
Business Object
Developer Guide
Versata Logic Suite - WebSphere 4.0 Edition

VERSATA, INC.
300 LAKESIDE DRIVE

SUITE 1500
OAKLAND, CA 94612-3534
PHONE: 510.238.4100
INTERNET: HTTP://WWW.VERSATA.COM

VS55E40-BDG-03

Copyright
Copyright © 2002 Versata, Inc. All rights reserved. Printed in the United States of America.

This software and documentation package contains proprietary information of Versata, Inc. and is provided under a
license agreement containing restrictions on use and disclosure. The software and documentation is also protected
under copyright law. Reverse engineering of the software is prohibited.

The information in this document is subject to change without notice. Versata, Inc. provides this publication "as is"
without warranty of any kind, either express or implied, including but not limited to the implied warranties or
conditions of merchantability or fitness for a particular purpose.

Versata Logic Suite, Versata Logic Studio, and Versata Logic Server are trademarks of Versata, Inc.

IBM, AS/400, CICS, DB2, MQSeries, Netfinity, OS/390, and VisualAge are registered trademarks and AIX, DB2
Connect, MVS, and WebSphere are trademarks of IBM Corporation.

Microsoft, Microsoft SQL Server, Microsoft Internet Explorer, Windows, Windows NT, Microsoft Access, Visual
J++, Visual Basic, Active X, FrontPage, Microsoft Visual SourceSafe, and SourceSafe are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Netscape, Netscape Navigator, and the Netscape N logo are registered trademarks of Netscape Communications
Corporation in the United States and other countries. Netscape Communicator, Netscape Enterprise Server, Netscape
FastTrack Server, and Netscape Navigator Gold are also trademarks of Netscape Communications Corporation, which
may be registered in other countries.

Adobe, the Adobe logo, Acrobat, and the Acrobat logo are trademarks of Adobe Systems Incorporated.

Oracle and SQL*Plus are registered trademarks and SQL*Net is a trademark of Oracle Corporation.

HotJava, Java, JavaBeans, JavaScript, JDBC, JDK, JNDI, and Solaris are trademarks and Sun MicroSystems is a
registered trademark of Sun MicroSystems, Inc.

Adaptive Server Enterprise, jConnect, and Sybase SQL Server are trademarks of Sybase, Inc. in the United States and/
or other countries.

Informix Dynamic Server and Informix-Driver for JDBC are trademarks and Informix is a registered trademark of
Informix Corporation.

MERANT, DataDirect, INTERSOLV, PVCS, and SequeLink are registered trademarks of MERANT Solutions, Inc.

Macromedia and Dreamweaver are registered trademarks of Macromedia, Inc. in the United States and/or other
countries.

VisiBroker and VisiBroker for Java are trademarks or registered trademarks of Inprise Corporation.

HP-UX is a registered trademark of Hewlett-Packard Company.

Rational and Rational Rose are registered trademarks of Rational Software Corporation.

VeriSign is a trademark of VeriSign, Inc.

WinZip is a registered trademark of Nico Mac Computing, Inc.

Seagate Crystal Reports is a trademark of Seagate Software, Inc.

Pentium is a registered trademark of Intel Coporation in the U.S. and other countries.

BEA and BEA WebLogic are registered trademarks and BEA WebLogic Server is a trademark of BEA Systems, Inc.

All company, product, service, and trade names referenced may be service marks, trademarks, or registered

trademarks of their respective owners.

Table of Contents
Preface
Versata Logic Suite documentation..xvi

Versata Logic Suite Library..xvi
Versata Logic Suite Library PDF Manuals ...xvi
Versata Logic Suite User Interface Help ..xvii
Versata Class Libraries Help .. xviii
Versata Logic Suite Readme .. xviii

Conventions for documentation and user interface help ..xix
Additional documentation..xx

IBM WebSphere™ Application Server documentation ...xx
Versata Logic Suite resources ..xxi

Sample database and sample applications ..xxi
Versata Web site ...xxi
Versata Knowledge Base ...xxii
Versata Developer Discussions ...xxii
Versata Customer Support ...xxii

Technical support for IBM WebSphere Application Server ... xxiii

CHAPTER 1 Introduction ... 25
Overview...26
Prerequisites ..27
How to use this guide..28
iii

CHAPTER 2 Developing a Data Model ..31
Chapter overview.. 32
Data model overview .. 33

Data models versus repositories .. 33
Object definitions .. 33

Data model reference information .. 36
Data model design guidelines.. 36
Denormalizing for performance .. 37
Naming conventions for data objects and attributes.. 38

General naming conventions .. 38
Informix naming conventions .. 39
Oracle, Sybase, and Microsoft SQL Server naming conventions .. 40

Data type mapping between the Versata Logic Suite and RDBMSs .. 40
Oracle and Versata Logic Suite data type mappings.. 41
Microsoft SQL Server and Versata Logic Suite data type mappings... 43
Sybase and Versata Logic Suite data type mappings ... 46
Informix and Versata Logic Suite data type mappings .. 47
DB2 Universal Database and Versata Logic Suite data type mappings... 49
ANSI SQL and Versata Logic Suite data type mappings .. 52

Sequential numbering in the Versata Logic Suite ... 53
Sequential numbering in Oracle ... 53
Sequential numbering in Microsoft SQL Server and Sybase... 54
Sequential numbering in DB2 Universal Database .. 55

Building a data model ... 56
Repository file structure .. 56
Creating a new repository.. 58
Upgrading an existing repository .. 58
Using the Reengineering Manager .. 59

Reengineering Manager user interface... 59
Reengineering data objects into a repository ... 60
Notes on reengineering data models .. 61
Validating a data model.. 62
Editing the data model validation utility commands file ... 64

Using the Repository Exchange Manager ... 65
Import dialog .. 65
Importing repository objects .. 66

Working with groups... 68
Adding groups ... 68
Moving objects among groups .. 69

Moving a single object ... 69
Moving a single file.. 69
Moving a group .. 70
Using the Business Objects and Files Manager ... 70
iv

Renaming groups ...71
Deleting groups..71
Finding objects and files ..72
Building and compiling group files ...72

Working with attribute templates ..73
Propagating templates..74
Issues with attribute templates ...75

Property inheritance..75
Data type changes ...76
Implementing changes in RecordSources...77

Issues with attribute group templates...77
Propagation of attribute group template changes ...78
Implementing changes in RecordSources...79

CHAPTER 3 Working with Data Objects.. 81
Chapter overview ..82
Data object overview...83
Adding data objects...84

Create New Data Object wizard ..84
Creating a data object in the Versata Logic Studio..84
Importing a data object from another repository ...85
Reengineering a data object ...85
Adding a data object from XML..86

Modifying data objects..87
Renaming data objects ...87
Deleting data objects..87
Generating an Impact Analysis Report ..88

Data Object Dependency Log...88
Setting properties for data objects..89

Properties tab of the Transaction Logic Designer ..90
Setting optimistic locking for data objects...94
Enabling resynchronization with a persistent data source ...95
Working with coded values lists ..95

Defining a coded values list..96
Caching coded values lists..96

Working with attributes...98
Attributes and declarative business rules...98
Attributes tab of the Transaction Logic Designer..99

Add Attribute dialog ...100
Adding attributes to data objects..102
Deleting attributes from data objects ...103
Renaming attributes ...103
Changing an attribute’s data type ...103
v

Virtual attributes .. 104
Example - virtual attributes in sum and count rules ... 106
Defining an attribute as virtual ... 106

Working with relationships ... 107
Types of relationships supported... 107
Many-to-many relationships.. 108
Type hierarchies .. 108

Implementing type hierarchies ... 109
Guidelines for Store with Super type hierarchies... 110

Relationships tab of Transaction Logic Designer.. 111
Relationship Editor .. 113
Adding relationships.. 113

Adding a relationship from XML... 114
Deleting relationships .. 115
Changing keys for relationships .. 115

Working with indexes and primary keys .. 117
Primary keys .. 117
Index Editor ... 118
Adding indexes .. 119
Deleting indexes .. 119
Changing index definitions.. 120

CHAPTER 4 Deploying Data Models..121
Chapter overview.. 122
Deployment overview... 123
Setting up a system DSN .. 124
Deploying a data model to a database server.. 126

Working with the Server Manager .. 128
Server Manager Introduction dialog... 128
Connect for Auto Selection dialog ... 128
Auto-select Changed Data Objects... 129
Select Data Objects dialog ... 130
Deploy to Server or Scripts dialog ... 130
What to Deploy dialog ... 131
Data Model Deploy Options dialog.. 132
Configuration Options dialog... 132
Ready to Deploy dialog .. 133
Server Deployment Preview dialog.. 133

Data model deployment files ... 133
Deployment log file.. 134

Generating deployment scripts instead of deploying to server.. 135
Running deployment scripts .. 136

Running deployment scripts against Oracle ... 136
vi

Running deployment scripts against Microsoft SQL Server or Sybase137
Running deployment scripts against Informix..137
Running deployment scripts against DB2 Universal Database ..137

Granting permissions manually ...138
Permissions for Microsoft SQL Server and Sybase ...138
Permissions for Oracle..138

Generating quoted identifiers...139
Quoted identifiers for Oracle ..139
Quoted identifiers for Microsoft SQL Server and Sybase..139
Quoted identifiers for Informix ..140
Quoted identifiers for DB2 Universal Database ...140
Testing the repository for quoted identifiers ..141
Example of quoted identifiers...141

Data model deployment errors...141
Deploying to multiple databases..142

Example of multiple schema deployment...143

CHAPTER 5 Working with Query Objects ... 145
Chapter overview ..146
Query object overview ..147

Query object definition ..147
Query object deployment...147
When to use query objects in applications...148
Childmost data object ..149
Query object relationships ...149
Query object design guidelines ..150
System validation of query objects ..151

Adding query objects ..152
New Query Object wizard ...153

Welcome to the New Query Object Wizard ...154
Choose Data Objects for the New Query Object..154
Choose Attributes for the Query Object ...156
Specify Where/Order By Clause for the Query Object ..157
Specify Having/Group By Clause for the Query Object ..157
Finished...158

Modifying query objects ...159
Query Object Designer ..160

Data Objects tab..162
Attributes tab ..164
Query Object Expression Builder ...166
Joins tab ..167
Where/Order By tab..168
Having/Group By tab..169
vii

SQL tab... 169
Properties tab.. 171

Modifying underlying data objects for a query object .. 173
Adding a data object... 173
Deleting a data object ... 173
Changing a data object ... 173

Modifying attributes for a query object ... 174
Adding an attribute ... 174
Deleting an attribute ... 175

Working with joins .. 175
Adding a join condition .. 175
Deleting a join condition .. 175
Modifying a join condition... 176

Adding selection and sort criteria for query object records... 176
Validating query object syntax .. 177

Database and schema references in SQL text .. 178
Defining a custom superclass for a query object ... 179
Enabling deployment of attribute-level security data for a query object .. 179
Enabling inserts to a parent data object ... 179

Setting the ParentInsertable property in the Query Object Designer ... 180
Notes about the ParentInsertable property ... 180

Disabling resynchronization with a persistent data source.. 182

CHAPTER 6 Understanding Transaction Logic..183
Chapter overview.. 184
Transaction logic overview... 185

What are declarative business rules? ... 185
Why use declarative business rules? ... 186
Business rules functionality compared to spreadsheet functionality... 187

Types of business rules ... 189
Derivation rules ... 189

Multiple data object updates through cascading rules.. 192
Attribute validation rules ... 193
Presentation rules... 194

Captions.. 196
Referential integrity rules .. 197
Constraints ... 198
Business rule actions ... 198

Transaction logic processing... 200
Order of rule processing operations... 201

Before insert/update/delete event ... 202
Set defaults ... 202
Attribute alterability check ... 202
viii

Parent check/fetch parent replicate ...202
Evaluate formula...202
Coded value constraint check ...202
Attribute validation check...202
Business object constraint check ..203
Nullability check...203
Conditional action...203
Child cascades ..203
Parent adjustments ..204
After insert/update/delete event ..204
Nest levels...204
Modification state flags ..205

Analyzing business requirements..206
Business function definition ..206
Business requirements definition...206
Mapping requirements to rules ..207

Top-down approach ..207
Selecting rules...208
Mapping requirements to the data model ...209

Rules design patterns ...209
Recognizing non-declarative patterns...210

CHAPTER 7 Defining Business Rules .. 211
Chapter overview ..212
Overview of business rules definition...213

Business rules design issues...213
General process for defining business rules...216

Completing the prerequisites for business rule definition ..216
Defining basic declarative business rules ...216
Defining presentation rules...217
Testing business rules and obtaining user feedback ...217
Redefining the data model and rules ..218
Defining extensions and customizations for rules ..219

Understanding the Transaction Logic Designer..220
Attributes tab..221

Derivation tab ...221
Validation/Data Type tab..222
Presentation tab...225
Notes tab ...225

Relationships tab..225
Referential Integrity tab..226
Error Messages While Preventing frame..227
Presentation tab...228
ix

Extended tab ... 228
Constraints tab ... 228
Actions tab... 229
Properties tab ... 230
Rule Builder... 230

Procedures for defining business rules ... 232
Defining a derivation rule.. 232
Deleting a derivation rule .. 234
Defining a condition validation rule .. 234
Defining a coded values list validation rule .. 234
Defining a constraint ... 235
Defining an action rule .. 236
Defining a presentation rule to select a non-default archetype for an attribute................................... 237
Defining a presentation rule to add an image to a data object in a Java application 238
Building rules expressions in the Rule Builder ... 239
Generating business rules reports .. 239

Business Rules Report dialog... 241
Printing data object rules .. 242
Printing attribute rules .. 242

Updating business rules ... 243
Business rule syntax.. 244

General guidelines for writing rules expressions .. 244
Syntax for conditional expressions.. 245

Note about using isNull in conditional expressions ... 245
Syntax for formula expressions ... 245
Syntax for default expressions... 246
Syntax for action expressions .. 246
Note about using LIKE in rule expressions... 246
Elements supported in rule expressions... 247

Identifiers supported in rule expressions.. 247
Reserved words in rule expressions ... 247
Constants supported in rule expressions .. 248
Tokens supported in rule expressions .. 248

BNF for rule expression syntax ... 250

CHAPTER 8 Building and Deploying Business Objects ...255
Chapter overview.. 256
Overview of business object generation and deployment .. 257

Setting deployment options ... 257
EJB deployment ... 257
Attribute-level security deployment ... 258

Files created during object generation... 259
Files created during object compilation... 259
x

Compiler defaults and option settings ..260
Additional files for deployment ...261

Required Versata Logic Suite JAR files ...261
Optional external dependent classes or JAR files...261

Deploying to IBM WebSphere Application Server 4.0 ...262
Setting up deployed objects in the Versata Logic Server Console ..263
Redeploying business objects ..264

Using menu options to build and compile business objects..265
Saving changes to rebuilt query objects...266

Using the Versata Logic Server Deployment wizard ..268
Deployment wizard user interface ...269

Deployment Options dialog..269
Choose Versata Logic Server for Deployment dialog..270
Finished dialog..272

Deploying business objects to a development environment Versata Logic Server273
Hot deploy and dynamic reloading ...275

Hot deploying to Versata’s development environment ...275
Dynamic reloading in Versata’s development environment..276
Hot deploy and dynamic reloading task reference...276

Testing transaction logic ...279
Using Versata Logic Server Console rule tracing..279
Debugging business object code..279

Deploying business objects to a production environment...281
Creating the .ear file...281
Deploying the .ear file..282
Setting default deployment values ...283

CHAPTER 9 Understanding Business Object Files .. 285
Chapter overview ..286
Overview of Versata Logic Server business objects ...287

Business object deployment...287
Business object basic architecture ...288

Generated files for business objects..290
Implementation files ..291

Data object implementation files ..291
Query object implementation files..298

Remote and home interface files..303
Home interface file ...303
Remote interface file...304

Deployment descriptor file ..305
Reviewing file properties ..306

Reviewing file properties from the Objects tab ...306
Reviewing file properties from the Files tab..307
xi

Modifying a file’s read-only attribute ... 307
Working with external files... 308

Adding files to a repository ... 308
Referencing an existing file in a repository (Add Files) .. 308
Copying an existing file into a repository (Add File Copies) .. 309
Creating a new file in a repository ... 309

Removing a user-defined file from a repository.. 310
Adding files and packages to the classpath ... 310

Registering objects ... 311
Referencing registered objects ... 312

Using a code editor ... 313
Using an external Java code editor .. 313
Using the Versata Code Editor .. 313

Viewing code in the Versata Code Editor .. 314
Smart code blocking... 317
Tips for editing code in the Versata Code Editor ... 317
Opening the Versata Code Editor as a simple text editor... 318
Printing code from the Versata Code Editor .. 318
Types of files that can be edited in the Versata Code Editor ... 318

CHAPTER 10 Extending Business Object Code..321
Chapter overview.. 322
Types of custom code.. 323
Methods for instantiating business objects ... 326

Factory methods .. 326
Example of a custom factory method... 330

Instance methods ... 330
System-supplied instance methods... 331
Examples of custom instance methods... 332

Server event-handling model .. 333
How event-handling works.. 333
Types of events .. 334
Order of processing for commit events ... 334
Adding server event-handling code ... 335
Event-handling code examples .. 335

Subclassing business object classes .. 339
Subclassing versata.vls.DataObject ... 339

Creating a DataObject subclass with specialized methods .. 339
Applying a DataObject subclass to data objects .. 340

Calling business object code from client applications.. 341
Data access to result sets ... 341

Object caching .. 341
How an application queries a database... 342
xii

Server data access by SQL string ...346
Methods to get related data object records ...347

Remote object access ...348
Making methods remotely accessible ...349
Integrating with custom applications and business objects ..350
Accessing remote objects from clients ...350
Creating rows versus creating objects ..351
Building business object collections...352

Recomputing derivations ...354
Computing results without saving ...355
Java mail integration ..358

Setting up an email notification system..359
SQL expression evaluator ...364

SQL parser ...364
Parse tree data structure ..365
SqlParser class ..366

SQLEval class..367
Tuple interface ..367
Multiple eval methods ..368
SQLEval constructor ..368
SQLEval.setProperty method ...368
Subclassing the SQLEval class...369
Understanding SQL expression evaluations ...369

Run-time changes required to use the SQL evaluator ...370
SQL expression evaluator examples..371

General SQL evaluator example...371
Client-side filtering example ..371

Working with Versata Logic Server security properties..375
Versata Logic Server security APIs...375
Writing custom security applications...376

Working with JTS transaction management..377
Suppressing creation of abstract methods ...378
Handling Java quotes inside Versata Logic Server code strings ...379

CHAPTER 11 Working with Versata Connectors .. 381
Chapter overview ..382
eXtensible Data Access (XDA) ..383
Understanding Versata Connectors ...384

Instantiating Connectors ..384
Connector classes and methods ...385
Retrieval processing...387
Save processing..388
xiii

Associating Connectors with data objects .. 389
Defining Connectors for data objects .. 389
Setting up Connectors in the Versata Logic Server Console... 389

Creating custom Versata Connectors .. 391
Adding a Versata Connector file to a repository ... 392
Writing code for a custom Versata Connector .. 393
Testing a custom Versata Connector ... 394
Packaging a custom Versata Connector .. 395

APPENDIX A Transaction Logic Examples...397
Appendix overview... 398
Calculation in parent, based on child data .. 399
Comparing values from sibling objects .. 399
Constraining updates based on parent data... 400
Nesting rules ... 401
Retrieving data with a user-defined method ... 402
Overriding normal rule behavior with user-defined events .. 403
Using batch programs to trigger calendar-driven rules... 405

INDEX ..407
xiv

Preface
xv

PREFACE
VERSATA LOGIC SUITE DOCUMENTATION
Versata Logic Suite documentation
The Versata Logic Suite documentation is electronically provided in .pdf and .hlp file
formats during installation of the system. Review the following sections for documentation
file descriptions, installation locations, and viewing instructions.

Versata Logic Suite Library
The Versata Logic Suite Library consists of .pdf (portable document format) files, an .hlp
file, a chm file, and a readme.txt file. These files are automatically installed in the \Help
subfolder of the default directory during installation.

The Versata Logic Suite Library (Library.pdf) is the main page Provides links to all of the
.pdf manuals, hlp file, chm file, readme, and full-text search of all of the .pdf manuals.

To launch Library.pdf after installing Versata Logic Suite and Acrobat Reader:

On the desktop, click the Start button � Programs � Versata Logic Suite 5.5
<edition_Name> � Versata Logic Suite Library.

Note: Each .pdf file should be viewed, searched, and printed using the 4.05 version of
Adobe® Acrobat® Reader with Search to ensure that the full-text search feature
functions correctly and that graphics display properly.

This software is available for installation from the main Versata installation screen, or
you may download it at www.adobe.com.

Note: This version of the Versata Logic Suite allows integration of transaction logic and
process logic in your business objects. The integration features and documentation for
those features is only available if you have purchased the Process Logic Add-On.

Versata Logic Suite Library PDF Manuals

The following .pdf files comprise the Versata Logic Suite Library:

n Getting Started Guide (GettingStarted.pdf). Provides basic installation and
configuration steps for the Versata Logic Studio, Versata Logic Server, and other products
needed to run the Versata Logic Suite.

n Tutorial (Tutorial.pdf). Steps you through features of the Versata Logic Suite. It also
describes Java and HTML sample applications and shows you how to create your own
Java and HTML applications (with presentation design only).

n Architecture and Project Guide (Architecture&ProjectGuide.pdf). Introduces the
system architecture, project development process, and team development functionality of
the Versata Logic Suite. This guide also contains a glossary of Versata Logic Suite, Java™,
and database terms.
xvi

PREFACE
VERSATA LOGIC SUITE DOCUMENTATION
n Business Object Developer Guide (BusinessObjectDeveloperGuide.pdf). Describes
how to use the Versata Logic Studio to design a data model and transaction logic for
applications. Sections of this manual explain data object and query object definition,
business rules development, data model and transaction logic deployment, and rules
testing.

n Application Developer Guide (ApplicationDeveloperGuide.pdf). Describes how to
use the Versata Logic Studio to create the user interface for applications (with presentation
design only). Sections of the manual explain HTML and Java application development,
application deployment, application testing, and application delivery.

n Administrator Guide (AdministratorGuide.pdf). Describes how to administer
deployed objects and define security in the Versata Logic Server through the Versata Logic
Server Console and server code.

n Reference Guide (ReferenceGuide.pdf). Contains reference information, including the
Versata Logic Studio user interface help, a high-level summary of system class libraries,
details about repository .xml and .dtd files, and a glossary of terms.

n Migration Guide (MigrationGuide.pdf). Provides guidelines for upgrading to release
5.5 of Versata Logic Suite from a previous version.

n PDX Guide (PDXGuide.pdf). Describes how to use the user interface development
features included in PDX. These features have now been integrated into the core Versata
Logic Suite product.

n Using PDX Frameless Archetypes (Using PDX Frameless Archetypes.pdf).
Describes how to use the Frameless Archetypes feature included in PDX. This feature has
now been integrated into the core Versata Logic Suite product.

Versata Logic Suite User Interface Help

The Versata Logic Suite User Interface Help is provided in a Microsoft HTML help file called
vstudio.chm. This help file provides context-sensitive help with detailed descriptions of
the frames and fields in the Versata Logic Studio.

To launch vstudio.chm:

1. Focus on a window or frame in the Versata Logic Studio and press F1 to launch a context-
sensitive help topic for that element.

OR

1. Choose Help � Versata Logic Suite Library in the Versata Logic Studio.

2. In the Versata Logic Suite Library, click the Versata User Interface Help link.

3. Click yes when prompted to open the file.
xvii

PREFACE
VERSATA LOGIC SUITE DOCUMENTATION
OR

1. Choose Start � Programs � Versata Logic Suite 5.5 <edition_name> � Versata Logic
Suite Library.

2. In the Versata Logic Suite Library, click the Versata User Interface Help link.

3. Click yes when prompted to open the file.

Versata Class Libraries Help

The Versata Class Libraries are provided in a WinHelp file called vstudio.hlp. This .hlp
file describes all of the classes and methods included in the Versata Logic Suite packages.

To launch vstudio.hlp:

1. Focus on a class name, method, or a string in the Code Editor in the Versata Logic Studio
and press F1 to launch a context-sensitive help for that element.

OR

1. Choose Help � Versata Logic Suite Library in the Versata Logic Studio.

2. In the Versata Logic Suite Library, click the Versata Class Libraries Help link.

3. Click yes when prompted to open the file.

OR

1. Choose Start � Programs � Versata Logic Suite 5.5 <edition_name> � Versata Class
Libraries Help.

Versata Logic Suite Readme

The readme.txt file provides latebreaking release notes about the Versata Logic Suite.

To launch readme.txt:

n During installation of the Versata Logic Studio, click the Yes button when prompted to
view the readme.

n Choose Start � Programs � Versata Logic Suite 5.5 <edition_name> � Versata Logic
Suite Readme.
xviii

PREFACE
VERSATA LOGIC SUITE DOCUMENTATION
Conventions for documentation and user interface help
The following conventions are used in the documentation to convey special meaning.

n Code, such as folder names, file names, and example code snippets, is shown in Courier
New font, like this.

n Brackets, < > around part of a file name, or path, indicate that the information between the
brackets should be filled in as appropriate. For example, the default directory path
\Archetypes\<application_name>\<repository_name> indicates that text
between the brackets depends on the name of the currently opened application and
repository. Note that these are different from the angle brackets that appear around tags and
macro code.

n Toolbar menu options in procedures are shown in this format: On the desktop, click the
Start button � Programs � Versata Logic Suite 5.5 � Versata Logic Server Console. The
first option is the top menu in the hierarchy. Succeeding options progress to submenus.

n Menu commands and tab names are shown with their full paths:

n Menus. From the File menu, choose New � Repository.

n Tabs. This option is set on the Properties: Attributes tab of the Transaction Logic
Designer.

n A Caution or Warning is important advice that you should read carefully.

The Versata User Interface help uses these additional conventions.

n Click F1 while focus is on a dialog, window, menu, or toolbar in the Versata Logic Studio
to launch context-sensitive help.

n Contents, Index, and Find tabs are provided on the left pane of the Help window when you
launch the Versata Logic Suite help file.

n Click the Contents tab to look in the table of contents. It lists the modules and main
sequences of the help.

n Click the Index tab to search the index.

n Click the Find tab to search the text of the entire help system.

n Browse buttons (Back and Forward) are provided in the Help toolbar, and Previous and
Next hyperlinks are provided in the Help topics. Use these options to scroll through
sequences of related topics.

n To print a help topic, click the Print button at the top of the Help window. To print an entire
book of help topics, select the book on the Contents tab and click the Print button.
xix

PREFACE
VERSATA LOGIC SUITE DOCUMENTATION
Additional documentation

IBM WebSphere™ Application Server documentation

For information about features specific to the IBM WebSphere™ Application Server, consult
the documentation at the following Web sites:

n To access the IBM Documentation Center, visit the following Web site:
<as_root>\web\doc\begin_here\index.html

n For the latest corrections and additions to this information, consult the IBM WebSphere™
Application Server Web site. To view the latest Release Notes, visit the Library page of the
Web site: http://www.ibm.com/software/webservers/appserv/

n For instructions to help you enable debugging, tracing, logging, and monitoring to detect
and diagnose problems in both the IBM WebSphere™ Application Server and your own
programs, refer to the WebSphere™ online help and the FAQ at http://www.ibm.com/
software/webservers/appserv/library.html

n For information about the IBM HTTP Server, visit the following Web site:
http://www.ibm.com/software/webservers/

n For more information on using and configuring DB2, visit the following site:
http://www.software.ibm.com/cgi-bin/db2www/library/pubs.d2w/
report#UDBPUBS

To correctly display the preceding documentation, you need Netscape Navigator 4.07 or
Microsoft Internet Explorer 4.01 or higher.
xx

PREFACE
VERSATA LOGIC SUITE RESOURCES
Versata Logic Suite resources
The following resources are available to help you learn more about the Versata Logic Suite.

Sample database and sample applications
The Versata Logic Studio includes a sample database with examples of business requirements,
functions, and rules. Extensive sample applications are provided to illustrate features of the
HTML and Java applications generated by the Versata Logic Suite (with presentation design
only). These sample applications include example code for you to use to implement complex
features more easily.

The samples and sample database are located in the Samples directory where you install the
Versata Logic Suite. The vsamples.hlp file, located in the Help directory, provides detailed
descriptions of the sample database, rules examples, and sample applications (with
presentation design only). In addition, the most recent description of each sample application
is located in the About_*.app.rtf file in each sample application folder in the Versata Logic
Studio Explorer.

To access the Versata Logic Suite sample applications (with presentation design only):

1. Launch the Versata Logic Studio.

2. Open sampDB1.xml (the sample database) as your repository.

3. Expand the Client Applications folder in the Versata Logic Studio Explorer.

4. Select a particular sample application and run it.

5. Review the About_*.app.rtf file in that sample application folder (Files tab) or choose
Help � Samples to launch vsamples.hlp for information about that sample application.

Versata Web site
Browse the Versata Web site at www.versata.com for the latest information about:

n Versata Logic Suite products, upgrades, and demos

n Sales

n Employment opportunities

n Training

n Professional Services
xxi

PREFACE
VERSATA LOGIC SUITE RESOURCES
Versata Knowledge Base
The Versata Knowledge Base is available to help with your technical questions about the
Versata Logic Suite. You can search through our growing library of technical articles or
participate in our online Developer Discussions forum.

To access the Versata Knowledge Base:

1. Visit the Versata Web site at http://www.versata.com.

2. Click the Training and Support tab, then select Versata Knowledge Base.

Versata Developer Discussions
Access Versata Developer Discussions on the Versata Web site. Sign up to view the postings
and subscribe to the mailing list to receive the latest news about the Versata Logic Suite
automatically. These technical discussions provide a forum for customers, partners,
distributors, and Versata internal employees to post technical and general questions,
suggestions, and solutions about development, run-time, and production features of the
Versata Logic Suite.

To access the Versata Knowledge Base:

1. Visit the Versata Web site at http://www.versata.com.

2. Click the Training and Support tab and select Developer Discussion.

Versata Customer Support
You may use any of the following methods to contact Versata Customer Support.

n Internet. At the Versata website (www.versata.com), click on the Training and Support
tab to find information about Versata Customer Support.

n Phone. 510.238.4100. Between 7:00am and 5:30pm, Pacific Time, Monday-Friday

n E-mail.

n For software issues: techsupport@versata.com

n For documentation issues: docs@versata.com
xxii

PREFACE
TECHNICAL SUPPORT FOR IBM WEBSPHERE APPLICATION SERVER
Technical support for IBM WebSphere Application
Server

If you experience a problem that is specifically related to the IBM WebSphere™ Application
Server, call:

n Your IBM systems integration consultant, if your implementation is being assisted by IBM
Global Services

n IBM Software Service Support: 1-800-237-5511

To learn more about IBM Software Support, see the IBM support page at:
http://www.ibm.com/Support

You can also e-mail IBM directly with your suggestions and requirements for future releases.
Report noncritical defects that do not require a personal interaction or formal support to:

WASTEAM@US.IBM.COM.
xxiii

PREFACE
TECHNICAL SUPPORT FOR IBM WEBSPHERE APPLICATION SERVER
xxiv

CHAPTER 1 Introduction
25

INTRODUCTION
OVERVIEW
Overview
This guide explains how you can use the Versata Logic Suite to develop business objects that
execute transaction logic for run-time Java and HTML enterprise applications. Versata Logic
Suite business objects run on Versata Logic Server integrated with a J2EE application server.
Business objects’ transaction logic can be used with application user interfaces created in the
Versata Logic Studio or in a JSP development environment.

