Thefollowing is adetailed account of how an application created in the Versata Logic Studio
queries a database;

1. When the system retrieves information from the database (through form initialization,
query by form, or otherwise), the Versata Connector uses the name of the metaquery to
locate the VSMet aQuer y class associated with the RecordSource on the form or page.

2. The system concatenates the SQL text defined in the parameters with any wher ed ause,
or der By and metaguery supplied by the sear chRequest . The system sends the resulting
SQL to the database, and stores it internally in case the same query runs again.

3. When requested, the Versata Connector sends the query through a JDBC statement.

4. Oncethe query is sent, the system creates aresult set object as a cache for rows returned
from the server, and passes the result set’s name to the Java application’s data control or to
the HTML application’s data source. The data control or source must request records from
the new result set to display them.

5. If morerows are retrieved than the VSResul t Set can hold (16 rows, by default), the
system holds excess rows in a JDBC buffer.

6. Asthe data control or source requests new rows (such as when the user scrollsdown a
grid), the Versata Connector takes them from the JDBC buffer and convertsthem into a
VSRow object that isheld in the VSResul t Set .



EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

Query instance

A single execution of a query on the database is a query instance. Presentation logic data
access code creates an instance of ver sat a. vf c. VSQuer y asthe query. The query instance
references the metaquery, the current logical session, and any run-time parameters entered by
the user. The query instance runs the query to produce the result set and applies any changes
from the result set to the database. The query instance also coordinates the transactional
behavior as changes are applied to the database.

The query instance references the metaquery to determine the shape of the result set. Because
it can access this metaquery information, the query instance can provide defaults and
determine whether input is valid, whether an attribute allows nulls, and whether an attribute is
calculated, without accessing the server. The Presentation Logic Engine’s validation optimizes
performance by minimizing the number of times an application must access the Transaction
Logic Engine.

Though the query instance manages the work flow and logic, it relies on the session object and
the metaquery object in order to gather information regarding the type of database used, valid
values for insert and update, and the shape of the query.

Query definition

A query definition isametaquery. It isinformation about a query, defined in metadata, that can
be used by multiple query instances. It describes the query objects and data objectsinvolved in
the query, and it is used by query instances to determine the shape of the result set. It isalso
used for client-side vaidation.

A query definition determines the shape of the result set, for example: the number, names, and
data types of the attributes that are returned; the data objects to be included; which data object
is set as the childmost data object. It aso includes information about the valuesin each
attribute: including whether thereis a default value, whether it is aderived attribute, whether it
participates in optimistic locking, and other properties.

Query definition generation

When you generate business objects, query objects and data object queries are trandlated into
VSQuer yDef i ni ti on and VSQuer yCol urmDef i ni ti on classes.

Each query object in the repository has a corresponding VSQuer yDef i ni ti on object, which
provides the following metadata:

» Dataobjects participating in the query.

= Which data object is the childmost in the query.

n  User-defined SQL text.

= A collection of VSQuer yCol unmmDef i ni ti on objects. These each have a one-to-one
relationship to an attribute projected in the query object.

343



EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

344

Each VSQuer yCol utmmDef i ni ti on provides the following attribute-level metadata:
= Base data object name.

»  Base attribute name.

= Dataobject aias.

n Attribute dias.

A derived attribute has an attribute alias, but no attribute name.

Query run-time behavior

At run time, when a query runs against the database, the name of the appropriate metaquery
class passes to the query instance, which finds the actual class and concatenates the devel oper-
defined SQL text with the additional wher e ause and or der By objects. The system sends
the SQL statement that is generated to the Transaction Logic Engine, which executes it
through a Versata Connector.

TheVSResul t Set created by the query class consists of rows retrieved from the query. These

rows are ready for display and other user interface manipulation. The following limits apply to

user actions on records retrieved through query objects:

= Inserts and deletes can be applied only to the childmost data object in the result set, unless
the Par ent I nsert abl e flag is set. If the result set has no childmost data object, the
system raises an error if the user attempts to insert or delete.

»  Updates are always allowed even if there is no childmost data object.

= Non-derived attributes projected in the query object can be updated only if the data object
has a primary key that is projected in the query object.

» Derived attributes cannot be updated.

An update to ajoined query is split into multiple, individual data object updates. The updates
occur in sequence, childmost data object first. If any element of the update fails, the entire
seguence of updatesis rolled back.

After arow is committed, the entire row is refreshed, including attributes from the modified
data object and any attributes from data objects that were not modified.

You can set the Par ent | nser t abl e flag with query properties or with code. If thisflagis set,
inserts cause the insertion of both a child record and a parent record.



EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

whereClause and orderBy

You explicitly define SQL text for query objectsin the Versata L ogic Studio. SQL text for data
object queriesisbuilt at run time. The additional wher eCl ause and or der By are developer-
or end user-defined SQL strings that are concatenated at run time with the devel oper-defined
SQL text of aquery object or system-generated SQL text of a data object query.

You can define SQL text in a number of places:

In the Versata Logic Studio on a RecordSource or transition properties sheet.

In both cases, add additional wher eCl ause and or der By information on the Query tab of
the properties sheet. In Java applications, the generator automatically calls the

set Quer yl nf o API of VSDat aCont r ol . Theinformation passesto VSFor mNavi gat i on
through the constructor parameter. In HTML applications, the generator automatically calls
the set Quer yl nf o APl of Dat aSour ce. The information passes to PageNavi gat i on
through the constructor parameter.

Thewher ed ause and or der By created in this situation are persistent, that is, they will
always be added to queries initiated on the associated data control or DataSource.

To providewher eCl ause and or der By information for Java applications at run time, you
can use the set Quer yl nf o API of VSDat aCont r ol and the

set Sear chAndSort Cri t eri a APl of VSFor mNavi gat i on and VSPi ck. To provide
wher ed ause and or der By information for HTML applications at run time, you can use
theset Quer yl nf o API of Dat aSour ce and the set Sear chAndSort Cri teri a APl of
PageNavi gat i on and Pi ck. Inthis case, thewher eCl ause and or der By are persistent
aswell.

In Java applications, call the execut eQuer y(wher eC ause, orderBy) method of
VSDat aCont r ol to include the supplied wher el ause and or der By in the query. You
can cal thest art For n( f or rNane, wher ed ause, order By) method of VSFor mto
supply thewher eCl ause and or der By to the root data control of the form whenitis
opened.

345



EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

346

The execut eQuer y method appends the supplied wher eCl ause to any persistent
wher eC ause and substitutes the or der By in the method for any persistent or der By. These
wher eC auses and or der Bys are not persistent. They are replaced when the end user
provides further information through an onscreen query or through the Search and Sort
Criteriadialog.
= You can use the Versata Code Editor to write code in the Bef or eQuer y event of adata
control or DataSource. The event passes the query object, and you can call
query. addFi | t er (wher ed ause) to add thewher eCl ause to another devel oper-
defined wher e ause or to any user-defined information.

For example, consider an application in which all queries use the following criteria:
User Name = USER()
Include this SQL text in thewher e ause argument of the quer y. AddFi | t er method.

Similarly, you can call query. repl aceSortCriteria() toreplace any developer-
defined or der By.

= Toexecuteaquery without using adatacontrol or DataSource, passthewher eCl ause and
or der By when you create the query object, then open aresult set.

For example, you could use code like the following in a Java application:

VSQuery query = new VSQuery(netaQueryNane, whered ause, orderBy);
VSResul t Set rs = query. execute();

In Java applications, the end user specifies the SQL that residesin thewher eCl ause and
or der By objectsin one of two ways.

m Using the Search and Sort Criteria dialog to enter awher eCl ause and or der By.

= Entering search criteria directly on aform, and using the Get Data button on the default
toolbar.

The system appends the user-defined wher el ause to any persistent devel oper-defined
wher eCl ause. Theor der By defined by the user replaces any devel oper-defined or der By.

Server data access by SQL string

You can supply string sel ect statements and Wher e clausesin your code to provide
Transaction Logic Engine data access. Using this method has implications for cache
management and rules enforcement, so use it only when absolutely necessary. You may
prohibit the use of ad hoc SQL statements for data access by setting the SQLAI | owed property
of adata server in the Versata Logic Server Consoleto f al se. For information, see the
Administrator Guide.




EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

Most Transaction Logic Engine code performs services that support updates, where system-
constructed rule enforcement code also executes. System code builds a sophisticated cache, to
avoid rereading object instances multiple times within a transaction. This “object sharing”
logic isrequired for complex update processing. The object cache sorts this complexity, and
ensures that the system is operating upon a single consistent instance of each object. This
cache management is automatically enabled for business object queries that are based on
relationships and Sear chRequest objects, but is not available for SQL string queries.

The Versata L ogic Suite provides servicesto simplify SQL queriesthat return results. You can
create queriesby callingthever sat a. vl s. Sessi on method Get Resul t Set By SQL. Results
return as rows, and attributes as data objects. Accomplish updates through separate update
commands using thever sat a. vl s. Sessi on method execut eUpdat e, rather than by
altering result rows. When you use basic SQL instead of queries on known components, the
system has no information about the business objectsin the query and so cannot perform query
decomposition to disburse query object updates to underlying data objects.

The Versata Logic Server fully enables basic JDBC-level database access. This access can be
useful in allowing you to process queries with multiple result sets and other server-specific
features.

Note: Direct SQL updates are not subjected to business rules, so if you use this method be
certain your updates have no side effects and are written correctly. You also must
ensure that security provisions are made.

Methods to get related data object records

The rules compiler builds standard business object methods that access data from related
objects.

The standard methods for each data object instance to obtain records from its related data
objects are called get <Par ent _Rol e_Name> and get <Chi | d_Rol e_Nanme>. The system
bases the names of these methods on the parent and child role names defined on the
Relationships. Presentation tab of the Transaction Logic Designer. The Versata Logic Studio
provides defaults that you can modify.

In a situation where a CUSTOMER data object is a parent of ORDER, and ORDERITEM isa
child, the get Pl acedbyCust oner method would get the parent CUSTOMER aobject for the
given ORDER object, whilethe get Or der I t ens method would get the list of
ORDERITEMS for the given ORDER object.

347



EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

348

Other static methods

Other static methods on the business object, such as get Obj ect s, provide the necessary
services to return collections. The rules compiler also constructs get and set methods for
each business object, which you can use to read and write attribute values. To modify the
business objects in the server, issuei nsert, updat e, or del et e methods directly to data
objectsin the result collection. For information about building business object collections, see
“Building business object collections’ on page 352.

Editing server result set code

You can use the above standard and static methods in your server code. Also, you can code
SQL requests by using Sear chRequest objects. We recommend using these component-
based mechanisms as opposed to writing your own SQL stringsin server data access code.

If you are creating result sets through your own code, call acl ose() onany result set once
the user isfinished with it. Otherwise, the resources that are held by a particular result set are
not available.

Remote object access

Remote object accessis supported in the Versata Logic Server environment for objectsthat are
running in the Versata L ogic Server and need to be accessed by client programs at the object
API level. The EJB specification describes how access can be achieved; the Versata Logic
Studio implements the EJB specification and automates the creation of most of the files that
are required.

Making an object available for remote access is sometimes called “remoticizing.” Invoking
the methods in the remote object is called “remote method invocation.”

For Versata Logic Server business objects, the remote interface, home interface, and
deployment descriptor files required by EJB for remote access are generated automatically by
the system when deployment as an EJB is elected. The home interface file for each object
extendsj avax. ej b. EJBHone and includesthef i ndByPri mar yKey, f i ndObj ect s, and
cr eat e methods (with Versata-specific parameters).



EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

Making methods remotely accessible

The Versata Logic Studio provides tools for you to make generated business objects and their
methods accessible to other objects. The following are the basic steps for making a generated
business object’s methods remotely accessible to a application designed in the Presentation
Logic Designer:

1. Define the business object as available for remote access.

= For adata object, you do so by enabling the Deploy as EJB Entity Bean check box on
the Properties:Data Access tab of the Transaction Logic Designer.

= For aquery object, you do so by enabling the Deploy as EJB Session Bean check box
on the Properties:General tab of the Query Object Designer.

2. Add the remotely available method(s) to the remote interface file for the business object.
3. Build and compile the business object files.

4. Deploy business objects to a devel opment environment Versata Logic Server running on
IBM WebSphere Application Server 4.0 Single Server Edition. The Versata Logic Studio
generates the skeleton and stub files required for remote access. The Deployment Manager
deploys the new skeleton and stub files as well as the business object files, and creates an
EAR that is deployed to an enterprise application on IBM WebhSphere Application Server.

5. Enablethe. j ar file containing the deployed business object as a reference for the
application. Choose Application > References, click the Remote References tab, and
enable the check box for the . j ar file.

6. Onceyou have tested in the development environment, use the system-supplied batch file
to deploy business objects to a production Versata Logic Server running on IBM
WebSphere Application Server 4.0 Advanced Edition.

7. Add the method call to the client’s event code. Versata L ogic Suite provides two different
ways for a client to access a server object’s code, viarow or viafactory. The
Denp_Busi nessObj ect _Met hods application in the sample repository provides sample
code that illustrates these different types of access.

Normally Versata clients retrieve data as rows. Each row corresponds to an instance of a
business object of the type on which the result set of this row was defined. So, if thereisan
object’s result set available, an object instance can be obtained by asking a particular row
about it. You can imagine the existence of a“factory” that can “produce” required objects,
whether thereisarow in the client or not. In this case, first, a"factory" for an object is
obtained from the server. Then arequest is made on thisfactory to return an object instance
based on a key.

Once an object is obtained through either of the two mechanisms, the calls to any methods
on this object areidentical. In fact, calling methods on this object isjust the same asiif the
methods were on alocal object.

349



EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

350

Integrating with custom applications and business objects

Client applications developed outside of the Versata L ogic Studio can make remote method
calls on Versata Logic Server business objects that are deployed as EIJBs. These applications
do so in the same manner they would make remote method calls on any EJB.

Applications generated in the Versata L ogic Studio can make remote method calls on EJBs

created outside of the Versata Logic Studio with, for example, IBM Visual Age for Java.

Versata applications do not have any specia requirements; you simply need to create the

object in accordance with the EJB specification. You need to add the files for the EJB to the
repository, or register the filesin the Enterprise Object Browser and add them as referencesfor

the application. Also, you need to add and configure the EJB in IBM WebSphere Application

Server yourself, as the Versata L ogic Studio does not automate this step for external business
objects. You can add client event code method calls to any method included in the EJB remote
interface file.

Accessing remote objects from clients

Once you have enabled remote access for busi ness objects, you can invoke remote methods on

these business objects. These methods run within the Versata Logic Server's Transaction

Logic Engine. You can use either of the following techniques for remote access:

= Obtain aremote object from an existing client row instance and issue the method.
If you already have obtained a row from the Transaction Logic Engine, you can convert it
to aremote object, and then address its methods.

The following sample code illustrates this technique. This code obtainsa DEPARTMENT
object and callsitsdef aul t M ssi on method. This code is from the

bt nSvr _act i onPerfor med event onthe DEPARTMENT forminthe

Basi c_Dat a_Access sample application.

try {
VSRow row = dat TLDEPARTMENT. get Current Row() ;

SanpDB1. DEPARTVENT dept = ( SanpDB1. DEPARTMENT)
r ow. get Busi nessObj ect () dept . def aul t M ssi on(choi ceSet M ssi onSer ver
Code. get Text ());
dat TIDEPARTMENT. r ef reshCur rent Row() ;
dat TIDEPARTMENT. r ef reshControl s();

}




EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

= Obtain aremote object from the Transaction Logic Engine by object factory. If you have
not already fetched arow object that you can convert to aremote object, retrieve remote
business objects by calling one of the factory methods. Remote factory methods belongto a
helper class used to create business objects. These methods encapsul ate EJB-required
APlIs.

The example code below illustrates the use of thistechnique. First the code prepares a
search request. It then uses the get Obj ect ByKey method from the

ver sat a. vf c. Renot eFact or y class. The system casts the returned object as an
EMPLOY EES business object. This call runs the query, obtains the row, and returns a
remote handle (enp) to the client. The client can then issue remote methods (gi veRai se)
on this object.