This guide walks you through the steps needed to create a Versata repository data model that
maps to an external data source, and to define business rules on data model objects that
implement transaction logic on the Versata Logic Server. Tasks covered include how to
reengineer from and deploy to external data sources, how to modify data object, attribute, and
relationship characteristics in the Versata Logic Studio, how to create and modify query
objects, the non-persistent data sources used for display purposes in applications, how to
define different types of business rules to execute transaction logic, how to build and compile
business rule input into deployable files, how to package and deploy business object files to a
Versata Logic Server and J2EE application server, how to extend transaction logic with
custom code, and how to implement data source connectivity for objects on Versata Logic
Server.
26

INTRODUCTION
PREREQUISITES
Prerequisites
Before you begin designing transaction logic in the Versata Logic Studio, you should have a
good understanding of the following:

n The business requirements for application data. To determine requirements for an
application, you need to define the processes to be automated and the data to be stored.
Process automation and data storage both affect the business object model and the
transaction logic that you need to define in the Versata repository. You need to define the
requirements to enforce for processes and data. You can do this through a variety of
methods, including use case diagrams and context diagrams.

n The logical data model to be used for repository business objects. You can use standard
logic data modeling (LDM) methods to produce a logical business object model. A logical
model represents the overall logical structure of the data to be stored, independent of any
software or data storage structure. A logical model gives a formal representation of the data
needed to run an enterprise or a business activity. Versata does not restrict the tools you can
use to produce this logical model. Note that Versata offers a separate product that provides
integration with Rational Rose.

n The physical database(s) against which enterprise applications will run. You then can
determine the best way to produce this model in a Versata repository.

n System requirements for the project development environment and production
environment, including the J2EE application server setup.

You may want to review the Architecture and Project Guide and the Reference Guide to get an
overview of how the Versata Logic Suite works. The Architecture and Project Guide provides
an introduction to developing transaction logic and applications in the Versata Logic Studio,
including how to manage projects and facilitate team development. The Reference Guide
contains details about the Versata Logic Studio development environment and the .xml and
.dtd files used to store Versata repository source information. This guide also includes a
glossary of terms and other general reference information.

If you plan to extend business object transaction logic code, you require knowledge of Java
programming concepts, EJB architecture, and J2EE specification requirements. The depth of
knowledge required depends on the complexity of the custom code. Also, you should
understand the class libraries provided with the Versata Logic Suite. Details about these classes
and their methods are available in the Javadoc API help installed with the product.
27

INTRODUCTION
HOW TO USE THIS GUIDE
How to use this guide
This guide includes the following information.

n The Preface describes the documentation accompanying the Versata Logic Suite and points
to additional resources, such as the sample database and applications included in the
sample repository, SampDB1.xml, that gets installed with the product.

n This chapter outlines the purpose, prerequisites and contents of this guide.

n Chapters 2-5 explain how to produce a data model in a Versata repository and modify it in
the Versata Logic Studio. This model represents physically stored data accessed by
applications and governed by transaction logic.

n Chapter 2, “Developing a Data Model” on page 31, provides guidelines for data model
objects and attributes, including naming conventions and data type mappings. This
chapter describes the alternate methods for creating a repository data model, explains
how to validate a data model, discusses the use of groups to divide data model objects
into manageable subsets, and explains the use of attribute templates to provide data
object inheritance.

n Chapter 3, “Working with Data Objects” on page 81, provides instructions for creating
and modifying data objects in the Versata Logic Studio. Topics covered include coded
values lists, attribute persistence, data type, and other properties, relationships, and
indexes.

n Chapter 4, “Deploying Data Models” on page 121, explains how to use the Server
Manager wizard to deploy Versata Logic Studio data model definitions to supported
RDBMSs.

n Chapter 5, “Working with Query Objects” on page 145, discusses how and why to use
query objects, special reusable presentation objects, to display data in applications.

n Chapters 6-11 and Appendix A discuss how to define rules on business objects to
implement transaction logic, and describe business object files’ contents and how to
extend them.

n Chapter 6, “Understanding Transaction Logic” on page 183, provides an overview of
the declarative business rules used to implement transaction logic on Versata Logic
Server. This chapter includes an outline of transaction logic processing, descriptions of
the different types of rules, and a discussion of how to translate requirements into rules.

n Chapter 7, “Defining Business Rules” on page 211, provides guidelines for defining
business rules, outlines the Versata Logic Studio business rule definition process,
describes the Transaction Logic Designer, provides instructions for defining specific
types of rules, and details rule expression syntax.
28

INTRODUCTION
HOW TO USE THIS GUIDE
n Chapter 8, “Building and Deploying Business Objects” on page 255, explains how to
build and compile Java classes or EJBs for business objects, and how to package these
files in a J2EE enterprise application (EAR). This chapter describes how to use the
available wizard to package these files and deploy them to a development Versata
Logic Server running on IBM WebSphere Application Server Single Server Edition,
and how to copy files and run a batch file to set them up on a production Versata Logic
Server running on IBM WebSphere Application Server Advanced Edition.

n Chapter 9, “Understanding Business Object Files” on page 285, outlines the contents of
the files that Versata Logic Studio generates for business objects, explains how to make
external files available in a Versata repository, and describes the tools available to
review and modify file properties and code.

n Chapter 10, “Extending Business Object Code” on page 321, discusses extensions to
business object code. This chapter describes key generated code, including object
instantiation code, event-handling code, SQL expression evaluation code , security
management code, and remote object access code. This chapter provides procedures
and examples for some common code extensions, including custom event-handling and
subclassing.

n Chapter 11, “Working with Versata Connectors” on page 381, describes Versata Logic
Suite’s eXtensible Data Access (XDA) structure and the Versata Connectors used for
business objects’ database connectivity.

n Appendix A, “Transaction Logic Examples” on page 397, provides examples of
different business requirements and illustrates how they can be enforced through
Versata Logic Suite business rules.
29

INTRODUCTION
HOW TO USE THIS GUIDE
30

CHAPTER 2 Developing a Data Model
31

DEVELOPING A DATA MODEL
CHAPTER OVERVIEW
Chapter overview
Read this chapter to understand how to complete tasks to create and modify your data model in
the Versata Logic Studio. This chapter discusses the data model components stored in a
Versata repository, outlines basic reference information to consider before you begin data
modeling, and provides instructions for the different methods for creating a data model. After
reading this chapter, you should be able to use the Versata Logic Studio to develop a data
model for the data to be displayed and modified in your applications.

This chapter includes the following:

n “Data model overview” on page 33, introduces the basic structure and contents of a
Versata data model.

n “Data model reference information” on page 36, provides some basic rules to follow as
you are developing a data model in a Versata repository, including the following:

n “Data model design guidelines” on page 36

n “Denormalizing for performance” on page 37

n “Naming conventions for data objects and attributes” on page 38

n “Data type mapping between the Versata Logic Suite and RDBMSs” on page 40

n “Sequential numbering in the Versata Logic Suite” on page 53

n “Building a data model” on page 56, provides instructions for creating a data model in a
Versata repository, including the use of the Repository Exchange Manager and
Reengineering Manager. This section also describes the file structure for Versata
repositories.

n “Working with groups” on page 68, describes how to create and use groups to subdivide
the objects in your data model.

n “Working with attribute templates” on page 73, describes how to create abstract attributes
at the repository level and use them to implement attribute inheritance in repository data
objects.

Note: For information about adding and modifying data objects in a data model, see
“Working with Data Objects” on page 81.

For information about adding and modifying query objects in a data model, see
“Working with Query Objects” on page 145.
32

DEVELOPING A DATA MODEL
DATA MODEL OVERVIEW
Data model overview
A data model provides a logical representation of the way data is organized in a physical data
source, illustrating the structure of the data and the relationships among the data. The data
model is the basic building block for development. A data model must be present in a
repository in order for you to define transaction logic (business rules) and design application
user interfaces in the Versata Logic Studio.

Data models versus repositories
Data models are stored in repositories. Because each repository can contain only one data
model, the terms data model and repository sometimes are used interchangeably and may get
confused. Keep in mind that the repository is really more than the data model. Initially, a
repository holds just the data model. Then, as you define transaction logic and, if you are using
the Versata Logic Studio for presentation design, build the application user interface, these
objects are added to the repository. The repository thus becomes a container for metadata about
all of the application components that are defined in Versata Logic Studio.

Repository metadata is stored in .xml files. Each repository has its own .xml file. Each first-
level repository object also has its own .xml file. First-level repository objects are data
objects, relationships, query objects, applications, and forms. Of these, data objects,
relationships, and query objects are considered part of the data model. The attributes for each
data object also are part of the data model. Attribute information is stored in each data object’s
.xml file. For more information about Versata Logic Suite .xml files, see the Reference
Guide.

You have the option of creating groups to contain the objects within your data model. Each
group serves as a logical container for repository objects and their files in the Versata Logic
Studio and as a physical container for object files on the filesystem. Your repository folder
includes a subfolder for each group you create, and object files are stored within these group
subfolders. The creation of groups eases work with large repositories. Groups usually
correspond to functional areas or types of objects.

Object definitions
Following are some definitions of the objects in the data model:

n Data object. A representation of an object stored in a physical data source. Every data
object usually maps to one relational table, but it may also represent an object from another
type of data source, such as a packaged or legacy application. In the Versata Logic Studio,
you view and modify data objects in the Transaction Logic Designer. You can define new
data objects with the New Data Object wizard, accessed through the right-click sub-menu.
33

DEVELOPING A DATA MODEL
DATA MODEL OVERVIEW
n Attribute. A characteristic of a physically stored data object, with defined values for
different instances of the object. For objects stored in relational databases, each attribute
maps to a column. The values for an attribute must be of a particular data type. In the
Versata Logic Studio, you define, view, and modify attributes on the Attributes tab of the
Transaction Logic Designer.

n Relationship. An association between two data objects based on matching values for an
attribute that is included in both data objects. In the Versata Logic Studio, you define, view,
and modify relationships on the Relationships tab of the Transaction Logic Designer.

n Query object. An object based on a SQL query that selects attributes from one data object
or multiple related data objects. Serves as a reusable presentation object in applications,
useful for limiting or grouping data displayed on forms. Query objects are not physically
stored. In the Versata Logic Studio, you view and modify query objects in the Query
Object Designer. You can define new query objects with the New Query Object wizard.

Data objects, including their attributes and relationships, are physically stored. To run
applications from a Versata repository, data objects from that repository must be deployed to
one or more physical data sources and connectivity must be established to these data sources.
The Deployment Manager automates deployment for relational databases (including
Microsoft SQL Server, Sybase, Oracle, Informix, and DB2 Universal Database). For
information, see “Deploying a data model to a database server” on page 126. For these
relational databases, the Versata Logic Suite also includes Versata Connectors that provide
connectivity with applications. For other types of data sources, you need to manually manage
data model deployment, and you need to write custom Connectors to provide connectivity. For
information, see “Working with Versata Connectors” on page 381. Because query objects are
not physically stored, they are not deployed to a database server. Query objects are a different
class of objects than data objects, so information about working with them is in a separate
chapter.

Both data objects and query objects are considered business objects. As such, they are exposed
as distinct objects in the Versata Logic Studio Explorer. Transaction logic is defined on data
objects. To run Versata Logic Studio-generated applications, you must build and compile
business objects, then deploy them to the Versata Logic Server and the IBM WebSphere
Application Server. The Versata Logic Studio automates these processes.

During the build and compile process, the Versata Logic Studio creates various .java files for
each data object and each query object. The files for each data object include transaction logic
execution code to implement rules defined on that data object. The implementation files for
each data object and query object include those required to create Enterprise JavaBeans (EJB)
for each one. Each data object can be built into an entity Bean, while each query object can be
built into a session Bean. You set deployment properties in the Transaction Logic Designer
and Query Object Designer to indicate whether to implement objects as Beans or simply as
Java classes. During the deployment process, business object files are copied to locations
accessible to the Versata Logic Server and accessible to IBM WebSphere Application Server.
For more information about the files created when you build, compile, and deploy business
objects, see “Building and Deploying Business Objects” on page 255.
34

DEVELOPING A DATA MODEL
DATA MODEL OVERVIEW
Note: This chapter includes information about all RDBMSs supported by the Versata Logic
Suite. Every release of the Versata Logic Suite may not support every RDBMS
discussed in this chapter. For information about the RDBMSs supported by this release,
see the Getting Started Guide.
35

DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION
Data model reference information
Review this section before you begin working on your Versata data model.

Data model design guidelines
When you build or modify a data model for use with the Versata Logic Suite, observe the
standard guidelines for your environment and modeling tools. Before you begin work with
your data model, work on defining your business requirements. For information about
defining business requirements, see “Analyzing business requirements” on page 206. For
information about the Versata Logic Suite development process, see the Architecture and
Project Guide.

Data model design in the Versata Logic Suite is iterative. You can refine the data model as
needed as you define business rules and application user interfaces, and discover additional
requirements. When you modify the data model, you simply need to redeploy to the database
server to implement changes. In most cases, you can use the Deployment Manager to automate
this task.

You need to consider Versata Logic Suite-specific characteristics, because the data model
serves as the starting point for transaction logic and applications.You must consider the
attributes required to build business rules. Also, you must consider the data to be displayed on
application forms or pages. The Versata Logic Studio provides techniques for you to refine
your data model as needed for transactino logic and data display without changing the
physically stored data. You can define virtual attributes, attributes that are calculated for use in
transaction logic but not physically stored. You can create query objects, data sources that are
instantiated as needed for data display rather than physically stored.

The following are additional issues to consider:

n You may need to define multiple query objects in your data model. Most applications use
query objects as data sources instead of data objects. Query objects are generally more
effective because they exclude unnecessary data attributes and include join data. Use the
New Query Object wizard to define new query objects. Use the Query Object Designer to
modify existing query objects. Define as many query objects as possible at the beginning
of your development process, adding more after you prototype your application user
interface and clarify which data to display on forms or pages. You can define query objects
at any stage in the development process, and you can replace data objects with the new
query objects at any time. For information about query objects, see page 145.
36

DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION
n You can use coded values lists to validate user selections of attribute values rather than
picks or other referential integrity methods. Coded values lists are preferred over
referential integrity rules when the number of values is small and the values do not change
often. Define coded values lists early so that they appear in your prototype applications.
You can add coded values list values at any point in development – you will not need to
edit or recompile applications. For more information, refer to page 95.

Note that data values for a data object used as a coded values list are not stored in the data
object’s .xml file, but in a .csv file of the same name.

n Give careful consideration to how you denormalize your data model. In many cases
denormalization may simplify rule definition and improve application performance. For
information, see “Denormalizing for performance” on page 37. The Versata Logic Suite
provides virtual attributes so you can create attributes that are used for rule processing but
not stored in the database. For information, see page 104.

n Use junction data objects to implement many-to-many relationships. For more information,
see “Many-to-many relationships” on page 108.

n Implement type hierarchies in Store with Super data objects. For more information, see
“Type hierarchies” on page 108.

n Observe the Versata Logic Suite naming conventions. Avoid the use of server-reserved
words; for example, do not name a data object Sort or Order. Use singular names for data
objects. Avoid the use of non-standard characters, such as embedded spaces, that require
quoted identifiers. The Versata Logic Suite supports quoted identifiers, but they often are
not supported in basic interactive query tools. It also is useful to set your own conventions
in naming objects. For example, you might assign prefixes for coded values lists and query
objects.

n Give careful consideration to attributes’ data types. In some cases, you may be able to
achieve performance improvements by modifying data types. For example, a memo
attribute may require multiple SQL statements for an insert, but if you redefine that
attribute to be text, variable length, only one statement is required.

Denormalizing for performance
Denormalization is often an issue when declaring business rules. In the Versata Logic Studio,
we generally recommend that you denormalize data if it improves the performance of your
applications. For example, you might make a data object that duplicates customer names and
current balances if obtaining that information from the normalized data objects is particularly
slow.
37

DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION
Another example of when to denormalize is when you need to assure that a customer’s
account balance does not exceed the credit limit. In a fully normalized database, the
application would issue aggregate queries to sum each of the order items and orders. This
querying would reduce performance noticeably, so the classical response is to calculate and
store customer balance as a stored attribute and update it when orders are updated. In hand-
coded systems, the trade-off for denormalizing has been a risk to database integrity—since the
adjustment logic must be placed in multiple transactions—and disk space. In the Versata Logic
Suite, such performance denormalizations are maintained with guaranteed integrity, and disk
space is rarely an issue.

Note that performance-oriented denormalizations are in sharp contrast to structural
denormalizations. Structural denormalizations are usually database design errors that result in
hiding the proper number of data objects. The two most common errors are repeating fields
and collapsing parent data in child rows. The denormalizations that we recommend are those
that improve the performance of transaction logic execution, such as using a parent replicate
derivation rule rather than a join.

Use the same procedures to denormalize the data that you would use in other development
environments. The Versata Logic Suite maintains referential integrity for the denormalized
data, so the only real cost of denormalization is disk space.

The Versata Logic Studio allows you to define derived attributes as virtual, meaning their
values are calculated as necessary to provide values for rules, but they are not physically
stored. This feature provides you with another option if you want to avoid denormalizing. For
more information, see “Virtual attributes” on page 104.

Naming conventions for data objects and attributes
Naming conventions vary among data modeling tools. The following points explain how the
Versata Logic Suite addresses names and recommends conventions for data models. We also
recommend that you run the data model validation utility to check the data object and attribute
names in your data model.

Note: Every release of Versata Logic Suite may not support every RDBMS discussed in this
section. For information about the RDBMSs supported by this release, see the Getting
Started Guide.

General naming conventions

n The Versata Logic Suite does not support data object names shorter than 4 characters if you
intend to deploy the data object to the database server using Versata Studio.

n Data object names cannot begin with an underscore character.
38

DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION
n Data object names should not end with the text “Base”. This ending would cause the
object’s implementation file name to look like a base implementation file, resulting in
confusion.

n The Versata Logic Suite does not support attribute names longer than 31 characters.

n Spaces and underscores are the only special characters supported in data object or attribute
names. If you use spaces in names, deploy the data model using quoted identifiers, and note
that many tools do not support quoted identifiers.

n Use singular nouns for data objects (for example, EMPLOYEE rather than EMPLOYEES).
They make better default captions in your applications.

n Each business object is defined in the interface files <Object_name>.java and
<Object_NameHome>.java, and is implemented in the class file
<Object_NameImpl>.java. Naming of custom object files follows the same pattern.

n By default, the attribute name is used for the attribute control caption on a form. You can
define more meaningful captions (or captions with special characters) in the Transaction
Logic Designer to override the default.

n Avoid using SQL reserved words (such as Order and Date) for data object and attribute
names. Note that you are not prevented for using these types of reserved words for names.
However, these errors are found when the data model is validated.

n For junction data objects (also known as "intersection" data objects), we recommend
names that combine the names of the primary data objects. For example, you could use the
name EMPLOYEESKILL for the junction data object linking EMPLOYEE and SKILL
data objects.

n The Versata Logic Studio allows you create a data object with the same name as a user-
defined Java file in the repository. In this case, if the data object is enabled for remote
access, duplicate .java files exist. To avoid this duplication, do not give a data object a
name that matches a repository Java file.

Informix naming conventions

n The Versata Logic Studio uses the first 13 characters of a data object name for code
generation. To avoid package name duplication errors, make sure that the first 13
characters of your data object names are unique.

n The Versata Logic Studio uses the first 13 characters of an attribute name for code
generation. To avoid duplication of variable names in packages when attributes are used in
business rules (key and derived attributes), make sure that the first 13 characters of your
attribute names are unique.

n Data object names and attribute names should not be longer than 18 characters.
39

DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION
Oracle, Sybase, and Microsoft SQL Server naming conventions

n The Versata Logic Studio uses the first 17 characters of a data object name for code
generation. To avoid package name duplication errors, make sure that the first 17
characters of your data object names are unique.

n The Versata Logic Studio uses the first 17 characters of an attribute name for code
generation. To avoid duplication of variable names in packages when attributes are used in
business rules (key and derived attributes), make sure that the first 17 characters of your
attribute names are unique.

n Data object names and attribute names should not be longer than 30 characters for Sybase
or Microsoft SQL Server, and should not be longer than 29 characters for Oracle.

Data type mapping between the Versata Logic Suite and
RDBMSs

When you reengineer an RDBMS database into a Versata Logic Suite repository, the data
types of the native RDBMSs are mapped automatically to Versata Logic Suite data types.

When you use the Deployment Manager to deploy a Versata Logic Suite data model to a
database server, the Versata Logic Suite data types are mapped automatically to the database
server’s native data types native to the database server.

For attributes that were reengineered from an RDBMS database, the Versata Logic Suite saves
the original data type in the repository. If you do not change the attribute’s data type, the saved
data type is deployed back to the database server. If an attribute was changed after
reengineering, was created in the Versata Logic Studio, or is being deployed to a different type
of database server than the one from which it was reengineered, Versata uses the default data
type from the mapping table for deployment.

Data type mappings are global in a repository and cannot be controlled on a per-object, per-
attribute basis. Conversion of data types during reengineering is determined by the
requirements of each RDBMS and cannot be modified.

For each Versata Logic Suite data type, there is a default attribute archetype used for
applications designed in the Versata Logic Studio. This default is used to construct attributes in
scalar displays. If you want to build a scalar display with non-default attribute archetypes, you
can override the default archetype in the Transaction Logic Designer.
40

DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION
Note: Determine the correct data type for attributes that are keys early in your development
process. You may not be able to change the data type of a key in the Versata Logic
Studio. If you need to change the data type for an attribute that is a key, you need to
drop the key, change the data type, then recreate the key and its index. You also need to
review any relationships involving that key and any rules dependent on those
relationships, and recreate them if necessary. For instructions for changing data types,
see “Changing an attribute's data type” on page 103.

Every release of the Versata Logic Suite may not support every RDBMS discussed in
this section. For information about the RDBMSs supported by this release, see the
Getting Started Guide.

Some of the data types listed in the following mappings tables include terms in
parentheses after the name of the type. For numerical data types, the first term in the
parentheses represents the precision of the data type (the total number of digits it
contains). The second term represents the scale of the data type (the number of decimal
places it contains). For non-numerical data types, the term in parentheses represents the
number of characters allowed for an attribute value of that data type. Also, the term p in
parentheses represents the precision. The term (s) represents the scale of the data type.

Oracle and Versata Logic Suite data type mappings

The following mappings are used when you reengineer an Oracle database to a repository and
when you deploy a Versata Logic Suite data model to an Oracle database.

Note: CLOB support is provided for Oracle 8, with the following guidelines: Read is fully
supported for all CLOB attributes. Pre-populated CLOB attributes allow text updates of
unlimited size. CLOB attributes that were not previously populated or that are being
inserted as new records have a maximum text size of 4kb.

Reengineering from Oracle to the Versata Logic Suite

Original data types
in Oracle RDBMS

Reengineered data types
in Versata Logic Suite repository

Char (1-255)
VarChar (1-255)
VarChar2 (1-255)
NChar (1-255)
NVarChar2 (1-255)

Text
41

DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION
Char (256-2000)
VarChar (256-4000)
VarChar2 (256-4000)
NChar (256-2000)
NVarChar2 (256-2000)
Long
CLOB
NCLOB

Memo

Number (1-2,0) Number, Size=Byte

Number (3-4, 0) Number, Size=Integer

Number (5-9,0) Number, Size=Long Integer

Float (63-126)
Number (1-38,5-126)

Number, Size=Double

Float (0-62) Number, Size=Single

Number (where no other mapping applies) Number, Size=Decimal (p,s)

Date Date/Time

Number (15,4) Currency

Raw (1-255)
LongRaw
BLOB
BFile
Other unmapped

LongBinary

Original data types
in Oracle RDBMS

Reengineered data types
in Versata Logic Suite repository
42

DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION
Deploying from the Versata Logic Suite to Oracle

The following table lists default data type mappings for deployments to Oracle. Mappings
apply to attributes with data types that were not reengineered.

Note: Decimal calculation errors may occur when a large value is entered for a column of data
type Single in a repository deployed to Oracle.

Microsoft SQL Server and Versata Logic Suite data type mappings

The following mappings are used when you reengineer a Microsoft SQL Server database to a
repository and when you deploy a Versata Logic Suite data model to a Microsoft SQL Server
database.

Note: As of release 7.0, Microsoft SQL Server provides support for large character fields, up
to a maximum length of 4000. Versata Logic Suite does not enforce its size
requirements, so developers have responsibility for providing the data type sizes to
meet these requirements. If errors occur during reengineering or deployment,
developers need to fix them.

Data types in
Versata Logic Suite repository Data types as deployed to Oracle

Text VarChar2

Memo VarChar2 (1500)

Number, Size=Byte Number (3,0)

Number, Size=Integer Number (10,0)

Number, Size=Long Integer Number (10,0)

Number, Size=Double Float (126)

Number, Size=Single Float (63)

Number, Size=Decimal (p,s) Number (p,s)

Date/Time Date

Yes/No Number (3,0)

Currency Number (15,4)

LongBinary LongRaw

AutoNumber Number (10,0)
43

DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION
Reengineering from Microsoft SQL Server to the Versata Logic Suite

Original data types
in Microsoft SQL Server RDBMS

Reengineered data types
in Versata Logic Suite repository

Char (1-255)
VarChar for SQL Server 6.5 and earlier (1-255)
VarChar for SQL Server 7.0 and later (1-4000)
NChar (1-255)
NVarChar (1-255)

Text

Char (256-8000)
VarChar (256-8000)
NChar (256-8000)
NVarChar (256-8000)Text
NText

Memo

TinyInt Number, Size=Byte

SmallInt Number, Size=Integer

Int Number, Size=Long Integer

Numeric
Decimal
Float (0-126)

Number, Size=Double

Real (0-62) Number, Size=Single

Decimal or Numeric (where no other mapping
applies)

Number, Size= Decimal (p,s)

DateTime
SmallDateTime
TimeStamp

Date/Time

Bit Yes/No

Money
SmallMoney

Currency

Binary (30-8000)
VarBinary (30-8000)
Image
Other unmapped

LongBinary
44

DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION
Deploying from the Versata Logic Suite to Microsoft SQL Server

The following table lists default data type mappings for deployments to Microsoft SQL Server.
Mappings apply to attributes with data types that were not reengineered.

Data types in Versata Logic Suite
repository

Data types as deployed to Microsoft SQL
Server

Text VarChar

Memo Text

Number, Size=Byte TinyInt

Number, Size=Integer SmallInt

Number, Size=Long Integer Int

Number, Size=Double Float

Number, Size=Single Real

Number, Size=Decimal (p,s) Numeric (p,s)

Date/Time DateTime

Yes/No Bit

Currency Money

LongBinary Image

AutoNumber Int
45

DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION
Sybase and Versata Logic Suite data type mappings

The following mappings are used when you reengineer a Sybase database to a data model/
repository and when you deploy a Versata Logic Suite data model to a Sybase database.

Reengineering from Sybase to the Versata Logic Suite

Original data types
in Sybase RDBMS

Reengineered data types
in Versata Logic Suite repository

Char (1-255)
VarChar (1-255)
VarChar2 (1-255)

Text

Text Memo

TinyInt Number, Size=Byte

SmallInt Number, Size=Integer

Int Number, Size=Long Integer

Numeric
Decimal
Float (0-126)

Number, Size=Double

Real (0-62) Number, Size=Single

Decimal or Numeric (where no other mapping
applies)

Number, Size=Decimal (p,s)

DateTime
SmallDateTime
TimeStamp

Date/Time

Bit Yes/No

Money
SmallMoney

Currency

Binary (30-255)
VarBinary (30-255)
Image
Other unmapped

LongBinary
46

DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION
Deploying from the Versata Logic Suite to Sybase

The following table lists default data type mappings for deployments to Sybase. Mappings
apply to attributes with data types that were not reengineered.

Informix and Versata Logic Suite data type mappings

The following mappings are used when you reengineer an Informix database to a repository
and when you deploy a Versata Logic Suite data model to an Informix database.

Data types in
Versata Logic Suite repository Data types as deployed to Sybase

Text VarChar

Memo Text

Number, Size=Byte SmallInt(5,0)

Number, Size=Integer SmallInt

Number, Size=Long Integer Int

Number, Size=Double Float

Number, Size=Single Real

Number, Size=Decimal (p,s) Numeric (p,s)

Date/Time DateTime

Yes/No Bit

Currency Money

LongBinary Image

AutoNumber Number (10,0)
47

DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION
Reengineering from Informix to the Versata Logic Suite

Original data types
in Informix RDBMS

Reengineered data types
in Versata Logic Suite repository

Char (1-255)
Character (1-255)
VarChar (0-255)
Character Varying (0-255)
NChar (1-255)
NVarChar (1-255)
Interval (50)

Text

Char (256+)
Character (256+)
VarChar (256+)
Character Varying (256+)
NChar (256+)
NVarChar (256+)
Text

Memo

Number (1-2,0) Number, Size=Byte

SmallInt Number, Size=Integer

Int
Integer
Serial

Number, Size=Long Integer

Dec
Decimal
Numeric
Double Precision
Float

Number, Size=Double

Real
SmallFloat

Number, Size=Single

Date
DateTime

Date/Time, SubType=Date and Time

Money Currency

Byte LongBinary
48

DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION
Deploying from the Versata Logic Suite to Informix

The following table lists default data type mappings for deployments to Informix. Mappings
apply to attributes with data types that were not reengineered.

Note: Indexed attributes that you plan to deploy to an Informix database must have a length
(size) of less than 255. You cannot deploy to Informix if any attributes have indexed
attributes greater than or equal to 255.

DB2 Universal Database and Versata Logic Suite data type
mappings

The following mappings are used when you reengineer a DB2 Universal Database to a
repository and when you deploy a Versata Logic Suite data model to a DB2 UDB database.

Note: DB2 UDB does not support some precisions that are supported for corresponding
Versata Logic Suite data types, for example for VarChar and for Float.

Data types in
Versata Logic Suite repository Data types as deployed to Informix

Text VarChar

Memo Text

Number, Size=Byte SmallInt

Number, Size=Integer SmallInt

Number, Size=Long Integer Integer

Number, Size=Double Float

Number, Size=Single Float

Date/Time, SubType=Date and Time DateTime Year to Second

Yes/No SmallInt

Currency Money (15,4)

LongBinary Byte

AutoNumber Serial
49

DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION
Reengineering from DB2 Universal Database to the Versata Logic Suite

Original data types
in DB2 UDB

Reengineered data types
in Versata Logic Suite repository

Character (1-255)
VarChar (1-255)
Graphic (1-255)
VarGraphic (1-255)

Text

Long VarChar
Long VarGraphic
VarChar (256-32672)
VarGraphic (256-16336)
CLOB
DBCLOB

Memo

SmallInt Number, Size=Integer

BigInt
Integer

Number, Size=Long Integer

Decimal (Numeric)
Double (0-126) (Float)

Number, Size=Double

Real (0-62) Number, Size=Single

Date Date/Time, SubType=Date

Time Date/Time, SubType=Time

TimeStamp Date/Time, SubType=Date and Time

BLOB LongBinary
50

DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION
Deploying from the Versata Logic Suite to DB2 Universal Database

The following table lists default data type mappings for deployments to DB2 UDB. Mappings
apply to attributes with data types that were not reengineered.

Note: DB2 Universal Database supports the AutoNumber data type used in Versata Logic
Suite.

Data types in
Versata Logic Suite repository Data types as deployed to DB2 UDB

Text VarChar
Graphic

Memo CLOB

Number, Size=Integer SmallInt

Number, Size=Long Integer Integer (10)

Number, Size=Double Double

Number, Size=Single Real

Date/Time, SubType=Date Date

Date/Time, SubType=Time Time

Date/Time, SubType=Date and Time TimeStamp

Yes/No SmallInt

Currency Decimal (15,4)

LongBinary BLOB
51

DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION
ANSI SQL and Versata Logic Suite data type mappings

The following table lists the ANSI SQL data types corresponding to the Versata Logic Suite
data types.

ANSI SQL data types Versata Logic Suite data types

VarChar Text

Long VarChar Memo

TinyInt Number, Size=Byte

SmallInt Number, Size=Integer

Int Number, Size=Long Integer

Double Precision Number, Size=Double

Real Number, Size=Single

Decimal (p,s) Number, Size=Decimal (p,s)

TimeStamp Date/Time

Bit Yes/No

N/A Currency

Long VarBinary LongBinary

N/A AutoNumber
52

DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION
Sequential numbering in the Versata Logic Suite
Sequential numbering is a property of columns in database tables. It enables a numeric column
to generate a sequential list of unique numbers upon insert. Across RDBMS platforms, this
function is generally implemented through some form of sequence parameter or data type
defined on the column.