Thiscodeisfromtheact i onPer f or ned event of the VSOKButton on the
ObjectByFactory form in the Deno_Busi nessObj ect _Met hods sample application.

try {
VSRow row = dat TLEMPLOYEES. get Cur r ent Row

//Wite Event Code below this Iline
/1 Get the business object Factory
VSSessi on s = VSAppli cati onCont ext . get Sessi on();
/1 Get the object
ver sat a. conmon. Par anet er param = new

ver sat a. conmon. Par anet er (" EMPLOYEES", "Enpl D',

row. getData("Enpl D').getString());

ver sat a. cormon. Sear chRequest filter = new
ver sat a. cormon. Sear chRequest () ;
filter.add(paran;
SanpDB1. EMPLOYEES enp = ( SanpDBl. EMPLOYEES)

Renot eFact ory. get Obj ect ByKey(s, "EMPLOYEES', filter);
/11 nvoke a net hod
enp. gi veRai se( | nteger. parsel nt (VSText Fi el d1. get Text ()));
row. refresh();

}

The Versata L ogic Server maintains the row until you release your handleto it. This occurs
when this routine exits and the enp object is deallocated. Then the system deall ocates the
Versata Logic Server object.

Creating rows versus creating objects

Just in Time Objects conserve server resources by deferring object instantiation until updates
are submitted.

351



EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

352

An important consideration when delivering data to the client is whether to send the data as
instantiated objects, or as self-contained rows. The Transaction Logic Engine provides APIsto
obtain either rows or objects, but sometimesiit is better to use rows and sometimesit is better
to use objects.

In general, when sending data rows back to the client, it is not advantageous to send them as
objects, because each row would have to be instantiated on the server, which is a significant
cost in shared memory. Also, when sending objects, client access to the row requires a server
call, such asretrieving each column value to display on the screen. In most situations, it is
better to use rows. The rows are used by the system ina*“ Just in Time Objects’” scheme, which
operates as follows: Rows are sent back as highly optimized byte arrays, which are converted
to numbers, strings, and datesin the client. No server object is created for each row at this
time. However, the component identity is saved with the query and accessible by each row,
enabling the system to instantiate the component when necessary.

Objects are the better choice, however, when sending data back to aclient that must access
related data from the server, because of improved performance and cache checking. In this
case, because components access data with the intent to alter it, it is faster to instantiate the
component as an object immediately rather than to create intermediate row objects. In
addition, the component access APIs a so provide automatic cache checking, which optimizes
performance.

Building business object collections

You can write server methods that return computed collections of objects that interoperate
with existing automation services such as scrolling and updatable joins.You can write a server
method that returns a new object called a business object collection, which isaset of business
objects. You can build this collection with your code in addition to normal SQL commands.
Second, you can convert these collections on the client to result sets, so they interoperate with
all existing system services for scrolling, update, data bound behavior, and other services.

For example, if you want to retrieve al the subdepartments of a department, you cannot obtain
thisresult with a SQL query. This example requires transitive closure and you must provide a
programmatic means of concatenating a series of recursive queries.



EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

The following example code accomplishes this goal. This example codeisfrom the

Bef or eQuer y event of the datT9IDEPARTMENT data control on the Department form of the
Basi c_Dat a_Access sample application:

voi d dat TO9DEPARTMVENT_Bef or eQuer y(VSQuery query, VSQut Paramrs )
{

//Wite Event Code below this |line

VSRow r ow = dat TLDEPARTMENT. get Current Row() ;

SanpDB1. DEPARTVENT dept = ( SanpDB1. DEPARTMENT)

r ow. get Busi nessQbj ect () ;

Busi nessOhj ect Col | ection depts = dept.get Al | SubDepartnents();
rs. set Val ue(VSAppl i cati onCont ext . cr eat eResul t Set

(VSAppl i cati onCont ext . get Sessi on(), depts, "DEPARTMENT"));

}

This example code isfrom the get Al | SubDepar t nent s() method of the DEPARTMENT
data object used by the Basi ¢_Dat a_Access sample application:

publ i ¢ Busi nessObj ect Col | ection get Al l SubDepartnents() {
Vector depts = new Vector();
get MyDepart nment s(depts, this);
return (new BOCol | ecti onl npl (depts. el ements(),

get MetaQuery()));

}

public void get MyDepart nents(Vector depts, DEPARTMENTI npl dept) {
Enunerati on deplLi st = dept. get SubDepartnents();
whi | e (depLi st. hasMoreEl ements()) {
DEPARTMENTI nmpl  dep = ( DEPARTMENTI npl ) deplLi st. next El emrent () ;
dept s. addEl enent (dep) ;
get MyDepart ment s(depts, dep);

In this example, the client event-handling code invokes the remote method

get Al | SubDepart nent s() that returns a business object collection. This method is defined
inthe DEPARTMENT data object. The datais retrieved by recursive calls to the relationship-
based method to obtain subdepartments, concatenating each new result into a vector. When the
transitive closure is compl ete, the method uses the new BOCol | ect i onl npl serviceto
convert the vector to a business object collection. The collection is returned to the client
method, where it is converted into aresult set and assigned to the data control’sr ecor dset .
All operations that are automated for conventional result sets are automated for this result set,
including buffered scrolling, bound controls, updates, picks, and error handling.

353



EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

354

Recomputing derivations

After you have deployed the business objects that include rules execution code, rules execute
against the data source(s) so that any data values entered subsequently conform to the rules or
cannot be saved. However, since any preexisting data values may not conform to rules, the
system providesar econput eDer i vat i ons() method that you can execute to modify
preexisting data so that it does not violate rules. You can use the Versata Logic Studio to create
an administrative application that incorporates this API in its client event coding.

The system has reserved a special user defined event called RECOVPUTE_DERI VATI ONS.
When this event is set to be the current event, code for ther econput eDeri vat i ons()
method for the current data object is executed. This code performs derivations on any
preexisting data values for the data object’s derived attributes. The execution of this method
ensures that even values that were entered to the data source before deployment of business
objects and rules code conform to rules.

To implement this functionality, you can create an administrative application that displays data
for al of the data objects for which you want to enable recomputes. Then, on each form or
page that displays data object data, you can add a button that contains client event code setting
the current event to RECOVPUTE_DERI VATI ONS, thus causing the

reconput eDer i vat i ons() method to fire for the current data object. Add this event codeto
the button’s act i onPer f or med event, so clicking the button causes the code to be executed.
This event code can cause only the currently selected row to be recomputed, or can cause a
recompute of all rows by setting up aloop. In most cases, you will want recompute all rows.

The following code sample illustrates event code used to cause a recompute of the current
CUSTOMERS row, on a button named VSReconput e. This code is taken from the
Reconput e_Deri vat i ons sample application:

voi d VSRecomnput e_acti onPerf or ned()

{

IIWite Event Code below this |ine
dat TICUSTOVERS. get Sessi on() . set User Def i nedEvent (" RECOVPUTE_DERI VATI ONS")

dat TICUSTOVERS. get Current Row() . save();
dat TICUSTOVERS. r ef reshControl s();

}




EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

The following code sample illustrates event code used to cause a recompute of all rowsin
CUSTOMERS, on a button named VSReconput eAl | Rows. This code is taken from the
Reconput e_Deri vat i ons sample application:

voi d VSRecomnput eAl | Rows_act i onPer f or med()
{

//Wite Event Code below this |line

dat TICUSTOVERS. refreshControl s(); */

int pos = dat TLCUSTOMVERS. get Resul t Set (). cursor Position();
dat TICUSTOVERS. first();
do

{

dat TLICUSTOVERS. get Sessi on() . set User Def i nedEvent (" RECOVPUTE_DERI VATI ONS")
dat TICUSTOVERS. get Current Row() . save();
} whil e(dat TLCUSTOVERS. next () !=nul |');
dat TICUSTOVERS. set Cur r ent Row( pos) ;

Note: Thereconput eDeri vati ons() method is available only for persistent attributes.

When you are designing your administrative application to perform recomputes,
consider the order of computation. It is best to recompute from the “ bottom up”. For
example, recompute ORDERITEMS before ORDERS, and ORDERS before
CUSTOMERS.

Computing results without saving

The Versata Logic Server provides away for you to test rules definitions on applications
generated by the Versata L ogic Studio, allowing you to execute rules and review results
without altering data in the data source. This “no-save” compute uses the default save()
method to trigger the execution of business rules and user-defined methods on the server and
return the results to the client, relying on the transaction control capability of the database to
roll back the changes at the end of the operation.

The no-save compute locks database resources for reference or update during the transaction,
but does not commit changes without a separate confirmation from the user. As soon as results
are computed and refreshed to the client, the database immediately rolls back the transaction,
so the session does not use database resources longer than necessary.

355



EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

356

To compute rules results without saving, you need to design three client actions and attach
their code to buttonsin atest application. The three actions are: Submit for Compute, Confirm
Submit, and Cancel Submit.

The Submit for Compute action starts a client-side transaction. A client-side transaction is
used for the following reasons; the user needsto issue arollback after the calculation, and the
client result set needs to maintain the changesin the stack. This action sends all updates to the
Transaction Logic Engine by executing the updat eDat aSour ce method for the data control
(Javaapplication) or DataSource (HTML application). Next, the action executes a refresh and
requery on any row or data control, in order to capture all changesindirectly performed by the
client within the transaction. Last, this action rolls back the transaction. After the Submit for
Compute action has been completed, the normal Save, Query, and Undo buttons should not be
available on the form.

The Confirm Submit action refreshes all updated rows, while keeping all user changes, in
order to reset all temporary computed values resulting from the previous action. Next this
action triggersanormal save() on the data control or DataSource.

The Cancel Submit action refreshes all updated rows, while keeping all user changes, in order
to reset al temporary computed values resulting from the previous action. After thisaction is
complete, the user can make further changes and resubmit. After the Cancel Submit action has
been executed, the normal Cancel button should be available, so the user can choose to restore
original values.

The following example code is for aform displaying datafor a CUSTOMER, ORDERS, and
ORDERITEMS, where users can change the quantity of ORDERITEMS.

This code example is for the Submit for Compute action:

voi d VSButtonl_acti onPerforned()

{

//Wite Event Code below this |ine

try {

VSAppl i cati onCont ext . get Sessi on() . begi nTrans();
dat TSORDERI TEM updat eDat aSour ce() ;

//get all changes on parent or child rows)
dat T3ORDERS. get Current Row() . refresh(true);
dat TICUSTOVERS. get Current Row() . refresh(true);
//refresh control

dat T3ORDERS. refreshControl s();

dat TICUSTOVERS. r ef reshControl s()/

VSAppl i cat i onCont ext . get Sessi on() . rol | back();
}

catch(Exception ex) {ex.printStackTrace();}

}




EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

This code example is for the Confirm Submit action:

voi d VSButton2_acti onPerforned()

{

//Wite Event Code below this line

//restore all derived val ues

dat TSORDERI TEM get Current Row() . refresh(true);
dat TSORDERI TEM updat eDat aSour ce() ;

}

This code example is for the Cancel Submit action:

voi d VSButton3_actionPerforned()

{

[/Wite Event Code below this line

dat TSORDERI TEM get Current Row() . refresh(true);
dat T3ORDERS. get Current Row() . refresh(true);
dat TICUSTOVERS. get Current Row() . refresh(true);
dat TSORDERI TEM r ef reshControl s();

dat T3ORDERS. refreshControl s();

dat TICUSTOVERS. r ef reshCont rol s();

}

357



EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

358

Java mail integration

The Versata Logic Server provides Javamail integration in conformance with the Java Mail
API specification. This functionality allows an application, or the server it is running against,
to send an SMTP mail to an internet mail address. The Versata L ogic Server provides a
convenience class, ver sat a. vl s. SendMi | , that wraps this functionality. The sendMi |
method also is exposed as a remote method on a session object, allowing aclient application to

send Internet mail.

The following table lists the methods provided by this class and their purposes:

Method (argument)

Purpose

SendMai | (String host Nane)

Creates a sendmail object to send asingle-
part message. HostName is the name of the
mail server, for example, exchange.

SendMai | (String host Nanme, bool ean

isMultiPart)

Creates asendmail object to send a multi-
part or single-part message.

set RecipientsTo (String[] to)
t hrows SendMai | Excepti on

Setsthe recipients’ Internet mail addresses.

set Reci pientsCC (String[] cc)
throws SendMai | Excepti on

Sets the cc recipients’ Internet mail
addresses.

setlFrom (String from) throws
SendMai | Excepti on

Sets the sender Internet mail address.

set Subj ect (String subject)

Sets the subject.

setMsg (String nsg)

Setsthe message. You can usethis method to
attach a URL —make the URL the
parameter.

addMul ti Part Msg (Obj ect data,
String mnmeType)

Adds a multi-part message object. This
method can be called multiple timesto add
messages of different types. Can be used to
send text data only.

attachFil e(String path)

Can be used to attach afile of any type.




EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

Method (argument) Purpose

Sends the mail. Possible values for
transactionType are: O (non-transactional), 1
(on commit), 2 (on abort).

send(int transactionType) throws
SendMai | Excepti on

Thever sat a. common. VSSessi on class has two methods that provide remote access to the
sendMai | methods, giving the client application the ability to send mail:

s public void sendMail (String[] to, String[] cc, String from String
mai | Server, String subject, String nsg, short transactionType)
t hrows VSExcepti on;

m public void sendMail (String to, String cc, String from String
mai | Server, String subject, String nsg, short transactionType)
throws VSException

The following packages are needed to implement Javamail integration: acti vat or . j ar
(Java activation framework classes) and mai | . j ar (Javamail classes).

Setting up an email notification system

Using business rules and SQL Server mail, you can create a system that automatically notifies
pre-selected client application users when a given event has occurred. For example, you could
notify the credit manager when any customer places an order exceeding a certain dollar
amount, or you could notify the dispatchersin a service center when referrals to any repair
team reach a certain number.

Note: Thisfeatureisavailable on SQL Server systems only.

There are four steps to setting up the system:

1. Create an e-mail user to send the notifications. See page 360.

2. Subclassversat a. vl s. Dat aCbj ect . See page 360.

3. Write the method that sends the mail. See page 361.

4. Define the action rule that sends the mail messages. See page 362.

359



EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

360

Creating the e-mail user

These steps provide an example procedure you can use to set up an e-mail user account that
will send notifications from an application, if you are using Microsoft Exchange as your mail
server.

Note that the Versata Logic Server uses MAPI so that Exchange Server is not required. You
just need to check with your system administrator to obtain the name of the mail server. You
may use MS Mail instead of Exchange. The procedure is substantially the same except that
MS Mail uses mailboxes instead of profiles.

1.
2.
3.

On the application computer, install an Microsoft Exchange mail client for the user.
Inthe Mail & Fax control panel, create a profile for the user.

On the SQL Server computer, use the SQL Server Enterprise Manager to select the
repository database and add the same user. Grant the user system administrator
permissions.

Use the Services control panel to make the user the SQL Server start-up account.

Use the Enterprise Manager to select the user's Microsoft Exchange profile for SQL Mail
(Server > SQL Mail > Configure).

Use the Server Manager window in the Enterprise Manager to grant xp_cndshel |
permission to the recipients of the notifications.

In the sender-user's M S Exchange address book, set up convenient mail groups and aliases
for the recipient-users.

Subclassing versata.vls.DataObject

Versata L ogic Server data objects by default are subclasses of ver sat a. vl s. Dat aChj ect . If
you want a data object to include methods that are not members of

ver sat a. vl s. Dat aObj ect , you can subclassver sat a. vl s. Dat aCbj ect , and define
your data object to be a subclass of the new class.

1.
2.
3.

In the Versata Logic Studio Explorer, click the Files button.

Right-click Versata Logic Server folder and choose New File.

Complete the Add File wizard. In the Choose File Name dialog, enter a name for the file,
using a. j ava extension. In the Create Java Class dialog, enter

ver sat a. vl s. Dat aObj ect inthe Extendsfield. Click the Finish button. The new file
appears in the Versata Logic Studio Explorer.

In the Explorer, click the Objects button. Double-click the data object where you plan to
define the action rule to send mail. The Transaction Logic Designer opens.

On the Properties:Data Access tab, record the name of the new classin the Superclass
field.



EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

Writing the method

After you have subclassed ver sat a. vl s. Dat albj ect , you can add a method that
implements sending mail.

1. Inthe Versata Logic Studio Explorer, click the Files button.

2. Right-click the new subclass file and choose Edit. The Code Editor opens.

3. Add client-side code like the following:

VSSessi on _session = VSApplicationCont ext. get Session();
try {

String to = "M rG@xanpl e. cont;

String cc = "Sm thS@xanpl e. cont';

String from= "Sm thS@xanpl e. cont';

String mailserver = "NAILO8BA";

String subject = "testing";

String msg = "this is a test nmessage from SnithS";

int transType = O;

_session.sendMail (to, cc, from, numilserver, subject, nsg,
transType);

System out. println("conplete");
} catch (VSException ex) {

ex. print StackTrace();

VSAppl i cati onCont ext . handl eException("Mail Error" + new
VSDat e(), ex);
}

361



EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

362

4.

Add server-side code like the following:

public void sendMail (String from String to, String subject,
String nsg, int type ) {

try {

/1 Change Mail Server Nane here!

versata.vls. SendMail sm = new versata.vls.SendMil ("exchange");
String fileNane = "d:\\TestFiles\\test.doc";

String[] to = new String[1];

to[0] = new String("PasskeyRepos@xanpl e.conl');

sm set Reci pi entsTo(to);

sm set Fr on( " PKREPCS| T@PEner gy. cont') ;

sm set MsgText (" Testing from SmithS");

sm set Subj ect (" AppServer User-Role Results");
smattachFile(fil eNange);

sm send(0);

} catch (SendMi |l Exception e) {

e.printStackTrace();

Systemout. println(e);

}

5.

Choose File > SaveFile.

Defining the action rule

Thelast step isto define an action rule that callsthe sendMai | method when the defined
condition is met.

1.

o a0 M wD

In the Versata Logic Studio Explorer, double-click the data object where you plan to define
the action rule. The Transaction Logic Designer opens.

Click the Actions tab.

Choose Edit > Add Action.

Enter a name for the action.

Define a conditional expression to indicate when the mail will be sent.

In the Action/Method Call field, enter the name of the method to be executed. Include the
attributes to be passed.

Choose File > Save Transaction Logic.




EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS

Note: The sample repository includes an example of this type of email notification system,
with an extralevel of complexity. The repository includes a
Mai | Enabl edDat aChj ect classthat isasubclassof ver sat a. vl s. Dat aObj ect .
The ORDERS data object uses Mai | Enabl edDat aCbj ect asa superclass.
Mai | Enabl edDat aChbj ect includes amethod called sendMai | . The ORDERS data
object includes amethod called sendBi gOr der Mai | that callssendMai | . The
sendBi gOr der Mai | method is called from the ORDERS.bigOrder action rule. The
sendBi gOr der Mai | method provides an extralevel of complexity becauseit istotally
declarative.

363



EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR

SQL expression evaluator

364

The Versata Logic Server’s Transaction Logic Engine now includes a SQL expression
evaluator. The purpose of the SQL expression evaluator isto perform the following functions:

= Support SQL Wher e clause evaluation for reconciling cached objects with the database
rowsif a SQL Wher e clauseisused in the filter (Sear chRequest)

m  Support SQL Wher e clause evaluation as a general purpose functionality which can be
used in client, server, or Versata Connector code

= Build aSQL parser that can be used to build other VLS functionality
s Enhancethe VSResul t Set .fi ndFi r st method
The following sample code is provided as part of the SQL expression evaluator feature:

» Code that demonstrates the use of the SQL expression evaluator as a general-purpose
functionality. See “ General SQL evaluator example” on page 371.

= VSRowPr ovi der implementation that demonstrates the use of client-side filtering. See
“Client-side filtering exampl€e”’ on page 371.

QL parser

The Transaction Logic Engine has had an embedded SQL parser that can parse complete
statements such as Sel ect , Del et e, I nsert, and Tr ansact i on. However, the engine
previously used only the SQL expression parser for the Wher e clause and then started parsing
the expression string directly. The embedded SQL Parser also supports quoted identifiers.

The grammar for the SQL parser istaken from Oracle’s grammar documentation with some
changes. The parser was built using the JavaCC (Javacompiler compiler) utility developed by
Sun Microsystems. The grammar is compiled using JavaCC version 2.0, and the package
namefor all classesisver sat a. conmon. sql . par ser.

The following enhancements have been made to the SQL grammar to incorporate Versata
functionality.

= Support of Boolean constants (t r ue, f al se)
= Support of some known functions.
= APPUSER(), USER() , DBUSER()

= DATE() (or CURDATE() , CURRENT _DATE()), TI ME() (or CURRENT TI ME),
DATETI ME() (or CURRENT _TI MESTAVP)

s TO DATE(StringVal ue, format),Cdate(StringVal ue)
= LOVER (or LCASE), UPPER (or UCASE), LENGTH, LTRIM RTRIM TRI M

Note: Currently the parser does not support some of the ANSI SQL database functions, such
as SUBSTRI NG CONCAT, and ABS.



EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR

Parse tree data structure

The data structure for the parse tree consists of two main interfaces: SQLSt at enent and
SQLExp, along with some other classes.

SQLStatement interface

All SQL statements such as Sel ect , | nsert, and Del et e implement thisinterface.

SQL Statement Java Class
Sel ect SQLQuery
Del ete Del et eSt nt
I nsert I nsert Stnt

Transaction

Transact St mt

Updat e

Updat eSt nt

SQLEXxp interface

Thisinterface isimplemented by all SQL expressions. Following are the classes that
implement this interface.

Class Description Type (if applicable)
SQLConst ant Represents SQL constants. The | COLUVNNANE: Column name.
get Val ue method of the NUVMBER: Numeric constant
Sq_Const ant object returnsa STRI NG String constant
string, number, or Boolean
object. BOOLEAN: Boolean constant
NULL: null value
SQLFuncti on Represents SQL function. This

object consists of two variables:
function name and parameter list
(Vector). This structure is not
created for aggregate functions.
Aggregate functions are created
as operatorsin the

SQLExpr essi on object.

365



EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR

366

Class

Description

Type (if applicable)

SQLExpr essi on

Represents expression that
consists of operator and one or
more operands. one operand in
case of unary operator, two
operands in case of Boolean and
arithmetic operator, multiple
operandsin case of | N clause.

SQ.Query

SQL query can also be part of
expression, asin the case of a

subquery.

Other classes

Class

SQL Clause

Sel ectltem

Itemsinsel ect statement *, Count (*) or

aliased names
From tem Itemsinfromclause, Al i asedNanes
G oupBy G oup By clause
Or der By Order By clause
Al i asedNanme Tablealias or column alias

Syl Parser class

Thisisthe main parser class, which has instance methods such asr eadSt at enent ,
readSt at ement s, and r eadExpr essi on for parsing, and static methods such as

par seExpr essi on, r enoveExpr essi on, and cl ear Expr essi onCache for parsing as
well as caching the expression.

It is recommended that custom code does not instantiate this class directly. Instead use the
static method par seExpr essi on to parse the expression. This method caches the expression

so that the same Wher e clauseis not parsed multiple times.



SQLParser instance methods

Method

EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR

Description

readSt at emrent ()

Parses a SQL statement

readsSt at ement s()

Parses multiple SQL statements separated
with “;”

r eadExpessi on()

Parses a SQL Wher e clause

Constructor

Takes either aReader or | nput St ream
representing character stream to be parsed

SQLParser static methods

Method

Description

par seExpressi on(String
wher ed ause)

Parses the expression as well as caches the
expression (SQLExp)

Cl ear Expr esssi onCache

Clears the cached expression list

LEval class

This class implements the evaluation method eval that takes Tupl e and SQLExp as
arguments and returns a Boolean value as the result.

publ i ¢ bool ean eval (Tupl e tuple,

SQLExp exp) throws SQLException;

Tuple interface

Aa special interface called Tupl e provides a general-purpose Boolean condition eval uator.
Thisinterface is very simple and can be implemented on top of any data such as array, vector,
VSRow; Dat aRow The following are the methods in this interface:

s public Object getValue(String columNane) throws UnknownCol unmNane;
s public int getType(String col umNane);

m public bool ean isDefined(String columNane);

367



EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR

The Dat aRow. Dat aRowTupl e and VSRowTupl e classes implement thisinterface to return
data from Dat aRow and VSRow; respectively. You can call the Dat aRow. get Tupl e or
VSRow. get Tupl e net hod to get the instance of Tuple.

eval uat or. eval (row. get Tupl e(), whered ause);

Multiple eval methods

In addition to the eval methods described earlier, the SQLEval class aso supports variations
of eval methods, so that the custom code need not write the conversion from the Wher e
clause to the SQLExp.

publ i ¢ bool ean eval (Tuple tuple, String whereC ause);

SQLEval constructor

The SQLEval classcan beinstantiated using the default constructor (for instance, the
constructor without any argument) if the eval uation expression does not use any database-
specific functions or date functions. If the expression contains database-specific functions or
date functions, the database type must be passed through the constructor.

/**

* @ar amdbTypeConst ant representing database type. Constant
val ues are defined in DataConst class e.g. DataConst. ORACLE.
*/

public SQ.Eval (i nt dbType);

L Eval.setProperty method

The SQLEval class supportsthe set Proper t y method to provide values for some globals
(values not dependent on arow or tuple) such as user name or database user name. If the
expression contains afunction such as User () , AppUser () , or DBUser () , then the two
properties SQLEval . USER and SQLEval . DBUSER must be set, as follows:

eval uat or. set Property(SQLEval . USER, “CGuest”);

eval uat or. set Property(SQLEval . USER, session.getUserlX));
eval uat or. set Property(SQLEval . DBUSER, “sa”);

eval uat or. set Property(SQLEval . DBUSER, con.getlD());

368



EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR

In the future, more properties may be added to support additional global functions such as
rowCount .

Subclassing the SQLEval class

You can subclass the SQLEval class to enhance the evaluator. To provide a custom evaluator,
set theeval uat or variablein the Sear chRequest object.

Sear chRequest filter = new SearchRequest();
filter.add(SearchRequest. STRI NG

“(a>Db and d < 2*e) or (sl like "N’')");
filter.evaluator = new CustonEval uator();

Under standing SQL expression evaluations

Boolean expressions

The SQL expression evaluator evaluates Boolean expressions as used in Wer e clauses. This
isimplemented by SQLEval and supports most of the SQL operators and expression with the
following limitations.

m Thereisno support for subquery. SQLExcept i on will be thrown if it encounters
expression of type SQLQuery.

= No support for aggregate functions such as Max, Avg, Sum Count , M n. SQLExcept i on
will be thrown if evaluator encounters aggregate function as one of the operatorsin
SQLExpr essi on.

m LI KE operator isnot supported completely. Wild card expressions can contain only the
following types of patterns.

“prefix%suffix”, “%osuffix“, “prefix%”, “%mid%”.

Numeric expressions

Numeric expressions are evaluated using double as a common data type. Thisevaluation is
done to take advantage of Java native data types so that all arithmetic operators are applied
using native operators. This evaluation also provides simpler and efficient conversion because
all numbers (Java Nunber class) provide conversion to double value. It will be enhanced to
support Bi gDeci mal asan option. Bi gDeci mal isrequired to evaluate expressions that
require larger precision and scale, for example, ColumnX = 22/7.

369



EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR

370

Date constants

Date constants are represented using different formats on different databases. For example,
consider the date “15 November 2000". The following table illustrates ways of representing

this date in different databases.

Database Type Date Representation

Oracle to_date(' 2000-11-15', ‘yyyy-mm-dd’)
DB2 2000-11-15’

SQL Server (US*) “November 15 2000 00:00”

* SQL Server default format is different for
different locales

Microsoft Access cdate(' 2000-11-15")

Informix datetime(2000-11-15) YEAR TO DAY

Note: Currently the SQL expression evaluator supports only Oracle, DB2, and Microsoft
Access formats.

Time constants and timestamp expressions

The TI ME() and DATETI ME() functions currently are not evaluated, because they may return
different values when executed on the database server versus when executed in the Versata
Logic Server.

Run-time changes required to use the SQL evaluator

= The Transaction Logic Engine has been enhanced to use the SQL expression evaluator for
reconciling cached objects and rows returned by database queries. Thisis done by
enhancing the mat chesFi | t er method of the Dat aCbj ect class. Since the Sgl Par ser
does not support all database functionsit will throw a Par seExcept i on if the expression
uses such functions. This exception isignored by the mat chesFi | t er method, which
prints awarning message in the log that custom code should override mat chesFi | t er to
support eval uation using custom code. If the parser is able to parse the expression but the
evaluator is unable to evaluate the expression, as in the case of an aggregate function, a
similar warning message is printed in the log indicating that custom code should override
themat chesFi | t er method. If a Sear chRequest containsaWer e clause which is part
of the rule processing, then expressions will not be evaluated.



EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR

The VSDat e class has been enhanced to support the conpar eTo method. Thisisrequired
for date comparisons.

The Sear chRequest class has been enhanced to add two additional variables. exp of
type SQLExp and eval uat or of type SQLEval .

Note: Expressions are evaluated from left to right. Put the simpler expression on the left side

so that complex expressions may be short-circuited some of the times. For example:
(X > 5) AND (Name LIKE ‘A% AND LTRI M UPPER(s1)) = ‘ ABC

QL expression evaluator examples

General QL evaluator example

The following code example shows how to use the SQL evaluator in custom code.

Dat aRow row = //;

SQLExp exp = Sql Parser. parseExpression(“a > b and ¢ > 2 *d");
SQLEval evaluator = new SQLEval ();

bool ean b = eval uator. eval (row, exp);

Dat aRow row = //;

SQLExp exp = Sql Parser. parseException(“datecolum = Date() &&
| ogon = User());

SQLEval eval uator = new SQ.Eval ( Dat aConst . ORACLE,
session.getID(), null);

bool ean b = eval uator.eval (row, exp);

Client-side filtering example

This example shows how a custom implementation of VSRowPr ovi der can support client-
side filtering without sending a query to the database. VSRowPr ovi der can also be used to do
client-side sorting as shown in the help text of thisinterface. An instance of VSRowPr ovi der

can be used to create a custom result set that can then be bound to the Dat aCont r ol (Java) or
Dat aSour ce (HTML).

371



EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR

372

Creating a custom result set using an instance of VSRowProvider

i nport versata.comon. sqgl . parser. *;
i nport versata.vfc.*;
public class dient RowProvider inplenents VSRowProvider
{
private VSResultSet naster;
private int currentlndex = 0;
private SQLExp exp = null;
private SQLEval eval uator nul | ;
private VSSession session = null;
public Cdient RowProvi der (VSResul t Set master, String
wher eCl ause, VSSession session) {
this.nmaster = nmaster;
this.session = session;
try {
exp = Sql Parser. par seExpr essi on(wher eCl ause) ;
} catch(Exception ex) {
ex. print StackTrace();
t hrow new VSException(ex);

}

}
publ i ¢c bool ean i sReadOnl y() {
return fal se;

}
public VSMet aQuery get MetaQuery() {
return master.get MetaQuery();

}
public VSMetaCol um[] get Met aCol umms() {
return nul | ;

}
[/ public VSRow fetchNext Row() throws VSException;

publ i c bool ean fetchNext Rowm Obj ect[] dataVal ues) throws

VSException {
current | ndex++;




EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR

VSRow row = nmast er. get RowAt (current | ndex) ;

if (row == null)
return fal se;
try {

whil e (!eval uator. eval (new VSRowTupl e(row), exp)) {
current | ndex++;
row = mast er. get RowAt (current | ndex);
if (row == null)
return fal se;
}
} catch(Exception ex) {
ex. printStackTrace();
t hrow new VSException(ex);

}
for (int i = 0; i < dataValues.length; i++) {
/1fill data val ues
dataVal ues[i] = row. getData(i+1).get Ovject();
}
return true;
}
public int getRowCount () {

return -1,
}
public void close() {
//free the nenory
master = nul |;
exp = null;
}
publ i ¢ VSSessi on get Session() {
return session;

}

373



EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR

374

Binding ClientRowProvider to VSDataControl(Java)

VSResul t Set masterRs = //resultset cached when formis | oaded.
VSSessi on sessi on = VSAppl i cati onCont ext. get Session();

String whereCd ause = VSText Fi el d1. get Text ();

VSResul t Set rs = new VSResult Setl nternal (masterRs, whered ause,
session);

VSDat aContr ol dat aControl = dat Tl<<Tabl eNane>>;

Dat aControl . set Resul t Set(rs);

Binding ClientRowProvider to DataSource (HTML)

VSResul t Set masterRs = //resultset cached when page is | oaded.
VSSessi on sessi on = get Paent App() . get Sessi on();

String whereC ause =. . .