When you reengineer an RDBMS table containing a sequence number column, the Versata
Logic Studio converts it to the AutoNumber data type. When you deploy a data model to a
database server, the Versata Logic Studio generates corresponding RDBMS objects and code
for attributes with AutoNumber data types. The Versata Logic Studio also displays and fetches
appropriate values when a user creates new rows that contain sequence numbers.

Note: Every release of the Versata Logic Suite may not support every RDBMS discussed in
this section. For information about the RDBMSs supported by this release, see the
Getting Started Guide.

Sequential numbering in Oracle

In Oracle, the Create Sequence command is used to assign unique numbers (such as
customer IDs) and to create a sequence that can be accessed by insert and update
statements. Here is an example of the Create Sequence command:

The default increment value is 1. A positive increment causes ascending incrementing of the
sequence number. A negative increment causes descending incrementing. "Start with"
establishes the seed value with which the sequence will begin.

For example, if you increment by 5 starting with 10000, the value for the first row upon insert
will be 10005, the value for the second row will be 10010, and so on.

create sequence CustomerID
increment by 1
start with 10000;
53

DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION
Typically, a sequence in Oracle is used in a set of statements like the following:

In this example, the sequence number property NextVal is associated with the column
designated as the sequence number column and tells Oracle to generate the next sequence
number value. Hence, the number is guaranteed to be unique. Upon insert, the sequence
number property is retrieved each time a value is to be assigned, the value of the last row is
referenced, and the next value is inserted.

Sequential numbering in Microsoft SQL Server and Sybase

For Microsoft SQL Server and Sybase, the identity property is assigned to a column at the
time of table creation. Using this property, the database server automatically generates a
sequence number and assigns it upon insert. As in Oracle, a starting value and an increment
value must be assigned as parameters to the identity property.

Note: Once the identity property is assigned to a column in Microsoft SQL Server or Sybase,
the only way to remove the property is to drop the data object and recreate it without
the property. You cannot remove it with the ALTER TABLE command.

Identity Columns

When you deploy a data model to Microsoft SQL Server or Sybase, the Versata Logic Suite
converts all AutoNumber attributes to Identity columns. The columns create unique,
sequential numbers for rows upon insert. The following restrictions apply to Identity
columns:

n You cannot remove the Identity property from a column using the ALTER command. The
only way to remove the property is to drop the data object and recreate it without the
property.

n You cannot update Identity columns. You must delete the old row and insert a new row.
When you add a row, the value in the Identity column is automatically generated.

select <sequence_name>.NextVal from dual;
insert into <data_object_name> (<column_name1>, <column_name2>,
<column_name3>)
values (<’column_value1’>,
<’column_value2’>,<sequence_name>.CurrVal);
54

DEVELOPING A DATA MODEL
DATA MODEL REFERENCE INFORMATION
n Explicit values may be entered in Identity columns with the following guidelines:

n If you load data through SQL scripts, you must manually set the server’s
identity_insert flag to ON for each applicable data object and specify the insert
values for each row.

n The database server may not be able to create sequential numbers, based on the initial
value, increment value, and the failure of transactions to complete. Any one of these
can contribute to gaps in Identity values created by the server. For specific information
on how to address gaps, please refer to Microsoft SQL Server or Sybase
documentation.

n If the identity_insert flag is set to ON, the Identity column does not validate
unique values. Under these conditions any user with permission can insert values into
the Identity column. These values can be duplicates if there is no unique index or
unique constraint defined on the Identity column.

Sequential numbering in DB2 Universal Database

DB2 Universal Database 7.x supports the AutoNumber data type used in the Versata Logic
Suite.

If you choose not to take advantage of the AutoNumber capability, values for the attribute are
generated by the getcounter method in the Versata Connectors code when you deploy the
data model. This method queries the database, selects the largest value for the attribute and
increments it by 1.
55

DEVELOPING A DATA MODEL
BUILDING A DATA MODEL
Building a data model
To get started in the Versata Logic Studio, you need to have a repository that contains a data
model. The first step is to create a new repository, represented by a
<repository_name>.xml file. For instructions, see “Creating a new repository” on page 58.
Once the repository is open in the Versata Logic Studio, you can do any of the following to
populate the repository with a data model:

n Use the Reengineering Manager to convert a supported RDBMS database to Versata Logic
Suite .xml files. For instructions, see “Reengineering data objects into a repository” on
page 60. After reengineering, use the data model validation utility to check your data
model, as described in “Validating a data model” on page 62.

n Use the Repository Exchange Manager to import objects from another Versata Logic Suite
repository. For instructions, see “Using the Repository Exchange Manager” on page 65.

n Use the Versata Logic Studio’s menu options to add groups to contain repository business
objects. For information, see “Working with groups” on page 68.

n Use the Versata Logic Studio’s wizards to add data objects and query objects to the
repository. For instructions, see “Adding data objects” on page 84 and “New Query Object
wizard” on page 153.

Data objects’ data are stored in .csv files with the same names as the data objects’ .xml
files. The .csv files contain any test data you enter as well as stored and display values for
coded values lists. You can enter coded values list values in the Versata Logic Studio.
However, you must enter other test data in an external tool that supports the .csv file format,
such as Microsoft Excel. When you deploy a data model, you can transfer test data, but the
Server Manager does not perform any data type or other validation for test data.

Note: If you want to work with a repository that is located on a machine that is remote from
your Versata Logic Studio installation, you need to map the machine to a local network
drive. If you do not perform this mapping, you may encounter errors.

Repository file structure
Release 5.5 of Versata Logic Suite utilizes a different structure for storing repository files on
the filesystem. This new structure is designed to simplify repository file management and
team development, and to facilitate integration with source control management systems. This
physical structure approximates the logical structure of the Explorer’s Files tab.

When you create a new repository, files are saved according to the new structure. When you
open an existing repository in this release’s Versata Logic Studio, you are asked to provide a
location for saving the repository’s files in this new structure.
56

DEVELOPING A DATA MODEL
BUILDING A DATA MODEL
Wherever you elect to save a new repository file or an upgraded repository file
(repository.xml) on your filesystem, a subfolder with the same name as the repository is
created within the chosen folder. The <repository> subfolder contains the subfolders
displayed in the following figure.

n The Source subfolder is the main one you will be concerned with as you develop objects
in the repository. This subfolder contains .xml source files, generated .java files, and any
user-defined files for repository objects; application files are stored within application
subfolders and business object files are stored within the Vls subfolder. The Images
subfolder includes system-supplied image files.

These files are the main files you will want to maintain under source control.

Figure 1 Repository file structure
57

DEVELOPING A DATA MODEL
BUILDING A DATA MODEL
n The Cache subfolder contains cached versions of repository files including the cached
version of the whole repository, the <repository>.vdb file; and a file used for business
object deployment, the repository.VJDeploy file.

In some cases you may want to maintain these files under source control, in order to
optimize performance.

n The Lib subfolder contains compiled class files for repository objects.

In some cases you may want to maintain these files under source control, in order to
optimize compile times.

n The Local subfolder includes temporary files used by the system. You should never need
to maintain these files under source controls.

Note: For information about managing repository files in a source control system in a team
development environment, see the Architecture and Project Guide.

Creating a new repository
You create a new repository with the File�New Repository menu option.

To create a new repository:

1. Start the Versata Logic Studio.

2. Choose File � New Repository to open the Create New Versata Repository dialog.

3. Navigate to the folder where you want to create the repository folder. You can click the
folder button to create a new folder.

4. Enter the name of the repository (<repository.xml>) or accept the default name, then
click the OK button.

The new repository structure is created within a new subfolder of the same name in the
specified folder. This new subfolder MUST have a name identical to the repository name.

Upgrading an existing repository
The Versata Logic Studio provides a menu option you can use to upgrade an existing
repository for this release. You may need to make further modifications after this conversion,
particularly to any custom code you added to repository objects. For information about related
migration issues, see the Getting Started Guide.

To upgrade an existing repository:

1. Start the Versata Logic Studio.

2. Choose File � Convert Repository to open the Convert to Versata 5.5 Repository dialog.

3. Navigate to the folder containing the repository.
58

DEVELOPING A DATA MODEL
BUILDING A DATA MODEL
4. Select the <repository.xml> file, then click the Open button.

Note: After converting your repository, Versata Logic Suite release 5.5 validates all file names
at repository load time. This validation process ensures there are no name conflicts with
potential data object or query object artifacts. The following file names are checked:

n <file_name>.xml

n <file_name>Impl.java

n <file_name>BaseImpl.java

n <file_name>.csv

n <file_name>.java

n <file_name>Home.java

n <file_name>DD.xml

Using the Reengineering Manager
Reengineering, sometimes referred to as “reverse engineering,” is creating or modifying a
Versata Logic Suite data object or data model by converting a non-Versata Logic Suite object
or database. Use the Reengineering Manager for reengineering data models and additional
wizards for reengineering objects.

n When you reengineer a data model or data object, the system maps attribute data types
from their native server type to a Versata Logic Suite data type by using the mapping
entries in the repository data object VSVBImportDatatypes. For information about data
type mappings, see “Data type mapping between the Versata Logic Suite and RDBMSs” on
page 40.

n Typically, you reengineer a data model to start the process of defining a new model. After
you reengineer, you can modify the data model in the Versata Logic Studio, then you can
begin adding transaction logic and developing applications in it. You also can redeploy the
reengineered model as a new database or back to the same database, and the data from the
original database can be loaded into the new one afterwards.

n You can reengineer data objects, which you are likely to do at any time in the development
process.

To start the Reengineering Manager, choose Managers �Reengineering Manager.

Reengineering Manager user interface

The Reengineering Manager includes the following fields:

n Selected Schema. Shows the database schema of the current RDBMS. This list box may
be empty until you are connected to a database.
59

DEVELOPING A DATA MODEL
BUILDING A DATA MODEL
n Server Type. Shows the server type of the RDBMS to connect to. To reengineer from an
Informix database, the user performing the reengineering must have dba level permissions
on the database. Also note that the Oracle7 option means Oracle7 or later.

n Database. Shows the databases on the current server. This option is enabled only if you are
connecting to Microsoft SQL Server or Sybase.

n Server Data Objects. Lists the data objects in the current database.

n Data Objects to Import. Lists the data objects you have selected to import into your data
model.

n Click the Connect button to login to the server. The Select Data Source dialog opens.

n Click Import Data Objects to begin the reengineering process.

Select Data Source dialog

Use the Select Data Source dialog to select the DSN (data source name) of the connecting
database.

n The System Data Source tab lists your system DSNs. A system DSN is a shared data
source. All network users may use it with the appropriate data driver.

Click the New button to define a new system DSN. The Create New Data Source wizard

opens.

n The User Data Source tab lists your user DSNs. A user DSN is a data source that may be
used only on the current computer. It may be a user DSN (specific to one user) or a system
DSN (any user).

Click the New button to define a new user DSN. The Create New Data Source wizard

opens.

Note: For help with the Create New Data Source wizard, see the help for your ODBC control
panel(s) or open the help file itself, usually found in
C:\<Windows>\<System>\Odbcinst.hlp.

Reengineering data objects into a repository

To reengineer a data model from a relational database:

1. Open the repository where you will copy the data model.

2. Choose Managers � Reengineering Manager to open the Reengineering Manager.

3. In the Reengineering Manager, select the type of database server from the Server Type
drop-down list box.

If you want to reengineer from an Informix database, the user performing the
reengineering must have dba level permissions on the database.

Note that the Server Type “Oracle7” means any Oracle database that is version 7 or later.
60

DEVELOPING A DATA MODEL
BUILDING A DATA MODEL
4. Click the Connect button to initiate communication with the database server. The Select
Data Source dialog opens. For information about this dialog, see page 60.

5. Select a data source on the File Data Source or Machine Data Source tab, or define a new
one.

6. Log in to the database server.

7. When the connection is made, select a user schema from the Selected Schema drop-down
list box.

8. For Microsoft SQL Server and Sybase, you also must select a database.

9. In the Server Data objects list, select the data object(s) to import.

10. Click the > button to move the data object to the Data objects to Import list.

11. Click Import Data Objects to import the data objects into the data model. The Versata
System rebuilds the data model to add the new data objects.

12. Click the Disconnect button to end communication with the server.

If any portion of the reengineering process fails, the system cancels the entire process. Revise
the server data model and try again.

After you have completed the reengineering process, you should validate the reengineered data
model. For information, see “Validating a data model” on page 62.

Note: Reengineering is not supported for Oracle tables that include objects.

If you reengineer from an Informix database that contains two tables of the same name,
one in upper case, and one in lower case, only the table with the lower case name is
reengineered successfully. Case-sensitive reengineering is not supported.

Notes on reengineering data models

n The Reengineering Manager imports data models on a per-schema basis, with each import
occurring as a single transaction. There is no limit to the number of data objects or
schemas, but all data object names must be unique.

n The Reengineering Manager does not import the following:

n Multiple schema relationship constraints (relationships that span data objects in
different schemas)

n Data (records)

n Defaults

n Views

n Instead of views, you can use the New Query Object wizard to define query objects. For
instructions, see page 145.
61

DEVELOPING A DATA MODEL
BUILDING A DATA MODEL
n Indexes and relationships implemented using relationship constraints are imported along
with the data objects. Relationship constraints between the reengineered data objects are
imported; other constraints are not. As an example, suppose data object A on the database
server and data object B on the database server have relationship C between them. If you
reengineer data object A, relationship C is not imported. If you later reengineer data object
B, relationship C is still not imported. The only way to import relationship C is to import
both A and B in the same reengineering.

n The Reengineering Manager imports relationships that are enforced in the database, if they
are enforced declaratively with reference constraints on children that refer to primary key
constraints in the parents. Existing triggers are not reengineered, so relationships enforced
by triggers are not converted.

n After reengineering, you can add any missing relationships in the Versata Logic Studio.
For instructions, see “Adding relationships” on page 113.

n You can add new attributes to data objects in the Versata Logic Studio. These attributes can
be either physically stored or derived attributes used to calculate computations required for
business rules processing. These derived attributes, called virtual attributes, allow you to
take advantage of the Versata Logic Suite’s derivation rules without denormalizing your
data model or storing unnecessary data. For information, see “Adding attributes to data
objects” on page 102 and “Virtual attributes” on page 104.

Validating a data model

The Versata Logic Studio provides a simple data model validation utility that can be run
against the currently open repository. You should validate your data model whenever you have
made substantive additions to the set of data objects and attributes in the repository through
reengineering. Also, validation can catch naming errors such as using SQL reserved words.

The validation utility produces both a Validate Repository Data Object/Attribute Names Log
that appears on screen and a ModelValidation.log file located in the repository directory.
You can use either of these logs to review errors.

The file ModelValidationCommands.txt is an editable file in the Versata Logic Suite
installation directory that defines the various checks performed by the validation utility. By
default, this file defines checks for Microsoft SQL Server validation, checking data object and
attribute names in the entire data model for:
62

DEVELOPING A DATA MODEL
BUILDING A DATA MODEL
n Embedded spaces

n Reserved words

n Invalid characters

n Invalid first characters

n Maximum name length

n Unique leftmost characters

You can edit the commands file as required to match your data source requirements. Also, if
you are developing using quoted identifiers, you can ignore error messages for embedded
spaces, reserved words, and invalid characters or edit the data model validation utility
commands file to remove these checks.

Note: Another way to validate objects is to attempt a build. For information, see “Building
and Deploying Business Objects” on page 255.

To validate a data model:

1. Launch the Versata Logic Studio and open the repository for which you want to validate
the data model.

2. Choose File � Validate Repository Model to run the utility.

3. The Validate Repository Data Object/Attribute Names Log appears when the validation is
complete. In this dialog, review any errors in the data object and attribute names in the
repository. You also can review this information in the ModelValidation.log file,
located in the directory that contains the repository file.
63

DEVELOPING A DATA MODEL
BUILDING A DATA MODEL
Note: If the disk is full when you attempt to validate a repository, a run-time error occurs.

Editing the data model validation utility commands file

The ModelValidationCommands.txt file is an editable file in the Versata Logic Suite
installation directory that defines the various checks performed by the validation utility. By
default, this text file defines checks for Microsoft SQL Server validation. You can edit this file
as required to customize the check commands for your data source.

Figure 2 Validate Repository Data Object/Attribute Name Log
64

DEVELOPING A DATA MODEL
BUILDING A DATA MODEL
To edit the ModelValidationCommands.txt file:

1. Open ModelValidationCommands.txt (located in the product installation directory).

2. Modify the command lines (each begins with a !) to define the specific checks required for
your data source.

n Specify invalid characters for data object and attribute names. For example, names
could be checked to ensure that they do not contain alphabetic, numeric, “#”, “$”, or
“_” characters.

n Specify invalid first characters for data object and attribute names. For example, names
could be checked to ensure that they do not begin with “$” or “#”.

n Specify maximum length of data object and attribute names.

n Specify the number of unique leftmost characters for data object and attribute names.
For example, if your data model truncates data object or attribute names that have more
than 10 characters, you could check to make sure that the first 10 characters of each
data object or attribute name is unique.

3. Modify the list of reserved words at the end of the file to specify the reserved words you
want to check for in data object and attribute names. Note that reserved words are case
insensitive.

4. Save the changes and exit Microsoft Notepad.

5. Once you have edited the ModelValidationCommands.txt file as desired, make a copy
of it, since the edited file will be replaced by the default file automatically each time you
install a new version of the Versata Logic Suite.

Using the Repository Exchange Manager
The Repository Exchange Manager allows you to import repository objects from other Versata
Logic Suite repositories to the current repositories. The Repository Exchange Manager copies
the repository definitions of data objects, relationships, query objects, and applications, but not
the data object data.

To use the Repository Exchange Manager, choose Managers �Repository Exchange Manager.
After you navigate to the folder containing repository to be imported, the Import dialog opens.

Note: If the disk is full when you attempt to use the Repository Exchange Manager, a Versata
termination error occurs.

Import dialog

This dialog displays objects (.xml files) in the source repository (where files will be copied
from) in the left list box and displays objects in the destination repository (where files will be
copied to) in the right list box.
65

DEVELOPING A DATA MODEL
BUILDING A DATA MODEL
n The Data Objects tab lists the data objects in the source repository on the left and the
destination repository on the right.

n The Relations tab lists the relationships.

n The Query Objects tab lists the query objects.

n The Applications tab lists the applications.

n Choose the Show Groups option button to list repository groups only. This option is
helpful if you plan to import objects by group. Choose the Show All option button to list
repository objects individually. This option is helpful if you plan to import individual
objects.

n Enable the Maintain Groups for Import check box if you want objects’ containing groups
to be imported along with the objects themselves.

Importing repository objects

Importing repository objects copies .xml files for data objects, relationships, query objects,
and applications from another Versata repository directory to the current repository directory,
also making changes to the repository .xml file as needed. You can use the Repository
Exchange Manager for this task.

Note: No data verification is performed during an import. Therefore, you should check first to
be sure that the import is not overwriting useful data in the current repository and that
the objects referenced by the new information are available to the current repository.

Also note that the Repository Exchange Manager does not preserve read-only flags for
imported object files.

To import repository objects:

1. In the Versata Logic Studio, open the repository to which you want to import.

2. Choose Managers � Repository Exchange Manager to open the Repository Exchange
Manager.

3. In the Import from dialog, navigate to the repository from which to import objects. The
Import dialog opens.

4. In the Import dialog, click the tab for the type of object you want to import. Enable the
Maintain Groups for Import check box if you want objects’ containing groups to be
imported along with the objects themselves. Enable the Show All or Show Groups options
as necessary.

5. Select one or more objects in the left list box and click >>>Import>>>. Use SHIFT and
CTRL to select multiple objects.

6. Repeat step 5 on the same tab or other tabs to import additional objects as desired.
66

DEVELOPING A DATA MODEL
BUILDING A DATA MODEL
Note: If you import objects that have been deployed as EJBs to WebLogic, or deployed to a
CORBA version Versata Logic Server, the repository may contain extra deployment
descriptor files and interface files that are not usable.
67

DEVELOPING A DATA MODEL
WORKING WITH GROUPS
Working with groups
A group is a container for a subset of repository business objects. The creation of groups eases
work with large repositories. Groups usually correspond to functional areas or types of
objects. Each group serves as a logical container for repository objects and their files in the
Versata Logic Studio, and as a physical container for object files on the filesystem.

n In the Versata Logic Studio Explorer, group subfolders are located within the Business
Logic folder on the Objects tab, and within the Versata Logic Server folder on the Files tab.

n On the filesystem, group subfolders are located within your repository’s Source\Vls
folder.

You can nest multiple levels of groups, so that group subfolders contain other, subgroup
folders. It is recommended that you create groups early in the development process to define
the basic structure for your repository. If you need to alter this structure, you can use the menu
options or the Business Objects and Files Manager provided by the Versata Logic Studio. For
information, see “Moving objects among groups” on page 69.

Note: Groups may not be listed in strict alphabetical order in the Versata Logic Studio
Explorer. All groups with names beginning with upper case letters are listed before all
groups with names beginning with lower case letters.

Adding groups
You can add a group to any business object folder in a repository, simply by going to that
folder and choosing a right-click menu option.

To add a group to a repository:

1. On the Objects tab of the Versata Logic Studio Explorer, right-click the Business Logic
folder or an existing group folder and choose New Group, or

On the Files tab of the Versata Logic Studio Explorer, right-click the Versata Logic Server
folder or an existing group folder and choose New Group.

2. In the Add New Group dialog, enter a name for the group and click OK.

A folder for the group appears in the Explorer.

Note: You are not allowed to enter a duplicate group name, but no checking is done against
object names, so you are allowed to create a group with the same name as a business
object.
68

DEVELOPING A DATA MODEL
WORKING WITH GROUPS
Moving objects among groups
The Versata Logic Studio provides right-click menu options and a Business Objects and Files
Manager that you can use to change the contents of repository groups. Use the menu options to
move a single business object, group, or user-defined file from one group to another. Use the
Business Objects and Files Manager to move multiple objects or files among groups.

Note: If the disk is full when you attempt to move objects among groups, a “path not found”
error occurs.

Moving a single object

To move a single object from one group to another:

1. On the Objects tab of the Explorer, right-click the object and choose Move.

2. If an informational dialog appears, click OK to dismiss it.

3. In the Choose Group dialog, select the group where you want to move the object and click
OK.

If you want to move the object to a new group, select the group to contain the new group,
click the New button and complete the Add New Group dialog, then select the group and
click OK.

Moving a single file

You can move a single user-defined file from one group to another. Because all files for a
business object need to be contained in the same group, you cannot move a single generated
file. You can move all of an object’s files by moving the object, or you can use the Business
Objects and Files Manager.

Note: Explorer icons for user-defined files contain red lines, while Explorer icons for
generated files contain black lines.

To move a single user-defined file from one group to another:

1. On the Files tab of the Explorer, right-click the file and choose Move.

2. If an informational dialog appears, click OK to dismiss it.

3. In the Choose Group dialog, select the group where you want to move the file and click
OK.

If you want to move the file to a new group, select the group to contain the new group,
click the New button and complete the Add New Group dialog, then select the group and
click OK.
69

DEVELOPING A DATA MODEL
WORKING WITH GROUPS
Moving a group

When you move a group, all of its contents, including any subgroups, are moved with it.

To move a group from one group to another:

1. On the Objects or Files tab of the Explorer, right-click the group and choose Move Group.

2. In the Choose Group dialog, select the group where you want to move the group and click
OK.

If you want to move the group to a new group, select the group to contain the new group,
click the New button and complete the Add New Group dialog, then select the group and
click OK.

Note: If the disk is full when you attempt to move a group, “Could not create folder” and
“path not found” errors occur.

Using the Business Objects and Files Manager

Use the Business Objects and Files Manager to move multiple objects and files among
repository groups.

To use the Business Objects and Files Manager, from the Versata Logic Studio main menu,
choose Managers � Business Objects and Files Manager.

n The Objects tab of this manager lists repository business objects in the left list box and
repository groups in the right list box.

n The Source Files tab of this manager lists business object files and user-defined files in the
left list box and repository groups in the right list box.

n Choose the Show By Groups option button to list repository groups in the left list box. This
option is helpful if you need to see which groups currently contain particular objects and
files.

n Choose the Show All option button to list repository objects or files individually in
alphabetical order.

To move one or more objects or files:

1. Select the object(s) or file(s) in the left list box.

n You can use the SHIFT and CTRL keys to select multiple objects or files.

n If the Show By Groups option is selected, double-click a group folder to make its
contained objects or files available for selection.
70

DEVELOPING A DATA MODEL
WORKING WITH GROUPS
2. Select a group in the right list box.

n If you do not select a group before you click the > button, the selected object(s) are
moved to the Business Logic folder, or the selected file(s) are moved to the Versata
Logic Server folder by default.

n If you want to move objects or files to a new group, select the group where you want to
create the new group, then click New Group. Complete the Add New Group dialog,
then select the new group.

3. Click the > button.

4. Close the Manager by clicking the x in the upper right corner. Then review the Explorer to
ensure moves were completed correctly.

Note: You cannot use the Business Objects and Files Manager to move a group from one
group to another. Use the right-click menu option for this purpose.

Renaming groups

To rename a group:

1. On the Objects tab or Files tab of the Versata Logic Studio Explorer, right-click a group and
choose Rename Group.

2. Enter the new name in the Rename Group dialog.

Deleting groups
When you delete a group, all of its contents, including any subgroups, are deleted.

To delete a group:

1. On the Objects tab or Files tab of the Versata Logic Studio Explorer, right-click a group and
choose Delete Group.

2. To confirm the delete, click Yes in the first Action Choice dialog that appears.

3. If the group contains objects or files, a second Action Choice dialog appears, asking
whether to move contained objects to the deleted group’s parent group.

n To move objects or files to the parent group, preventing them from being deleted, click
Yes.

n To delete objects or files along with the deleted group, click No.

Note: If the disk is full when you attempt to delete a group, “Could not create folder” and
“path not found” errors occur.
71

DEVELOPING A DATA MODEL
WORKING WITH GROUPS
Finding objects and files
The Versata Logic Studio includes a Find utility that can be helpful for locating business
objects and files in a large repository.

To use the Find utility:

1. On the Objects tab of the Explorer, right-click the Business Logic folder or one of its
subgroup folders, or

On the Files tab of the Explorer, right-click the Versata Logic Server folder or one of its
subgroup folders.

2. Enter the name of the object or file that you want to find and click OK. (This dialog is not
case-sensitive.)

If the object or file exists in the repository, it is selected in the Explorer.

Building and compiling group files
You can elect to build and/or compile files for all objects in a group. For more information
about building and compiling business objects, see “Building and Deploying Business
Objects” on page 255.

To build all of a group’s objects:

1. On the Files tab of the Versata Logic Studio Explorer, right-click and choose the Rebuild
menu option.

To compile all of a group’s objects:

1. On the Files tab of the Versata Logic Studio Explorer, right-click and choose the Compile
menu option.

Note: Errors may occur if you choose this option before all objects in the repository have
been compiled at least once. Because classes may reference each other, you may have
to compile the entire repository before you can compile an individual group.
72

DEVELOPING A DATA MODEL
WORKING WITH ATTRIBUTE TEMPLATES
Working with attribute templates
You can include attribute templates in your repository to implement the inheritance of an
abstract attribute’s properties by multiple attributes in referencing data objects. You thus
should consider whether to include attribute templates as you are developing your data model.
You need to understand the following terms.

n Attribute Template: An attribute that does not belong to a particular data object.
Attributes in referencing data objects can inherit the properties of this attribute.

n Attribute Group Template: A named collection of attributes that do not belong to a
particular data object. Attributes in referencing data objects can inherit properties of this
group of attributes as if it were an attribute template, and the entire group is inherited.

n Propagate: To force inherited properties in the inheriting attributes to be set to the same
values as those in the referenced attribute templates or attribute group templates.

Attribute templates and attribute group templates can be referenced by any data objects in a
repository. Definition information about attribute templates and attribute group templates is
stored at the repository level. Each attribute template and attribute group template has its own
.xml files. These .xml files conform to the AttributeTemplate.dtd and
AttributeGroupTemplate.dtd files provided with this release. Reference (inheritance)
information is stored in new properties in .xml files for data objects, relationships, and query
objects. For information about these files, see the Reference Guide.

n To create an attribute template or attribute group template, you create an .xml file for it.

n To designate data object attributes to inherit from attribute templates or attribute group
templates, you define properties in data object .xml files, and as appropriate, relationship
and query object .xml files.

n You specify that a data object attribute inherits from an attribute template by setting the
InstanceOf attribute of the attribute element in the data object .xml file. For
information about issues to consider, see “Issues with attribute templates” on page 75.

n You specify that a data object inherits from an attribute group template by adding an
AttributeGroupInstance element and setting its attributes in the data object .xml
file. For information about issues to consider, see “Issues with attribute group
templates” on page 77.

n To set properties in inheriting attributes to the same values as those in the referenced
attribute templates or group attribute templates, use the AttributePropagator.exe
provided with this release. For information, see “Propagating templates” on page 74.
73

DEVELOPING A DATA MODEL
WORKING WITH ATTRIBUTE TEMPLATES
Propagating templates
The AttributePropagator.exe utility is installed in the root installation directory when
you install Versata Logic Studio. You can run this utility to propagate values from attribute
templates and attribute group templates to inheriting attributes in the Versata Logic Suite
repository.

Be sure to close the Versata Logic Suite repository before you run the utility.

To propagate attribute template and attribute group template values to a repository:

1. Create or update .xml files for attribute templates and attribute group templates.

2. Add or update inheritance information as necessary in data object and relationship .xml
files.

3. Create a <repository>\AttributeGroupTemplates\DeletedAttributes.txt
file to list attributes that are missing from an attribute group template and should be treated
as deleted. The format for listing should be:
<Attribute_Group_Template_Name>.<Attribute_Name>, with one listing per line.

4. Run AttributePropagator.exe.

5. In the first dialog, enter the name of the repository where propagation is to occur. You can
click the button to browse to the repository .xml file.

The propagation utility will create two log files:

n <repository>_propation.log contains the changes made in all .xml files.

n <repository>_propagation_errors.log contains any errors that occur during
propagation.

By default, these files are displayed on screen after the propagation process is complete, as
well as written to the folder containing the repository .xml file. You can disable the check
boxes to skip this display.

6. Click the OK button to start the propagation process.

A Synchronization Process dialog displays status information. After propagation
completes, a message is displayed. If enabled, log files also appear.

Note: Missing reference errors may occur if you delete or rename an attribute template or
incorrectly specify the attribute template name in the data object .xml file. These
errors are written to the log during propagation.

For information about special processing and errors that may occur as part of attribute
group template propagation, see “Propagation of attribute group template changes” on
page 78.
74

DEVELOPING A DATA MODEL
WORKING WITH ATTRIBUTE TEMPLATES
Issues with attribute templates
This section describes issues related to attribute templates.

You specify that a data object attribute inherits from an attribute template by setting the
InstanceOf attribute of the attribute element in the data object .xml file.

n You can change an uninheriting attribute to one inheriting from an attribute template.

n You can change an inheriting attribute to an uninheriting attribute.

n You can change the attribute template from which an attribute template inherits.

You can use inheriting attributes in the same manner as other data object attributes. They can
be used in indexes, as relationship primary keys or foreign keys, in rules, in query objects, and
in forms or pages by using containing data objects or query objects as RecordSources (with
presentation design only).

Property inheritance

When a data object attribute inherits from an attribute template, some attribute properties are
always inherited from the attribute template, other properties are never inherited, and other
properties may or may not be inherited in particular cases. The following sections describe
property inheritance, listing properties according to their XML elements and attributes.