VSResul t Set rs = new VSResultSetl nternal (nasterRs, whered ause,
session);

Dat aSour ce ds = dat Tl<<Tabl eNane>>;

ds. setResult Set (rs);




EXTENDING BUSINESS OBJECT CODE
WORKING WITH VERSATA LOGIC SERVER SECURITY PROPERTIES

Working with Versata Logic Server security properties

Security for the Versata Logic Server is managed in the Versata L ogic Server Console, where
you can set up security properties declaratively, create extended security properties, and
customize the security model to use a security manager other than the default Versata Logic
Server security for some tasks. For production systems built with this release, you most likely
will want to use IBM WebSphere Application Server security. You also can choose to use
LDAP and JNDI. For information on setting up custom security managers, see the
Administrator Guide.

Under the default security manager, all security enforcement is handled in the Versata Logic
Server, which connects to files used for security. Applications usually do not have direct
access to these security files. This section describes some of the methods available to write
Versata Logic Server security code and provides examples of custom security code.

\ersata Logic Server security APIs

Versata L ogic Server provides some security APIs, which you can use to customize security so
that some aspects are managed programmeatically. These APIs are provided as methods of a
number of special security classesin thever sat a. vl s. * package, or as methods of the

ver sat a. vl s. Sessi on interface. The methods retrieve security properties so you can
reference them in custom code. The methods include the following.

= Thefollowing method can be called to return security information for auser, including the
user’srole name and ID:
m  Session. Appl npl . get User Rol eProperti esForUser (String userLoginl D)
= Thefollowing method can be called to return security privileges information for an object,
including arole name and ID for each privilege:

m  Session.getQbjectPrivil egePropertiesForQhject(String object Nane,
String objectType)

375



EXTENDING BUSINESS OBJECT CODE
WORKING WITH VERSATA LOGIC SERVER SECURITY PROPERTIES

= Thefollowing methods can be called to return security information for the specified
object(s):
m  Session. getUserProperties(String userLoginlD)
m  Session. getRol eProperties(String rol eNane)
m  Session.getbjectProperties(String objectNane, String
obj ect Type)
m  Session. getUserRol eProperties(String userLoginlD, String
rol eNane)
m Session.getObjectPrivilegeProperties(String objectNane, String
obj ect Type, String rol eNane)
= Thefollowing methods can be called after you have called a factory method such as
get Obj ect s, to retrieve one or more objects.
s AppUser| npl . get Properties()
=  AppRol el mpl . get Properties()
m  AppQbj ect |l npl . getProperties()
m  AppUserRol el npl . get Properties()
m AppQbj ectPrivil egel npl . get Properties()
= Session. getUser Properties

Writing custom security applications

The security APIs provided with the Versata L ogic Server allow you to build custom security
applications for targeted requirements. These APIs are not designed to allow a complete
rewrite of the Versata Logic Server Console, so they cannot reproduce all of its functionality.
For more information about implementing custom security and examples, see the
Administrator Guide.

376



EXTENDING BUSINESS OBJECT CODE
WORKING WITH JTS TRANSACTION MANAGEMENT

Working with JTS transaction management

Transaction management is generally handled by APIsfrom Versata Logic Server classes.
Another alternative is available for transaction management for EJB business objects.

For business objects that use data stored in Oracle or DB2 Universal Database, transactions
can be managed using IBM’s implementation of JTS, which is awrapper around the OTS
implementation of Encina Transarc.

Transactions can be started either with the Java Transaction API (JTA) or withthe APl in
VSSessi on or VLSCont ext . The Usej t s server property, whichissetinthe VLS
Console, determines whether transactions are processed using JTS or the Transaction

Logic Engine.

Note: If you use external connection pooling, you also need to use JTS (Java Transaction

Service) to process transactions in order to take advantage of the two-phase commit
provided by the underlying EJB server. As aresult, the Transaction Logic Engine starts
a JT S transaction and the commit comes from JTS.

If developers use the JTA interface to demarcate a transaction boundary, the transaction is
propagated automatically to the server. Developers do not have to write any code to register
the VLSCont ext with the transaction. When a method such assave iscalled in the
VLSCont ext , the server automatically checkswhether a JTStransactionisin progress. If a
JTStransaction isin progress, the server initializes transaction information with the JTS
transaction instead of starting a Versata L ogic Server transaction.

The Versata Logic Server business objects’ internal code till uses the VLSCont ext APls
(begi n, conmi t, andr ol | back) to start and commit transactions.

The VLSCont ext bean’s transaction attribute is TX_SUPPORTS, so VLSCont ext methods
can be called with JTS transactions.

Data objects deployed as entity beans may have different transaction attributes for different
methods. If the transaction attribute of amethod is TX_MANDATCRY, its transactions must be
started with the JTA interface. If the transaction attribute of amethod is TX_REQUI RED, the
application server automatically starts a JTS transaction for it. The transaction attribute of
the save method is TX_REQUI RED, while the transaction attribute of the initialization
method is TX_MANDATCRY.

When amethod is called in an entity bean, an instance of VLSCont ext is created if the
transaction does not have a context associated with it. This context is destroyed as soon as
the transaction is completed.

Note: Do not add code that calls methods on multiple instances of VLSCont ext within one

transaction.

377



EXTENDING BUSINESS OBJECT CODE
SUPPRESSING CREATION OF ABSTRACT METHODS

Suppressing creation of abstract methods

378

Whenever you add a custom method to an object’s implementation file, the Versata Logic
Studio automatically creates a corresponding abstract method in the object’s base
implementation file. If the purpose of the custom method is to override a method in the base
implementation superclass, the addition of the abstract method defeats this purpose.

To provide a solution for this problem, Versata business objects provide the capability of
suppressing creation of an abstract method in the base implementation file. To prevent creation
of an abstract method in an object’s base implementation file, place the keyword

@suppr essAbst ract in theline immediately following the method declaration in the
object’simplementation file. The following code provides examples of method syntax
containing this keyword:

public void Newivet hod()
/| @uppr essAbst ract

{
}

public void Newivet hod()
{/] @uppressAbstract

}




EXTENDING BUSINESS OBJECT CODE
HANDLING JAVA QUOTES INSIDE VERSATA LOGIC SERVER CODE STRINGS

Handling Java quotesinside Versata Logic Server
code strings

If you are adding code containing Java quotes to a Versata L ogic Server file, you need to mark
each quotation mark with a backdash (1), asin the following example:

createTransferCredit()

insertObjects(’'this’, 'AccountTransactionlnpl’,

' set TransAccount Nunber (t hi s. get Transf er Account () );
set TransCategory(\"A\"); setTransType(\"Q");

set TransAnount (t hi s. get TransAmount () );

set Transf er Account (t hi s. get TransAccount() ) ' )

If you do not include backslashes, you will receive errors.

379



EXTENDING BUSINESS OBJECT CODE
HANDLING JAVA QUOTES INSIDE VERSATA LOGIC SERVER CODE STRINGS

380



Working with
\ersata Connectors

381



WORKING WITH VERSATA CONNECTORS
CHAPTER OVERVIEW

Chapter overview

382

Read this chapter for an introduction to the data access code generated for Versata Logic
Server data objects to connect to supported RDBM Ss. After you read this chapter, you should
have a basic understanding of this data access code and some general ideas of the requirements
for custom data access code to non-supported data sources.

This chapter includes the following:
» “eXtensible Data Access (XDA)” on page 383, describesthe architecturefor Versata Logic
Server data objects access to data sources.

= “Understanding Versata Connectors’ on page 384, describes the code generated for access
to supported RDBM Ss, which is packaged as objects called Connectors, including
instantiation, classes and methods used, retrieval processing, and save processing.

= “Associating Connectors with data objects’ on page 389, explains how to specify that a
custom Connector should be used for a data object’s data access, and how to set up data
access information in the Versata L ogic Server Console.

= “Creating custom Versata Connectors’ on page 391, outlines the steps required to write
your own custom Connectors.



WORKING WITH VERSATA CONNECTORS
EXTENSIBLE DATA ACCESS (XDA)

eXtensible Data Access (XDA)

Versata Logic Studio-generated applications access data through the Versata Logic Server,
which transforms data from different sources into a seamless and transparent set of data that
the client understands. The Versata Logic Server does this by abstracting data access behavior
from higher levels of application behavior and defining it in a small set of APIsthat retrieve,
filter, and save row data. Using these APIs, therest of the system in all thetiers creates display
and calculation functionality that isindependent of data access. This unique way of making
data accessible from any data sourceis called “eXtensible Data Access technology”, or XDA
for short.

Versata Logic Suite’s XDA framework provides the interface between business objects on the
Versata Logic Server and the databases, applications, or middleware that supply the physical
data against which business rules are run. This framework consists of well-defined, generic
Java methods for querying, fetching, updating, and saving data on any type of data source:
relational, object, application, or middleware.

A key benefit of XDA isthat it enables the integration of relational datawith package, legacy
and other non-RDBM S types of data. One repository can contain data objects that map to all
these different types of data sources, with seamless enforcement of business rules, because
ruleslogic processing is separated from the physical storage of data.

383



WORKING WITH VERSATA CONNECTORS
UNDERSTANDING VERSATA CONNECTORS

Understanding Versata Connectors

384

The methods required for data source connectivity are included in objects called Versata
Connectors. A Versata Connector is a data access mechanism that is the interface between the
data controls on a Versata L ogic Studio-generated form or the elements bound to data sources
on a Versata Logic Studio-generated page, the data object(s) in the Versata L ogic Server, and
the database. Versata Connectors receive requests from data objects and pass them to the
database in the native syntax of the database. They also return the results to the data object so
that it can pass the changes on to the data control in the Versata L ogic Studio-generated form
or to the data source on the Versata L ogic Studio-generated page. The Connectors' code
integrates with JDBC interfaces.

RDBM S-specific APIs, such as APIs for handling query definitions and Wer e clausesin
Versata Logic Studio-generated applications, are managed in the Connectors. (Query
definitions and Wher e clauses are implemented as SQL statements and passed to the
database.) Error handling is provided in the Connectors, and thereisaspecial SQL servicethat
maps data type differences between the RDBMSs.

The Versata Logic Suite includes classes that can be implemented and extended to create
Connectors to supported RDBMSs, including Oracle®, Microsoft SQL Server, Sybase®,
Informix®, and DB2® UDB. Some Connectors for other data sources are available for
separate purchase.

If you require connectivity to another type of data source, you can write your own custom
Versata Connector code. Versata L ogic Suite provides an interface file that you can implement
and a class file that you can extend to create Connectors. Custom Connectors may be SQL
connectors that extend or replace the behaviors of the supplied connectors, or non-SQL
connectors supporting APIs such as CORBA or SAP.

| nstantiating Connectors

Each data object in arepository creates and uses a Versata Connector to connect to, get, and
persist data. For data objects that map to supported RDBM S tables, the Java implementation
file for each data object includes a method that generates a Versata Connector to provide
connectivity to any supported RDBMS. Data objects that map to data sources other than
supported RDBM Ss or require other special processing need to use custom Versata
Connectors.



WORKING WITH VERSATA CONNECTORS
UNDERSTANDING VERSATA CONNECTORS

Data objects that use custom Connectors are first class objects, with the same business object
code as data objects using standard Connectors. The only differenceisin the Versata
Connector code. Thus, you can define rules in data objects that use custom Connectors, and all
Versata Logic Server services, including “just-in-time” object instantiation, automatic
partitioning, and optimized rules processing, are available to these data objects. Also, custom
Versata Connector-based objects are fully automated for Versata L ogic Studio-generated
application construction, meaning they can be used as sources of data to be displayed.

The following code provides an example of the method used to create a standard Versata
Connector for a data object that maps to a supported RDBM Stable.

/**
* <pr>
* a factory nethod to create the XDAConnector object for this
cl ass.
* @eturn XDAConnector : if succcessful returns an instance
* of the XDA Connector.
*/
public static XDAConnector createXDAConnector()
{
XDAConnector xda = null;
try {
VSMet aTabl e tabl e = get Met aQuery(). get Chi | dMost Tabl e();
if ( table !'= null )
xda = ( XDAConnect or) C ass. f or Nane
( tabl e. get XDAConnect or Cl assNanme() ). new nstance();
el se
xda = ( XDAConnect or) Cl ass. f or Nanme
( "versata.vls. XDASQ.Connector") . new nstance();

}

catch ( Exception ex )

{
}

ex. print StackTrace();

return xda;

}

Connector classes and methods

Versata Logic Suite provides an interface definition for XDA,
ver sat a. vl s. XDAConnect or.

385



WORKING WITH VERSATA CONNECTORS
UNDERSTANDING VERSATA CONNECTORS

386

m Theversata. vl s. XDAConnect or | npl class provides a base implementation of this
interface’s methods. This class includes only those APIs used for internal system
management.

s Theversata. vl s. XDASQLConnect or classisafully functional subclass of
XDAConnect or | npl that provides connectivity to SQL data sources. This class provides
avariety of services, including RDBM S-specific APIs, query definitions and Wer e
clauses implemented as RDBM S-specific SQL statements and passed to the database,
special SQL services that map data type differences between RDBMSs, and error
handling.

The default Connectors are instantiated from the XDASQLConnect or class. The
XDASQLConnect or classcan be used as abase to create custom SQL Versata Connectors. The
XDAConnect or | mpl typically is used as a base to create custom non-SQL Versata
Connectors.

If you would like to review the methods available in these classes, you can open the Enterprise
Object Browser, select Versata VL S Classes from the Object Libraries drop-down list, and
select aclass from the list. Be sure to enable the display of private methods. You can find
information about methodsin the vf c. hl p filein the Hel p subdirectory.

Thever sat a. vl s. XDAConnect or interface includes a number of methods that perform
standard data access operations, including methods which perform queries, retrieval methods,
and methods for saving. These methods include the following:

= execut e, which causes a query to be performed
s fetch, getDat aArray, get Obj ect Array
» save, whichincludesi nsert, updat e, and del et e

= get RowCount , get RowSum
m refresh
m synchroni zeDat aSour ce

Thisinterface dso includes acr eat eConnect i on method, which creates an object of the
versat a. vl s. Connect i on class, and aset Propert i es method, which stores data source
connection properties used to make connections.

The Versata Connector is an execution channel. It is statel ess except when retrieval isin
progress and is not reused across objects. Versata Connectors can be designed to interact with
a data source directly, but in more sophisticated systems the communication link between the
Versata Connector and data source is maintained by another important interface class:
Connect i on. Thisisthe framework for standard Versata Connectors for supported RDBMSs.

The Connect i on class provides methods for the following functionalities:

= Transaction control: If abusiness object istransaction-enabled, as are most RDBM S
objects, its data source session needs to be part of the transaction management. The
Connect i on class can be used to wrap around a physical link and can be registered in
Versata Logic Studio.



WORKING WITH VERSATA CONNECTORS
UNDERSTANDING VERSATA CONNECTORS

= Connection pooling: Participation in connection pooling optimizes performance.

The Connect i on isalimited resource, which is expensive to create and destroy. It has a state,
either active or idle, and is reused among sessions and objects.

Retrieval processing

This section outlines the methods executed to retrieve data using a Versata Connector in the
XDA framework.

First, aquery isinititiated. A client may initiate a query, for example, either through a data
control (in a Versata Logic Studio-generated Java application) or data source (in a Versata
Logic Studio-generated HTML application) or programmatically. The Met aQuer y provides
the definition of the query, including the data object or query object and attributes involved.
The Versata Logic Server locates the data object, or the childmost data object for the query
object, and loads the Versata Connector associated with the data object. All properties defined
for the Versata Connector in the Versata Logic Server Console (data server properties) are
passed as arguments.

The Versata Logic Server allocates a connection to the persistent data source for the data
object. First the Versata Logic Server searches the local pool for alogin session, then it
searches the global pool for a matching data server and connection ID. The connection ID is
customizable; the default is the database login. If no existing connection is found, the

cr eat eConnect i on method from XDAConnect or iscalled to create one. The Sessi on
holds on to the connection pool information.

The Versata Connector’'s execut e method should return true if the operation is successful,
regardless of whether any records match the query criteria. The execut e method is passed the
Resul t Set, Met aQuery, Fi | t er, Sort Request , and Connect i on objects. A successful
query will open a database cursor at this point. The Versata Connector should maintain the
position of the data buffer and return data in string format.