Always inherited properties

The following properties in inheriting attributes always must have the same values as in the
attribute template.
n ValueRequired

n DataType element
n DataType

n Size

n Precision

n Scale

n Validation element
n ValidationType

n CodedValuesList

n Condition
n ErrorMessage

Never inherited properties

The following properties in inheriting attributes can never be inherited from the attribute
template:
75

DEVELOPING A DATA MODEL
WORKING WITH ATTRIBUTE TEMPLATES
n Name

n Persistence

n LayoutByDefault

n ServerDataType element
n Type

n Size

n ServerOfOrigin

n Derivation element

n DerivationType, if other than None, Formula, or Default (all types available for
local customization)

n RelationshipSurrid

n ParentReplicateIsMaintained

n SourceAttribute

n QualificationExpression

n ExtendedProperties

n HiddenProperties

Sometimes inherited properties

The following properties in inheriting attributes may or may not be inherited from attribute
templates. Inheritance must be identified per inheriting attribute case. If a property is not
inherited but is specified in the attribute template .xml file, the property needs to be listed in
the data object .xml file as an Override element value for the attribute. Otherwise the value
will be inherited.
n Caption

n Format

n MicroHelp

n ArchetypeName

n Description

n Comments

n PreventUserUpdate

n DerivationType, if None, Default, or Formula

Data type changes

Data type changes that occur in .xml files as a result of inheritance changes currently do not
appear in the Versata Logic Studio.

n These changes may create invalid relationships if the primary key and foreign key data
types do not match after changes. The Versata Logic Studio reports when this problem
occurs.
76

DEVELOPING A DATA MODEL
WORKING WITH ATTRIBUTE TEMPLATES
n These changes may make expressions in query objects invalid. If this problem occurs, you
need to edit the query expressions.

n These changes may make rules invalid. If this problem occurs, you need to edit rules.

Implementing changes in RecordSources

If a data object or query object containing inheriting attributes is used as a RecordSource and
propagation causes changes in these attributes, you need to either rebuild the form or page
containing the RecordSource, or drop and re–add the attribute to the form or page in order to
implement changes.

Issues with attribute group templates
This section describes issues related to attribute group templates.

You specify that a data object inherits from an attribute group template by adding an
AttributeGroupInstance element and setting its attributes in the data object .xml file.

n A data object cannot inherit individual attributes from an attribute group template, but can
inherit only the entire group.

n A data object can inherit from an attribute group template more than once. For example, an
attribute group template representing an address can occur twice in a data object, once for a
home address and once for a work address.

For each instance of inheritance from an attribute group template, an
AttributeGroupInstance element with a unique Name must be added to the data object
.xml file.

n Individual attributes in an attribute group template will be able to be referenced in SQL
queries, to be referenced in business rule expressions, and to have locally customized
properties as provided in attribute templates.

n If both data objects in a relationship inherit from an attribute group template, and you want
the relationship to inherit from the attribute group template, then the relationship’s .xml
file must identify the ParentAttributeGroupInstance and the
ChildAttributeGroupInstance attribute for the Relationship element, and these
must inherit from the same attribute group template.

n If attributes in an index inherit from an attribute group template, the instance name must be
specified in the AttributeGroupInstance attribute for the Index element in the data
object .xml file.

n If a query object includes an attribute inherited from an attribute group template, all
attributes in the attribute group template instance must be included in the query object.
77

DEVELOPING A DATA MODEL
WORKING WITH ATTRIBUTE TEMPLATES
Propagation of attribute group template changes

The same AttributePropagator.exe that propagates changes from attribute templates to
repository data objects also propagates changes from attribute group templates. The
propagation of attribute group templates presents some additional features.

Propagation of grouping

n If the InheritGrouping attribute of the AttributeGroupInstance element in the
data object .xml file has a value of True, the group of inheriting attributes in the data
object is placed together wherever the first attribute from the attribute group template is
encountered.

n If the InheritGrouping attribute has a value of False, the placement of attributes in the
object is not affected by the propagation process.

Propagation of order

n If the InheritOrder attribute of the AttributeGroupInstance element in the data
object .xml file has a value of True, the group of inheriting attributes in the data object is
placed in the same order as in the attribute group template.

n If the InheritOrder attribute has a value of False, no ordering of attributes is enforced.

Propagation of missing attributes

n If grouping is inherited and order is inherited, the new attribute is placed in the proper
order within the group.

n If grouping is inherited and order is not inherited, the new attribute is placed at the end of
the group.

n If grouping is not inherited, the new attribute is placed at the end of the data object.

Potential propagation errors

The following errors may occur during propagation from attribute group templates:

n Missing attribute group template instance name: Can occur when you delete or rename an
attribute group template instance or incorrectly specify an instance name in an .xml file.
The propagation utility reports this error.

n Missing attribute group template name: Can occur when you delete or rename an attribute
group template or incorrectly specify an attribute group template name in an .xml file.
The propagation utility reports this error.

n Missing attribute name in the attribute group template: Can occur when you delete or
rename an attribute in the attribute group template or incorrectly specify the attribute name
from the attribute group template in the inheriting attribute.
78

DEVELOPING A DATA MODEL
WORKING WITH ATTRIBUTE TEMPLATES
You can create an optional
<repository>\AttributeGroupTemplates\DeletedAttributes.txt file that
contains references to attributes in attribute group templates for which missing references
should be deleted automatically during propagation.

n If the missing reference is not in this text file, then the propagation utility reports an
error and you have a chance to correct the reference and prevent the loss of
customizations.

n If the missing reference is in this text file, it is deleted, deletions are propagated, and
any related customizations are lost. If the deletion causes the deletion of the last
attribute in an index, the index is deleted.

Implementing changes in RecordSources

There is no explicit specification of inheritance from attribute group templates into
RecordSources. RecordSources indirectly inherit based on inheritance into the data objects and
query objects used as RecordSources.

If propagation of attribute group template changes into data objects results in new
RecordSource attributes, these are displayed, by default, if any other attributes from the same
attribute group template instance are displayed on the form or page.

HTML pages inherit changes to attribute group templates by rebuilding page layouts, just as
changes to attribute templates are inherited. Additional attributes may appear on rebuilt pages
as a result of changes. Customized archetypes can be used to control the appearance of the
generated page so no further customization is required. The archetypes can apply to entire
pages or to portions of pages, with some pages never being rebuilt and others being rebuilt
whenever attribute template changes are propagated. Attribute group templates can be set up as
portions of pages that can be rebuilt at will.
79

DEVELOPING A DATA MODEL
WORKING WITH ATTRIBUTE TEMPLATES
80

CHAPTER 3 Working with Data Objects
81

WORKING WITH DATA OBJECTS
CHAPTER OVERVIEW
Chapter overview
Read this chapter to understand how to complete tasks to create and modify data objects in the
Versata Logic Studio. This chapter includes the following:

n “Data object overview” on page 83, provides an introduction to Versata data objects.

n “Adding data objects” on page 84, explains different ways to add data objects to a
repository.

n “Modifying data objects” on page 87, explains how to modify data objects, including
setting optimistic locking and other properties and defining coded values lists.

n “Working with attributes” on page 98, describes how to add and modify data object
attributes, including defining virtual attributes.

n “Working with relationships” on page 107, describes how to add and modify data object
relationships.

n “Working with indexes and primary keys” on page 117, describes how to add and modify
data object indexes.

Note: For information about importing data objects from other Versata repositories, see
“Using the Repository Exchange Manager” on page 65.

For information about importing data objects from supported RDBMSs, see “Using the
Reengineering Manager” on page 59.

For information about deploying Versata repository data objects to RDBMS
database(s), see “Deploying Data Models” on page 121.
82

WORKING WITH DATA OBJECTS
DATA OBJECT OVERVIEW
Data object overview
Data objects correlate to objects in a physically stored database. Data objects, their attributes,
and their relationships provide the basic input for application and business rule design. They
are the first thing to define in your repository.

You can reengineer data objects from an RDBMS or add data objects and define their
characteristics in the Versata Logic Studio. After definition, each data object is represented in
the repository as an .xml file (<data_object_name>.xml). The format of this file conforms
to the DataObject.dtd file included with the product, located in the product installation
directory. The .dtd file lists all of the nested elements and attributes that define the
characteristics of each data object. Each data object .xml file includes values for these nested
elements and attributes. For more information about Versata Logic Suite .dtd and .xml files,
see the Architecture and Project Guide.

Once you have defined a data object in the Versata Logic Studio, you can use its definition as a
basis to define business rules and applications. To use data objects in running applications, you
need to build them into usable files that can be copied to the database server and application
servers.

The Versata Logic Studio includes a Server Manager wizard to deploy data objects to the
database server. The Server Manager compiles information from data object .xml files into
SQL scripts that can be run against a supported type of RDBMS to create corresponding tables
there. For more information, see “Deploying a data model to a database server” on page 126.

Note that the .xml file for a data object stores the data object’s metadata, not its data. Data,
including coded values list values and test data, are stored separately in a .csv file named for
the data object. If you want to work with test data for a data object, you can input data through
Microsoft Excel or some format compatible with .csv files. During data object deployment to
the database server, the Server Manager provides an option to automate test data transfer.

The Versata Logic Studio also provides menu options to build and compile each data object
definition into files that run on the application server(s). The next step is to deploy these files
to a development Versata Logic Server on IBM WebSphere Application Server Single Server
Edition for testing purposes. The Versata Logic Studio includes a Versata Logic Server
Deployment wizard that handles this deployment. You set a deployment property in the
Transaction Logic Designer to indicate whether to deploy data objects as Enterprise JavaBeans
(EJBs) or simply as Java class files. The deployed files contain data object definition
information as well as transaction logic information defined as business rules. After they have
been tested in the development environment, you can copy files to a production Versata Logic
Server on IBM WebSphere Application Server Advanced Edition. For more information about
building and deploying data objects, see “Building and Deploying Business Objects” on page
255.
83

WORKING WITH DATA OBJECTS
ADDING DATA OBJECTS
Adding data objects
You may add data objects to a repository in the following ways:

n Create. Build the object in the Versata Logic Studio.

n Import. Use a data object .xml file from another Versata Logic Suite repository.

n Reengineer. Use an object that has to be reengineered into an .xml file before it can be
imported. You may reengineer database tables, CORBA objects, COM objects, and
JavaBeans and classes.

n Add from XML. Import an .xml file representing an object created outside of the Versata
Logic Suite.

Note: You may need to create custom Versata Connectors for data objects after you create

them.

Before you create a new data object, review “Naming conventions for data objects and
attributes” on page 38.

Create New Data Object wizard
Use this wizard to create data objects in the repository. They will be added as standard data
objects with standard interface files, unless you specify custom Connectors for them in the
Transaction Logic Designer.

To start the wizard, select the Data Objects folder in the Versata Logic Studio Explorer. Then,
right-click and choose New Data Object, click the button in the toolbar, or choose the Edit
New Data Object menu option.

Creating a data object in the Versata Logic Studio

To build a new data object in the Versata Logic Studio:

1. Start the Create New Data Object wizard.

2. In the first dialog, choose Create.

3. In the Finished dialog, enter the name of the new data object.

There is no required syntax for the name, but it must be at least four characters in length if
you intend to deploy the data object to the database server through Versata Logic Studio.
See “Working with coded values lists” on page 95 for information about naming
conventions.

4. When you click the Finish button; the Transaction Logic Designer opens to the Attributes
tab. Enter the attributes of the data object there. For instructions, see “Adding attributes to
data objects” on page 102.
84

WORKING WITH DATA OBJECTS
ADDING DATA OBJECTS
Importing a data object from another repository

To import a data object:

1. Start the Create New Data Object wizard.

2. In the first dialog, choose Import.

3. In the Finished dialog, click the Finish button to launch the Repository Exchange Manager.
Use the Repository Exchange Manager to import the data object. For instructions, see
“Importing repository objects” on page 66.

Reengineering a data object
You can use the Reengineering Manager to reengineer a data object from a relational database.
You also can reengineer other types of objects to be data objects.

Note: Reengineering of EJBs currently is not supported.

To reengineer a data object:

1. Start the Create New Data Object wizard.

2. In the first dialog, choose Reengineer.

3. In the Reengineer New Data Object dialog, choose the type of object to reengineer and
click the Next button. The appropriate dialog opens

4. If you choose the Database option, the Finished dialog opens, where you can click the
Finish button to open the Reengineering Manager and import a data object from a database.
For instructions, see “Reengineering data objects into a repository” on page 60.

5. If you choose another type of object, the Use Registered Object dialog opens.

n To reengineer a registered object, select it in the list box and click the Next button.

n To reengineer an un-registered object, click Register New Object. A file browser opens.
Use it to select the object.

The list box and file browser only show files of the type selected in the previous dialog.

After you have completed this dialog, The Finished dialog opens. Click the Finish button to
reengineer and import the data object.

6. If there are no Connectors included with the Versata Logic Suite that can be used for the
new data object, you need to create one. You may create it now or later. To create it now,
select Create New XDA Connector before you click the Finish button.
85

WORKING WITH DATA OBJECTS
ADDING DATA OBJECTS
Adding a data object from XML
You can directly import an object created outside of the Versata Logic Studio as a data object,
if it can be represented in an.xml file. The .xml file for the external object must conform to
the DataObject.dtd this file. For information about this file, see the Reference Guide.

To add a data object from XML:

1. Review the DataObject.dtd and the .xml file for the external object, to ensure that the
.xml file contains all values for all elements and attributes required by the .dtd.

2. Revise the .xml file as necessary to conform to the .dtd. If the .xml file includes
elements not contained in the .dtd, you can make them into Hidden Property elements so
they can be maintained in the .xml file for the Versata Logic Suite data object.

3. In the Objects view of the Versata Logic Studio Explorer, right-click the Data Objects
folder and choose Add Existing.

4. In the dialog that appears, select the .xml file to be added as a data object.

Note: If the disk is full when you attempt to add an .xml object , a Versata termination error
occurs and the Versata Logic Studio closes.

There is no validation for length of object names or for invalid characters when you
add an existing .xml file to the repository as a data object. Be sure that the data object
name is longer than four characters and its attribute names are shorter than 31
characters. Also, be sure that names do not contain special characters other than spaces
and underscores. For more information about object naming conventions, see “Naming
conventions for data objects and attributes” on page 38.
86

WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS
Modifying data objects

Renaming data objects
The Rename menu option allows you to save a data object under another name, deleting the
currently named data object.

To rename a data object:

1. In the Versata Logic Studio Explorer, expand the Business Objects folder, then the Data
Objects folder.

2. Right-click the data object you want to rename and choose Rename.

3. In the Rename Data Object dialog, enter a new name and click the OK button. The data
object is regenerated and its new name appears in the Versata Logic Studio Explorer.

Note: The Rename menu option is not available when the Transaction Logic Designer is open.

Once you rename a data object, you must rebuild any query objects based on the data
object.

You have the option of using the Save As menu option to save the data object under
another name when the Transaction Logic Designer is open. This option preserves the
existing data object and creates a copy of it under the new name. When you use this
option, be sure to choose the Save As option before you make any changes intended for
the newly named data object. The Transaction Logic Designer implicitly saves many
changes, so you may unintentionally alter the original object if you make changes
before choosing Save As.

If the disk is full when you attempt a Save As, a file of 0 KB is written and no retry
option is available.

A Save As of a read-only object does not create a read-only object.

Deleting data objects

To delete a data object:

1. In the Versata Logic Studio Explorer, expand the Business Objects and Data Objects folder.

2. Right-click the data object you want to delete and choose Delete.

Any open applications are closed, to avoid reference problems.

3. Click the Yes button in the Action Choice dialog. The data object is removed from the
Versata Logic Studio Explorer listing.
87

WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS
Note: The Delete menu option is not available when the Transaction Logic Designer is open.
If you delete a data object, you can no longer use any query objects based on the data
object.

If you delete a data object from a Versata repository, source control integration does not
automatically delete it from your source control management system. You need to
manually delete the object from the source control system. For information about
Versata Logic Studio’s integration with source control management systems, see the
Architecture and Project Guide.

If you delete a data object that has been made remotely accessible, meaning it has been
set to be deployed as an EJB, some of its files may not be deleted automatically. If you
attempt to create another data object with the same name, a “potential conflict with
existing data object” may occur. You can avoid this problem by checking for any
remaining data object files after the deletion and manually removing them.

Generating an Impact Analysis Report
Before you make changes to a data object such as renaming it, deleting it, or renaming or
modifying attributes, it is a good idea to determine which other repository objects are
dependent on the data object.

To obtain this information, generate an Impact Analysis Report, which provides a “Where
Used” analysis of the data object. This analysis includes information about data objects related
to the selected data object, attributes dependent on a data object for use as a coded values list,
query objects that include attributes from the selected data object, and applications that display
data from the selected data object. Review this report to determine the other objects that may
be affected by your data object change and then you can determine how to deal with these
effects.

To generate an Impact Analysis Report:

In the Versata Logic Studio Explorer, right-click a data object and choose Impact Analysis
Report.

The report process checks all data objects, query objects, and applications in the repository,
displaying a Data Object Dependency Log when the process is complete.

Data Object Dependency Log

When you run an Impact Analysis Report to determine possible consequences of changes to a
data object, the Data Object Dependency Log is created. It appears on your desktop and also is
saved as
<repository_directory>\<repository>_JavaFiles\Components\<data_object
>.Log. You can open the saved file in Notepad.
88

WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS
This log lists the following:

n Data objects that are related to the selected data object

n Name of each data object

n Type of relationship

n Query objects that include attributes from the selected data object

n Name of each query object

n Application forms/pages that use query object as RecordSource

n Name of application

n Name of form/page

n Application forms/pages that use data object as RecordSource

n Name of application

n Name of form/page

If you decide to make changes to the data object, it is a good idea to review the objects listed in
this report to determine whether changes are necessary.

Setting properties for data objects
You can set properties for repository data objects on the Properties tab of the Transaction
Logic Designer.

To set properties for a data object:

1. In the Versata Logic Studio Explorer, double-click the data object to open it in the
Transaction Logic Designer.

2. Click the Properties tab of the Transaction Logic Designer.

3. Click the appropriate subtab and complete fields as necessary, then save.
89

WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS
Properties tab of the Transaction Logic Designer

The Properties tab has six tabs to define data object presentation properties and other data
object characteristics.

Figure 3 Transaction Logic Designer Properties tab
90

WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS
Data Access tab

The Data Access tab on the Properties tab in the Transaction Logic Designer allows you to
specify the type of data source that the selected data object represents. By default, a data object
represents a relational database table, uses SQL data access, and is a subclass of the
versata.vls.DataObject superclass.

If data objects contain data from sources other than relational database tables, you need to add
custom Connectors to the repository. Once you have added these Connectors, you should
select the Custom option on this tab, click the browse button and select the new one from the
Choose XDA Connector dialog.

If you want a group of data objects to have additional methods that are not defined in the
DataObject superclass, you can create a subclass of DataObject, define new methods for
this class and enter this new class as the superclass for the data object.

For a data object that uses a standard Versata Connector, the Quoted Deployment check box
indicates whether the object has been deployed to a database server with quoted identifiers.
This check box is not editable here; its value gets set by Server Manager deployment choices.
For information about deploying with quoted identifiers, see “Generating quoted identifiers”
on page 139.

This tab allows you to indicate a lock mode that determines the level of optimistic locking for
the object. You can specify whether to compare values for all applicable attributes in the data
object; compare the attributes changed by the current update action; or perform no optimistic
locking. For more information about this property, see “Data type mapping between the
Versata Logic Suite and RDBMSs” on page 40.

Also on this tab, you can set the data object’s deployment properties for the Versata Logic
Server. You can indicate the following:

n Whether to enable attribute level security management for the data object. When you
enable this option, additional information must be deployed to the Versata Logic Server, so
deployment is slower and application performance can be slower. If you do not enable this
option, you will need to assign permissions for the data object as a whole, rather than being
able to assign different permissions for different attributes.

n Whether to implement the data object as an EJB. When you enable this option, the data
object definition is deployed to the Versata Logic Server and IBM WebSphere Application
Server as an entity Bean, so it is remotely available to any applications that can
communicate with EJBs. If you do not enable this option, the data object definition is
deployed as a Java class only. Deployment as an EJB requires more time than deployment
as a Java class.
91

WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS
Presentation tab

Note: This tab is not available if you have not purchased presentation design capabilities with
the Versata Logic Suite.

The Presentation tab allows you to override system-supplied defaults by specifying
customized singular and plural captions for the selected data object. These captions appear on
generated forms or pages where the data object is used as a RecordSource.

This tab also enables you to associate an image with the selected data object. This image
appears on generated command buttons on the StartupForm/Page for transitions to a form or
page based on this RecordSource. Note that to delete an image reference, you must select its
name in the text box and press BACKSPACE or DELETE.

Notes tab

The Notes tab allows you to record a description and comments about the selected data object.
This information is especially useful in a team development environment.

Coded Values List tab

The Coded Values List tab allows you to indicate that the selected data object should be used
as a coded values list. To do so, enable Use this Data Object as a Coded Values List. A coded
values list is a table of values used to restrict valid values for attributes.

After you enable this option, the Coded Values List Attributes dialog appears. Use this dialog
to specify an attribute to provide stored values (the values stored in a database) and an attribute
to provide display values (the values shown in controls or elements in applications) for a
coded values list.

Values from the stored value attribute are stored in the database to represent values from the
displayed value attribute. Values from the displayed value attribute are displayed in the
generated application as potential values for attributes in any data object that has a validation
rule referencing this coded values list.

n Select an attribute from the Attributes list and click an unfold button to enter the attribute
in the Stored Value Attribute field.

n Select an attribute from the Attributes list and click an unfold button to enter the attribute
in the Display Value Attribute field.

n When you have populated both fields, click the OK button. The selected attributes appear
on the Coded Values List tab.

n You can modify these values by clicking the browse button to reopen the Coded Values
List Attributes dialog.

After you have specified stored value and display value attributes, a table appears where you
can enter valid values for attributes.
92

WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS
n To enter a valid value for an attribute, place the cursor in one of its fields and type the
value.

n To modify a value for an attribute record, select it and type a new value.

n To add an attribute to the coded values list, click Add Column.

n To rename an attribute, select it in the table and click Rename Column.

n To delete an attribute, select it in the table and click Delete Column.

For more information about coded values lists, see “Working with coded values lists” on page
95.

Keys/Indexes tab

The Keys/Indexes tab allows you to review information about indexes defined for the data
object, modify these indexes, add indexes, and delete indexes. For information about working
with keys and indexes, see page 117.

Extended tab

The Extended tab allows you to add data object properties other than those explicitly specified
in the Versata Logic Studio. Extended properties are useful in cases where you plan to add
custom Java code to a data object. Code for these extended properties is generated in the data
object’s Java implementation file. For each extended property, a static string variable is created
inside the data object’s constructor code.

The data object’s extended properties perform a similar function to the extended properties for
controls on application forms or pages: the properties provide additional behavior to data
objects. You can add Java code to a data object that refers to the value for an extended property
variable, where each different value causes different behavior in run time. Examples of
variables that could be defined as extended properties include: an initialization variable for a
class called by the data object, or the name of a DB2 database server.

To add an extended property, click the Add button and complete the dialog. Then, enter a
property value in the grid.

To delete an extended pProperty, place the cursor in the grid row for the property and click the
Delete button.

For information about the Java files that the Versata Logic Studio generates for data objects,
see “Understanding Business Object Files” on page 285. For information about customizing
code in data object files, see “Extending Business Object Code” on page 321.
93

WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS
Setting optimistic locking for data objects
The Versata Logic Suite provides support for optimistic locking-based concurrency control to
prevent users from overwriting each other’s changes when they update the same data. You can
configure the type of locking so that you can achieve the right balance between maintaining
data integrity without sacrificing performance. By default, the system retrieves data and
displays it to the end user of the application without locks. When the end user updates the
application by committing changes using the save action, the optimistic locking mechanism is
invoked.

On the Properties: Data Access tab, you can choose an option from the Lock Mode drop-down
list to determine the level of optimistic locking to be provided for a data object. The following
options are available:

n All Applicable Attributes. All attributes that are updateable by users and easily compared
(non-float data types) are included in the Where clause. This is the default setting.

n Changed Attributes. Any attributes that have been modified in the current update action
are included in the Where clause.

n No Optimistic Locking. No optimistic locking is provided for updates.

This flexible optimistic locking mechanism uses a Where clause in the internal update
statement that is executed when a user saves an update to one or more rows of data in the data
object to determine whether the update should be completed. The attributes in this Where
clause are compared to the matching attributes in the database to determine if another user has
modified the data. This mechanism avoids the placement of explicit locks on any data that is
read. If another user has modified the data in the Where clause, the update fails and an error is
returned.

You can further customize the optimistic locking mechanism to include or exclude individual
attributes in the Where clause. You can write custom code using the inOptLock methods of
the versata.common.VSMetaColumn class.

Applicable attributes for optimistic locking are defined as all attributes that users can change
and that can be compared easily. This definition excludes derived attributes and attributes with
a float data type.

Note: For applications running against DB2 Univeral Database, the Versata Logic Suite
attaches a lock to every auto-generated query issued to the DB2 database within a
transaction. This lock prevents the current session from reading any uncommitted
changes caused by other sessions.

For applications running against Oracle, if a data object contains an attribute of data
type Time, no attribute on that data object can be updated. To work around this
problem, do not include the Time attribute for optimistic locking. The Time data type is
supported only for DB2.

You can set additional transaction isolation levels and optimistic locking properties on
data servers in the VLS Console. For information, see the Administrator Guide.
94

WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS
Enabling resynchronization with a persistent data source
The extended property, refreshAfterUpdate, indicates whether or not to resynchronize
data between a business object and its persistent data source after a transaction is committed. If
this property is set, it overrides the default values for business objects. The possible values are
true and false. By default, data objects are specified as false. To override this default, you
can add the extended property to a query object and set its value to true.

To enable resynchronization of a data object with its persistent data source:

1. In the Versata Logic Studio Explorer, double-click the data object to open it in the
Transaction Logic Designer.

2. Click the Properties tab, then the Extended tab.

3. On the Extended tab, click the Add button.

4. In the dialog that appears, enter refreshAfterUpdate and click OK. This entry appears
in the Property Name column of the extended properties table.

5. In the Property Value column of the table, enter false.

6. Click the Save toolbar button.

Working with coded values lists
Coded values lists are data objects containing lookup values that can be used to validate user
entries. Almost any set of finite and relatively permanent data is appropriate for a coded values
list. For example, U.S. state abbreviations, credit limit categories, and payment methods are
typical uses of coded values lists.

Coded values lists consist of pairs of corresponding values. Each pair has a stored value and a
display value. The stored values are stored on the database server; the display values are shown
in a combo box to the user. When the user runs the application, he or she selects a display
value, and then the corresponding stored value is written into the row and validated on the
database server.

We recommend that you use all capital letters for the names of coded values lists and prefix
each name with VALID_, as in the sample repository. To use a coded values list, define a
validation rule with it in the Transaction Logic Designer.

You can use a data object both as a RecordSource in run-time applications and as a coded
values list. Attributes in an existing data object may be used as a coded values list without
interfering with the attributes’ primary use in the data object. In this case, Versata Logic Studio
generates code that checks attributes to maintain referential integrity as well as code that
checks the attributes to validate against the coded values list data.
95

WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS
Coded values list values are stored in a .csv file with the same name as the data object. You
can enter and modify values in the Versata Logic Studio or in another program. To deploy
coded values list values to the database when you deploy a data model, be sure to enable the
transfer of test data for these objects.

Note: If you make changes to coded values lists, you should use the Rebuild All command to
register the changes in applications that display coded values list values.

Defining a coded values list

You can specify that an existing data object should be used as a coded values list on its
Properties:Coded Values list tab. You also can enter valid attribute values on this tab. For
information, see “Coded Values List tab” on page 92.

To designate a data object as a coded values list:

1. Double-click the data object in the Versata Logic Studio Explorer. The Transaction Logic
Designer opens.

2. Select the Properties:Coded Values List tab.

3. Enable the Use this Data Object as a Coded Values List option. The Coded Values List
Attributes dialog opens.

4. Select the attribute whose values will serve as the coded values list’s stored values and
click the > button to copy it to the Stored Value Attribute text box.

5. Select the attribute whose values will serve as the coded values list’s display values and
click the > button to copy it to the Display Value Attribute text box.

6. Click the OK button to close the dialog.

7. If desired, enter or modify valid values for attributes. Also, you can add, rename, and
delete attributes as necessary by using the tab’s command buttons.

8. Choose File � Save Transaction Logic.

Caching coded values lists

It is important to note that all coded values are cached in the Versata Logic Server. This
improves performance because starting a new instance of the application does not require
requerying the database. Any business objects that are based on coded values will
automatically flush the cache when they get updated. In addition, once the coded values list is
cached on a particular Versata Logic Server, all clients using that Versata Logic Server will
share the cache. You can determine whether a coded values list is in the cache by checking in
the VLSout.log file.
96

WORKING WITH DATA OBJECTS
MODIFYING DATA OBJECTS
In a running client application, coded values are cached in the client as well, and these values
are not automatically updated unless you stop and restart the application. In a situation where
you want to update a running application with new coded values, use the following API to
refresh the client cache from the server:

VSMetaManager.refreshCodeTable(<coded_values_list_name>)
97

WORKING WITH DATA OBJECTS
WORKING WITH ATTRIBUTES
Working with attributes
When you build a data model in the Versata Logic Studio, you create a data object to represent
each data source for which you need to store records in the database. For each data object, you
create attributes to represent characteristics for which you need to store values in the database.

Define data object attributes as completely as possible before you convert your data model to a
Versata Logic Suite repository, but as you define declarative business rules and applications,
you may discover that you need to make some changes. If you have already opened the data
model in the Versata Logic Studio, use the Transaction Logic Designer to add, delete, or
rename the attributes of data objects in your data model.

The attribute information from the Versata Logic Studio is included in each data object’s .xml
file. For more information about Versata Logic Suite .xml files, see the Reference Guide.

Note: If you need to make changes to the attributes included in query objects, use the Query
Object Designer. You can include attributes that exist in an underlying data object or
define formulas for computed attributes to be in the query object. For information, see
“Adding query objects” on page 152.

Before you add or make changes to attributes, review “Naming conventions for data
objects and attributes” on page 38.

If multiple data objects need to share the same attributes, these attributes can be
inherited from attribute templates. For information, see “Working with attribute
templates” on page 73.

Attributes and declarative business rules
The Versata Logic Suite’s declarative business rules allow you to define transaction logic for
changes to attribute values, so that when a user changes one attribute’s value, the values of all
related attributes are recalculated automatically. You can use derivation rules to calculate the
values of related attributes across multiple data objects.

n Sum and count rules calculate the values of parent data object attributes based on the
values of child data object attributes.

n Formula rules calculate the values of attributes based on the values of other attributes in
the same data object.

n Parent replicate rules calculate the values of child data object attributes based on the values
of parent data object attributes.

For more information about derivation rules, see “Types of business rules” on page 189.

As you define rules, you may need to create new attributes to store calculations that can be
used to calculate the value of other related attributes. These newly created attributes may store
information that is already stored in other attributes elsewhere in the data model, and
information that users will never need to see. In these cases, you can create virtual attributes.
98

WORKING WITH DATA OBJECTS
WORKING WITH ATTRIBUTES
The system calculates values for virtual attributes only when these values are required to
determine the values of other attributes, storing the values temporarily in cache, but not saving
them to the physical database. Virtual attributes allow you to take advantage of derivation rules
without denormalizing your data model or storing unnecessary data. For more information
about virtual attributes, see “Virtual attributes” on page 104.

Attributes tab of the Transaction Logic Designer
You can add, delete, or modify attributes for data objects on the Attributes tab of the
Transaction Logic Designer. You also can define derivation, validation, and presentation rules
for attributes on this tab. For information about these rules, see page 189.

Figure 4 BRD Attributes tab
99

WORKING WITH DATA OBJECTS
WORKING WITH ATTRIBUTES
The Attributes tab of the Transaction Logic Designer has a read-only grid of all the attributes
in the selected data object, with their attribute-level rule information. Rules are not input
directly into the grid. This tab also contains a tab control with tabs for each type of attribute-
level rule, as well as a tab where you can enter notes about the attribute.

When the Attributes tab is selected, the Add Attribute, Delete Attribute, and Rename Attribute
options are available from the Edit menu, and buttons on the main toolbar become enabled for
Add Attribute and Delete Attribute. Choosing Add Attribute opens the Add Attribute dialog.
Choosing Rename Attribute opens the Rename Attribute dialog.

The Extended tab allows you to add attribute properties other than those explicitly specified in
the Versata Logic Studio. Extended properties are useful in cases where you plan to add
custom Java code for an attribute. Code for these extended properties is generated in the
attribute data object’s Java implementation file. For each extended property, a static string
variable is created. To add an extended property, click the Add button and complete the dialog.
Then, enter a property value in the grid. To delete an extended property, place the cursor in the
grid row for the property and click the Delete button.