The Versata L ogic Server callsf et ch if the query includes virtual attributes, otherwiseit calls
get Dat aAr r ay. Thefetch call returns adat aRowin the Resul t Set . If the query contains
any virtual attributes, f et ch isinvoked to construct adat aRow The server object is created
using values from the row and the caller then populates al virtual attributes. The

get Dat aAr r ay method is used to fetch afixed number of rows from the data sourcein a
chunk. The rows of data are populated into a preallocated two-dimensional array which is
passed to the method. The return value is the number of rows populated. This number can be
smaller than the number of rows in the preallocated array, if the number of available rowsis
smaller.

When all dataretrieval iscomplete, the Versata Connector is asked to release all resources. The
Versata Connector should clean up resources (for example, close the database cursor) and
should inform the associated Connect i on object that the query is over.

387



WORKING WITH VERSATA CONNECTORS
UNDERSTANDING VERSATA CONNECTORS

388

Save processing

This section outlines the methods executed to save data using a Versata Connector in the XDA
framework.

First, arequest isinitiated. For example, a client initiates a request to save one or more
records. This starts a transaction. Transaction control tries to allocate an available connection
from the pool; it may require a different type of connection than a query request. For example,
the save may require an exclusive connection. A database transaction is started.

The business object isinstantiated and it locks itself on a database, so the database cannot be
altered until conmmi t occurs. Rules code is run against the business object and events are fired
at the appropriate times. The business object is cached in the transaction control buffer.

Once all business object code has been processed without errors or exceptions raised,
transaction control flushes all changesinto the persistent data source. The Versata Connector
determines what action isrequired (i nser t , updat e, or del et e) by inspecting the

dat aRow's status and this action is performed in the process of the save. The Versata
Connector’s execut e method should return true if the operation is successful, regardless of
the number of records saved. Once the action is complete, the connection is released from the
transaction and put back in the connection pooal if it is sharable.

Thefina r ef resh isused only if necessary to synchronize a query object with the data
source. You can enforce refresh by setting a data server property.



WORKING WITH VERSATA CONNECTORS
ASSOCIATING CONNECTORS WITH DATA OBJECTS

Associating Connectors with data objects

Defining Connectors for data objects

You define the Versata Connector class to be used for a data object on the Properties.Data
Access tab of the Transaction Logic Designer. If the data object maps to a supported RDBM S
and no special handling is required, the default SQL Connector isused. If the data object maps
to another type of data source or requires special handling, and uses a custom Connector, you
need to enter the name of the custom Versata Connector class.

Setting up Connectorsin the Versata Logic Server Console

Each data source for a Versata Logic Studio-generated application maps to a data server. A
data server is a collection of properties describing connection and location information for the
data source. Data servers are exposed in the Versata Logic Server Console. Each business
object is assigned to a data server. This assignment is initialized when you first deploy
business objects to the Versata L ogic Server, and uses information from the most recent data
model deployment.

Data servers are categorized by data server type. Each data server type corresponds to aJDBC
API used for data source connectivity, typically aJDBC driver. Data server types for supported
RDBMSs are preset in the Versata Logic Server Console. Each data server type has a set of
associated connection properties that hold declarative data access information. Exampl es of
connection propertiesinclude default user, DSN (data source name), schema name, and port.
The values for these properties are used by Versata Connectors to establish connections with
the physical data sources.

If you use Versata Logic Studio’s Deployment Manager to automate deployment of data
objects to the RDBM S database and to the Versata L ogic Server, values for connection
properties for these data objects’ data server(s) are set automatically, based on the default data
server type for the RDBM S where data objects were deployed. You can review and modify this
information in the Versata L ogic Server Console.

For data objects that use custom Connectors, you need to define a new data server type
corresponding to aJDBC API for the physical data source, define connection properties for the
data server type, and set up values for these properties manually. You can compl ete these tasks
in the Versata L ogic Server Console. The properties required for a data server type depend on
the code in the Versata Connector. For information about defining data server types and
connection properties, see the Administrator Guide.

389



WORKING WITH VERSATA CONNECTORS
ASSOCIATING CONNECTORS WITH DATA OBJECTS

Note: The XDAConnect or interface hasaset Pr oper ti es method. You can use this method
to store data server connection properties for a data source using a custom Versata

Connector. For more information about thisinterface and its methods, seethevf c. hl p
filein the Hel p subdirectory.

390



WORKING WITH VERSATA CONNECTORS
CREATING CUSTOM VERSATA CONNECTORS

Creating custom Versata Connectors

You may want to write your own Versata Connector classes for the following reasons:

= To access datawhich is not accessible by the default Versata Connectors. For example, to
access datain alegacy database or even datain memory, such as data from the Windows
registry.

= To augment the queries that the default Versata Connectors send to the supported
RDBM Ss. For example, you might want to write a Versata Connector to use stored
procedures to retrieve data from a Sybase or Microsoft SQL Server database. Many users
of Sybase and Microsoft SQL Server prefer to use stored procedures to return data, since
these can provide superior performance by reusing query optimization plans. The
Server _XDA St or edPr ocedur e sample application illustrates how to write a Versata
Connector that uses stored procedures for dataretrieval.

» To accessatablein a supported database that is not associated with the current database, a
database of another type (such as an Excel spreadsheet or alegacy database), or any other
data source for which the default Versata Connector isinappropriate. You might even use a
Versata Connector to create non-default data access behaviors on the current server and
database.

In order to design a custom Versata Connector, you need a good understanding of:

» the XDAConnect or interface

= thetarget data source and middleware, and their APIs

» the VersataLogic Server's data object and dat aRow behavior

= Session, Connecti on, Resul t Set, and Met aQuer y objects

The following tips may help you in getting started with design of a custom Versata Connector:

= Begin by building for asingle instance of a data object. You may be able to generalize the
design to provide access to all data objects, or you may need to adapt the initial design to
create separate Connectors per data object. For example, separate Connectors may be
required when the API interface differs for each operation, asin CICS and SAP.

n Defer building filtering (but make sure hooks are available).

= Begin by supporting two standard data types, such as string and integer; consider deferring
support of other data types.

391



WORKING WITH VERSATA CONNECTORS
CREATING CUSTOM VERSATA CONNECTORS

Adding a Versata Connector file to a repository

To create a Versata Connector, you need to create a Java source file for it. You may do thisin
three ways, as shown in the following table.

Method

Procedure

Comments

Use the New XDA
Connector wizard to
start with abasic code
structure and add
other codeto thefile
in a Code Editor.

On the Filestab of the Versata Logic Studio
Explorer, right-click the Versata Logic
Server folder or one of its subgroup folders,
and choose New XDA Connector to start
the wizard. The Choose File Name dialog
opens. Enter aname and click the Next
button. The Create XDA Connector Class
diaog displays defaults for the package that
contains the class, any interfaces it
implements and any classesit extends. Edit
these if necessary. After you enter
information about the class, thefile opensin
the Code Editor, with basic code already in
it.

Writes the source file for the class in the Code
Editor and compiles and registersit. You may
extend a default Versata Connector class or write
an original class.

Versata L ogic Suite savesthese source fileswithin
\ <reposi tory>\

<reposi tory> JavaFi | es folder,ina
subgroup folder if applicable.

The compiled classfilesarein

\ <reposi tory>\

<repository> JavaFil es\ d asses. All
classesin this directory are in the repository
classpath automatically.

Reference an existing
file.

On the Files tab of the Versata Logic Studio
Explorer, right-click the Versata Logic
Server folder or one of its subgroup folders,
and choose Add Filesto browse to the file.

Writes the location of the file in the repository
metadata.

The file must be registered before it may be
referenced. Previoudly referenced classes and
libraries may be viewed in the References dialog.
To open the dialog, choose the References option
of Versata Logic Server in the Versata Logic
Studio main menu.

Copy an existing file
into the repository.

On the Files tab of the Versata Logic Studio
Explorer, right-click the Versata Logic
Server folder or one of its subgroup folders,
and choose Add Copiesto browse to the
file.

Writes the location of the file in the repository
metadata and copies the file into the appropriate
subdirectory of

\ <reposi tory> JavaFil es.

After you create the Java source file, set it up as the Versata Connector for the intended data

object by right-clicking the data object on either tab of the Versata L ogic Studio Explorer, and
choosing Transaction Logic Designer. On the Properties: Data Access tab, select Custom and
browse to the custom Versata Connector.

392



WORKING WITH VERSATA CONNECTORS
CREATING CUSTOM VERSATA CONNECTORS

Writing code for a custom \Versata Connector

Your custom Versata Connector should extend one of the system-provided classes. The
XDASQLConnect or classcan be used as abaseto create custom SQL Versata Connectors. The
XDAConnect or | mpl typically is used as a base to create custom non-SQL Versata
Connectors. You may be ableto find a SQL interface for anon-SQL data source, then subclass
XDASQ_Connect or and override those methods that require different behavior.

The code in your custom Versata Connector should include the following:

execut e method. This method processes the multiple record retrieval logic, retain result,
keyset, cursor handle, or object array structure for later fetches; and should be able to parse
SQL or use parameters for filters.

f et ch and get Dat aAr r ay methods. These methods get the next result, keyset, cursor
record, or object instance, packaging it as an array of strings before returning.

save method. Thismethod includesi nsert , updat e, and del et e processing. It requires
the record(s) to be locked. For update, it uses a modified flag to determine which record(s)
to update. This method tells the data source to change its data using its language or API.

get RowCount and get RowSum methods. These methods are used for attributes derived
through sum and count rules. You can implement this functionality through existing
execut e and f et ch methods if direct calls do not exist in the data source.

ref resh and synchr oni zeDat aSour ce methods. These methods must be able to
reread all datafor al record values from stored key information. If aconnectionisin
progress, your code must lock the record in some way.

Connect i on methods. You optionally can design your own Connect i on object to
instantiate during cr eat eConnect i on() .

Connect i on methods allow for transaction control and connection pooling. The
Connect i on. get | Dand XDAConnect or . get Connect i onl D methods should be
implemented to return the same value in order for an existing connection to be reused by
the next request that can share the same type of resource. Share the Connect i on if
possible. Connect i on providesthe set Shar abl e andi sShar abl e methods. If it is not
possible to share the connection, release it as soon as the Versata Connector instanceis
released.

The Connect i on object can control behavior for begi nTr ansact i on, r ol | back, and
conmi t , and for read properties set in the Versata L ogic Server Console for the data server

type.

393



WORKING WITH VERSATA CONNECTORS
CREATING CUSTOM VERSATA CONNECTORS

394

Whenever an activity getsinvoked on a Versata Connector, a Connect i on object is
passed to it. So the Versata Connector should be designed so it can set aflagon a
Connect i on when it isbeing used, and can reset a flag when the task is finished. Because
aConnect i on can be used by more than one Versata Connector, the Versata Connector
should not directly invoke ther el ease, asit cannot track whether other activities are
using the Connect i on at the sametime. The Connect i on itself should invoke the

r el ease method.

Note: If you subclass XDASQ.Connect or, your Versata Connector inherits all the APIs

required by the Versata L ogic Server for connection reuse.

Testing a custom Versata Connector

After you have written the code and made the Java source file available to the repository, you
are ready to test your Versata Connector. To test a custom Versata Connector:

Create a data object in the Versata repository to represent the data source.
Deploy the data object to the Versata L ogic Server.

Set up adata server type and connection properties for it in the Versata Logic Server
Console. Assign this data server type to the data server holding the just deployed data
object. Then enter valuesfor connection properties. For information, see the Administrator
Guide.

Build, deploy, and run a Versata L ogic Studio-generated application or other client to test
basic functionality.

Verify that the implementation can support multiple users, and that it supports optimistic
and/or row locking correctly.

Test and document any limitations relating to support for multi-row update, positioned
updatein alist, i nsert /updat e/del et e, query, refresh of row, and virtual attributes.

Test rules involving multiple objects, including those representing data source types,
including referential integrity, replicates, formulas, constraints, defaults, and rules on
virtual attributes.

Test exception handling.

Check for proper resource usage and cleanup, including closing of connections, connection
pooling if supported, reuse of connections, and closing of sessions.

You also may wish to perform performance testing, installation testing, and end-to-end testing.



WORKING WITH VERSATA CONNECTORS
CREATING CUSTOM VERSATA CONNECTORS

Packaging a custom \ersata Connector

You need to compl ete the following tasks to package a custom Versata Connector:

Document middleware requirements and installation requirements.
Document data server type and properties to be set in the Versata L ogic Server Console.
Build a. zi p file containing specialized classes required for the Versata Connector.

Document the paths of the . zi p file(s) containing Versata Connector classes and of any
classes required for the middleware. These paths will need to be added to the Versata
application server command line arguments in the IBM WebSphere Administrative
Console.

395



WORKING WITH VERSATA CONNECTORS
CREATING CUSTOM VERSATA CONNECTORS

396



Transaction Logic
Exanples

397



TRANSACTION LOGIC EXAMPLES
APPENDIX OVERVIEW

Appendix overview

398

This appendix is provided to assist you in breaking down business requirements into
declarative business rules. The examples of common patterns here can provide modelsfor you
to think about your own requirements.

Before you begin defining business rules, you should understand what declarative business
rules are and the types of rules available. A familiarity with the order of rule processing
operations isimportant for understanding how to extend business rules. For information about
these areas, see “ Understanding Transaction Logic” on page 183.

You also need to understand how to modify your data model because some business rule
definitions may require data model changes, including the addition of data objects,
relationships, and attributes. Details about these tasks are provided in “ Developing a Data
Model” on page 31.

For instructions for the tasks involved in defining business rules, see “ Defining Business
Rules’ on page 211. For information about extending businessrulesin cases where declarative
business rules do not fully implement requirements, see “ Extending Business Object Code” on
page 321.

The sample repository included with the Versata Logic Suite contains many exampl es of
declarative rules. You can open this repository and open different business objects in the
Transaction Logic Designer to review these rules and their expressions. Online help for the
sample repository may provide additional explanations of these rules.

In this appendix, each example requirement is displayed in bold, and the solution for
implementing the requirement with declarative business rules is described in the text
following the requirement.



TRANSACTION LOGIC EXAMPLES
CALCULATION IN PARENT, BASED ON CHILD DATA

Calculation in parent, based on child data

For every order that includes a blue widget the freight charged is waived.

This requirement involves an Order and an Orderltem data object. The freight chargeis
computed in the parent data object, which is Order, while the numbers and/or names
specifying the parts for the order are attributes of the Orderltem data object (a child of Order).
The solution to implementing this requirement includes two declarative business rules:

= A conditional count derivation rule adding a“Number of Blue Widgets” attribute to the
Order data object. The count contains a qualification expression specifying that order items
be counted only where“ Part Name = Bl ue Wdget”.

= A condition added to the formulaexpression for the Order.Freight attribute, specifying“ | f
Nunmber of Blue Wdgets > 0 then $value = 0".

Note the use of $val ue for self-assignment in a formula expression ($value represents the
Order.Freight attribute). Also note that counts can be used for existence checks, cardinality
checks, and checks of whether an attribute val ue has changed.

Comparing values from sibling objects

If an order includes a total of ten or more blue widgets and red widgets, the
eleventh blue widget is free.

This requirement involves the calculation of an amount attribute in the Orderltem data object,
and this calculation requires the addition of two different sibling items, blue and red widgets.
The solution to implementing this requirement involves three declarative business rules:

= A conditional count derivation rule adding a“Number of Blue and Red Widgets’ attribute
to the Order data object (which is a parent of Orderltem). The count contains a
qualification expression specifying that order items be counted where “ Part Nanme =
Bl ue Wdget or Part Nane = Red Wdget”.

= A replicate rule that copiesthe value for the “Number of Blue and Red Widgets™ attribute
in the Order data object to “Number of Blue and Red Widgets® in the Orderltem data
object.

= A condition added to the formula expression for the Orderltem.Amount attribute,
specifying“ 1 f Number of Blue and Red Wdgets > 10 and Part Nanme = Bl ue
W dget then $value = $value - Price”.Inthisexpression, Priceisequal to the
price of the blue widget.

399



TRANSACTION LOGIC EXAMPLES
CONSTRAINING UPDATES BASED ON PARENT DATA

Constraining updates based on parent data

400

Only Sales Reps can place orders.