Add Attribute dialog

To add an attribute, complete the following fields in this dialog:

n Name. Observe the following conventions.

n The attribute name can be up to 64 characters and can include alphanumerics and
underscores.

n The first 19 characters are used for code generation so these should be unique.

n Spaces are permitted in attribute names, but not recommended. If your attribute names
have spaces, you must use quoted identifiers when you deploy to the server, and many
third party tools do not work with quoted identifiers.

n Type. Choose from the following data types.

n Text

n Memo

n Number

n Date/Time

n Yes/No

n Currency

n LongBinary

n AutoNumber

n Size. This field appears only if you select a Text data type. Enter the number of characters
permitted for the attribute value in the Size field. Up to 255 characters are permitted.
100

WORKING WITH DATA OBJECTS
WORKING WITH ATTRIBUTES
n Sub Type. This field appears if you select a Text, Number, or Date/Time data type. Choices
vary according to which type you selected.

n If you selected a Text data type, choices are:

n Variable length (the default)

n Fixed length

n If you selected a Number data type, choices are:

n Byte

n Integer

n Long Integer

n Double

n Single

n Decimal

If you select Decimal, you need to enter a precision and a scale. Precision is the
total number of digits stored for an attribute. Scale is the total number of decimal
places stored for an attribute.

n If you selected a Date/Time data type, choices are:

n Date and Time (the default)

n Date

n Time

Note: For attributes with formula rules, data type, subtype, and length information is not used,
except to determine the archetype for presentation formatting.

Note about binary data types

Currently, the Transaction Logic Designer does not support binary data types other than
LongBinary. By default, values for attributes of this data type are not retrieved at run time
during query execution, due to performance optimization. To work around this issue, do the
following:

n In the beforeQuery event for the data object containing a binary attribute, add the
following code:

This code enables queries of all binary data types, including binary, varbinary, and
longvarbinary.

query.setColumnProjectionLevel(DataConst.ALLTYPES);
101

WORKING WITH DATA OBJECTS
WORKING WITH ATTRIBUTES
n In addition, you may need change the following lines in the
<install_directory\RuntimeJava\Archetypes
\javaMetaQueryColumnCtorArchetype.tpl file:

You need to change DataConst.LONGVARBINARY to DataConst.VARBINARY or
DataConst.BINARY to map to the corresponding data type in the database.

Adding attributes to data objects

To add an attribute to a data object:

1. In the Versata Logic Studio Explorer, expand the Business Objects and Data Objects
folders, then select the data object to which you want to add an attribute.

2. Choose Edit � Add Attribute or click the Add Attribute toolbar button. The Transaction
Logic Designer and Add Attribute dialog open.

3. In the Add Attribute dialog, enter a name for the attribute. From the Type drop-down list
box, choose a data type. For a Text attribute, enter a size. For a Text, Number, or Date/
Time attribute, select a sub-type. Click the OK button.

4. In the Transaction Logic Designer, define derivation, validation, and/or presentation rules
for the attribute. For information, see “Understanding the Transaction Logic Designer” on
page 220.

5. Choose File � Save Transaction Logic.

Note: If you are adding a derived attribute to store calculations used in rules processing but
you do not want to physically store the attribute in the data model, you can disable the
Persistent option on the Derivations tab of the Transaction Logic Designer.

If you are adding an Autonumber type attribute, be sure to enable the Prevent User
Updates check box on the Validation/Data Type tab.

Also, indexed attributes that you plan to deploy to an Informix database must have a
length (size) of less than 255. You cannot deploy to Informix if any attributes have
indexed attributes greater than or equal to 255.

<<if value(VSVBColumn!DataType) = "LongBinary">>
c = new VSMetaColumn("<<Name>>",

DataConst.LONGVARBINARY);
102

WORKING WITH DATA OBJECTS
WORKING WITH ATTRIBUTES
Deleting attributes from data objects

To delete an attribute from a data object:

1. In the Versata Logic Studio Explorer, expand the Business Objects folder, the Data Objects
folders, and the data object where you want to delete an attribute. Select the attribute you
want to delete.

2. Choose Edit � Delete Attribute, click the Delete Attribute toolbar button, or right-click the
attribute and choose Delete Attribute. The Transaction Logic Designer opens and a dialog
appears asking you to confirm the deletion.

3. Click the Yes button.

Note: You cannot delete an attribute that is used in a relationship unless you delete the
relationship first.

Renaming attributes

To rename an attribute:

1. In the Versata Logic Studio Explorer, expand the Business Objects folder, the Data Objects
folder, and the data object where you want to rename an attribute. Select the attribute to
rename.

2. Choose Edit � Rename Attribute, click the Rename Attribute toolbar button, or right-click
the attribute and choose Rename Attribute. The Transaction Logic Designer opens.

3. If the attribute is used in a relationship, a dialog appears informing you that you cannot
rename the attribute. Click the OK button.

4. If the attribute is not used in a relationship, a dialog appears asking you to confirm the
renaming. Click the Yes button.

5. In the Rename Attribute dialog, enter a new name and click the OK button.

Note: When you rename an attribute, references to the attribute in applications, constraints,
and query objects may not be updated. You may need to update these references
manually.

Changing an attribute’s data type
Use the Transaction Logic Designer to change the data type for an attribute.

For information about data type mappings between Versata Logic Suite and supported
RDBMSs, see page 40.
103

WORKING WITH DATA OBJECTS
WORKING WITH ATTRIBUTES
To change an attribute’s data type:

1. Double-click a data object in the Versata Logic Studio Explorer to open the Transaction
Logic Designer.

2. Click the Attributes: Validation / Data Type tab.

3. Select the attribute.

4. Select a new data type from the Data Type drop-down list. For a Text data type, enter the
number of characters permitted. For a Text, Number, or Date/Time data type, select the sub
type.

5. Choose File � Save Transaction Logic.

6. You may want to change the presentation format for the attribute, to fit with the new data
type. You can do this on the Attributes:Presentation tab of the Transaction Logic Designer
For information, see “Presentation tab” on page 225.

Note: If you attempt to alter the presentation format after changing from a Data Time data
type and before saving the change, format choices are not correct. Save the data type
change, then retry.

Virtual attributes
Virtual attributes are available in all Versata Logic Studio designers and can be placed on
application forms or pages, but they are not deployed to the database server. You can project
virtual attributes into query objects. Virtual attributes may be referenced by name in rules,
including derivations, constraints, and action rules. Virtual attributes also may be used in
Where clauses for other derived attributes.

When you design your data model, you need to make decisions about which attributes should
be stored and which should be virtual. You need to be conscious of the balance between the
benefits of virtual attributes and the performance impact of in-memory calculations performed
to obtain virtual attributes’ values. Your data model should have a mix of stored and virtual
derived attributes.

To define an attribute as virtual, you must define a derivation rule for it, then you must disable
the Persistent option on the Derivations tab of the Transaction Logic Designer.

Virtual attributes are recommended for the following:

n Most attributes with formula rules.

n Parent replicates of stored attributes.

n Other derived attributes that are not displayed on application forms or pages.

There are four absolute restrictions on the use of virtual attributes:

n Virtual attributes may not be used as primary or foreign keys.

n Attributes that are unmaintained replicates may not be virtual.
104

WORKING WITH DATA OBJECTS
WORKING WITH ATTRIBUTES
n Attributes with default rules may not be virtual.

n No :old value is available for virtual attributes.

In addition to the above restrictions, observe the following limitations:

n Do not use virtual attributes as search criteria on a form or page that uses the Grid Select
RecordSource archetype.

n You cannot sort on a virtual attribute in a grid.

n You cannot apply functions to virtual attributes.

Because a virtual attribute is not stored, it is comparable to a function. So as you are designing
rules and determining whether attributes used in rule calculations should be stored or virtual,
you should keep in mind where it is appropriate to reference a function in rules. You can apply
similar principles to determining where to use virtual attributes.

A virtual attribute will need to be recalculated each time it is used, and this recalculation can
slow performance in certain cases. Consider the following factors:

n Whether the derivation of the attribute is complex.

n Whether the derivation of the attribute requires the calculation of one or more virtual
attributes.

n Whether the attribute is used in many other rules.

n How frequently the value of the attribute must be recalculated.

n Whether the attribute is displayed on application forms or pages, particularly in grids.

n Whether other rules require access to the previous value of the attribute.

If the derivation of an attribute is complex or already involves the input of one or more virtual
attributes, it is probably best to store the attribute, to avoid the time necessary for repeated
recalculations. Also, if the attribute needs to be recalculated frequently, either to serve as input
for other rules, or to be displayed on forms or pages, it may be best to store it, particularly if
the attribute is displayed in one or more grids. Conversely, simple calculations that do not need
to be performed frequently are good candidates to be virtual attributes.

n Do not create virtual attributes that are sums of other virtual sums. This is called cross-
object aggregation and can have severe performance implications.

n If attributes will be displayed on forms or pages, do not make them virtual. When you place
data objects or query objects on a form or page, by default the virtual attributes in the
objects are generated on the form or page. To avoid the placement of virtual attributes on
forms or pages, you can create query objects that filter out the virtual attributes in data
objects.

n Avoid using virtual attributes in the Where clauses of sums and counts in which the value
of the virtual attribute must be recalculated for each record in the data object to evaluate the
condition.

n Avoid using virtual attributes that are sums or counts in Where clauses or formula
expressions.
105

WORKING WITH DATA OBJECTS
WORKING WITH ATTRIBUTES
Example - virtual attributes in sum and count rules

An account balance attribute for a customer, which is used to ensure that the customer does not
exceed its credit limit, is a good example of an attribute which normally should remain
persistent because it needs to be recomputed every time an order is added or modified or paid.
For example, if you write a credit card payment tracking application, you would definitely
want this attribute to be persistent, since the alternative is to review the entire transaction
history.

If you are writing software for a car dealership, however, where there might be an average of
two transactions per customer in a calendar year, making the attribute non-persistent might be
an excellent design choice because the need to recompute it is low. Even then, if the account
balances must be displayed on a grid of customers, then it would be wise to store it.

Defining an attribute as virtual

Generally, you define an attribute to be virtual when you define a derivation rule for that
attribute.

To define an attribute as virtual during rules definition:

1. In the Versata Logic Studio Explorer, double-click a data object to open the Transaction
Logic Designer.

2. On the Attributes tab of the Transaction Logic Designer, select the attribute in the grid.

3. Select a type of derivation rule from the drop-down list.

4. Enter data object, attribute, and/or expression as appropriate.

5. Click the Persistent check box to remove the check.

For more information about defining derivation rules, see page 232.

Note: Computed attributes in query objects are different from virtual attributes. The values
for computed attribute records are calculated by the database server where the
underlying data object is stored, while the values for virtual attributes are calculated by
the Versata Logic Server. For information about computed attributes, see “Computed
Attribute Details frame” on page 165.
106

WORKING WITH DATA OBJECTS
WORKING WITH RELATIONSHIPS
Working with relationships
It is a good idea to define relationships as completely as possible before opening a data model
in the Versata Logic Studio. As you define transaction logic and design application user
interfaces, you may discover that you need to make changes to relationships. Sum, count, and
replicate derivation rules are based on relationships among data objects. Some archetypes for
display of data on forms/pages and navigations among forms also are based on relationships. If
you have already opened the data model in the Versata Logic Studio, use the Transaction Logic
Designer to add, delete, or change keys for the relationships in your data model.

After definition in the Versata Logic Studio, each relationship’s definition is represented in the
repository as an .xml file (REL_<data_object__name><data_object__name>.xml).
The format of this file conforms to the Relation.dtd file included with the product, located
in the product installation directory. The .dtd file lists all of the nested elements and attributes
that define the characteristics of each relationship. Each relationship.xml file includes values
for these nested elements and attributes. For more information about Versata Logic Suite .dtd
and .xml files, see the Reference Guide.

Note: If you need to make changes to the relationships for query objects, use the Query Object
Designer. Relationships for a query object are based on the relationships of its
childmost data object. For information, see page 160.

The Versata Logic Studio incorporates relationship information into the scripts and files it
generates to deploy data objects in locations available to run-time applications. For instance,
when you deploy related data objects to the database server, relationship metadata is deployed
at the same time. Data object Java files that are deployed to the Versata Logic Server also
include information about data object relationships.

Types of relationships supported
For the purpose of database server enforcement, the Versata Logic Studio presumes that all
relationships are equi-joins. You may choose to define join options other than equi-joins if
your client application requires it, but be aware that the relationship rules for these joins will
be enforced as equi-joins on the database server.

If you use outer joins to ensure that child rows with null foreign keys are retrieved by queries,
users will be able to search on blank attributes.

The most common kind of relationship in Versata data models is one-to-many (1:N). For
example, one customer can have many orders, one order can have many order items. Versata
data models also support many-to-many (N:M) relationships. In addition, the Versata Logic
Suite supports Super/Sub relationships, where a super type of object contains subtypes that
inherit the behavior of the supertype and extend it.
107

WORKING WITH DATA OBJECTS
WORKING WITH RELATIONSHIPS
Many-to-many relationships
A many-to-many relationship (N:M) is a relationship where many rows in one data object can
be related to many rows in another. For example, Parts and Suppliers data objects would
generally have a many-to-many relationship. Many parts may be provided by many suppliers
and many suppliers may provide many parts.

Many-to-many relationships typically are implemented indirectly, through a third data object
called a junction data object or intersection data object. Both primary data objects have a
direct one-to-many relationship with the junction data object. They do not have a direct, many-
to-many relationship with each other. For example, a PartsSuppliers junction data object
would provide an indirect many-to-many relationship.

Because of this implementation, you may want to use query objects to build forms or pages
based on many-to-many relationships.

For example, to build a form or page that displays one supplier and all the parts it sells, start
with a form that displays one supplier from the Suppliers data object. Then define a query
object that joins the Parts data object and the PartsSuppliers junction table. The query object
selects all parts sold by the current supplier.

Add the query object to the form or page. If you simply add the Parts data object, it will
display all parts, not the parts of a selected supplier.

Type hierarchies
In addition to one-to-many and many-to-many relationships, Versata Logic Suite data models
also support Super/Sub relationships, where a supertype of an object contains subtypes that
inherit the behavior of the supertype and extend it. A Super/Sub relationship, commonly
referred to as a type hierarchy, is not a relationship by the traditional relational definition,
because it does not join two data objects.

The following is an example of a type hierarchy: the supertype is Employee and the subtypes
are Salaried, Hourly, and Commissioned. A supertype can be concrete or abstract. A concrete
supertype can contain records that are not members of any subtype. For example, if Employee
is concrete, an employee that is neither Salaried, Hourly, nor Commissioned can exist. If
Employee is abstract, all employees must be one of the subtypes.
108

WORKING WITH DATA OBJECTS
WORKING WITH RELATIONSHIPS
You can define type hierarchies in your data model in one of the following ways:

n Store with Super. All data remain in one data object. A type attribute identifies the subtype
of each row. For example, the data model could include an Employees data object with a
Type attribute, containing a value of S for salaried employees, H for hourly employees, and
C for commissioned employees. By definition, some of the other attributes in the row
would be NULL. For example, the salary attribute would be NULL for hourly employees
because they receive wages, while the HourlyWage attribute would be NULL for the other
employees, because they receive salaries.

n Store Alone. Common data are stored in a supertype data object and the data specific to
each subtype are stored in separate subtype data objects. For example, the data model
contains an Employees data object, and also Salaried, Hourly, and Commissioned data
objects. No attributes are NULL by definition. This way works well for type hierarchies
with concrete supertypes.

n Store Separate. A variation of Store Alone where no supertype data object exists. Separate
subtype data objects duplicate the supertype definition, and also contain type specific
attributes. No attributes are NULL by definition. This way works well for abstract
supertypes.

We generally recommend that you implement type hierarchies in Store with Super data
objects, but guidelines vary according to circumstances.

Implementing type hierarchies

The generally recommended way to implement type hierarchies in Versata data models is Store
with Super. In most cases, Store with Super produces the simplest and best performing design.
For example, the sample database includes an EMPLOYEES data object with an EmpType
attribute. In this example, an EMPLOYEE is an abstract supertype.

If you use Store Alone rather than Store with Super, you could not easily refer to attributes in
the supertype data object except through replication. You would need to create foreign keys
that point to multiple data objects, and reused foreign keys can cause errors. Also, form or
page generation is more complicated, because you might need to place multiple data objects
instead of one on a form or page. Further, using Store Alone requires the join input/output
required for data retrieval.
109

WORKING WITH DATA OBJECTS
WORKING WITH RELATIONSHIPS
In the following circumstances, you may need to use Store Alone:

n If you want to use indexes to enforce the uniqueness of an attribute that is null for some
subtypes. A workaround is to use event code to enforce uniqueness and use Store with
Super.

n If your data source has limits on the number of attributes you can define in a row or the
total number of bytes a row can contain. In this case, Store with Super can cause your
design to exceed these limits.

n If the supertype is abstract and has few attributes or relationships and you rarely need to
display subtypes together on forms or pages. In this case, you could use the Store Separate
way to create separate data objects for the subtypes, duplicating the few supertype
attributes and relationships in each subtype data object.

Guidelines for Store with Super type hierarchies

Review the following guidelines before you implement a type hierarchy as Store with Super in
a Versata data model. The Versata Logic Suite sample repository contains a Store with Super
type hierarchy in the EMPLOYEES data object.

n Define a type indicator attribute for the supertype data object. Typically you should limit
the values for this attribute to those in a Coded Values List. For instructions, see “Defining
a coded values list validation rule” on page 234.

n Define subtype specific attributes to allow NULL values. If you want to make an attribute
required for one subtype, define a constraint rule.

n To enforce a relationship that is specific to a subtype, define a relationship to the supertype
data object, and define a replicate or a sum to limit the relationship to records with the
appropriate subtype. You can replicate the type indicator attribute in the related child data
object, and add a constraint to this data object that rejects inapplicable types.

n To enforce a constraint that is specific to a subtype, include a check of the type indicator
attribute in the constraint definition.
110

WORKING WITH DATA OBJECTS
WORKING WITH RELATIONSHIPS
Relationships tab of Transaction Logic Designer
You can add, delete, or modify relationships between data objects on the Relationships tab of
the Transaction Logic Designer. You also can define referential integrity rules and
relationship-level presentation properties on this tab. For information about these rules, see
page 197 and page 194.

Figure 5 Transaction Logic Designer Relationships tab
111

WORKING WITH DATA OBJECTS
WORKING WITH RELATIONSHIPS
When the Relationships tab is selected, Add Relationship, Modify Relationship, and Delete
Relationship are available from the Edit menu and from the right-click menu for the
relationships outline.

The relationships outline lists the parent and child relationships for the selected data object,
and lists the primary and foreign keys for each relationship. Click the + sign next to a
relationship to view its key(s). Select a relationship from this outline to modify it.

The Extended tab allows you to add relationship properties other than those explicitly
specified in the Versata Logic Studio. Extended properties are useful in cases where you plan
to add custom Java code for a relationship. Code for these extended properties is generated in
the related data objects’ Java implementation files. For each extended property, a static string
variable is created. To add an extended property, click the Add button and complete the dialog.
Then, enter a property value in the grid. To delete an extended property, place the cursor in the
grid row for the property and click the Delete button.

Note: All changes to relationships are saved immediately, so there is no need to explicitly
save these changes.

The childmost data object is not updated automatically when the relationship between
underlying data objects changes. After such a change, review the childmost data object
for any affected query objects and modify it as necessary.

A relationship is deleted automatically if both the parent and child data objects are
deleted.
112

WORKING WITH DATA OBJECTS
WORKING WITH RELATIONSHIPS
Relationship Editor
The Relationship Editor appears when you select a relationship and choose Edit � Modify
Relationship, and after you complete the Create Relationship dialog when adding a
relationship.

In the Relationship Editor, you can make the following changes:

n To change keys in an existing key pair, select attributes from the drop-down lists for data
objects.

n To add a key pair, click the Add button and select attributes from the drop-down lists.

n To delete a key pair, select a pair and click the Delete button.

Click the OK button to confirm the changes and close the Relationship Editor.

Adding relationships
You can add parent and child relationships for a data object.

Figure 6 Relationship Editor
113

WORKING WITH DATA OBJECTS
WORKING WITH RELATIONSHIPS
To add a relationship for a data object:

1. In the Versata Logic Studio Explorer, expand the Business Objects folder, the Data Objects
folder, and double-click the data object where you want to add a relationship. The
Transaction Logic Designer opens.

2. In the Transaction Logic Designer, click the Relationships tab and choose Edit�Add
Relationship.

3. In the Create Relationship dialog, select an option button for Parent or Child relationship.
In the Related Data Object list box, select the other data object for the relationship. Click
the OK button.

4. In the Relationship Editor, click the Add button. From the drop-down lists, select a key
attribute for each data object. Repeat to add more key pairs as desired. Click the OK
button.

5. On the Relationships tab, enter referential integrity rules and presentation rules for the new
relationship.

6. Choose File�Save Transaction Logic.

Note: If you have chosen to enforce referential integrity, the data types for each key pair must
be identical. If the data type is Number with a Size of Decimal, then Precision and
Scale also must match. The following data types are not supported for keys: Yes/No,
Memo, and LongBinary.

You may encounter errors if one key has a Text data type with fixed length sub-type,
and the other key has a Text data type with variable length sub-type.

You may encounter data type mismatch errors if you attempt to create a relationship
between a reengineered data object and a data object imported with Repository
Exchange Manager, as a result of data type remapping that occurs during deployment
and reengineering. For example, a Currency attribute that is deployed to DB2 is
mapped to Decimal, then reengineered as Decimal.

Adding a relationship from XML

You can directly import an object created outside of the Versata Logic Suite as a relationship,
if it can be represented in an.xml file. The .xml file for the external object must conform to
the Relation.dtd file. For information about this file, see the Reference Guide.

To add a relationship from XML:

1. Review the Relation.dtd and the .xml file for the external object, to ensure that the
.xml file contains all values for all elements and attributes required by the .dtd.

2. Revise the .xml file as necessary to conform to the .dtd. If the .xml file includes
elements not contained in the .dtd, you can make them into Hidden Property elements so
they can be maintained in the .xml file for the relationship.
114

WORKING WITH DATA OBJECTS
WORKING WITH RELATIONSHIPS
3. In the Objects view of the Versata Logic Studio Explorer, right-click the Business Logic
folder, or one of its subgroup folders, and choose Add Existing.

4. In the dialog that appears, select the .xml file to be added as a relationship.

Deleting relationships

To delete a relationship for a data object:

1. In the Versata Logic Studio Explorer, expand the Business Objects folder, the Data Objects
folder, and double-click the data object where you want to delete a relationship. The
Transaction Logic Designer opens.

2. In the Transaction Logic Designer, click the Relationships tab and choose Edit�Delete
Relationship.

3. In the Action Choice dialog, click the Yes button to confirm the deletion.

Note: To delete an attribute that is used in a relationship, you must delete the relationship first.

Changing keys for relationships
You can modify a relationship between data objects by changing the attributes used as keys for
the relationship.

For information about primary keys, see page 117.

To change keys for a relationship:

1. In the Versata Logic Studio Explorer, expand the Business Objects folder, the Data Objects
folder, and double-click the data object where you want to change keys. The Transaction
Logic Designer opens.

2. In the Transaction Logic Designer, click the Relationships tab and choose Edit�Modify
Relationship.

3. In the Relationship Editor, you can change keys:

n To change keys in an existing key pair, select attributes from the drop-down lists for
data objects.

n To add a key pair, click the Add button and select attributes from the drop-down list
boxes.

n To delete a key pair, select a pair and click the Delete button.

4. Click the OK button to confirm the changes and close the Relationship Editor.
115

WORKING WITH DATA OBJECTS
WORKING WITH RELATIONSHIPS
Note: Every relationship must have at least one key pair. Do not delete the last key pair for a
relationship. Create a new key pair first, or delete the relationship instead. If you have
chosen to enforce referential integrity, the data types for each key pair must be
identical. If the data type is Number with a Size of Decimal, then Precision and Scale
also must match. The following data types are not supported for keys: Yes/No, Memo,
and LongBinary.
116

WORKING WITH DATA OBJECTS
WORKING WITH INDEXES AND PRIMARY KEYS
Working with indexes and primary keys
It is a good idea to define data object indexes as completely as possible before you open your
data model in the Versata Logic Studio. As you define declarative business rules, you may
discover that you need to make changes to indexes. If you have already opened the data model
in the Versata Logic Studio, use the Transaction Logic Designer to add, delete, or make
changes to indexes.

Note: As of release 5.5, object naming conventions are enforced for index names. However,
invalid index names may exist in repositories created before this release and these
names are not validated when data objects are loaded into the repository. For
information about naming conventions, see “Naming conventions for data objects and
attributes” on page 38.

Primary keys
The Versata Logic Suite does not support data objects without primary keys. Such data objects
are treated as "read only" and cannot be updated. For Microsoft SQL Server, the primary key
attributes must be NOT NULL. In addition, observe the following guidelines when defining
keys:

n Do not use floating point numbers as primary keys. Using floating point numbers for
primary keys or foreign keys may cause unpredictable results, depending upon the Java
Virtual Machine being used.

n Do not define non-unique indexes on primary keys. When you create indexes, do create
them on foreign keys. Note that foreign key indexes are created automatically during the
relationship enforcement process.

n Do define a primary key for every data object in the data model. Note that indexes for
primary keys are not defined automatically; you must explicitly define each index.

n Do determine the correct data type for attributes that are keys early in your development
process. You cannot change the data type of a key in the Versata Logic Suite. If you need to
change the data type for an attribute that is a key, you need to drop the key, change the data
type, then recreate the key and its index. You also need to review any relationships
involving that key and any rules dependent on those relationships, and recreate them if
necessary.

n It may be necessary to review primary key indexes’ names and modify them for uniqueness
across a database, particularly if they are likely to be truncated. For information about
Versata’s truncation rules, see “Naming conventions for data objects and attributes” on
page 38.
117

WORKING WITH DATA OBJECTS
WORKING WITH INDEXES AND PRIMARY KEYS
Index Editor
The Index Editor appears when you click the Add or Modify buttons on the Properties tab, or
the Keys/Indexes tab in the Transaction Logic Designer.

In the Index Editor, you can:

n Enter a name for the index.

n Indicate whether the index is primary, unique, and/or ignores nulls.

n Indicate how the index will be sorted by selecting one or more attributes in the Available
Attributes list box and clicking the unfold button to move them to Index Attributes list box.

n Enable the Descending Sort check box. (By default, the sort is ascending.)

Click the OK button to save the additions or modifications.

Note: All changes to indexes are saved immediately, so there is no need to explicitly save
these changes.

Figure 7 Index Editor
118

WORKING WITH DATA OBJECTS
WORKING WITH INDEXES AND PRIMARY KEYS
If a data object has more than ten indexes, it is not currently possible to modify the data
object’s indexes in the Index Editor. In this case, it is necessary to modify the data
object’s .xml file directly.

Adding indexes

To add an index to a data object:

1. In the Versata Logic Studio Explorer, expand the Business Objects folder, the Data Objects
folder, and double-click the data object where you want to add an index. The Transaction
Logic Designer opens.

2. In the Transaction Logic Designer, click the Properties tab and the Keys/Indexes tab.

3. Scroll down in the Transaction Logic Designer window and click the Add button.

4. In the Index Editor, enter a name for the index.

5. Indicate whether the index is primary, unique, and ignores nulls.

6. Indicate how the index will be sorted by selecting one or more attributes in the Available
Attributes list box and clicking the unfold button to move them to Index Attributes list box.

7. By default, the sort is ascending. If you would like a descending sort, enable the check box.

8. Click the OK button.

Note: Indexed attributes that you plan to deploy to an Informix database must have a length
(size) of less than 255. You cannot deploy to Informix if any indexed attribute has a
length greater than or equal to 255.

DB2 UDB does not allow the creation of a unique index on a nullable attribute.

As you create an index, you may encounter errors with unclear, confusing messages.
These are Versata internal errors and are not fatal.

Deleting indexes

To delete an index from a data object:

1. In the Versata Logic Studio Explorer, expand the Business Objects folder, the Data Objects
folder, and double-click the data object where you want to delete an index. The Transaction
Logic Designer opens.

2. In the Transaction Logic Designer, click the Properties tab and the Keys/Indexes tab.

3. Scroll down in the Transaction Logic Designer window, select an index, and click the
Delete button.

4. In the Action Choice dialog, verify that you have selected the correct index to delete, then
click the Yes button to continue.
119

WORKING WITH DATA OBJECTS
WORKING WITH INDEXES AND PRIMARY KEYS
5. If the index is being used to enforce a relationship, you receive a message that it cannot be
deleted. Click the OK button to close the dialog.

Changing index definitions
You can modify an index on a data object by changing its name, changing the attributes it uses
for sorting, changing the type of sort, indicating whether the index should ignore null values,
and indicating whether the index is primary or unique.

To make changes to an index:

1. In the Versata Logic Studio Explorer, expand the Business Objects folder, the Data Objects
folder, and double-click the data object where you want to modify an index. The
Transaction Logic Designer opens.

2. In the Transaction Logic Designer, click the Properties tab and the Keys/Indexes tab.

3. In the table on the Keys/Indexes tab, double-click an Index record. The Index Editor
opens.

4. Make changes to the index. You can:

n Enter a new name.

n Enable or disable the Primary, Unique, and Ignore Nulls options.

n Change the attributes the index uses to sort data object records by selecting attributes
and clicking the unfold buttons to move them between the Available Attributes and
Index Attributes lists.

n Indicate that the index should sort records in descending order by selecting an attribute
in the Index Attributes box and enabling the Descending Sort option.

5. Click the OK button.
120

CHAPTER 4 Deploying Data
Models
121

DEPLOYING DATA MODELS
CHAPTER OVERVIEW
Chapter overview
Read this chapter to understand how to complete tasks to deploy a data model from the Versata
Logic Studio to a supported RDBMS.

This chapter includes the following:

n “Deployment overview” on page 123, describes the deployment process.

n “Setting up a system DSN” on page 124, explains how to set a data source name for the
RDBMS database(s) where Versata data objects will be deployed.

n “Deploying a data model to a database server” on page 126, provides step-by-step
instructions for copying Versata data model information to one or more RDBMS
databases. This chapter explains how to deploy directly from the Server Manager wizard,
as well as how to generate and use deployment scripts.
122

DEPLOYING DATA MODELS
DEPLOYMENT OVERVIEW
Deployment overview
Deployment is the process of setting up the components of an application so that the
application can be run by users. The files that compose each of the parts must be placed in
locations available to users.

Versata Logic Studio-generated applications are built for a three-tier environment. In this
environment, the data model is deployed to a database server, such as Microsoft SQL
Server™, Oracle®, Sybase®, Informix®, or DB2 UDB.

To deploy your data model, use the Server Manager wizard to install the repository’s data
model and optionally, test data, onto a database server. Also, you can generate script files
instead of deploying to the database server, and then later run the scripts to install the data
model on the database server.

Generally, you should deploy the data model and transfer test data to the database server before
you deploy business objects containing transaction logic to the Versata Logic Server. You must
deploy the data model and the business objects in order to test an application and review its
user interface.

If you need to retarget your application(s) to run against a different type of database server, the
Versata Logic Studio automates the retargeting process. You can deploy the repository data
model to the other database server, then redeploy transaction logic to the Versata Logic Server.
Also, you can check connection properties for the redeployed data objects in the Versata Logic
Server Console. Once connection properties are set to the correct database server, you simply
run the application.

The Versata Logic Studio also enables you to deploy individual data objects to different
database servers so that applications can run against multiple data sources simultaneously. For
information about this type of situation, see “Deploying to multiple databases” on page 142.

Note: This chapter includes information about all RDBMSs supported by the Versata Logic
Suite. Every release of the Versata Logic Suite may not support every RDBMS
discussed in this chapter. For information about the RDBMSs supported by this release,
see the Getting Started Guide.
123

DEPLOYING DATA MODELS
SETTING UP A SYSTEM DSN
Setting up a system DSN
Before you can deploy a data model to a database server, you need to set up an ODBC data
source name (DSN) for the database server. The Server Manager uses the DSN to connect to
the database server. Versata Logic Studio-generated applications and the Versata Logic Server
may also use the DSN for database server connectivity.

A DSN stores information about how to connect to a specified data provider. A user DSN is
visible only to the user who sets it up and can be used only on the current machine. A system
DSN is visible to all users on the machine, including Windows NT services.

It is a good idea to give a meaningful name to each DSN. For example, you could set up a
DSN called Sample for the database server where you deploy the Versata Logic Suite sample
data model.

To set up a system DSN:

1. Choose Start � Settings � Control Panel.

2. In Windows NT, double-click ODBC.

3. In the ODBC Data Source Administrator dialog, click the System DSN tab.

4. On the tab, click the Add button.

5. In the Create New Data Source dialog, select a supported driver for the type of database
server you are using, then click the Finish button. A dialog for the selected driver appears.

n Microsoft SQL Server or Sybase. Enter a name for the DSN (such as Sample) and
the server name of the server for the data model deployment. The server name is
usually the name of the machine as well. Review fields on subsequent tabs. You can
leave the defaults for all of them. You may want to specify a default database other than
master if you want to set up the DSN for that specific database.

n Oracle. Enter a DSN and the server name:SQL*Net connect string—for example,
t:database_server:orcl.

n SQL*Net version 1. The SQL*Net connect string has the format:
<protocol>:<host name>:<Oracle SID>.

n SQL*Net version 2. The SQL*Net connect string has the format: <name of
Oracle service>.
124

DEPLOYING DATA MODELS
SETTING UP A SYSTEM DSN
n Informix®. Enter a DSN, the name of the host machine on which the Informix server is
running, the name of the TCP service identifying the port on which the server is
listening (usually turbo, but it can be set differently with the setnet32.exe utility),
the name of the Informix server as defined with the setnet32.exe utility, and the
name of the protocol type. Also, enable the Insert Cursors option.

n DB2 UDB. You can select an alias for a database from the drop-down list or click the
Add Database button to use a different database as the target of the DSN. If you choose
Add Database, you need to complete the fields in the Add Database Smart Guide. The
Smart Guide allows you to use a database access profile provided by an administrator,
search the network for a database, or manually configure a connection to the database.
On the Smart Guide tabs, you need to select a target database, enter an alias for the
database, and register the database as an ODBC data source. If you are manually
configuring the connection, you need to enter additional information, including the
communications protocol to be used for the connection and the type of operating
system on the machine where the database server is located.

6. Click the OK button to create the DSN.

7. After you have completed the dialogs to add the DSN, review the list of DSNs to verify
that a new DSN has been created, and click the OK button.

Note: If the Create New Data Source dialog does not list a supported driver for your database
server, you may need to install a new driver.
125

DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER
Deploying a data model to a database server
To deploy a data model to a database server, use the Server Manager part of the Deployment
Manager. For information about Server Manager dialogs and options, see “Working with the
Server Manager” on page 128.

Note: During deployment, you are asked to enter a user name and password for the database
where the data model is to be deployed. If you are deploying to DB2, you may
encounter an issue where you are asked to enter this information for every object. This
problem has not been encountered with DB2 7.1 Fixpack 3 and later.

To deploy a data model to a database server:

1. Start the Deployment Manager (choose Managers � Deployment Manager, click the
Deployment Manager toolbar button, or press F8).

2. In the Choose Deployment Target dialog, select Database Server deployment.

3. Choose the type of database server where the data model will be deployed, and click Next.

4. Choose whether you would like the Server Manager to automatically select changed
objects for deployment. If this is your first data model deployment, do not enable this
option. If you have previously deployed the data model, it is a good idea to enable this
option.

n If you do not enable Auto-Select, click the Next button.

n If you enable Auto-Select, a dialog appears where you need to confirm this choice,
enter database connection information, and click OK.

Another dialog appears where you need to choose a DSN for the server. You may need
to set up a new DSN. For instructions, see “Setting up a system DSN” on page 124.
Choose a DSN and click the OK button. A login dialog for the database server may
appear. Enter required information, and click the OK button.

The Server Manager connects to the database server and compares the tables in the
database with the data objects in the repository data model, selecting any repository
data objects that are different.

Note: If a previous data model deployment resulted in problems or was not complete, the
Auto-Select option will not work properly.

5. If you enabled Auto-Select, review the selected objects for deployment and make changes
as desired. If you did not enable Auto-Select, move objects that you want to deploy from
the All Objects list box to Selected Objects. Then, click the Next button.

6. Select the Deploy to the Server option, and click Next. (For information about creating
scripts rather than deploying directly to the server, see “Generating deployment scripts
instead of deploying to server” on page 135.)
126

DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER
7. Choose whether to deploy test data to the server. Any repository data object containing data
has a .csv file. You should transfer test data if you want to transfer stored and displayed
values for coded values lists.

8. Choose whether to enforce referential integrity on the database server.

Generally you do not need to enforce referential integrity on the database server. The
Versata Logic Server always enforces referential integrity. In some cases, if you are
expecting direct updates to the database, you may enable this option in order to ensure that
referential integrity is enforced for these direct updates.

9. Choose whether to grant all permissions to public. In a development environment, you can
enable this option to save time. For more information about this option, see “Granting
permissions manually” on page 138. Click Next.

10. Choose whether to drop and recreate the data model on the database server or make
incremental updates to it. The Synchronize option requires that you connect to the database
server. If a connection is not possible, select the Drop and Recreate option. Click Next.

11. Choose whether to generate quoted identifiers. For more information about this option, see
“Generating quoted identifiers” on page 139. Click Next.

12. Review the choices displayed in the final dialog, and click Finish.

13. If necessary, select a DSN. You may need to set up a new DSN. For instructions, see
“Setting up a system DSN” on page 124.

14. If necessary, log on to the database server.

15. Review the contents in the Server Deployment Preview dialog and continue the
deployment.

Caution

For deployments to Informix®, the user performing deployment must have connect
and resource permissions. If you plan to synchronize the repository with the existing
database, the user performing deployment also must have dba permission on the
database. In addition, it is a good idea to use the setnet32.exe utility to set the
DELIMIDENT environment variable to “y” before you begin your deployment. You
must set this variable if you plan to generate quoted identifiers.

For deployments to DB2 UDB, the user performing deployment must have a login with
no more than eight characters and must have the following DB2 administrator
privileges: connect database, create tables, create schemas implicitly, and database
administrator authority.

Note: If an error is encountered during data model deployment, the Server Manager attempts
to roll back any transactions committed to the database server up to that point.
However, the rollback may not be complete. If the deployment encounters errors, your
best recourse is to fix any problems in the repository and redeploy with the Drop and
Recreate option.
127

DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER
Indexed attributes that you plan to deploy to an Informix database must have a length
(size) of less than 255. You cannot deploy to Informix if any attributes have indexed
attributes greater than or equal to 255.

During data model deployment, data objects that are not abstracted from the RDBMS
are ignored.

In redeployments to Microsoft SQL Server, changes of attributes’ Value Required
properties may not be reflected accurately. The Server Manager attempts to alter the
table to add a not null constraint, which is different from the behavior that occurs when
a column is changed from null to not null in the SQL Server Enterprise Manager.

Working with the Server Manager
Use the Server Manager to deploy the application’s data model to a database server, such as
Microsoft SQL Server, ORACLE, Sybase, Informix, or DB2 Universal Database.

To start the Server Manager, start the Deployment Manager by choosing Managers �
Deployment Manager, clicking the Deployment Manager toolbar button, or pressing F8. In the
Choose Deployment Target dialog, choose Database Server.

The following sections describe the dialogs that appear to lead you through the data model
deployment process.

Server Manager Introduction dialog

In this dialog, choose the type of RDBMS (relational database management system) where the
data model will be deployed. Versata System-generated applications currently run against the
following RDBMSs:

n Microsoft SQL Server

n Oracle

n Sybase

n Informix

n DB2 Universal Database

Note: Every release of the Versata Logic Suite may not support every RDBMS discussed in
this section. For information about the RDBMSs supported by this release, see the
Getting Started Guide.

Connect for Auto Selection dialog

If you have previously deployed the data model, you can enable the Server Manager to
connect to the database server, and to select automatically any data objects that have changed
since the last deployment. The selected objects are to be deployed this time.
128

DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER
If you have not previously deployed the data model, or if you currently cannot connect with
the database server, do not enable Auto Select.

When you enable Auto Select, a dialog appears for you to log in to the database server. The
dialog varies, depending on the type of RDBMS to which you are deploying. You also must
specify the data source name (DSN) for the server to which you are connecting.

Auto-select Changed Data Objects

When you choose Auto-select in the Connect for Auto Selection dialog, an Auto-select Data
Objects dialog appears in which you must log in to the appropriate database server. The dialog
has different formats depending upon the target database server for deployment. Complete this
dialog, then click the Yes button to confirm that you want auto selection to proceed. Next, you
will need to choose a DSN.

Auto-select Changed Data Objects for Oracle dialog

If you selected Oracle as your database server type, the dialog has the following fields:

Auto-select Changed Data Objects for SQL Server or Sybase dialog

If you selected SQL Server or Sybase as your database server type, the dialog has the
following fields:

Auto-select Changed Data Objects for Informix dialog

If you selected Informix as your database server type, the dialog has the following fields:

Server Type Oracle should be selected from this drop-down list.

Schema/User Enter the user’s schema/user name to use to deploy the objects.

Server Type SQL Server or Sybase should be selected from this drop-down
list.

Login Name Enter the user login name to use to deploy the objects.

Database The database name. The designation Default means that you
will connect to the default database.

Server Type Informix should be selected from this drop-down list.

Schema/User Enter the user’s schema/user name to use to deploy the objects.
129

DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER
Auto-select Changed Data Objects for DB2 UDB dialog

If you selected DB2 Universal Database as your database server type, the dialog has the
following fields:

Select Data Objects dialog

In this dialog, you can select data objects to be deployed.

n If you have enabled Auto Select in the previous dialog, any data objects that have changed
since the last deployment automatically are placed in the Selected Objects list box.

n To move a single data object between the two list boxes, select the data object and click the
> or < button. (Use the SHIFT or CTRL key to select multiple objects.)

n To move all data objects in one list box to the other list box, click the >> or << button.

Note: To prevent database anomalies, the Versata Logic Studio automatically orders the data
objects in the Selected Objects list box. Parent data objects are listed before their
children data objects, to prevent referential integrity errors if you transfer test data after
you deploy the rules.

Deploy to Server or Scripts dialog

In this dialog, choose whether to deploy selected data objects directly to the database server or
to generate deployment scripts.

n Deploy To The Server. Copies information about the selected data objects from the
repository directly to the database server by creating deployment scripts and running them
against the server.

n Generate Scripts for DDL. Creates deployment script files and places them in a
<repository name>_<database_server_name>_Scripts subdirectory in the
directory where the repository is located. You can run these scripts against the database
server using a tool such as isql.

n Use this option to review and debug deployment scripts or if the database server
currently is unavailable.

n When you use this option, the script includes insert statements that create data rows
for any coded values lists in your data model.

Server Type DB2UDB should be selected from this drop-down list.

Schema/User Enter the user’s schema/user name to use to deploy the objects.
130

DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER
What to Deploy dialog

In this dialog, you can make decisions about what is deployed to the database server.

n Transfer Test Data from Repository to Server. Copies any existing data (.csv) files in
the repository to the database server. This option is available only if you selected the
Deploy to the Server option in the previous dialog. Use this option for first-time
deployments and test deployments. Also, you should elect to transfer test data if you want
to transfer stored and display values for coded values lists.

n Enforce Referential Integrity on DBMS. Copies referential integrity rules to the database
server. Other rules are deployed to the Versata Logic Server, but referential integrity rules
are considered part of the data model so that you have the option of deploying them to the
database server. (You can review these rules on the Relationships tab of the Transaction
Logic Designer.)

Generally you do not need to enforce referential integrity in the database. The Versata
Logic Server always enforces referential integrity. In some cases, if you are expecting
direct updates to the database, you may enable this option in order to ensure that referential
integrity is enforced for these direct updates.

DB2 Universal Database supports different referential integrity options from RI options
available in the Versata Logic Suite. If you used Reengineering Manager to import a DB2
UDB data model into the Versata Logic Suite, the DB2 UDB referential integrity
information is stored in metadata and can be deployed back to the database server.
However, the Versata Logic Suite does not distinguish between No Action and
Restricted, and uses the default No Action for deployment.

Note: You may encounter problems if you attempt to deploy referential integrity information
to Oracle. Cascade constraints are not being generated correctly.

n Grant All Permissions to Public. Allows full access to all objects on the database server
to all users. Use this option for test deployments to avoid spending a lot of time assigning
permissions to specific users. For more information, see “Granting permissions manually”
on page 138.
131

DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER
Data Model Deploy Options dialog

In this dialog, choose how the deployment will alter the data model on the database server.

n Synchronize the Repository with the Server. Checks for changes that have been made to
the data model in the repository and updates the corresponding data objects on the database
server.

Use the Synchronize option when you do not want to replace the entire data model but just
want to add to or edit one or more data objects in the data model. For example, if you
added attributes to a data object in the repository, choose Synchronize to add those same
attributes to the data object on the server.

Do not use Synchronize if you are transferring data.

n Drop and Recreate. Creates a new data model on the database server by deleting the
existing data objects on the server and replacing them with the data objects from the
repository.

Use this option when you first deploy or if you need to replace the data model on the
server. Use this option with caution if you are unsure, as it overwrites the data model
currently on the server.

The Drop and Recreate option applies only to data objects located on the server. Drop and
Recreate does not apply to extended data objects, which cannot be deployed to the server.

Note: For deployments to Informix where you plan to synchronize the repository with the
existing database, the user performing deployment must have dba permissions on the
database.

If you are deploying to SQL Server or Sybase after adding any Autonumber attributes
to data objects, you may encounter errors like the following: “Incorrect syntax
near the keyword ‘Identity’”. For more information about issues with the
Identity property, see “Identity Columns” on page 54.

Be careful if you synchronize repositories that have quoted identifiers enabled. Newly
created tables on the database resulting from the synchronizing may not be created
properly with quoted identifiers. Also, an error has been observed where the
synchronize fails after addition of a primary key on DB2 7.2.

Configuration Options dialog

In this dialog, choose whether to enable the Generate Quoted Identifiers option.

When you enable this option, double quotation marks are placed around identifiers in
deployment scripts before the scripts are run.

n Oracle. Quoted identifiers indicate that the names of database objects are case-sensitive.
For more information, see “Quoted identifiers for Oracle” on page 139.
132

DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER
n Microsoft SQL Server or Sybase. Quoted identifiers allow you to avoid the special
handling of reserved words so that database objects may be created with those words as
names. You also can use spaces and underbars in names if you use quoted identifiers. For
more information, “Quoted identifiers for Microsoft SQL Server and Sybase” on page 139.

n Informix. If you enable this option, you must use the setnet32.exe utility to set the
DELIMIDENT environment variable to y before you begin your deployment. In general, it is
a good idea to set this variable to y even if you do not plan to generate quoted identifiers.
For more information, see “Quoted identifiers for Informix” on page 140.

n DB2 Universal Database. Quoted identifiers indicate that the names of database objects
are case-sensitive. For more information, see “Quoted identifiers for DB2 Universal
Database” on page 140.

Note: Only use quoted identifiers if they are necessary. Once you start using quoted identifiers
in the Versata Logic Suite, you must always use them; and some front-end database
server tools do not support quoted identifiers.

Ready to Deploy dialog

This dialog lists the choices that you have made in previous Server Manager dialogs. Review
these choices to ensure that you have selected the right deployment options, then click the
Finish button to begin the data model deployment.

Server Deployment Preview dialog

The Server Deployment Preview dialog displays the contents of the Deployment Log file
(ServerDeploy.log). Review your deployment choices before connecting to the server and
deploying. If there are errors in the log file, cancel the deployment and correct the problems. If
problems are encountered after you deploy, fix the repository and redeploy with the Drop and
Recreate option.

Data model deployment files
Files generated by the Server Manager are placed under the directory where the Versata Logic
Suite repository is located, in a subdirectory named
<repository>_<database_server_type>_SCRIPTS\, where <repository> is the
name of your repository and <database_server_type> is SQLSERVER, ORACLE,
SYBASE11, INFORMIX, or DB2UDB.
133

DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER
Script files provided with the Versata Logic Studio are located in the root installation directory.

The following table describes data model deployment script files.

Deployment log file

When you deploy data objects, warnings and informational messages generated by the system
are displayed in the Server Deployment Preview dialog. Then they are saved as the Server
Manager generates a deployment log file (ServerDeploy.log) in the
\<Repository_name>\<repository>_<database_server_type>_SCRIPTS\
subdirectory.

The log lists all warnings and informational messages generated by the system, based on a
comparison of data objects in the repository and data objects on server. Use a text editor such
as Microsoft Notepad or WordPad to view the files.

The contents of the deployment log file initially appear during the deployment.

File Creation Description

<SERVER>_server
_setup.sql

where <SERVER> is
sql, oracle, db2,
or informix

Provided with
the Versata
Logic Studio

There is one copy for Oracle, one for Informix,
one for Microsoft SQL Server or Sybase, and
one for DB2 Universal Database. Run this
script once on each database where you plan to
generate scripts for deployment, and then run
the scripts—rather than using the Server
Manager. This script must be run before
running any deployment-generated scripts.

ServerDeploy.
log

Generated Contains logged information about the
deployment. For more information, see
“Deployment log file” on page 134.

DDL.sql Generated Contains data object definitions. If you deploy
to SQL scripts, this file contains the complete
DDL for the deployed data objects. If you
deploy directly to a server, it contains only the
DDL for the last data object deployed.

RULEDDL.sql Generated If you choose to enforce referential integrity in
the database server, contains check constraints.
134

DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER
Generating deployment scripts instead of deploying to server
When you deploy a data model using the Server Manager, you can choose to deploy to scripts
instead of deploying to the server. Use this option if you cannot connect to the database server,
if you want to review deployment information before it is implemented or if you do not have
required permissions for database updates.

To generate data model deployment scripts:

1. Start the Deployment Manager (choose Managers � Deployment Manager, or click the
Deployment Manager toolbar button, or press F8).

2. In the Choose Deployment Target dialog, select Database Server deployment.

3. Choose the type of database server where the data model will be deployed, and click Next.

4. Choose whether you would like the Server Manager to automatically select changed
objects for deployment. If this is your first data model deployment, do not enable this
option. If you have previously deployed the data model, it is a good idea to enable this
option.

n If you do not enable Auto-Select, click Next.

n If you enable Auto-Select, a dialog appears where you need to confirm this choice,
enter database connection information, and click OK.

Another dialog appears where you need to choose a DSN for the server. You may need
to set up a new DSN. For instructions, see “Setting up a system DSN” on page 124.
Choose a DSN and click OK. A logon dialog for the database server may appear. Enter
required information, and click OK.

The Server Manager connects to the database server and compares the tables in the
database with the data objects in the repository data model, selecting any repository
data objects that are different.

5. If you enabled Auto-Select, review the selected objects for deployment and make changes
as desired. If you did not enable Auto-Select, move objects from the All Objects list box to
Selected Objects. Then, click Next.

6. Select the Generate Scripts for DDL option, and click Next.

7. Choose whether to enforce referential integrity on the database server. (Generally, you do
not need to enforce referential integrity on the database server. The Versata Logic Server
always enforces referential integrity. In some cases, if you are expecting direct updates to
the database, you may enable this option in order to ensure that referential integrity is
enforced for these direct updates.)

8. Choose whether to grant all permissions to public. In a development environment, you can
enable this option to save time. For more information about this option, see “Granting
permissions manually” on page 138. Click Next.
135

DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER
9. Choose whether to drop and recreate the data model on the database server or make
incremental updates to it. The Synchronize option requires you to connect to the database
server. If a connection is not possible, select the Drop and Recreate option. Click Next.

10. Choose whether to generate quoted identifiers. For more information about this option, see
“Generating quoted identifiers” on page 139. Click Next.

11. Review the choices displayed in the final dialog, and click Finish.

12. Review information in the Status Preview for Script Generation dialog, and click the
Deploy button to continue.

13. Review the generated script files. For information about these files, see “Data model
deployment files” on page 133.

14. If you want to use the scripts to deploy to the database server, see “Running deployment
scripts” on page 136.

Running deployment scripts
Once you have used the Server Manager to generate deployment scripts, you can run the
scripts against your database server, using a tool such as isql or SQL*Plus. The scripts must
be run in the correct order.

Note that generated files are found in the scripts subdirectory and files provided with the
Versata Logic Studio are found in the root directory where the product is installed.

The procedures vary according to the type of database server you are running.

Running deployment scripts against Oracle

When you are running the scripts against Oracle, run them in the following order:

n If you have not run them previously or if you are running the scripts against a server to
which you have never deployed, run:
oracle_server_setup.sql

n Run the following scripts each time you deploy:
n ddl.sql

n ruleddl.sql
136

DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER
Running deployment scripts against Microsoft SQL Server or
Sybase

When you are running the scripts against Microsoft SQL Server or Sybase, run them in the
following order:

n If you have not run them previously or if you are running the scripts against a server to
which you have never deployed, run:
sql_server_setup.sql

n Run the following scripts each time you deploy:
n ddl.sql

n ruleddl.sql

Note: If you are using quoted identifiers, either add the following line to the ddl.sql file
before executing the ddl:
set quoted_identifier on

or set the quoted identifier flag on in the Query Analyzer (sqlplus) tool.

Running deployment scripts against Informix

When you are running the scripts against an Informix database, run them in the following
order:

n If you have not run them previously or if you are running the scripts against a server to
which you have never deployed, run:
informix_server_setup.sql

n Run the following scripts each time you deploy:
n ddl.sql

n ruleddl.sql

Running deployment scripts against DB2 Universal Database

When you are running the scripts against a DB2 UDB database, run them in the following
order:

n If you have not run them previously or if you are running the scripts against a server to
which you have never deployed, run:
db2_server_setup.sql

n Run the following scripts each time you deploy:
n ddl.sql

n ruleddl.sql
137

DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER
Granting permissions manually
If you want to grant permissions on data objects created during deployment, you can either use
the Grant ALL Permissions to Public option in the What to Deploy dialog, or you can create a
script to manually grant specific permissions to groups defined in your database. When the
Grant ALL Permissions to Public check box is enabled, all users included in the database
server group Public are granted full permissions to the data objects deployed to the database
server. Statements are generated to grant all access permissions to the group public. Use this
option with care, especially in a production environment.

If you want to manually grant permissions to certain groups instead of using this option, you
should review the following guidelines for your database server before you write the script to
grant permissions.

Permissions for Microsoft SQL Server and Sybase

For Microsoft SQL Server and Sybase, you must grant permissions on tables and stored
procedures. Use isql or a similar tool to query your SYSOBJECTS table for the tables and
stored procedures owned by the user ID that you used to deploy, and grant permissions on
them to the appropriate users.

Note that you can create a group that includes all the appropriate users, and then grant
permission to that group. For more information, see the documentation provided with your
database server.

Permissions for Oracle

In Oracle, you must grant permissions on tables and packages. Use SQL*Plus or a similar tool
to query your data dictionary for objects owned by the user ID that you used to deploy and
include them in a grant statement.
138

DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER
Generating quoted identifiers
You can produce quoted identifiers by enabling the Generate Quoted Identifiers option during
data model deployment. When you generate quoted identifiers during deployment to a
database server, the Versata Logic Studio inserts quotes around the names of attributes and data
objects.

The effect of quoted identifiers varies according to the type of database server.

Caution: Once you start using quoted identifiers, you have to use them throughout the Versata
Logic Studio to refer to the named data objects; and all applications and tools which reference
the data objects must use quoted identifiers.

Note: If objects to be deployed contain custom code that dynamically builds Where clauses,
and you are changing whether quoted identifiers are generated during deployments, you
will need to modify this custom code between deployments. Once you have deployed
using quoted identifiers, it is best to continue deploying in this manner, in order to
avoid problems running applications.

The following sections explain the effects of quoted identifiers on different types of servers.

Quoted identifiers for Oracle

By default, Oracle generates all identifiers in upper case. To preserve mixed case identifiers,
you must use quoted identifiers. Quoted identifiers also allow the use of spaces and underbars
in identifiers. Note that some database server tools do not support quoted identifiers.

When you deploy to the database server and generate quoted identifiers, the Versata Logic
Studio inserts quotes around the names of attributes and data objects. If you enable the
Generate Quoted Identifiers option when deploying to Oracle, occurrences of identifiers in
generated SQL statements are enclosed in double quotation marks before the data objects and
rules are deployed. The quotation marks ensure that the case of the identifiers is preserved. For
example, the data object named Customers will be named “Customers” after deployment.

If you disable the Generate Quoted Identifiers option in Oracle, occurrences of identifiers in
SQL statements are automatically generated in upper case upon deployment.

Quoted identifiers for Microsoft SQL Server and Sybase

For SQL Server, generate quoted identifiers to bypass special handling of reserved words and
to allow spaces and underbars. Data objects created with this option can have reserved words
in their names. When you deploy to the server and generate quoted identifiers, the Versata
Logic Studio inserts quotes around the names of attributes and data objects.
139

DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER
For example, you could name a data object Table (a reserved word), then enable the Generate
Quoted Identifiers option, and since occurrences of identifiers are enclosed in double
quotation marks, the name “Table” is allowed as a data object name. If you name a data object
Table without enabling the Generate Quoted Identifiers option, you receive an error indicating
that the data object name is not allowed. If you generate with quoted identifiers, all references
using any tool or application must use quotes.

For SQL Server and Sybase, quoted identifiers have nothing to do with case sensitivity.
During installation, the server is configured to be either case sensitive or insensitive. Object
names are deployed with the case as it is typed in the repository. If the server is configured to
be case sensitive, all queries must use the correct case. If the server is configured as case
insensitive, case is ignored for all queries.

Refer to your database server documentation for a list of reserved words.

Quoted identifiers for Informix

By default, Informix generates all identifiers in lower case. To preserve mixed case identifiers,
you must use quoted identifiers. Quoted identifiers also allow the use of spaces and underbars
in identifiers. Some database server tools do not support quoted identifiers. When you deploy
to the database server and generate quoted identifiers, the Versata Logic Studio inserts quotes
around the names of attributes and data objects.

If you enable the Generate Quoted Identifiers option when deploying to Informix, occurrences
of identifiers in generated SQL statements are enclosed in double quotation marks before the
data objects and rules are deployed. The quotation marks ensure that the case of the identifiers
is preserved. For example, the data object named Customers will be named “Customers” after
deployment.

If you disable the Generate Quoted Identifiers option in Informix, occurrences of identifiers in
SQL statements are automatically generated in lower case upon deployment.

Note: If you want to enable this option for Informix, you must use the setnet32.exe utility
to set the DELIMIDENT environment variable to y before you begin your deployment.
In general, it is a good idea to set this variable to y even if you do not plan to generate
quoted identifiers.

Quoted identifiers for DB2 Universal Database

By default, DB2 UDB generates all identifiers in upper case. To preserve mixed cased
identifiers, you must use quoted identifiers. Quoted identifiers also allow the use of spaces and
underbars in identifiers. Some database server tools may not support quoted identifiers. When
you deploy to the database server and generate quoted identifiers, the Versata Logic Studio
inserts quotes around the names of attributes and data objects.
140

DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER
If you enable the Generate Quoted Identifiers option when deploying to DB2 UDB,
occurrences of identifiers in generated SQL statements are enclosed in double quotation marks
before the data objects and rules are deployed. The quotation marks ensure that the case of the
identifiers is preserved. For example, the data object named Customers will be named
“Customers” after deployment.

If you disable the Generate Quoted Identifiers option in DB2 UDB, occurrences of identifiers
in SQL statements are automatically generated in upper case upon deployment.

Testing the repository for quoted identifiers

We recommend that you test your repository for quoted identifiers before you start building
applications and remove the quoted identifiers, if possible. To test the repository, deploy it to
the database and look for naming errors. Where they appear, rename the objects with non-
quoted names. Or deploy to the target database server without using quoted identifiers. Any
invalid names return errors. You can change the invalid identifiers in the repository, and
redeploy with the Drop and Recreate option.

If you decide to change whether your repository uses quoted identifiers, redeploy enabling the
Drop and Recreate option and changing the Quoted Identifiers option. In addition, you must
rebuild any applications in the repository to ensure that they function properly. If you have
included additional Where clause information in properties sheets for the application, check
that the SQL includes the proper identifiers (either quoted identifiers or unquoted identifiers).

Example of quoted identifiers

This portion of a sample DDL.sql file displays an example of SQL used to generate quoted
identifiers during deployment:

Data model deployment errors
Errors may occur when you deploy. Some errors can be corrected by redeploying, while others
must be fixed manually, either in the repository or on the database server.

If you receive syntax errors in Microsoft SQL Server, redeploy your data model. This
frequently fixes the problem.

CREATE TABLE “WizardDriverHelpLink”(
“TopicID” NUMBER(10,0) NULL ,
“TopicHelpID” NUMBER(10,0) NULL ,
“TopicReady” FLOAT NULL)
141

DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER
You may encounter errors stemming from attempts to make changes that cannot be made using
the ALTER statement. ALTER has different functionality in Oracle and Informix than it does in
SQL Server and Sybase, though there is some overlap:

n ALTER can always add a column.

n ALTER can never drop a column.

n ALTER can never change the name of a column.

In Oracle and Informix, ALTER is quite flexible, and can be used to increase or decrease the
width of a character column, increase or decrease the number of digits in a number column,
and increase or decrease the number of decimal places in a number column. Note that you can
change the data type of a column or decrease its width only if all values in the column are null.

In Microsoft SQL Server and Sybase, ALTER cannot

n Change column name

n Change column length

n Change column data type

n Change column nullability

If there are problems in your data model that cannot be fixed by the ALTER command, you
must make the changes manually. Depending on the type of change you want to make, you
might need to drop and recreate the table or select all the data out of the table and make any
changes. See your database server documentation for information on commands used to
change the structure of your tables.

Deploying to multiple databases
You can deploy data objects from a single repository to multiple databases, or schemas. For
instance, you might store all your customer information in one database and your employee
information in another. You need to run the Server Manager multiple times to deploy to each
database separately, logging in to the correct database server each time.

You should deploy to all databases before you deploy business objects to the Versata Logic
Server. The deployment database is stored separately for each data object, and is available as a
connection property for Versata Logic Server deployment.

Note: If multiple data objects are used to build a single query object, all these data objects
must be deployed to the same schema or database.
142

DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER
Example of multiple schema deployment

The following example discusses a fictional Sybase server containing a CUSTOMERS
database and an EMPLOYEES database.

The order of deployment would be:

1. Use the Server Manager to deploy the CUSTOMERS data object to the CUSTOMERS
database on the database server. If you deploy as JSMITH, the CUSTOMERS data object
is created with the fully-qualified name CUSTOMERS.JSMITH.CUSTOMERS.

2. Use the Server Manager to deploy the EMPLOYEES data object to the EMPLOYEES
database on the database server. If you deploy as JSMITH, the EMPLOYEES data object is
created with the fully qualified name EMPLOYEES.JSMITH.EMPLOYEES.

3. Use the Versata Logic Server Deployment wizard to deploy the CUSTOMERS and
EMPLOYEES business objects to the Versata Logic Server.

The rules are generated to reference CUSTOMERS.JSMITH.CUSTOMERS and
EMPLOYEES.JSMITH.EMPLOYEES.

It is a good idea to check connection properties for data objects in the Versata Logic Server
Console after you have completed data model and transaction logic deployment. These
connection properties indicate the database server where each data object is physically stored.
For information about viewing and modifying database server mappings, see the Administrator
Guide.
143

DEPLOYING DATA MODELS
DEPLOYING A DATA MODEL TO A DATABASE SERVER
144

CHAPTER 5 Working with Query Objects
145

WORKING WITH QUERY OBJECTS
CHAPTER OVERVIEW
Chapter overview
Read this chapter to get an introduction to how query objects are used by Versata Logic Suite
applications and to understand how to create and modify query objects in the Versata Logic
Studio.