This requirement involves a Type hierarchy in the Employee data object, where each
employee record has an Employee Type attribute. “ Commissioned” is one possible value for
the Employee Type attribute. This requirement also involves the Order data object, which is
where the constraint is defined. In this example, Employee is a parent of Order, because an
employee can place multiple orders, while an order can be placed by only one employee. The
solution to implementing this requirement includes two declarative business rules:

= A Parent Replicate rule that copies the value for the Employee Type attributein the
Employee data object to the Order data object.

m A constraint in the Order data object, indicating “ Rej ect when Enpl oyee Type not
equal to ‘ Conmi ssioned’ ”.

Thisexampleisincluded in the Versata L ogic Suite sample repository. More information
about implementing type hierarchiesin adatamodel isincluded in “ Type hierarchies’ on page
108.



TRANSACTION LOGIC EXAMPLES
NESTING RULES

Nesting rules

If an order has more than 100 order items, there is a 10% discount on all items
less than $50.

This requirement involves the Order data object and its child, the Orderltem data object. This
exampl e requires the determination of whether an order contains more than 100 items, then the
computation of the amount for al items worth less than $50, then a recal culation of the order
value. The solution to implementing this requirement includes two declarative businessrules, a
sum and areplicate each with a nested rule;

» A sum derivation rule defining “Number of Order Items” for an order, which sumsthe
amount ordered for each order item in the order.

= A formularule defining a Yes/No “DiscountFlag” attribute in the Order data object, with
anexpression like: “1f ‘ Nunber of Order Items’ > 100 then $val ue = True”.

= A replicate rule that copiesthe value of the Order.DiscountFlag attribute to a DiscountFlag
attribute in the Orderltem data object.

= A formularulefor a“Recalculated Price” attribute in the Orderltem data object, with an
expression like“1f Price < $50 and DiscountFlag = True, then $value =
.10 * Price”".

401



TRANSACTION LOGIC EXAMPLES
RETRIEVING DATA WITH A USER-DEFINED METHOD

Retrieving data with a user-defined method

402

Tax computation for an order is based on a tax rate obtained from a
State_Tax_Schedule data object, which depends on the state where the order is
placed and the date of order placement.

In this example, locating the correct row in the State_Tax_Schedule data object requires a
complex query on date ranges, so asimple replicate from this data object to the child Order
data object is not possible. The solution to implementing this requirement involves a custom
business function (Java method) and aformularule that references this method. Business
functions can be used for many purposes to extend declarative rules functionality. The sample
repository includes multiple examples. Dataretrieval is a common use.

= You can write a Java method that retrieves the correct tax rate from State_Tax_Schedule.
» Defineaformularule for Order.Tax that references the tax rate value like areplicate.

The formula expression for Order.Tax in the Versata sample repository references a Java
method called TaxRat e that provides the functionality described above:

If ( Inserting OR ( Amuntltenms <> :0d. Anmountltens
Then
$value = Amountitens *
TaxRat e( get pl acedByCustoner().getState(), getPl acedDate() )
End |f

The Versata L ogic Studio automatically builds a predefined set of Java methods for each data
object in the repository, including the get Obj ect methods. These methods can be used to
retrieve data from rel ated data objects.

In this example, the TaxRat e method retrieves parameters from two objects: Pai dDat e from
the Order data object and St at e from the Customer data object. These parameters are
retrieved with get Qbj ect methods. These methods allow you to traverse arelationship chain
to find an instance of the specified object and retrieve attributes from it. Note that
corresponding set Cbj ect methods are also built, which can be used to set values for datain
related data objects.




TRANSACTION LOGIC EXAMPLES
OVERRIDING NORMAL RULE BEHAVIOR WITH USER-DEFINED EVENTS

Overriding normal rule behavior with user-defined
events

The purge operation deletes paid, shipped orders without causing an inventory
adjustment.

In this example, there is a need to override default rule behavior, which normally would not
allow deletion of an order that is paid and shipped. If this deletion was allowed, it would result
in al partsin the order being added back to inventory incorrectly. The solution to
implementing this requirement involves the creation of a user-defined purge event. The
creation of thisevent requires the addition of abutton and Java event-handling code to the user
interface, aswell as the addition of references to the event in two declarative business rules.

1. Createa“Purge”’ button on forms/pages where orders can be modified.

2. Addacti onPerf or med event code to the “Purge” button, similar to the following
example code from the Ser ver _Ext ended_Rul es_Mds Versata Logic Studio-generated
sample application:

voi d btnPurge_acti onPerforned()
{
VSUser Def i nedEvent ude = new VSUser Def i nedEvent (" ORDERS. Pur ge",
VSActi on. Event TypeDel ete) ;
dat T3ORDERS. set User Def i nedEvent (ude);
dat T3ORDERS. del ete();
/1 this will fire business rules for purge,
/1 so that Part onHand / Reorder quantities are not altered.
/1 contrast to delete, as described in Help.
}

403



TRANSACTION LOGIC EXAMPLES
OVERRIDING NORMAL RULE BEHAVIOR WITH USER-DEFINED EVENTS

404

3. Add atest for the Purge event to a constraint rule on the Order data object, similar to the
following expression defined in a constraint for the ORDERS data object in the sample

repository:

Rej ect when

Deleting AND isCurrentEvent( 'ORDERS. Purge’) = false AND
: A d. ShippedFlag !'= false AND

:Ad.OderPaid !'= fal se

4. Addatest for the Purge event to the formulaexpression for the QtyOnHand attribute in the
Part data object, like the following:

if Inserting then
$value = 0

elseif ( isCurrentEvent( ' ORDERS. Purge’) = false ) then
$val ue = QyOnHand - (QyShipped - :OLD. Q yShipped) + (QyReceived -
: OLD. @ yRecei ved)

end if

Many different user-defined events can be set in the user interface. On the Versata Logic
Server, only one event at atimeis*“current” for a session. The current event is essentially a
global variable whose value can be tested in two ways:

s TheCurrent Event ( ) function returnsthe value, or name, of the current event if oneis
Set.

m TheisCurrent Event (java. |l ang. String event Nane) method returns avalue of
“True” if the named event is set.




TRANSACTION LOGIC EXAMPLES
USING BATCH PROGRAMS TO TRIGGER CALENDAR-DRIVEN RULES

Using batch programsto trigger calendar-driven rules

Note: The Process Logic Add-On provides another way to implement calendar-driven rules.
For details about integrating Process L ogic Add-On functionality with transaction logic
rules, see the Logic Integration Guide included with that product.

Notify the contract administrator when a contract’s expiration data has passed,
if the contract is of type “Service” and has a value of more than $10,000.

In this example, there is no data update that can trigger the execution of rules. The solution to
implementing this requirement can be to use a batch program for everything, or to combine the
use of abatch program with declarative business rules. The data model is different in each
case.

Thefirst case, where a batch program is used exclusively requires a Contract data object, with
ContractID, ExpirationDate, Type, Value, and Administrator attributes. In this case, the batch
program could be run daily to obtain the current date and compare it with the ExpirationDate
values for each record. In cases where the ExpirationDate matches the current date, the
program could check the type and value attributes, and send emails as appropriate.

The second case, where a batch program is used in combination with declarative business
rules, requires less code and thus can be easier to maintain. This solution requires a
ContractHeader data object that is a parent of the Contract data object. The batch program
updates ContractHeader, while this data update triggers rules in Contract, which handle the
update to this data object. In this case, the ContractHeader data object includes ExpirationDate,
CurrentDate, and ExpireFlag attributes. The batch program can be run daily to update the
CurrentDate. Then three declarative business rules are defined to implement the requirement:

= A formularule defining the ExpireFlag attribute in the ContractHeader data object, with an
expression like: “1 f CurrentDate > ExpireDate then $val ue = True”.

= A maintained replicate rule copying the value for ContractHeader.ExpireFlag to an
ExpireFlag attribute in the Contract data object.

= Anaction rule for the Contract data object, with a conditional expression like: “ |
ExpireFl ag = True and Type = Service and Val ue > 10000”. Theaction for
this rule would be to send email to the contract administrator.

Note that other attributes such as ExpireDate could also be replicated from ContractHeader to
Contract as necessary. This type of action rule requires integration with amail program. For
information on how to reference methods for sending email in rules, see “ Setting up an email
notification system” on page 359.

405



TRANSACTION LOGIC EXAMPLES
USING BATCH PROGRAMS TO TRIGGER CALENDAR-DRIVEN RULES

406



|ndex

407



INDEX

A
action rules
AEfiNING ..viveeicee e 236
EXPrESSION SYNEAX ...c.veveereriirireeesiereeeseere e esseseereseenas 246
OVEIVIBWW .ttt s 198
adding
AMDULES ... 102
fileSto repOSItONieS.....cvvvieceeeeec e 308
images to data ObjECtS.........ccevvieveeiriciceeee e 238
INOEXES ... 119
FElAtiONSNIPS.....eeeeeeeee e 113
server event-handling code..........cccccevereennnne. 333,335
Versata Connectors to repositories .......coevevveeevenen. 392
ANSI SQL
data type MappPiNgS.......ccceeeveereeireneeie s anens 52
APIs
business object collections...........coccovenrirneiecnns 352
Javamail integration..........ccoceeeveeeiensesecsinee e
recomputing derivations
FEMOLE BCCESS....nvreereeeenrrererereesenenes
transaction management
Versata Logic Server SECUNtY .....oovveveivicieresieirienans 375
applications
calling business object code .........cccoveviivviericnnnnne, 341
queriesto databases.........cccveevveeeriereriennn
writing custom security
applying
data elementsto businessrules...........ccocovveeeecenene
archetypes
defining anon-default archetype.........coeevvieeeenee. 237
attribute naming CONVENLIONS.........ccccvveveesieeseneeerieneea 39
atribute validation rules...........ccooooevveicicccnenne 193-194
attributes
AAING .o 102
changing datatypes ........ccoeveoereerenne e 103
computed
AElELING v e

408

B

batch programs
using to trigger calendar rules...........ccoceveevveeivieneennns 405
Beans
deploying data objects as........cccooeervririennnne 83,91, 148
implementing objects as
benefits of businessrules..........cccovvvnnncicinnnineee
blocks
component declarations............cccveveeineeienineneennns
component import........ccoceeveveeeereennn
component import block
data definition blockK .........cccceeveeenne
guery object constructor
query object event...........ccoveeereiinnene
rules blocK........oveeeirenirieneeceeee
BNF for rule eXpression ..........ccoeeeeeveeeseeesverenna
building
business object collections............ccccevveveieiecineniennns 352
FUIES EXPIESSIONS. .....veveeeiieiiere et 239
business automation framework .............c.ccceeeererinnne 288
business logic
deployment

PrOCESSING ...viueeereeereeeee e seeaesee et seesesnens
business objects

getting and setting attributes
INStANtiating .....ocoevevevrereericceeseeenes
interface files
(1015 o] L0771 o FU TSRS
remote access
setting up in Versata Logic Server Console.............. 263
SUDCIESSING ClaSSES......ovevereieeee e 339

business rules

action eXPressioN SYNEaX .......cvveveireveeesreesesereeseenens

ACHON TUIES. ...

adding server event-handling code

applying to dataelements...................

attribute validation rules.....................

basic steps for defining..........cccceveeeeee.

benefits Of ..o

building rules expressions..................

calling externa methods...........ccocvvveeieeeiccieseenns



combining to implement business requirements...... 192
computing results without Saving ..........cccceeeeeuenee. 355
condition validation rules
conditional counts..........c.c.eueuene.

conditional expression Syntax...........ccceveeeeeeeeeenees 245
CONStANtS SUPPOILEd.......c.ceeereeeeeerieeree e 248
constraints.........c.c..... .
(o1 ) ST
dataobjects.............

datatypes....cccocvevervieennnnn.

defining ......ccoueveee.
derivation rules..........ccocceveneccneenn
designissues...........
design patterns.........ccoeeevevveennne.
enforcing against existing data........
EXAMPIES ..o
expression syntax...
EXEENAING ...t
formula expression SYNtaX .........ccoeeeeeerererieneenenes
FOrMUIBS ..o

genera expression syntax guidelines
generating rePOItS.......c.cecveereeererereeeresesseeereseeneneas
identifiers SUPPOrted.........coeveereivieeiesieesiens e
l0giC Processing .......occoeveeeeens
multiple data object updates....
(915 (] oo PSR
no-savefiring.................
nullability .......ccccooeeenee
OVENVIEW....ovvrrrnes
parent replicates............
presentation rules.............
referential integrity rules......
reserved words supported ....
restrict rules............
SBINGS ..o
spreadsheet-like functionality .....

Transaction Logic Designer ....
187705 T y
UPAatability ...ocveerieeiciice e
updating after deliVery ...
user-defined eVeNtS ...

C

caching
DUSINESS ODJECLS......coeiiieecie e 341
coded VAlUES ISES ... 96

Q721 = 0100 - = TR USSR 342
calling

external methods..........coc i 198
captions

data ODJECES ... 196

OVEIVIEW. ...ttt et st e e eva e nae s sreeeenes 196, 198

FElatioNSNIPS.......ccvieii e 196
CASCAHE FUIES ...ttt 197
childmost data ObJECt .........coeereeeirerre e 149
classes

subclassing for business objects ..........ccoeeieeennene 339

Versata CONNECLONS ......coveevererierienieeee e 385
code

DUSINESS OLJ ECLS..... .o 288

CUSIOM..e et 323

IMPOItiNG ClaSSES.......ccveviiviieiesieeseee et 325

printing from Code Editor...........cccoeiviienieiiccneene 318

regenerating blocks..........ccoeoeieiniicini e 317

See a so blocks

Versata LogiC Server SECUNtY ......covvverecereenincnene. 375

writing for Versata Connectors...........coceevrereeennne 393
Code Editor

€diting COUB......ueeeirireeie et 317

Event Mode VIew ... 316

Full Mode VIew ... 315

OVEIVIBW.. ...ttt eae et ene e 313

Printing COAE ......cueiueiii e 318

smart code bloCKIiNG .......ccovvvivieieiieiresceeee e 317

SYNtaxX NEIPENS ....c.ceiereeeee e 317

types of filesthat can be edited..........ccoccorerreenne. 318
coded VAUES [ISES ... 92

CaChiNG ....eceieeeieeeee e 96

Coded Values List Manager ... 96

defining ....ccveeveiieeceeee i 96

defining rules.... 235

OVEIVIEW.....eviie et ete et e s ste e s saa s sae s sbae s ena e 37,95

usinginvalidation rules..........ccceveevvieveinveiseresenen 95
collections of business objects..........cccoeeriiiiicienne 352
CONCUITENCY CONEFO| ... sie et 94
condition validation rules

EFINING -t
conditional expressions
Configuration Options dialog ..........ccceveveievieeseinnene. 132
Connect for Auto Selection dialog.........cccceeeveeeeerennenes 128
CONNECLION ClaSS.......eieeeeiee e 386
Connectors

See Versata Connectors
constants supported in busSiNeSSrules............ccocceeeeeeee. 248
constraints

EFINING et

overview

409



INDEX

CONVENLIONS, NAMING.......cuciveeereeereseeeere e ense e seeereseenens 38
COUNE TUIES....oeiieee et 190, 232, 399
creating
custom Versata CONNECLOrS.........ccceevvrvereceneeesienennes 391
qUErY ODJECES. ...

[ 0101 ] (o 1= TSR
rows versus objects

customer SUPPOIt........c.o....
customizing

D
data
enforcing business rules against existing.................. 354
data access
QUENY INSLANCE......eeviieeeeieieie et 343
remote ObjECt BCCESS......coueirrrerieererrie e 348

data model
CharaCteristiCS ...vvevveriere e 36
Data Model Deploy Options dialog.... ...132
denorMaliZing .......ccoeeeee i 38
deploying to database server.... ...123
deployment files ... ...133
N FEPOSITONY ...coveeeeieie ettt 33
naming conventions....... ....38-39
reengineering ................. ....59, 60
VAlTAAHNG .. 62

data object naming ConVentions ..........ccooeeereieeeeneennns 38

data objects

creating custom superclass........ccoeeeeeeveecvieececene,

defining Versata Connectors....
definition........coveveneenerereee
AElELING v
implementation fileS.........ccoooovireiniinie e

importing from RDBMS...
presentation rules..............
reengineering .................

data servers
SELLiNG PrOPErTIES. ... veeeeeeeeeeee et 389
datatypes
ANSE SOL .ot
ChaNGING. ...t
DB2 MapPingS.....ccucoveeeruereriereeereeese e seesesaeneeseseenens
editing in Business Rules Designer
INfOrmixX MaPPINGS ......eerveeereeee et
mappings between Versataand RDBMSs............ 40-52
MOTIfYING. ..t
Oracle mappings..............
SQL Server mappings
Sybase MaPPIiNGS .....c.vvvereireeeriseere et
database server
deploymMENE O .....oue e 123
SELtiNG UP DSNS....oveiieceeeice e 124
databases
apPliCation QUENIES. .....c.ooeeeeeee e 342
deployment to multiple databases............cccceeveeneenene 142
DB2
autonumber restriCtion...........ocooveeereneereeie e 51
data type mappings
deployment................
[OCKING ..t
quoted identifiers.......cvvevieiicierie e
restriction on unique iNdEXes..........ccveeererrereenennens 119
running deployment SCriptS.......ccoeeereereneierienennens 137
setting up SYSLEM DSN ......ovcvvieiiiicce e 125
DI o | 135
declarative business rules
See businessrules
default rules
ESCIIPHON ..t 191
EXPrESSION SYNEAX....veuvvereerereeresieesreseesesseresreesseseesens 246
defining
ACHON TUIES. ...t e 236
businessrules................... ....213, 232-238
coded values list FUIES........coveueieee e 235
coded ValUES lIStS.....c.couireeeecc e 96
condition validation rules...........coceeeenrnenenncncne, 234
CONSraiNtS.....coueeeeeeecreenne
derivation rules
transaction 10gic.......ccovevveveeieieeseeirieenns 213, 232-238
deleting
AITDULES ...
data objects
derivation FUIES ..o

relationships.......cccecveveeveiieiennens
denormalizing for performance
deploying

attribute security information ...........ccoceeveeiieienennns 258



bUSINESSIOQIC......ciivireeiiieececeee e 268-283
data model to database Server ..........ccoovveereieenes 123
data ObJECES....cveeeeeeeeere e
Deploy to Server or Scriptsdialog
EIBS..ie s
errorsfor datamodels..........cooveiieirienncneeceees
generating quoted identifiers..........
generating scripts for datamode ...........
granting permissions for data model ...... ... 138
multiple databases..........ceeeeveevveriinenes ... 142
running data model scripts................. ... 136
Server Deployment Preview dialog ........cccccoeeueneee. 133
setting default values for WebSphere 4.0 production
deployment........ccooeieeeeeree e 283
transaction logic............ ... 268-283
deployment desCriptorsS........ccovvvevesieeeesiseseess e 305
derivation rules........... 189-191
EfINING v 232
deleting......ccooevnene .234
FECOMPULING -venveeeee e eae e 34
designing
DUSINESS FUIES ... 213
guery objects .
transaction 10gic.......covveeueieererereecee e 213
development deployment to Versata Logic Server ...... 273
documentation

E

editing
codein the Code EdItor..........ccocoovveerencncnneneeens 317
data model validation utility commandsfile........ 40, 83
IMPOrt SEALEMENT......cccevieeee e 325
EJBs
(012 o] L0 Y/ 1 o TSRS 257
remote ODJECt ACCESS ......covviereiriererieee e 348
Enterprise JavaBeans
See EJBs
Visual Agefor JaVa.......cccoeereenenenciee e 350
errors
data model deployment..........cccccvveenenenicicesienenen 141
events
business rule actions ...........ccceeeereeerienneneene e
event-handling code............ccooeuenn.
examples of event-handling code...

(0 11< oY
SEIVEN BVENES.....cerieerceeeeieeseireee et

tranSactiondl .........c.coevveeueinnnec e 334
examples
DUSINESSTULES ...
custom factory method
custom instance Methods..........ccoeeeeeerrereriesceneeens 332
email notification System..........ccccevereenenenennenens 359
IMPOItiNG ClaSSES.......ccvcviivieerisieesee et 325
Javamail iNtegration............ccoeeeerererenecenesisceenes 359
server event-handling code..........cccccecenreene. 335-338
SQL diaectsfor outer joinsinaquery ... 170
Virtual attributes.........oeoeeeerrcreree e 106
executeQuery Method ..........ccoeveeerenenerese s 346
EXPresSioN eVAlULON ......c..cveeeevreeieeiriieieee e 364
EXPrESSION SYMEBX ....eveeeeeeeeeeeeeseeaereeseeeeseeeesesneseeseseeees 239
F
factory methods
EXAMPIE CUSLOM ...t 330
OVEIVIBW. ...ttt sae e ene e 326
files
business object interface..........coceovveeneieneineneeens 303
LSV ettt e e e ene s 56
datamodel deployment.........ccoceecevecerenieeennne, 133,135
datamodel validation utility commands.............. 40, 83
data object implementation............coccoeeereeereeenenens 291
deployment desCriptor..........ccovveeveeeierineseeesenenas 305
editing in Code EdItor..........cccoeevieerienncreeeees 318
home interface files........ccoovoiiirinci e 303
making available for applications.........cc.ccccovvrienne 308
FEFEIENCING ..ot 311
(=0 TES (= 10 To [OOSR 311
FEMOLE INEETACE ..o 304
forms
captionsin Java applications...........cccoeereeeeseeecneens 196
formularules
EXPrESSION SYNLAX ....vveeeeeereeereeseeneseeresieseseeseeseseeneeeas 245
G
generating
bUSINESS rUIES FEPOILS.... ... 239
deployment SCHPLS.....cceeeerereiereeeeeseeee e 135
quoted identifiers.......ccoeevvevcieiecseseece e 139-141
scripts for datamodel deployment.............cccceeeeneee 135
getMetaQuery method ...........coeovennencenncreeeee
getNewObject method ....
getObjectByKey method.....
getObjects Method ..o
granting
data object PErMISSIONS.........cccoerueereererieeeeseeeeseenens 138



INDEX

H

homeinterface files ......cooevveiececeeeeeeeeeeee e 303
NOW t0 CONtACE US.....covveeeceerecrecrecie e XXii

IBM WebSphere Application Server ............c.......
identifiers supported in businessrules....
identity COIUMNS ......ccovveeeirieicere e
images, associating with data objects...........ccocceeeennee. 238
Impact AnalySISREPOIt .......ccevvveeieeieiieeeciieie e 88-89
implementation files

data ObJECES ... 291-296

qUErY ODJECES.....ooiciiceiecee e 298-302
IMPOIt SEAEMENT ...cveiiece e 325
importing

ClASSES ...t 325

data objects from other repositories....

dataobjectsfrom RDBMS..........cccooiinirereee e 83

dataobjects from XML.....ccccevviivieieieececece e 86

relationships from XML ......ccccovveviviinienicisieesienns 114
indexes

AAING .o

changing definitions

(005 1 (] 0 ST
Informix

AMDULES ...

data type MappPinNgS........ccoceeereeeerenenie e

AEPIOYING c.oviieieiececeeee e

indexed attributes...........

naming conventions

quoted identifiers......ccoe e

FEENGINEENING ..vevevitieieeeteeeeeie et enes

running deployment scripts

setting up SySteM DSN ...
instance methods

EXAMPIE CUSEOM ... 332

OVEIVIBIW .ottt 330
instantiating

bUSINESS OLJECES ...

Versata Connectors
integrating

Visual Agefor Javaobjects........ccceoerreenienecneeene 350

J

Java

handling quotes inside code Strings..........cccceeeeeueeene 379
Java applications

Presentation FUE .........cceiveeeeirieseecree e 238

412

Javamail iNtegration..........cccceeveiveeeeeseesenesereere e 359
B 0 T 260
JT

See Just-In-Time objects
[ L1 4= 107, 150, 167
JT'S transaction Management ...........coeeeeverereereeeseenenn 377
Just-IN-TiMe ObJECES ... 351
K
keys

ChaNGING....c.ovveiciiece e 115

PrIMAIY ..ottt enens 117
L
[ADEIS. .. 196
limits and restrictions

atribute NAMES......cceeececee e

data 0bjECt NAMES........cvevieeeceiceere e

DB2 and autonUMDES ..........ccoeeiererieeeereesee e

DB2 datatypes.............

DB2 unique indexes.....

Informix attributes........ccceveveveveiececceceee

SQL Server and OULEr JOINS .......cccverererieeereerienennens 150
locking
log file
M
mail integration for Java applications..............cccoeeuene. 359
Maintained option for parent replicates...........cccceeeunee. 191
Manual CONVENLIONS..........cccceveeeeieeeeese e XiX
many-to-many relaionships........c.cceveeeeienniseneseeenns 108
mapping

JAALYPES. ..o 49, 50, 51
MELAGUENTES.....eveeveieticiee et aene s 343
methods

(DL @ o[ vt TR 297

factory

getting parent and child records.

instance

making remotely accessible..........cccoviveieieciiiinennnns 349

Versata CONNECLONS.......eeveeeeeeeeeeseeseeseeeseeseeeneenns 385

Versata LogiC Server SECUNtY ......oocovvreeerieereenereenes 375
Microsoft SQL Server

See SQL Server
modifying

JAALYPES ..o 194



multiple schemadeployment ..........cccoeeveeveierieseennn, 142

N

NaMINgG CONVENLIONS ........cccouieeeereeiriereeieseeee e 38

data model .
nesting busiNeSS rUles.........ccooeeeeiieere e 401
NUIEDITTtY FUIES ... 194, 234

O

object caching, coded values listS.........cocooereerereeninenne 96
objects

COMPAEA 1O FOWS.....coeiveeiieeeieieresieeere s sreseenas 351

(150 TES (= 1o [P 3n
online help

Contents.................

optimistic locking
Oracle
data type MapPINgS -......ccoveeereeereerereneeeseeeseesesaeseenes
deployment...........cc.......
granting permissions .
NaMING CONVENLIONS ........cereeriereeerie e seeaeseesesee e
quoted identifiers.......cooverennenecc e
running deployment scripts.....
sequential NUMDENING .......cooeerieireee e 53
setting up system DSN..... ... 124
OULEN JOINS....evieereiieiisie ettt et sre e 107, 150
overview
AHDULES. ... 98
businessrules.........
captions.......cceuee...
Code Editor ............
coded valueslists.............
data model deployment........
declarative businessrules.....
query objects........cccvevrvennnnn. .
FEENGINEEYING. c.c.veuevereeeceeiceie et se e seenes
remote ODjECt @CCESS ......covvivruirerereee e
Transaction Logic Designer ....
Versata Connectors..............c...

P

packaging
Versata CONNECLOLS.........occueeeieeeieeecee e eee e 395

parent replicate rules........ccvveeeveeeceseecee e 191, 232
Parentinsertable flag .........cocoo e, 344
performance
denormalizing for.......ceveerceiece e 37
(o] o]]< ot Qoo 4 11 ¢ o SN 341
OptiMIStiC [OCKING ...cveeeeee e 94
permissions, granting for datamodel..............ccceuene... 138
presentation rules

primary keys
production deployment to Versata Logic Server.......... 281
Q
qualification expression SYNtax.........cccoeeeeererereeiennens 245
queries
applications to databases...........ccoveerenererenicnineeas 342
defining SQL text
Order By Clause .......coveeviiieeceecesseeee e
Parentinsertable flag .........cooeeeeereieneineeecceene 344
run-time behavior
Where clause............
query definition..........ocoeeeiiiieine e
QUENY INSEANCE ...t
query objects
childmost data object ...........coceeereeeereenreieeceeeene 149
(o= 1] o TSN 152
efiNItION ... 287
design gUIdElineS........cccceieeerereeeeeeeeee 36, 150
implementation fileS .........cccccveiriinniiicceee 298-302
OVEIVIEW ...t 147-148
FElAtiONSNIPS ....ceeeeeeee e 149
quoted identifiers.......coooeerercienecereee 132, 139-141
quotes, handling inside Versata L ogic Server code strings
379
R
recomputing derivations ...........coeeerevneeneneseeenenenns 354
redeploying business Objects ...........coceeevveirenecnenne. 264
FEENQINEENTING ..euveeeeeeeie et sene
Reengineering Manager
referencing objects..............
referential integrity rules..........occooevriereeiennens 197, 226
registering ObJECES......cvvveiie e 311

many-to-many..........
Presentation FUIES.........cocivereeeeee et 195



INDEX

QUErY ODJECES.....oiciieececce s 149
referential integrity rules ........cccoveeveeereieireeee 197
type hierarchies..................... .
remote interface files
remote method invocation ..........ccceeeveeeeeceeeceeeenne 349, 350
remote ODJECt ACCESS......covuirrerece e 348
renaming
AITDULES ...
data objects
reports
bUSINESS FUIES FEPOIS.......ceeeeeieeeciee e 239
Impact AnalySISREPOIt ........c.eoeeeirireere e 88
repository
adding fil€S ..o 308
adding Versata Connectors.... ...392
(o= 1] 0 [P TSUOTPSR 58
datamodelS Stored iN.........coooeeieeriennere e 33
reserved words supported in businessrules.................. 247
resources for developers
technical SUPPOIt.......c.oveeeeiieriee e XXii
WED SITE ...ttt e XXi
FESIHICE FUIES ...t 197
result set
OPtiMIStiC IOCKING -..vevereeeieee e 94
reverse engineering
See reengineering
rows, compared to objects

Rule Builder
rules

See businessrules
run-time applications

schemas, deployment to multiple .........c.ccoeeieieiiecnnnne 142
scripts
generated fileS.....oo e
generating for data model deployment ... .
running deployment SCHptS .......cocoeeeereierenerenennens
security
AMDULES ... 258
writing custom security applications..........c.cccceeeee 376

414

Select Data Objects dial0g.........ccoveeverrieeieriniseesreeenen 130
sendMail Method .........ccoeeeieereiereeeee e 359
sequential NUMBENTNG.........ooereieieeeeere e 53-55
server classes, SUDCIasSiNg.......coeivvvceneesene e 340
SEIVEN BVENES ...ttt 334
Server Manager ........cccoeeeeveeneese e 128-133
ServerDeploy.log file.......ccvveeceiciccec e 134
setting up

DSN for a database server
smart code blocking.......ccooveviveveiieieeneesee e
spreadsheet-like functionality of businessrules........... 187
SQL

defining for data queries

expression evauator ...........

inquery objects.......c.ccoeereruenen.

in server data access COde. .........cvrureeirernrerirnesreenenes 346
SQL Server

data type Mappings. ......cccoeeeeeeererrerenereneeesenereees 4345

deployment

displayed in Reengineering Manager ............cccccceuenee 60

granting PerMiSSIONS.......c.ccoveueruererierererieieseeriesenaens 138

naming conventions

primary Keys........c.......

quoted identifiers.......coovveenenreeeeee e

restriction 0N OULESr JOINS........ccceeevereiieieeseirieneenns 150

running deployment SCriptS ........ccoceeerereeneerenennens 137

selecting in Rengineering Manager .........cocceveneneenene 61

sequential numbering...........ccoeevveienns .53, 54, 55

setting up SyStEM DSN ......oviviiiie e 124

validating datamodel...........ccoooveeiieienienni e 62, 64
Store with Super type hierarchies..........cccocecvveveiiennnne. 110
strings

handling Java qUOLES...........ccoeeireereee e 379
structural denormalization ............cuveeereecrerererenenens 37
subclassing

server classes
SUM TUIES. ...
superclass

data ODJECES ... 297
Sybase

data type MappPinNgS.......cccoeeeeeereereeresereeeseseseeseeeneas 46

deployment

displayed in Reengineering Manager ............ccceeeveneee 60

granting PerMiSSIONS.........ccoveuererererereriereseereesenaens 138

naming conventions

guoted identifiers.........ccceu....

running deployment SCriptS......cccoeeereeereneicrienennens 137

selecting in Rengineering Manager .........coccevenenueneee 61

sequential NUMbBEriNg........coeevveviivcisee e

setting up system DSN
syntax

ACtION EXPrESSIONS....cuvivereererieresieesreseeesseresressseseesens 246



BNF for rule expression..........ccueeeeveveeesvenennns 250-254
business rule eXpressions..........ccoeeeeereereeneseenenens 239
conditional expressions

constants supported..........
default rules expressions.........c.ccveeeeeneneeeeeeseneneas 246
formularules for expressions..........ccccoeeeeererereenene 245
generd guidelines for expressions..... ... 244
identifiers supported............ccceevrennee ... 247

reserved words..........