This chapter includes the following:

n “Query object overview” on page 147, provides an introduction to query objects, including
how to use them in applications, the definition of childmost data objects, and design
guidelines.

n “Adding query objects” on page 152, explains how to use the New Query Object wizard to
create query objects.

n “Modifying query objects” on page 159, explains how to use the Query Object Designer to
review and edit query object properties and SQL text.
146

WORKING WITH QUERY OBJECTS
QUERY OBJECT OVERVIEW
Query object overview
Query objects are reusable presentation objects that you can use as data sources on multiple
applications’ forms or pages. Query objects are available to all applications in the repository.
During run time, query objects are instantiated as needed by the Versata Logic Server. The
Versata Logic Server retrieves data from one or more data objects. A query object is based on a
SQL Select statement. This statement defines the attribute values retrieved to create the
query object.

Query objects provide flexibility in the manner you choose to display data on application
forms or pages. Query objects are used as data sources more often than data objects. You can
use query objects to select a set of attributes from a data object, to specify the order in which
the attributes of a data object appear, or to select attributes from multiple data objects so that
they behave as a single data source. As your application models are dependent on queries, you
may need to go through an iterative process of defining query objects as you design your
applications.

Query object definition
The Versata Logic Studio provides a graphical wizard that allows you to create query objects
without being a SQL expert. The New Query Object wizard generates SQL text based on your
responses. For information, see “Adding query objects” on page 152. After you have used the
wizard to create query objects, you can use the Query Object Designer to modify them further.
For information, see page 160.

After definition, each query object is represented in the repository as an .xml file
(<query_object_name>.xml). The format of this file conforms to the QueryObject.dtd
file included with the product, located in the product installation directory. The .dtd file lists
all of the nested elements and attributes that define the characteristics of each query object.
Each query object .xml file includes values for these nested elements and attributes. For more
information about the Versata Logic Suite .dtd and .xml files, see the Reference Guide.

Query object deployment
To display query object data at run-time in applications, you need to build query objects into
usable files that can be copied to the application servers. (Query object information does not
need to be copied to the database server because query objects are not physically stored.)
147

WORKING WITH QUERY OBJECTS
QUERY OBJECT OVERVIEW
The Versata Logic Studio also provides menu options to build and compile each query object
definition into files that run on the application server(s). The next step is to deploy these files
to a development Versata Logic Server on IBM WebSphere Application Server Single Server
Edition for testing purposes. The Versata Logic Studio includes a Versata Logic Server
Deployment wizard that handles this deployment. You set a deployment property in the Query
Object Designer to indicate whether to deploy query objects as Enterprise JavaBeans (EJBs)
or simply as Java class files. After they have been tested in the development environment, you
can copy files to a production Versata Logic Server on IBM WebSphere Application Server
Advanced Edition. For more information about building and deploying data objects, see
“Building and Deploying Business Objects” on page 255.

When to use query objects in applications
There are several reasons you normally would use query objects in building applications:

n Displaying parent data. For example, the Versata Logic Suite sample repository contains
an OrderItemJoinPart query object. When this query object is selected to be a data source
on a form or page, data from two data objects (ORDERITEM and PART) are displayed in
one location. Along with ORDERITEM attributes, attributes of the parent data object
PART, such as the PART Name, can also be displayed.

n Optimizing data transfer. If a data object has 200 attributes and the end user only needs
to see 30, using a query object to project only those 30 attributes results in smaller
messages to get data and improves performance.

n Optimizing virtual attribute performance. Imagine that you build a form or page on a
data object, and then add several non-persistent attributes for transaction logic.
Applications built on this data object require the Versata Logic Server to instantiate these
attributes when the applications runs, even though the client has no need for the data. So,
an application can suddenly degrade in performance. However, if you use a query object to
declare the specific set of attributes your application needs, then the Versata Logic Server
does not have to instantiate the non-persistent attributes. So, performance remains fast,
even after new non-persistent attributes are added.

If you build applications on data objects, then later realize you need to use query objects for
reasons of displaying parent data or optimization, the Versata Logic Studio provides a property
you can use to retarget a form or page RecordSource from a data object to a query object (with
presentation design only).
148

WORKING WITH QUERY OBJECTS
QUERY OBJECT OVERVIEW
Childmost data object
The Versata Logic Studio uses the childmost data object in a query object to determine the key
features of the query object, including:

n Relationships

n Properties

n Whether you can insert, update, or delete rows in data objects returned by the query object

For a query object with attributes from only one data object, that data object is the childmost
data object. For a query object with attributes from one or more related data objects, the data
object that is lowest in the relationship hierarchy or has no children in the query object is the
childmost data object. The data from the childmost data object are unique in every row of the
query object’s result set. Generally, any insert to a query object results in an insert to its
childmost data object.

For example, the sample query object OrderItemJoinPart includes attributes from
ORDERITEM and PART data objects. ORDERITEM is a child of PART, which makes it the
childmost data object. Child objects are on the many side in a one-to-many relationship.

If the data objects in the query object are not joined along relationships, there may be no
childmost data object. If no childmost data object has been set, users can update existing rows
from the query object but cannot insert new rows.

Design the query objects so that their childmost data objects have the relationships that you
want the query objects to have. Query objects inherit relationships from their childmost data
objects.

You can review and modify the childmost data object on the Properties tab of the Query Object
Designer. For information, see page 171.

Note: You can set an extended property for a query object in order to enable inserts to an
underlying data object that is not the childmost data object. For information, see
“Enabling inserts to a parent data object” on page 179.

Query object relationships
The relationships of a query object are inherited from the keys in its childmost data object. If
the key for a childmost data object relationship is also in the query object, the query object also
has the relationship. If the key is not in the query object, the childmost data object has the
relationship but the query object does not.

For example, the OrderItemJoinPart query object in the SampDB1.xml repository is a child of
the ORDERS data object because the childmost data object ORDERITEMS is a child of
ORDERS; and the query object includes the key for the parent-child relationship between
ORDERITEM and ORDERS (OrderNum). OrderItemJoinPart is also a child of the PART data
object, for the same reason.
149

WORKING WITH QUERY OBJECTS
QUERY OBJECT OVERVIEW
Query objects can have relationships with other query objects as well as with data objects. The
type of relationship between two query objects must be consistent with the type of relationship
between their childmost data objects.

Note: Do not define relationships for query objects in another data modeling tool. The Versata
Logic Studio deduces all possible relationships between query objects from the
relationships between the base data objects on which the query objects are built. You
can review a query object’s relationships on the Joins tab of the Query Object Designer.
For more information, see page 167.

Query object design guidelines
Follow these recommendations when you define query objects:

n If you are using an existing relational database as your data model, define the query objects
after you convert the database to a Versata Logic Suite repository.

n Define only Select query objects that do not use any parameters. Query objects with
unions and Cross-Tabs do not appear in the Versata Logic Studio Explorer.

n Do not use queries based on queries. If you want to use these, you must open the query
object in the Query Object Designer, delete the SQL text that appears, and re-enter the
subquery in the SQL Text attribute.

n Use only the following functions: MIN, MAX, AVG, COUNT, and SUM. If a query uses other
functions, the SQL text is left empty and you must enter it manually in the Query Object
Designer.

n When you define aliases for attributes and data objects, ensure they are less than 30
characters in length. Use square brackets to enclose problematic text or characters. Do not
use double quotes.

n The Versata Logic Studio generates default ODBC SQL text for each query object. You
may view and edit the text on the SQL tab of the Query Object Designer.

n In general, use outer joins to build the queries for query objects. The use of outer joins
ensures that child rows for optional parent rows can be retrieved. That is, they return all
rows from the childmost data object regardless of whether the rows meet the join
condition, thereby enabling users to search on NULL attributes. If you do not use outer
joins, queries will not return rows that do not meet the join condition.

For example, suppose users are allowed to define orders with no customer. Query objects
defined with outer joins would return all orders, whether or not a customer was associated
with the order. Query objects defined without outer joins would return only orders with
customers.

n Microsoft SQL Server does not support outer joins greater than two levels. A workaround
is to use replicates instead.
150

WORKING WITH QUERY OBJECTS
QUERY OBJECT OVERVIEW
n Project all required attributes for the data object into which you want to insert records on
the application forms or pages. Typically, you only insert rows into the childmost data
object. The Versata Logic Studio warns you if you select a childmost data object that does
not have all required attributes projected into the query object. In this case, you cannot
insert rows into that data object.

Required attributes may not have NULL values. Therefore, make attributes required only if
you are sure that users will provide values for them in all queries. A safer alternative is to
define default values for required attributes. You can define default derivation rules on the
Attributes: Derivation tab of the Transaction Logic Designer. For instructions, see
“Defining a derivation rule” on page 232.

n Project foreign keys into query objects so that picks function properly.

n You can replace a data object with a query object as a RecordSource in your application. If
the form or page is already customized when you make the replacement, attributes from the
data object reappear, but are made Unbound (DataField = None). You must delete such
attributes from the form or page, or you will be warned at run time that the DataField is
set to None.

n You may encounter errors if you use non-persistent attributes in Order By, Where, or
Having clauses forquery objects. Currently, the Query Object Designer does not stop you
from using these.

n If a query object contains a non-persistent attribute, then the query object also must contain
the primary key attribute(s) for the data objects containing the attributes necessary to
calculate the non-persistent attribute. The Query Object Designer currently does not
enforce this requirement. If a query object definition fails to meet this requirement, all
query object records display the same value in run-time applications.

System validation of query objects
When changes to underlying data objects or their groups occur, query objects may need to be
updated. These changes include conversion of pre-5.5 repositories, rebuilds of data objects,
moves of data objects to new groups, and certain changes to underlying data objects, their
relationships, or their groups. When query objects are loaded after these types of changes, the
Versata Logic Studio displays a dialog listing all of the affected query objects, asking whether
they should be updated to incorporate the most recent changes. Generally, you should click OK
to update the query objects and continue. However, if you have manually customized query
text in the Query Object Designer, you may want to click Cancel in order to preserve the
current text. In this case, you can make changes manually to reflect changes in underlying data
objects without overwriting other query text.
151

WORKING WITH QUERY OBJECTS
ADDING QUERY OBJECTS
Adding query objects
Use the New Query Object wizard to create new query objects in your repository. It is best to
define query objects before developing applications, but you may define query objects at any
time in the development cycle. You most likely will discover the need for new query objects as
you define your applications.

To create a new query object:

1. In the Versata Logic Studio Explorer, select the Query Objects folder. Right-click and
choose New Query Object.

2. Complete the dialogs in the New Query Object wizard.

3. Indicate whether you are importing a query object from another repository or creating a
new query object. For details about this dialog, see page 154.

4. If you are creating a new query object, complete the Choose Data Objects for the New
Query Object dialog. In this dialog, you indicate the data objects that supply attributes to
the query object, define the join condition that limits the records to be retrieved for the
query object, and, optionally, define aliases for the included data objects. For more details
about this dialog, see page 154.

5. Complete the Choose Attributes for the Query Object dialog. In this dialog, you select
attributes from the included data objects to be in the query object. You also have the option
of defining expressions for computed attributes in the query object. Computed attributes
are not physically stored in the database; their values are computed by the database from
the values of other attributes that are physically stored. You also can define aliases for
included attributes and functions used to aggregate values for attributes. For more details
about this dialog, see page 156.

6. Complete the Specify Where/Order By Clause for the Query Object dialog. In this dialog,
you can enter criteria to restrict or sort records returned for the query object. If you do not
want to enter these criteria, click the Next button to leave the dialog blank and continue.
For more details about this dialog, see page 157.

7. If you defined an aggregate for one or more attributes included in the query object,
complete the Specify Having/Group By Clause for the Query Object dialog. The Having
clause, which defines criteria to restrict records, is optional. The Group By clause groups
records into sets according to attribute values. You have the option of reordering the
attributes used for grouping. For more details about this dialog, see page 157.

8. Complete the Finished dialog. In this dialog, you select the childmost data object and add
any description or comment information. You also have options to add the Distinct
keyword to your query and to use a custom superclass to build the query object. For more
details about this dialog, see page 158.
152

WORKING WITH QUERY OBJECTS
ADDING QUERY OBJECTS
New Query Object wizard
The New Query Object wizard leads you through the process of adding a query object to a
repository. You point and click in its dialogs and it generates the SQL text for the query object
so that you avoid making syntactical errors.

The New Query Object wizard includes the following dialogs:

n Welcome to the Query Object Wizard

n Choose Data Objects for the New Query Object

n Choose Attributes for the Query Object

Figure 8 New Query Object wizard
153

WORKING WITH QUERY OBJECTS
ADDING QUERY OBJECTS
n Specify Where/Order By Clause for the Query Object

n Specify Having/Group By Clause for the Query Object

n Finished

Welcome to the New Query Object Wizard

In this dialog, you indicate how you want to create a new query object in the repository.
Choose one of the following:

n Create. Continue with the wizard to define characteristics of a new query object. When
you choose this option and click the Next button, the Choose Data Objects for the New
Query Object dialog opens, where you can begin defining the query object.

n Import. Copy an existing query object from another repository into this one. When you
choose this option and click the Next button, an Import From dialog opens, where you can
browse for the query object’s .xml file so it can be copied to the repository.

Choose Data Objects for the New Query Object

In this dialog, you indicate the data objects that will supply attribute values for the new query
object.

n Show Data Objects frame. This frame allows you to indicate whether to display all data
objects in the Available Data Objects list box or only those related to the data object(s) in
the Selected Data Objects list box. The Related option becomes available after you have
moved a data object to the Selected list box.

n Available and Selected Data Objects List Boxes. To choose a data object, select it in the
Available Data Objects list box and click the > button to move it to the Selected Data
Objects list box. You can then choose the Related option in the Show Data Objects frame if
desired.

To choose another data object, select it in the Available Data Objects list box ,and click the
> button to move it to the Selected Data Objects list box. The Select Joins dialog opens.
Complete this dialog.

n Alias. If desired, add an alias for the data object for more description or conciseness. To
enable entry of an alias, select a data object in the Selected Data Objects list box.

n Edit Joins. Click this button if you want to make changes to the join(s) for the data
objects. The Define Joins for the Selected Data Objects dialog opens.
154

WORKING WITH QUERY OBJECTS
ADDING QUERY OBJECTS
Select Joins dialog

This dialog opens when you choose more than one data object to supply attributes to a query
object. In this dialog, you select the attributes whose values will be compared to join records
from the data objects. Joins for query objects are based on attributes that are keys for data
object relationships; therefore, this dialog lists the relationships between the chosen data
objects and the key pair for each relationship.

In many cases, only one relationship exists between the chosen data objects. In these cases,
this relationship is checked and you simply click the OK button to accept it. In cases where
multiple relationships exist between the chosen data objects, select a relationship from the list
so that a check appears next to it, then click the OK button.

Define Joins for the Selected Data Objects

Use this dialog to add, modify, or delete a join condition for a query object.

n To add a join in the top drop-down lists, choose data objects to be joined. For each data
object, choose an attribute to be included in the join condition. Then, choose an option
button to define the type of join, indicating the records to be retrieved from the referenced
data objects to populate the query object.

n Equal. An equal join joins on matching values for the specified attributes, returning
only records that satisfy the join condition.

n Left. A left join is a type of outer join. This type of join returns all records from both
data objects that satisfy the join condition plus all records from the first-named data
object.

n Right. A right join is also a type of outer join. It returns all records from both data
objects that satisfy the join condition plus all records from the second-named data
object.

Generally, it is a good idea to define an outer join that includes all records from the
childmost data object. For information about the concept of childmost data object, see page
149.

Click the Add button to add the join condition. It appears in the Joins text box in the lower
part of the dialog.

n To modify a join, select it in the Joins text box. You can change the attributes and/or the
join type. Then click the Modify button. The modified condition appears in the Joins text
box.

n To delete a join, select it in the Joins text box and click the OK button.

When you have completed your changes to joins, click the Next button.
155

WORKING WITH QUERY OBJECTS
ADDING QUERY OBJECTS
Choose Attributes for the Query Object

Use this dialog to indicate the attributes from each selected data object to be included in the
query object.

n Data Object. From the drop-down list, select one of the data objects designated to supply
attributes to the query object. Its attributes are listed in the Available Attributes list box.

n Attributes. To choose an existing attribute to be retrieved, select it in the Available
Attributes list box, and click the > button to move it to the Selected Attributes list box. You
can use the SHIFT or CTRL keys to select multiple attributes. You can click the >> button
to select all available attributes.

After you have moved an attribute to the Selected Attributes list box, you can select it and
enter additional characteristics for it including:

n Alias. If desired, add an alias for the attribute, for more description or conciseness.

n Aggregates. You can elect to use an aggregate to retrieve summary values for the
attribute rather than all values for each individual record. Aggregates are applied to sets
of rows and are generally used along with a Group By clause. The drop-down list
displays aggregate functions that can be used with each attribute, according to the
attribute’s data type.

n COUNT. Reports the number of records with non-null values for the attribute.

n AVG. Reports the average value for the attribute.

n MIN. Reports the lowest value for the attribute.

n MAX. Reports the highest value for the attribute.

n SUM. Reports the total of all values for the attribute.

n Computed Attributes. To create a computed attribute to be retrieved for the query
object, click the Computed attributes/Expressions button. A computed attribute’s
values are calculated based on values of attributes stored in referenced data object(s).
When you click the button, the Expression Builder opens. Note that when you define
the expression for a computed attribute, no error message is displayed when the
attribute’s data type is incompatible with the specified SQL function.

When you have finished adding attributes, click the Next button.
156

WORKING WITH QUERY OBJECTS
ADDING QUERY OBJECTS
Specify Where/Order By Clause for the Query Object

Use this dialog to define the Where clause and Order By clause included in the Select
statement for the query object, if any. The Where clause limits the records retrieved for the
query object to those that meet the specified condition (separate from the join condition). The
Order By clause sorts the records retrieved for the query object.

n Where clause. To enter selection criteria for the Where clause, click the browse button to
open the Expression Builder.

n Order By clause. To define a sort attribute, select it in the Available Attributes list box and
click > to move it to the Order By attributes list box. You can use the SHIFT or CTRL keys
to select multiple attributes. You can click the >> button to select all available attributes. To
change the order of sort attributes, select an attribute and click one of the arrows. To
indicate a descending or ascending sort, select an attribute and click the Desc or Asc
button. By default, sorts are ascending.

Specify Having/Group By Clause for the Query Object

This dialog appears if you have defined any aggregate functions for query object attributes in
the Choose Attributes for the Query Object dialog. Use this dialog to define the Having clause
and Group By clause included in the Select statement for the query object, if any. The
Group By clause divides records into sets, while aggregate functions produce summary values
for each set. The Having clause is a Where clause for groups; it defines a condition that limits
the groups of records to be retrieved for a query object.

n Group By attributes. Lists the order of attributes used to group sets of records. The first-
listed attribute provides totals while other listed attributes provide subtotals. To change the
order of Group By attributes, select an attribute and click one of the arrows.

n Having clause. To enter selection criteria for the Having clause, click the browse button to
open the Expression Builder.

When you have finished, click the Next button.

Note: You cannot selectively group totals for a subset of query object attributes. All attribute
values or none must be aggregated.
157

WORKING WITH QUERY OBJECTS
ADDING QUERY OBJECTS
Finished

Use this dialog to provide general information about the query object. It includes the following
fields:

n Name. Enter a name for the query object.

n Distinct Rows Only. Enable this option to add the Distinct keyword to the Select
statement for your query object. You can use the Distinct keyword to retrieve only
unique values for the attributes included in the query object, eliminating duplicates. Also,
you can use the Distinct keyword with aggregate functions to include only unique
values in the calculation of summaries.

n Childmost Data Object. Of the data objects supplying attributes to the query object, the
data object that has a parent by no child. The childmost data object is updated when users
modify query object records. Select from the drop-down list.

When you have completed these fields, click the Finish button to create the query object in
your repository.

Note: After you have created a query object, use the Query Object Designer to view or
modify its properties and SQL text. For information about the Query Object Designer,
see page 160.
158

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
Modifying query objects
The Versata Logic Studio provides a graphical editor to review and modify properties of query
objects. This editor, the Query Object Designer, allows you to make changes without being a
SQL expert. The Versata Logic Studio generates changes to SQL text based on your
modifications. The Query Object Designer displays SQL text for the query object so that you
have the option of editing it directly. The designer also provides a validate functionality. You
can use this functionality to test your SQL against the Versata Logic Server and ensure that the
query object is instantiated correctly.

To modify a query object:

1. In the Versata Logic Studio Explorer, double-click the query object to open it in the Query
Object Designer.

2. Choose the appropriate tab in the designer and make changes. For details about tabs to use
for different tasks, see “Query Object Designer” on page 160. For instructions for specific
tasks, see page 173.

3. When you have completed the changes, click the Save toolbar button.

After you have saved the changes, you can validate the new SQL text for the query object. For
instructions, see page 177.
159

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
Query Object Designer
Use the Query Object Designer to modify query objects.

Figure 9 Query Object Designer
160

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
Note that the Query Object Designer does not provide an implicit save, so any changes you
make there are not saved until you choose File � Save, or click the Save button.

n On the Data Objects tab, you can:

n Add or delete a data object supplying attributes to the query object.

n Define an alias for a data object.

n Provide a description of a data object.

For more information, see “Data Objects tab” on page 162 and “Modifying underlying data
objects for a query object” on page 173.

n On the Attributes tab, you can:

n Add or delete attributes to be included in the query object. These attributes may exist in
an underlying data object or may be computed from values of attributes in an
underlying data object.

n Define an alias for an attribute.

n Provide a description for an attribute.

n Define a formula expression for a computed attribute.

n Define a function to aggregate values for an attribute.

For more information, see “Attributes tab” on page 164 and “Modifying attributes for a
query object” on page 174.

n On the Joins tab, you can:

n Add, delete, or modify the join condition for selecting records to be in the query object.

n Review relationships between the data objects underlying the query object.

For more information, see “Joins tab” on page 167 and “Working with joins” on page 175.

n On the Where/Order By tab, you can:

n Define a selection condition to limit the records included in the query object.

n Indicate one or more attributes to use to sort query object records.

For more information, see “Where/Order By tab” on page 168 and “Adding selection and
sort criteria for query object records” on page 176.

n On the Having/Group By tab, you can:

n Define a selection condition to limit the records included in a query object containing
aggregates.

n Indicate the attributes to use to group records for aggregated functions in a query
object.

For more information, see “Having/Group By tab” on page 169 and “Adding selection and
sort criteria for query object records” on page 176.
161

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
n On the SQL tab, you can:

n View and modify generated SQL text for the query object. You can change text to
conform to a different SQL dialect or to customize in some way. For more information,
see “SQL tab” on page 169.

n Validate the SQL text against the Versata Logic Server and database server to ensure
the query object is created as expected. For more information, see “Validating query
object syntax” on page 177.

n On the Properties tab, you can:

n Define a custom superclass for the query object to provide it with specialized methods.

n Define a childmost data object for the query object.

n Define the query object to include distinct rows only.

n Indicate whether to deploy attribute-level security information to the Versata Logic
Server.

n Set the deployment property for the query object indicating whether it should be
deployed as an EJB or a Java class file.

n Provide description or comment information about the query object.

For more information, see “Properties tab” on page 171.

Data Objects tab

This tab includes information about the data object(s) that supply attributes to the query
object. It includes the following:

n Query Data Objects grid. This grid lists the alias and name for each data object that
supplies attributes to the query object.

To add or delete a data object to supply attributes, right-click in the grid and choose Add
Data Object or Delete Data Object. These options are also available from the Edit menu.
If adding, the Add Data Object dialog opens. For information about this dialog, see 163.

To review or edit information about a data object, select its alias in the Query Data
Objects grid. You can then make changes in the Data Object Source Information frame.

n Data Object Source Information frame

n Name. The name of the data object. To enter a different data object to supply attributes
to the query object, click the browse button, then select a data object from the Choose
Data Object dialog. For information about this dialog, see 163.

n Alias. By default, the alias is the same as the data object name. You can change it to be
more descriptive or more concise. To change the alias, type in the new alias.

n Description. Optional details about the data object. To add or change, type in the
information.
162

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
To save the new or renamed data object, click the Save button or choose File � Save
Query Object. If this change causes any query attributes to become invalid, the Query
Object Validation Log appears. For information about this log, see page163.

When you click the OK button in this dialog, the new data object is listed in the Query Data
Objects grid. If you do not want to save the changes to the data object, close the Query
Object Validation Log and close the Query Object Designer without saving.

Add Data Object dialog

Use this dialog to add a data object that supplies attributes to a query object.

Choose an option button to display either all data objects or only data objects that are related to
the data object(s) currently referenced by the query object.

To add a data object, select it in the Available Data Objects list box and click the > button to
move it to the Selected Data Objects list box. The Select Joins dialog opens. Complete this
dialog. For information about this dialog, see page 155. Then, if desired, add an alias. Click the
OK button to complete the addition of the data object.

To modify information for the newly added data object, select it in the Query Data Objects
grid. You can then edit the alias or description.

Choose Data Object dialog

This dialog lists all data objects in the repository. You can choose a data object from this list to
supply attribute(s) to a query object.

To choose a data object, select it from the list and click the OK button.

Query Object Validation Log

The Versata Logic Studio includes a Query Object Validator. This validator runs when you
attempt to save a modified query object. If the validator encounters invalid attributes, the
Query Object Validation Log appears before the modified query object is saved. This dialog
displays any attributes included in the query object that do not exist in the referenced data
objects. SQL cannot be generated for an invalid query object. To avoid errors, you must either
remove these attributes or reference a different data object that includes them.

To save the changes to the query object, click the OK button in this dialog. Be sure to go to the
Attributes tab and remove any problematic attributes.

To avoid saving the changes to the query object, close the Query Object Validation Log and
close the Query Object Designer without saving.

A copy of the Query Object Validation Log is saved in the
<repository>_JavaFiles\Components folder as <query_object_name>.log.
163

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
Choose Attribute dialog

This dialog lists all attributes in the source data object. You can choose an attribute from this
list to be included in the query object.

To choose an attribute, select it from the list and click the OK button.

Attributes tab

This tab provides information about the attributes from which data is retrieved for the query
object. It includes the following:

n Query Object Attributes grid. This grid lists the name for each attribute included in the
query object.

To add or delete an attribute, right-click in the grid, and choose Add Attribute or Delete
Attribute. These options are also available from the Edit menu. If adding, the Add
Attribute dialog opens. For information about this dialog, see page 166.

To review or edit information about an attribute, select it in the grid. You can then make
changes to any of the following objects:

n Alias. By default, the alias is the same as the attribute name. You can change it to be more
descriptive or more concise. To change the alias, type in the new alias.

n Derivation Type. Indicates whether an attribute is computed or not. A value of (None)
indicates that the attribute is physically stored in the referenced data object. A value of
Formula indicates that the attribute’s values are calculated by the database server based on
values of attributes stored in the referenced data object(s).

n Aggregation Type. Indicates whether to use an aggregate to retrieve values for an
attribute. Aggregates are functions you can use to get summary values. Aggregates are
applied to sets of rows and are generally used along with a Group By clause. The drop-
down list displays aggregate functions that can be used with each attribute, according to
the attribute’s data type.

n COUNT. Reports the number of records with non-null values for the attribute

n AVG. Reports the average value for the attribute.

n MIN. Reports the lowest value for the attribute.

n MAX. Reports the highest value for the attribute.

n SUM. Reports the total of all values for the attribute.

If the selected attribute is physically stored in a referenced data object, more information is
displayed in the Query Object Attribute Source Information frame.

If the selected attribute is computed, more information is displayed in the Computed Attribute
Details frame.
164

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
Query Object Attribute Source Information frame

This frame is included on the Attributes tab of the Query Object Designer when the attribute
selected in the grid is physically stored in a data object. You can view and modify the
following:

n Source Data Object. The name of the data object supplying this attribute. To enter a
different data object to supply this attribute to the query object, click the browse button,
then select a data object from the Choose Data Object dialog.

To save the new or renamed data object, click the Save button or choose File Save Query
Object. If this change causes any attributes to become invalid, the Query Object Validation
Log appears.

n Source Attribute. The name of the attribute included in the query object. To choose a
different attribute from the selected source data object, click the browse button. The
Choose Attribute dialog opens, displaying all attributes in the current source data object.
Select an attribute and click the OK button.

n Description. Optional details about the attribute. To add or change, type in the
information.

Computed Attribute Details frame

This frame is included on the Attributes tab of the Query Object Designer when the attribute
selected in the grid is computed rather than physically stored in a referenced data object. You
can view and modify the following:

n Expression. The formula used to derive a value for the computed attribute, consisting of
attributes from the referenced data objects, operators, and/or SQL functions. To review or
modify details about this formula, click the browse button to open the Expression Builder.
For information about the Expression Builder, see page 166.

n Data Type. The nature of the data in the computed attribute, determining how the bits
representing the attribute values are stored. A drop-down list provides a list of available
data types. Text, Number, and Date/Time types require the definition of a sub type. Text
types also require the definition of a size. Defaults are provided. The data type is used to
determine presentation properties for the attribute. Note that no error message is displayed
when the selected data type is incompatible with the specified SQL function.

n Description. Optional details about the computation. To add or change, type in the
information.
165

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
Add Attribute dialog

Use this dialog to add either an attribute that is physically stored in the referenced data object
or an attribute whose values are computed based on values of attributes stored in the
referenced data object.

n To add a physically stored attribute, first select a referenced data object from the drop-
down list, then select the attribute in the Available Attributes list box and click the > button
to move it to the Selected Data Objects list box. Then, if desired, modify the alias.

n To add a computed attribute, click the Computed attributes button. Complete the fields in
the Expression Builder.

Click the OK button to complete the addition. To modify information for the newly added
attribute, select it in the Query Attributes grid.

Query Object Expression Builder

Complete this dialog to:

n Define a computed attribute to be included in a query object. A computed attribute’s values
are calculated by the database server based on values of attributes stored in referenced data
object(s).

n Define a Where clause or Having clause that limits the records retrieved for the query
object.

Note: Some fields do not apply for both purposes, and are grayed out when not applicable.

The following fields apply only to computed attribute definitions:

n Attribute Alias. Name for the computed attribute.

n Data Type. The nature of the data in the computed attribute, determining how the bits
representing the attribute values are stored. A drop-down list provides a list of available
data types. Text, Number, and Date/Time types require the definition of a sub type. Text
types also require the definition of a size. Defaults are provided. The data type is used to
determine presentation properties for the attribute.

The following fields apply to computed attribute, Where clause, and Having clause
definitions:

n (Formula) Expression. The formula used to derive values for the computed attribute, or
the condition used to limit records. Use the following objects to construct an expression:

n Operator buttons. To include an operator in the expression, place the cursor in the
Expression text box, and click an operator.

n Attributes from the referenced data objects. Attributes are listed under the data
objects in which they are physically stored. Attributes included in the query object are
listed as #Query attributes. To include an attribute in the expression, place the cursor in
the Expression text box and double-click the attribute.
166

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
n Functions. To include a function in the expression, place the cursor in the Expression
text box and double-click the function. Note that only SQL functions can be used in
formula expressions for computed attributes.

You can click the Undo button to remove the last entry in the Expression field.

To save, click the OK button. For computed attributes only, if you want to add another
computed attribute, click the New button, save the defined computed attribute, then complete
the Expression Builder again to define another one.

Note: No validation is performed for Where clauses, Having clauses, computed attribute
formula expressions, or data type compatibility with SQL function.

Joins tab

This tab includes information about the join condition used to retrieve records from two
referenced data objects to populate a query object.

The join condition lets you retrieve and manipulate data from more than one data object in a
single Select statement. You define the join condition by specifying an attribute from each
data object whose values can be compared. The Versata Logic Suite query objects’ joins
generally are based on relationship key pairs and are equijoins—selecting records where
values for the two join attributes match. The join condition is in the Where clause of the
Select statement.

The Joins tab includes the following information:

n Query Object Joins. This panel diagrams the joined data objects. Click the + sign to view
the attributes used in the join condition.

To add a join, right-click in the grid and choose Add Join. The Add Join dialog opens. For
information, see page 167. To modify or delete a join, select a join condition and right-
click. If modifying, the Modify Join dialog opens. For information, see page 168. These
options are also available from the Edit menu.

n Relationships. This panel lists all of the relationships between the referenced data objects
and other data objects in the repository. Expand the relationship to view its key pair.