Syntax Helpersfor Code Editor..........ccocccvvveeivennnee. 317
T
technical SUPPOIt .......coveeeeeie e XXii
testing

DUSINESSTUIES ... 279

Versata CONNECLONS........ocevveriereeree e 394
transaction logic

basic steps for defining ........ccooeeieerierneresereeeee

building rules expressions....

defining ..o

deployment.......cccoeireree e

dESIgN ISSUES.....ceeeeeeieeee et
Transaction Logic Designer

OVEIVIBW ...ttt ettt eean 220
type hierarchies.........ccooeveevennciccce e 108-110
types

buSINESSTUIES ... 189-199

CUSEOIM COR ....ouenereeirecee ettt 323
U
updatability rUles........c.coeveeiie e 194, 234
updating

businessrules after delivery........cooooevieieieniinieennns 243

multiple data objects with business rules ... 192
user-defined eVents...........ccooeerernenennceeens ... 403
using coded valueslistsin validation rules.................... 95
\%
validating

dataMOCE!S ... 62

query ODJECE SYNEBX .......ceveeereeeeee e 177
validation rules

AMDULES. ...

coded valueslists...

dataobjects.............

defining ......ccovevenee.

INDEX

Versata Connectors
adding tO repOSItONIES......coueueeeieeeee e 392

Versata Logic Server
data access to result SEtS......coovvrieeeenersieeneseeeeeenes 341
deploying transaction 10giC tO........ccccecerereeene 268-283
Deployment Wizard...........coccoeveireneeienineneieeeneeens 268
development deployment...........cccovvevieieeeenieeneens 273
production deployment ............ccceoereeereenenenenenens 281
redeploying business Objects .........cccoereeicierencnnens 264
SECUNtY PrOPErtiES......cvveveieviieesieieetesieteee s 375
Versata Logic Server Console
setting data server Properties ........ocoeeeeveeeeicreeeeeas 389
setting up business objects..........ccccevveiieciiieiicnnns 263
Versata Logic Suite
ClaSSES ...t 326
dOCUMENEALION.......eeeeere e XVi
MBNUEL SEL ... e XVi
MELhOUS.......coeeeeeeee e 326
versata.vls. X DA Connector ... e 385
versata.vis. XDASQLCONNECLOL .......cccceveveeveecereeeeene 385
Virtual attributes.........cooveveenec e 104-106
Visual Agefor Javaobjects
remote method iNVOCatiON .........ccoeveeerereneieneneeene 350
W
Web site
A= £ ¢ T Lo XXI
WebSphere 4.0
setting default deployment values...........ccccccveenneee 283
What to Deploy dialog........cccoeeerenieereeerieeee e 131
wizards
Versata Logic Server Deployment wizard............... 268
X
XDA et
XML
data object definitions
filesfor relationships......
filesinrepository ............
importing data objects




INDEX

416



	Table of Contents
	Preface
	Versata Logic Suite documentation
	Versata Logic Suite Library
	Versata Logic Suite Library PDF Manuals
	Versata Logic Suite User Interface Help
	Versata Class Libraries Help
	Versata Logic Suite Readme

	Conventions for documentation and user interface help
	Additional documentation
	IBM WebSphere™ Application Server documentation


	Versata Logic Suite resources
	Sample database and sample applications
	Versata Web site
	Versata Knowledge Base
	Versata Developer Discussions
	Versata Customer Support

	Technical support for IBM WebSphere Application Server

	Introduction
	Overview
	Prerequisites
	How to use this guide

	Developing a Data Model
	Chapter overview
	Data model overview
	Data models versus repositories
	Object definitions

	Data model reference information
	Data model design guidelines
	Denormalizing for performance
	Naming conventions for data objects and attributes
	General naming conventions
	Informix naming conventions
	Oracle, Sybase, and Microsoft SQL Server naming conventions

	Data type mapping between the Versata Logic Suite and RDBMSs
	Oracle and Versata Logic Suite data type mappings
	Microsoft SQL Server and Versata Logic Suite data type mappings
	Sybase and Versata Logic Suite data type mappings
	Informix and Versata Logic Suite data type mappings
	DB2 Universal Database and Versata Logic Suite data type mappings
	ANSI SQL and Versata Logic Suite data type mappings

	Sequential numbering in the Versata Logic Suite
	Sequential numbering in Oracle
	Sequential numbering in Microsoft SQL Server and Sybase
	Sequential numbering in DB2 Universal Database


	Building a data model
	Repository file structure
	Creating a new repository
	Upgrading an existing repository
	Using the Reengineering Manager
	Reengineering Manager user interface
	Reengineering data objects into a repository
	Notes on reengineering data models
	Validating a data model
	Editing the data model validation utility commands file

	Using the Repository Exchange Manager
	Import dialog
	Importing repository objects


	Working with groups
	Adding groups
	Moving objects among groups
	Moving a single object
	Moving a single file
	Moving a group
	Using the Business Objects and Files Manager

	Renaming groups
	Deleting groups
	Finding objects and files
	Building and compiling group files

	Working with attribute templates
	Propagating templates
	Issues with attribute templates
	Property inheritance
	Data type changes
	Implementing changes in RecordSources

	Issues with attribute group templates
	Propagation of attribute group template changes
	Implementing changes in RecordSources



	Working with Data Objects
	Chapter overview
	Data object overview
	Adding data objects
	Create New Data Object wizard
	Creating a data object in the Versata Logic Studio
	Importing a data object from another repository
	Reengineering a data object
	Adding a data object from XML

	Modifying data objects
	Renaming data objects
	Deleting data objects
	Generating an Impact Analysis Report
	Data Object Dependency Log

	Setting properties for data objects
	Properties tab of the Transaction Logic Designer

	Setting optimistic locking for data objects
	Enabling resynchronization with a persistent data source
	Working with coded values lists
	Defining a coded values list
	Caching coded values lists


	Working with attributes
	Attributes and declarative business rules
	Attributes tab of the Transaction Logic Designer
	Add Attribute dialog

	Adding attributes to data objects
	Deleting attributes from data objects
	Renaming attributes
	Changing an attribute's data type
	Virtual attributes
	Example - virtual attributes in sum and count rules
	Defining an attribute as virtual


	Working with relationships
	Types of relationships supported
	Many-to-many relationships
	Type hierarchies
	Implementing type hierarchies
	Guidelines for Store with Super type hierarchies

	Relationships tab of Transaction Logic Designer
	Relationship Editor
	Adding relationships
	Adding a relationship from XML

	Deleting relationships
	Changing keys for relationships

	Working with indexes and primary keys
	Primary keys
	Index Editor
	Adding indexes
	Deleting indexes
	Changing index definitions


	Deploying Data Models
	Chapter overview
	Deployment overview
	Setting up a system DSN
	Deploying a data model to a database server
	Working with the Server Manager
	Server Manager Introduction dialog
	Connect for Auto Selection dialog
	Auto-select Changed Data Objects
	Select Data Objects dialog
	Deploy to Server or Scripts dialog
	What to Deploy dialog
	Data Model Deploy Options dialog
	Configuration Options dialog
	Ready to Deploy dialog
	Server Deployment Preview dialog

	Data model deployment files
	Deployment log file

	Generating deployment scripts instead of deploying to server
	Running deployment scripts
	Running deployment scripts against Oracle
	Running deployment scripts against Microsoft SQL Server or Sybase
	Running deployment scripts against Informix
	Running deployment scripts against DB2 Universal Database

	Granting permissions manually
	Permissions for Microsoft SQL Server and Sybase
	Permissions for Oracle

	Generating quoted identifiers
	Quoted identifiers for Oracle
	Quoted identifiers for Microsoft SQL Server and Sybase
	Quoted identifiers for Informix
	Quoted identifiers for DB2 Universal Database
	Testing the repository for quoted identifiers
	Example of quoted identifiers

	Data model deployment errors
	Deploying to multiple databases
	Example of multiple schema deployment



	Working with Query Objects
	Chapter overview
	Query object overview
	Query object definition
	Query object deployment
	When to use query objects in applications
	Childmost data object
	Query object relationships
	Query object design guidelines
	System validation of query objects

	Adding query objects
	New Query Object wizard
	Welcome to the New Query Object Wizard
	Choose Data Objects for the New Query Object
	Choose Attributes for the Query Object
	Specify Where/Order By Clause for the Query Object
	Specify Having/Group By Clause for the Query Object
	Finished


	Modifying query objects
	Query Object Designer
	Data Objects tab
	Attributes tab
	Query Object Expression Builder
	Joins tab
	Where/Order By tab
	Having/Group By tab
	SQL tab
	Properties tab

	Modifying underlying data objects for a query object
	Adding a data object
	Deleting a data object
	Changing a data object

	Modifying attributes for a query object
	Adding an attribute
	Deleting an attribute

	Working with joins
	Adding a join condition
	Deleting a join condition
	Modifying a join condition

	Adding selection and sort criteria for query object records
	Validating query object syntax
	Database and schema references in SQL text

	Defining a custom superclass for a query object
	Enabling deployment of attribute-level security data for a query object
	Enabling inserts to a parent data object
	Setting the ParentInsertable property in the Query Object Designer
	Notes about the ParentInsertable property

	Disabling resynchronization with a persistent data source


	Understanding Transaction Logic
	Chapter overview
	Transaction logic overview
	What are declarative business rules?
	Why use declarative business rules?
	Business rules functionality compared to spreadsheet functionality

	Types of business rules
	Derivation rules
	Multiple data object updates through cascading rules

	Attribute validation rules
	Presentation rules
	Captions

	Referential integrity rules
	Constraints
	Business rule actions

	Transaction logic processing
	Order of rule processing operations
	Before insert/update/delete event
	Set defaults
	Attribute alterability check
	Parent check/fetch parent replicate
	Evaluate formula
	Coded value constraint check
	Attribute validation check
	Business object constraint check
	Nullability check
	Conditional action
	Child cascades
	Parent adjustments
	After insert/update/delete event
	Nest levels
	Modification state flags


	Analyzing business requirements
	Business function definition
	Business requirements definition
	Mapping requirements to rules
	Top-down approach
	Selecting rules
	Mapping requirements to the data model

	Rules design patterns
	Recognizing non-declarative patterns



	Defining Business Rules
	Chapter overview
	Overview of business rules definition
	Business rules design issues
	General process for defining business rules
	Completing the prerequisites for business rule definition
	Defining basic declarative business rules
	Defining presentation rules
	Testing business rules and obtaining user feedback
	Redefining the data model and rules
	Defining extensions and customizations for rules


	Understanding the Transaction Logic Designer
	Attributes tab
	Derivation tab
	Validation/Data Type tab
	Presentation tab
	Notes tab

	Relationships tab
	Referential Integrity tab
	Error Messages While Preventing frame
	Presentation tab
	Extended tab

	Constraints tab
	Actions tab
	Properties tab
	Rule Builder

	Procedures for defining business rules
	Defining a derivation rule
	Deleting a derivation rule
	Defining a condition validation rule
	Defining a coded values list validation rule
	Defining a constraint
	Defining an action rule
	Defining a presentation rule to select a non-default archetype for an attribute
	Defining a presentation rule to add an image to a data object in a Java application
	Building rules expressions in the Rule Builder
	Generating business rules reports
	Business Rules Report dialog
	Printing data object rules
	Printing attribute rules

	Updating business rules

	Business rule syntax
	General guidelines for writing rules expressions
	Syntax for conditional expressions
	Note about using isNull in conditional expressions

	Syntax for formula expressions
	Syntax for default expressions
	Syntax for action expressions
	Note about using LIKE in rule expressions
	Elements supported in rule expressions
	Identifiers supported in rule expressions
	Reserved words in rule expressions
	Constants supported in rule expressions
	Tokens supported in rule expressions

	BNF for rule expression syntax


	Building and Deploying Business Objects
	Chapter overview
	Overview of business object generation and deployment
	Setting deployment options
	EJB deployment
	Attribute-level security deployment

	Files created during object generation
	Files created during object compilation
	Compiler defaults and option settings

	Additional files for deployment
	Required Versata Logic Suite JAR files
	Optional external dependent classes or JAR files

	Deploying to IBM WebSphere Application Server 4.0
	Setting up deployed objects in the Versata Logic Server Console
	Redeploying business objects

	Using menu options to build and compile business objects
	Saving changes to rebuilt query objects

	Using the Versata Logic Server Deployment wizard
	Deployment wizard user interface
	Deployment Options dialog
	Choose Versata Logic Server for Deployment dialog
	Finished dialog

	Deploying business objects to a development environment Versata Logic Server

	Hot deploy and dynamic reloading
	Hot deploying to Versata’s development environment
	Dynamic reloading in Versata’s development environment
	Hot deploy and dynamic reloading task reference

	Testing transaction logic
	Using Versata Logic Server Console rule tracing
	Debugging business object code

	Deploying business objects to a production environment
	Creating the .ear file
	Deploying the .ear file
	Setting default deployment values


	Understanding Business Object Files
	Chapter overview
	Overview of Versata Logic Server business objects
	Business object deployment
	Business object basic architecture

	Generated files for business objects
	Implementation files
	Data object implementation files
	Query object implementation files

	Remote and home interface files
	Home interface file
	Remote interface file

	Deployment descriptor file

	Reviewing file properties
	Reviewing file properties from the Objects tab
	Reviewing file properties from the Files tab
	Modifying a file’s read-only attribute

	Working with external files
	Adding files to a repository
	Referencing an existing file in a repository (Add Files)
	Copying an existing file into a repository (Add File Copies)
	Creating a new file in a repository

	Removing a user-defined file from a repository
	Adding files and packages to the classpath
	Registering objects
	Referencing registered objects


	Using a code editor
	Using an external Java code editor
	Using the Versata Code Editor
	Viewing code in the Versata Code Editor
	Smart code blocking
	Tips for editing code in the Versata Code Editor
	Opening the Versata Code Editor as a simple text editor
	Printing code from the Versata Code Editor
	Types of files that can be edited in the Versata Code Editor



	Extending Business Object Code
	Chapter overview
	Types of custom code
	Methods for instantiating business objects
	Factory methods
	Example of a custom factory method

	Instance methods
	System-supplied instance methods
	Examples of custom instance methods


	Server event-handling model
	How event-handling works
	Types of events
	Order of processing for commit events
	Adding server event-handling code
	Event-handling code examples

	Subclassing business object classes
	Subclassing versata.vls.DataObject
	Creating a DataObject subclass with specialized methods
	Applying a DataObject subclass to data objects


	Calling business object code from client applications
	Data access to result sets
	Object caching
	How an application queries a database
	Server data access by SQL string
	Methods to get related data object records

	Remote object access
	Making methods remotely accessible
	Integrating with custom applications and business objects
	Accessing remote objects from clients
	Creating rows versus creating objects
	Building business object collections

	Recomputing derivations
	Computing results without saving
	Java mail integration
	Setting up an email notification system


	SQL expression evaluator
	SQL parser
	Parse tree data structure
	SqlParser class

	SQLEval class
	Tuple interface
	Multiple eval methods
	SQLEval constructor
	SQLEval.setProperty method
	Subclassing the SQLEval class
	Understanding SQL expression evaluations

	Run-time changes required to use the SQL evaluator
	SQL expression evaluator examples
	General SQL evaluator example
	Client-side filtering example


	Working with Versata Logic Server security properties
	Versata Logic Server security APIs
	Writing custom security applications

	Working with JTS transaction management
	Suppressing creation of abstract methods
	Handling Java quotes inside Versata Logic Server code strings

	Working with Versata Connectors
	Chapter overview
	eXtensible Data Access (XDA)
	Understanding Versata Connectors
	Instantiating Connectors
	Connector classes and methods
	Retrieval processing
	Save processing

	Associating Connectors with data objects
	Defining Connectors for data objects
	Setting up Connectors in the Versata Logic Server Console

	Creating custom Versata Connectors
	Adding a Versata Connector file to a repository
	Writing code for a custom Versata Connector
	Testing a custom Versata Connector
	Packaging a custom Versata Connector


	Transaction Logic Examples
	Appendix overview
	Calculation in parent, based on child data
	Comparing values from sibling objects
	Constraining updates based on parent data
	Nesting rules
	Retrieving data with a user-defined method
	Overriding normal rule behavior with user-defined events
	Using batch programs to trigger calendar-driven rules

	Index