Add Join dialog

Use this dialog to add a join condition for a query object.

n Data objects. In the top drop-down lists, choose data objects to be joined.

n Attributes. For each data object, choose an attribute to be included in the join condition.
167

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
n Type of join. Choose an option button to define the type of join, indicating the records to
be retrieved from the referenced data objects to populate the query object.

n Equal. An equal join joins on matching values for the specified attributes, returning
only records that satisfy the join condition.

n Left. A left join is a type of outer join. This type of join returns all records from both
data objects that satisfy the join condition plus all records from the first-named data
object.

n Right. A right join is also a type of outer join. It returns all records from both data
objects that satisfy the join condition plus all records from the second-named data
object.

Generally, it is a good idea to define an outer join that includes all records from the childmost
data object.

Click the OK button to add the join condition.

Modify Join dialog

Use this dialog to modify a join condition for a query object.

n Data objects. The top drop-down lists display the data objects to be joined.

n Attributes. For each data object, you can change the attribute to be included in the join
condition.

n Type of join. You can change the type of join.

n Equal. An equal join joins on matching values for the specified attributes, returning
only records that satisfy the join condition.

n Left. A left join is a type of outer join. This type of join returns all records from both
data objects that satisfy the join condition plus all records from the first-named data
object.

n Right. A right join is also a type of outer join. It returns all records from both data
objects that satisfy the join condition plus all records from the second-named data
object.

Click the OK button to confirm the modification of the join condition.

Where/Order By tab

This tab provides information about the Where clause and Order By clause included in the
Select statement for the query object, if any. The Where clause limits records retrieved for
the query object to those that meet the specified condition (separate from the join condition).
The Order By clause sorts records retrieved for the query object.

This tab includes the following frames:
168

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
n Selection Condition. Displays the condition that must be met by retrieved records. To add
or modify this expression, click the browse button to open the Expression Builder.

n Sort Order. Lists the attribute whose values are used to sort records. To define a sort
attribute, select it in the Query Attributes list box and click > to move it to the Order By
attributes list box. You can define multiple attributes to use in the sort. To change the order
of sort attributes, select an attribute, and click one of the arrows. To indicate a descending
or ascending sort, select an attribute, and click the Desc or Asc button. By default, sorts are
ascending.

Having/Group By tab

This tab provides information about the Having clause and Group By clause included in the
Select statement for the query object, if any. The Group By clause is used with aggregate
functions. The Group By clause divides records into sets, while aggregate functions produce
summary values for each set. The Having clause is a Where clause for groups; it defines a
condition that limits the groups of records to be retrieved for a query object.

This tab includes the following frames:

n Having Condition. Displays the condition that must be met by retrieved groups of records.
To add or modify this expression, click the browse button to open the Expression Builder.

n Group By Order. Lists the order of attributes used to group sets of records. The first-listed
attribute provides totals while other listed attributes provide subtotals. To change the order
of group by attributes, select an attribute, and click one of the arrows.

Note: You can define aggregate functions on the Attributes tab of the Query Object Designer.
For information, see page 164.

SQL tab

This tab displays the SQL text used to instantiate the query object for your run-time
applications, and allows you to test whether the SQL correctly generates the expected query
object. This tab includes the following:

n Run-time SQL. Displays the SQL text to be generated based on your choices in the New
Query Object wizard or the Query Object Designer. You have the option of manually
editing the text here to customize it. Click the Reset button to return to the default
generated SQL. Custom SQL should be the last change ever made to a query object, as
changes that regenerate the query object will cause the custom SQL to be overwritten with
generated SQL. For information about generated SQL text, see “Database and schema
references in SQL text” on page 178.

n SQL Dialect. Select from the drop-down list to change the syntax to be database-
specific. The dialect is not important unless the query object includes outer joins. For
examples of outer join syntax, see page 170.
169

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
Note: If you change the driver at run time, SQL text is not modified accordingly. You need to
manually change this text here, then redeploy the query object to the Versata Logic
Server, in order to modify run-time SQL text. If you do not do this, SQL errors occur in
the run-time application.

SQL generation for Informix and ODBC dialects is not supported for queries
containing mixed inner and outer joins.

n Reset. This button is enabled if you make any changes to the Run-time SQL text. Click
it to return the text to the original, generated text.

n Show Default. This button is enabled if you make any changes to the Run-time SQL
text. Click it to open the Default SQL dialog, which allows you to view the default
query object SQL text for different dialects.

n Test/Validate. You can validate the query object by executing the SQL against a Versata
Logic Server and a physical data source to verify that the query object is instantiated as
expected. Enter the following:

n Username. Login for the Versata Logic Server.

n Password. Password for the Versata Logic Server.

n VLS Server. Name of the Versata Logic Server.

n Data Server. The name of the data server in the Versata Logic Server Console that
represents the database server to which you are connecting.

n Max Rows. Maximum number of records to be returned for the query object.

n Test SQL. Click this button to execute the test.

Example SQL dialects for outer joins in a query

The following examples of query text illustrate the differences between SQL dialects for outer
joins. You can select the correct dialect in the drop-down list on the SQL tab of the Query
Object Designer. The dialect is not important unless the query includes outer joins. If the query
contains outer joins and you do not select the correct dialect (for example, Oracle Native if
you are using Oracle Thin JDBC driver, Sybase Native if you are using Sybase JConnect
JDBC driver), syntax errors occur.

ODBC

SELECT DEPARTMENT.Name AS "DEPARTMENT.Name", EMPLOYEES.Name AS
"EMPLOYEES.Name", ORDERS.OrderNumber AS OrderNumber FROM {oj
<dbschema>.DEPARTMENT DEPARTMENT RIGHT OUTER JOIN
<dbschema>.EMPLOYEES EMPLOYEES LEFT OUTER JOIN <dbschema>.ORDERS
ORDERS ON EMPLOYEES.EmpID = ORDERS.SalesRepID ON
DEPARTMENT.DeptNum = EMPLOYEES.WorksForDeptNum} WHERE
((EMPLOYEES.Name) Like ’%A%’) ORDER BY DEPARTMENT.DeptNum ASC
170

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
Oracle Native

Sybase Native

Properties tab

The Properties tab has two subtabs: General and Extended.

General Properties tab

The Properties:General tab provides general information about the query object. It includes the
following fields:

n Superclass for the Java Component. For each query object, the Versata Logic Studio
creates a Java class file, which inherits from a general query object superclass. By default,
this superclass is versata.vls.QueryObject. If you want to provide additional
methods functionality in your query object, you can define another subclass of the default
superclass, add methods to it, and enter the name of this new subclass as the query object’s
superclass in the field on the Properties:General tab of the Query Object Designer.

n Childmost Data Object. Of the data objects supplying attributes to the query object, the
data object that has a parent but no child. The childmost data object is updated when users
modify query object records. Select from the drop-down list. For more information about
the concept of childmost data object, see page 149.

SELECT DEPARTMENT.Name AS "DEPARTMENT.Name", EMPLOYEES.Name AS
"EMPLOYEES.Name", ORDERS.OrderNumber AS OrderNumber FROM
<dbschema>.DEPARTMENT DEPARTMENT, <dbschema>.EMPLOYEES EMPLOYEES,
<dbschema>.ORDERS ORDERS WHERE EMPLOYEES.EmpID =
ORDERS.SalesRepID (+) AND DEPARTMENT.DeptNum (+) =
EMPLOYEES.WorksForDeptNum AND ((EMPLOYEES.Name) Like ’%A%’)
ORDER BY DEPARTMENT.DeptNum ASC

SELECT DEPARTMENT.Name AS "DEPARTMENT.Name", EMPLOYEES.Name AS
"EMPLOYEES.Name", ORDERS.OrderNumber AS OrderNumber FROM
<dbschema>.DEPARTMENT DEPARTMENT, <dbschema>.EMPLOYEES EMPLOYEES,
<dbschema>.ORDERS ORDERS WHERE EMPLOYEES.EmpID *=
ORDERS.SalesRepID AND DEPARTMENT.DeptNum =*
EMPLOYEES.WorksForDeptNum AND ((EMPLOYEES.Name) Like ’%A%’) ORDER
BY DEPARTMENT.DeptNum ASC
171

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
Note: The childmost data object is not updated automatically when the relationship between
underlying data objects changes. After such a change, review the childmost data object
for any affected query objects and modify it as necessary.

n Distinct Rows Only. You can use the Distinct keyword to retrieve only unique values
for the attributes included in the query object, eliminating duplicates. Also, you can use the
Distinct keyword with aggregate functions to include only unique values in the
calculation of summaries. Note that aggregate functions are defined on the Attributes tab.
For information, see page 164. Enable this option to add the Distinct keyword to the
Select statement for your query object.

n Deploy Attribute Security Data. Enable this option to copy attribute names to the Versata
Logic Server in order to enable assignment of privileges at the attribute level. Deployment
of this information requires more time. Enable this option only for query objects where
you plan to implement attribute-level security.

n Deploy as EJB Session Bean. Enable this option to implement the query object as an
Enterprise JavaBean (EJB) rather than as a Java class. A query object should be deployed
as an EJB when its methods need to be remotely accessible. Deployment as an EJB
requires more time. Enable this option only as necessary for remote access.

n Description. Optional details about the query object. To add or change, type in the
information.

n Comment. Optional details about the query object. To add or change, type in the
information.

Extended Properties tab

The Properties:Extended tab allows you to add query object properties other than those
explicitly specified in the Versata Logic Studio. These extended properties are useful in cases
where you plan to add custom Java code to a query object. Code for extended properties is
generated in the data object’s Java implementation file. For each extended property, a static
string variable is created inside the query object’s constructor code.

The query object's extended properties perform a similar function to the extended properties
for controls or elements on forms or pages in Versata Logic Studio-generated applications: the
properties provide additional behavior to query objects. You can add Java code that refers to
the value for the variable (extended property), where each different value causes different
behavior at run time.

n To add an extended property, click the Add button and complete the dialog. Then, enter a
property value in the grid.

n To delete an extended property, place the cursor in the grid row for the property and click
the Delete button.
172

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
Modifying underlying data objects for a query object
Use the Data Objects tab of the Query Object Designer to make changes to the data objects that
supply attributes to a query object.

To modify data objects, in the Versata Logic Studio Explorer, double-click the query object to
open the Query Object Designer.

Adding a data object

To add a data object:

1. Right-click in the Query Data Objects grid, and choose Add Data Object.

2. Select a data object in the Available list box and click > to move it to the Selected list box.

3. Select from the list of attribute key pairs to indicate which should be compared when
retrieving records for the query objects, and click the OK button.

4. If desired, enter an alias for the new data object.

5. Click the OK button. The data object appears in the grid.

Deleting a data object

To delete a data object:

1. Right-click in the Query Data Objects grid and choose Delete Data Object.

2. Click the Yes button to confirm the deletion.

Note that any attributes included from the deleted data object are deleted from the query
object.

Changing a data object

A common reason for changing the data object to supply attributes to the query object is that
the data object has been renamed.

To change a data object:

1. In the Data Object Source Information frame, click the browse button next to the Name
field.

2. Select a data object, and click the OK button.

3. Save the change.
173

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
4. Review the Query Object Validation Log that lists invalid attributes. Click the OK button
to dismiss the log. For information about the Query Object Validation Log, see page 163.

5. Indicate whether you want to make changes to invalid attributes before saving, and make
changes to attributes as necessary.

Modifying attributes for a query object
Use the Attributes tab of the Query Object Designer to make changes to the attributes for a
query object.

To modify attributes, in the Versata Logic Studio Explorer, double-click the query object to
open the Query Object Designer. Click the Attributes tab.

Adding an attribute

You can add an attribute that exists in an underlying data object or add an attribute that is not
physically stored, whose value is computed based on values of attributes in an underlying data
object.

To add attributes from an underlying data object:

1. Right-click in the Query Object Attributes grid and choose Add Attribute.

2. Select a data object from the drop-down list.

3. Choose one or more attributes from the Available list box and click > to move the
attribute(s) to the Selected list box.

4. If desired, enter an alias for the attribute.

5. Click the OK button. The attribute appears in the grid, and its details appear in the Query
Object Attribute Source Information frame.

6. If you want to display summary values, select a function from the Aggregation Type drop-
down list. For more information, see page 164.

To add a computed attribute:

1. Right-click in the Query Object Attributes grid and choose Add Attribute.

2. Select a data object from the drop-down list.

3. Click the Computed Attributes button.
174

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
4. Enter a name for the attribute in the Attribute Alias field. Choose a data type from the drop-
down list. Click operator buttons and double-click attributes to define the formula
expression used to calculate values for the new attribute. (Note that you can click the +
signs to expand data objects and display their attributes.) For more information about the
Expression Builder, see page 166.

5. Click the OK button to close the Expression Builder. Then, click the OK button to close the
Add Attribute dialog. The attribute appears in the grid and its details appear in the
Computed Attribute Details frame.

Note: The Versata Logic Studio may crash after you modify an attribute alias. This problem
occurs infrequently. If it occurs, restart the Studio, then retry the change.

Deleting an attribute

To delete an attribute:

1. Right-click in the Query Object Attributes grid, and choose Delete Attribute.

2. Click the OK button to confirm the deletion.

Note: If you delete a query object attribute that no longer exists in an underlying data object,
the Versata Logic Studio crashes.

Working with joins
You can view and modify the details of the join conditions on the Joins tab of the Query Object
Designer.

To work with joins in the Versata Logic Studio Explorer, double-click the query object to open
the Query Object Designer. Click the Joins tab.

Adding a join condition

To add a join condition:

1. Right-click in the Query Object Joins frame, and choose Add Join.

2. Select from the list of attribute key pairs to indicate which should be compared when
retrieving records for the query objects, and click the OK button.

Deleting a join condition

To delete a join condition:

1. In the Query Object Joins frame, highlight a join, right-click, and choose Delete Join.

2. Click the Yes button to confirm the deletion.
175

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
Caution: If you delete the last join condition in a Query Object drawing from multiple data
objects, the resulting query object could generate a “Cartesian resultset”—
producing an extremely large result set containing every possible permutation of
the joined data objects.

Modifying a join condition

You can change a join condition to be a different type of join (equal, right, or left) or change
the attributes whose values are compared to retrieve records. For information about the
different types of joins, refer to “Add Join dialog” on page 167, or view the context sensitive
help in the wizard.

To modify a join condition:

1. In the Query Object Joins frame, select a join, right-click and choose Modify Join.

2. Make changes in the Modify Join dialog as desired. For more information, see page 168.

Adding selection and sort criteria for query object records
You can view and modify selection and sort criteria for query object records on the Where/
Order By and Having/Group By tabs of the Query Object Designer.

n Where clauses are expressions that limit the records retrieved for a query object.

n Order By clauses are expressions that indicate attribute values to use to sort query object
records.

n Having clauses are expressions that limit the groups of records retrieved for a query object
that displays summary values. These clauses are used when you define aggregates for one
or more attributes in a query object.

n Group By clauses indicate how to group summary values for query objects with
aggregated attributes by designating the order of included attributes.

To add selection or sort criteria:

1. In the Versata Logic Studio Explorer, double-click the query object to open the Query
Object Designer. Click the Where/Order By tab or the Having/Group By tab.

2. To add selection criteria, click the browse button near the Selection Condition or Having
Condition field and complete the Expression Builder. Click operator buttons and double-
click attributes to define the formula expression used to calculate values for the new
attribute. (Note that you can click the + signs to expand data objects and display their
attributes.) For more information about the Expression Builder, see page 166.

3. Click the OK button to close the Expression Builder.
176

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
4. To add sort criteria for individual records, on the Where/Order By tab, select one or more
attributes in the Query Attributes list box and click > to move the attribute(s) to the Order
By list box. You can click the up or down arrow buttons to change the order of sort
attributes, and click the Asc or Desc buttons to indicate the type of sort.

5. To define how to group records to calculate summary values, on the Having/Group By tab,
click the up or down arrow buttons to change the order of included attributes.

Validating query object syntax
On the SQL tab of the Query Object Designer, you can review and modify the SQL text
generated to instantiate a query object. For information about this tab, see page 169. This tab
provides a test button that you can use to retrieve records from the database server for the
query object. Use this test function to ensure that no syntax errors occur and that the data you
expect is returned for the query object. When you execute the test, the records for the query
object appear in a grid for your review.

For information about syntax for references in query object SQL text, see “Database and
schema references in SQL text” on page 178.

Note: If you use the New Query Object wizard to define a query object, the wizard generates
the SQL text and there should not be any syntax errors. However, you may still need to
check to ensure query object data matches your requirements. If you modify SQL text
yourself and/or use outer joins in the query object, you need to check for possible
syntax errors.

To validate query object syntax:

1. Ensure that the data model has been deployed to a database server. For instructions, see
page 126.

2. Ensure that the business objects have been deployed to a Versata Logic Server. For
instructions, see page 268.

3. In the Versata Logic Studio Explorer, double-click the query object to open the Query
Object Designer. Click the SQL tab.

4. Complete the fields in the Test/Validate frame, entering the following:

n Your user name for the Versata Logic Server.

n Your password for the Versata Logic Server.

n The Versata Logic Server name.

n The name of the data server in the Versata Logic Server Console that represents the
database server to which you are connecting. For information about setting up data
servers in the Versata Logic Server Console, see the Administrator Guide.

n The maximum number of query object rows to return from the database server in the
test result set. By default this value is set to 100.
177

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
5. Click the Test SQL button.

Note: If there is no data in the database when you the TestSQL is executed, a null pointer
exception occurs. If this error occurs, verify that the targeted data source contains data,
review settings for the data server in the Versata Logic Server Console, and verify that
a test connection from the Versata Logic Server Console works properly.

Database and schema references in SQL text

In the SQL text for each query object, the Versata Logic Studio provides <dbschema> tags in
each data object reference. Each tag is replaced at run time with the database and/or schema to
which the data object is currently deployed. This convention provides flexibility, allowing
applications to execute queries against varying data sources.

Following is an example of query object SQL text:

The <dbschema> is always replaced with the properties supplied for the database and/or
schema in the data object’s data server in the Versata Logic Server Console.

For example, if a CustomerOrders query object selects from CUSTOMERS and ORDERS
data objects that are attached to a data server named MySQL, and the MySQL data server has
the properties db = test and schema = orderentry, then <dbschema>.CUSTOMERS and
<dbchema>.ORDERS in the SQL text would become test.orderentry.CUSTOMERS and
test.orderentry.ORDERS.

The <dbschema> tag is detected the first time the query object is executed in a session. The
tag values are replaced with the appropriate values once per session as follows:

n The <dbschema> tag is replaced by the database value for the data object’s data server.
Then, this is concatenated with the schema value for the data object’s data server.

n If the Database field is blank, no database qualifier is produced for the data object. If the
Schema field is also blank, <dbschema> is removed from the SQL text and there is no
qualifier for the data object name.

n In generated text for query objects, the Versata Logic Studio prefixes all data object
references, except those in subqueries, with <dbschema>. For any customized SQL, you
can use the same tags in front of any data object name references to get the same run-time
behavior. You can choose to edit the SQL to either remove the <dbschema> prefixes or to
change them to hardcoded database or schema names that will not be overridden by
Versata Logic Server’s run time.

Select SKILL.SkillName AS SkillName, EMPLOYEESKILL.Rating AS
Rating, EMPLOYEESKILL.SkillNum AS SkillNum, EMPLOYEESKILL.EmpID
AS EmpID FROM <dbschema>.SKILL SKILL, <dbschema>.EMPLOYEESKILL
EMPLOYEESKILL WHERE SKILL.SkillNum = EMPLOYEESKILL.SkillNum
178

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
Defining a custom superclass for a query object
By default all query objects are subclassed from versata.vls.QueryObject. If you want to
provide additional methods to your query object, you can define a subclass of the default
superclass, add methods to it, and enter the name of this new subclass as the query object’s
superclass in the field on the Properties:General tab of the Query Object Designer.

Note: You need to add the Java source file for the custom superclass to the repository. For
information, see “Adding files to a repository” on page 308.

Enabling deployment of attribute-level security data for a query
object

To define permissions at the attribute-level rather than only at the object level, enable the
check box on the Properties:General tab of the Query Object Designer. This setting copies the
query object attribute names to the Versata Logic Server when you deploy business objects.
Enable this option only when you plan to use attribute-level permissions, as it slows
deployment.

Enabling inserts to a parent data object
Generally, an insert to a query object results in an insert to its childmost data object, and inserts
to other underlying data objects are not allowed. However, you can set an extended property
for a query object in order to enable query object inserts that result in inserts to an underlying
data object other than the childmost data object. This underlying data object can be referred to
as the parent data object. For example, you can set this property on the sample query object,
OrderItemJoinPart, in order to allow users modifying the OrderItemJoinPart RecordSource in
an application to cause an insert to the PART data object.

This extended property is called ParentInsertable. You can add it to a query object and set
its value to true on the Query Object Designer’s Properties:Extended tab. Formerly, this
property was available as an extended security property in the Versata Logic Server Console,
that has now been deprecated.

Note: You also have the option of writing custom code to set the ParentInsertable
property to true. The ParentInsertable(boolean flag) method of the
VSMetaQuery interface is available for this purpose. For information, see the Versata
Class Libraries Help (vstudio.hlp).
179

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
When a query object includes a setting of true for the ParentInsertable property,
behavior that is different from the default occurs in the query object’s RecordSources in run-
time applications. The system inserts a new parent data object record whenever a user
modifies any parent fields in a query object RecordSource, unless these changes occur as a
result of a pick selection. The user’s selection from a pick object modifies the foreign key field
and all other parent fields, but as it is based on selection of an existing parent data object
record, no insert is required.

Setting the ParentInsertable property in the Query Object Designer

To enable inserts to a query object that insert to a parent data object:

1. In the Versata Logic Studio Explorer, double-click the query object to open it in the Query
Object Designer.

2. Click the Properties tab, then the Extended tab.

3. On the Extended tab, click the Add button.

4. In the dialog that appears, enter ParentInsertable and click OK. This entry appears in
the Property Name column of the extended properties table.

5. In the Property Value column of the table, enter true.

6. Click the Save toolbar button.

Notes about the ParentInsertable property

The previous implementation of ParentInsertable through a Versata Logic Server
Console property provided unconditional parent inserts that potentially caused problems for
pick support. The new implementation of ParentInsertable provides a conditional logic
that allows for full and proper support of picks. This implementation allows end users to either
enter parent data fields, in which case a new parent record is inserted, or to select a parent from
a pick object, in which case no parent insert occurs and the operation succeeds if rules such as
referential integrity are not violated.
180

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
The following pseudo code illustrates the conditional logic supported by the current
implementation:

The population of the child’s foreign key is automatic when the parent’s primary key is one
autonumber column; the value of this column is copied to the child’s foreign key column. If
the parent’s primary key includes multiple columns, you must add a method to the query object
to indicate which column of the child’s foreign key is the target for replication of the parent’s
autonumber column value. The following code provides an example method:

This method is called for each child attribute. The col parameter represents the metadata for
the child column. The method returns true for only one column, the child column matching
that parent autonumber column.

Note: If you still require additional control over updates and inserts resulting from user
modifications to query objects, you can override the save() method for the query
object. You can examine the collection of updates to be started on underlying data
objects and add custom code to control them, for example, by removing updates or
setting fields.

If pkey for for parent column is not null
try to insert parent

else {
if(foreignkey is not null)
skip parent

else {
if(parent pkey is autonumber)

try to insert parent
else

skip parent
}
}

protected boolean isForeignKeyColumn(String tblName,
VSMetaColumn col) {

boolean result;
if (col.getName().equalsIgnoreCase("PTYM_ID_K"))

result = true;
else

result = false;
System.err.println("isForeignKey for " + col.getName() + ",

rtn: " + result);
return (result);

}

181

WORKING WITH QUERY OBJECTS
MODIFYING QUERY OBJECTS
Disabling resynchronization with a persistent data source
The extended property, refreshAfterUpdate, indicates whether or not to resynchronize
data between a business object and its persistent data source after a transaction is committed.
If this property is set, it overrides the default values for business objects. The possible values
are true and false. By default, query objects are specified as true. To override this default,
you can add the extended property to a query object and set its value to false.

To disable resynchronization of a query object with its persistent data source:

1. In the Versata Logic Studio Explorer, double-click the query object to open it in the Query
Object Designer.

2. Click the Properties tab, then the Extended tab.

3. On the Extended tab, click the Add button.

4. In the dialog that appears, enter refreshAfterUpdate and click OK. This entry appears
in the Property Name column of the extended properties table.

5. In the Property Value column of the table, enter false.

6. Click the Save toolbar button.
182

CHAPTER 6 Understanding
Transaction Logic
183

UNDERSTANDING TRANSACTION LOGIC
CHAPTER OVERVIEW
Chapter overview
This chapter provides an introduction to the business rules that implement transaction logic in
the Versata Logic Server. Read this chapter to get an understanding of what transaction logic is
and how business rules represent transaction logic. This chapter includes the following:

n “Transaction logic overview” on page 185, introduces declarative business rules,
describing the benefits they provide.

n “Types of business rules” on page 189, details the different types of business rules you can
define.

n “Transaction logic processing” on page 200, outlines the order of processing for
transaction logic at run time.

n “Analyzing business requirements” on page 206, discusses the mapping of business
requirements to rules.

This chapter is intended as background to read before you begin defining transaction logic.
For procedures for logic definition, see the following:

n For instructions on defining business rules in the Transaction Logic Designer, see
“Procedures for defining business rules” on page 232.

n For information about building and compiling Java files for business objects that contain
transaction logic, and deploying the objects to the Versata Logic Server and the IBM
WebSphere Application Server, see “Building and Deploying Business Objects” on page
255.

n For information about generated business object files and the code they include, see
“Understanding Business Object Files” on page 285.

n For information about extending and customizing transaction logic code, see “Extending
Business Object Code” on page 321.
184

UNDERSTANDING TRANSACTION LOGIC
TRANSACTION LOGIC OVERVIEW
Transaction logic overview
Versata Logic Studio allows you to define transaction logic for the objects in your data model.
This transaction logic applies to objects across applications. You define this logic in terms of
declarative business rules.

What are declarative business rules?
Declarative business rules are simple, unambiguous statements that define the derivation,
validation, referential integrity enforcement, and presentation of data (with presentation design
only). Business rules defined in the Versata Logic Studio are declarative rather than procedural
because you design applications in terms of what the application needs to do, not how it does
it.

For example, in designing the appearance of an application user interface, you can specify the
data to appear on each form or page, and the navigations, without having to code how the data
gets displayed or how users move from one form or page to another. In the same manner, when
you define business rules, you design transaction logic in terms of what data values should or
should not be, based on calculations or restrictions. You do not need to write code to arrive at
these data values; the Versata Logic Studio generates this code based on your declarative
definitions.

You define declarative business rules for the data objects in your data model, using graphical
tools and simple language in the Transaction Logic Designer. Rules are properties of data, and
fire only when data changes state. Business rules are stored in the repository, along with the
data model.

The Versata Logic Studio allows you to extend and customize declarative rules in a variety of
ways. The Transaction Logic Designer allows you to define action rules that call system-
supplied or user-defined Java methods. You also can reference methods in rule expressions.
You can use the Code Editor to edit the code generated for rules. Your edits can range from
event-handling code to modify the default handling provided for the Versata Logic Suite’s
exposed server events, to subclassing the Versata Logic Server Classes that provide the
building blocks for rules and other business object code.

The biggest issues to solve when you are defining a rule are:

n Identifying which data should own the rule.

n Gathering the data into the right object.

n Figuring out how to change data to fire the rule.

The basic operations provided by declarative business rules are:

n Replication

n Formulation
185

UNDERSTANDING TRANSACTION LOGIC
TRANSACTION LOGIC OVERVIEW
n Aggregation

n Constraints

For details about the different types of declarative business rules, see “Types of business rules”
on page 189.

The Versata Logic Studio provides menu options that you can use to build and compile
business rules into the Java files that are generated for each data object. You have the option of
deploying each data object and query object to the middle tier as a Java class or as an
Enterprise JavaBean (EJB). Every business object file includes marked sections where you
can add custom code that is preserved when object files are rebuilt and recompiled.

Why use declarative business rules?
The Versata Logic Studio automates the procedural implementation of transaction logic that is
defined declaratively in business rules. When you deploy your business rules to the Versata
Logic Server, the system automatically generates and compiles Java component files that
contain the required logic. Each rule fires automatically whenever an application action affects
the data element (attribute, relationship, or data object) to which the rule is attached. The firing
of one rule can affect related data elements and cause the firing of the rules attached to these
other data elements.

Every transaction in a generated application automatically reuses all business rules applicable
to the data elements affected by the transaction, regardless of the user action that initiates the
transaction. Because the Versata Logic Studio automates all of the required processing,
business rules can be shared among multiple business transactions, or functions, and even
among multiple applications running against the same database. If the requirements for
transaction logic change, declarative business rules can be altered and redeployed without
consideration of the processing implications.

Business rules provide integrity enforced by the Versata Logic Server. The implementation of
business rules as a middle tier also reduces network traffic to make performance scalable.
Rules processing can be distributed across multiple Versata Logic Servers on different
machines to improve performance further.

Defining declarative business rules generates a large amount of code that would otherwise
need to be handwritten. This automatic generation of code shortens initial development,
reduces debugging, and simplifies maintenance. You can easily extend declarative business
rules by incorporating calls to your own methods within rule expressions, adding your own
event-handling code, or subclassing system-supplied classes used to build rule component
files. The Versata Logic Suite’s J2EE-enabled architecture allows your custom additions to be
preserved as you modify rules and regenerate rule component files.
186

UNDERSTANDING TRANSACTION LOGIC
TRANSACTION LOGIC OVERVIEW
Declarative business rules enable application development with a business orientation that
focuses on the big picture. Developers and end users alike can devote more attention to the
desired behaviors for an application, rather than on the details of how to implement the
behaviors.

The modularity and reusability of business rules encourage a flexible approach to business
requirements definition and implementation. One standard approach is to work with end users
to develop an inventory of application business functions, analyze each function to determine
transaction logic requirements, and define rules that enforce each requirement. You can
integrate your existing requirements, definition process, and modeling tools into the Versata
Logic Suite development process.

When you change a rule, you do not have to model all of the potential effects on all related
requirements and functions. The Versata Logic Suite’s automation of rules processing
addresses the dependencies between business rules. As a result, modifying the transaction
logic is a fairly short and simple procedure.

To sum up, declarative business rules offer the following advantages:

n You can concentrate on requirements rather than on implementation.

n Business rules are easy to communicate to management and users so that you can work
more effectively with them.

n Testing and maintenance are simplified because procedural implementation is automated.
You need to maintain only the statement of the rule rather than all the procedural code.
Rules are order independent and automatically applied to all relevant transactions in the
generated code.

Business rules functionality compared to spreadsheet
functionality

One way to understand business rules is to compare their functionality to that of spreadsheets.
The following table provides this analogy.

Spreadsheet functionality Declarative business rules functionality

The formula to determine a spreadsheet cell
value may refer to many other spreadsheet
cell values, each determined by its own
formula.

The rule to determine an attribute value may refer to
many other attribute values, each determined by its
own rule.
187

UNDERSTANDING TRANSACTION LOGIC
TRANSACTION LOGIC OVERVIEW
A change to the value or the formula for a
spreadsheet cell, or insertion or deletion of
spreadsheet rows, may cause automatic
changes to many other cell values that refer
to the changed cell value in their own
formulas.

A change to the value or rule for an attribute, or
insertion or deletion of records, may cause automatic
changes to many other attribute values that refer to the
changed attribute value in their own rules. Each
declarative business rule is defined on a single data
object. Because cascading rules automatically cause
other rules to fire, business rules can be combined to
implement update processing across multiple data
objects.

A change to a single cell in a set of linked
spreadsheets may cause changes to cells in
many other spreadsheets.

A change to one business rule may affect many
business processes, which are implemented through
that rule.

Spreadsheet functionality Declarative business rules functionality
188

UNDERSTANDING TRANSACTION LOGIC
TYPES OF BUSINESS RULES
Types of business rules
The Versata Logic Studio allows you to define the following types of business rules:

n Derivation rules

n Validation rules

n Presentation rules, including captions (available for applications designed in Versata Logic
Studio only.

n Referential integrity rules

n Constraints

n Actions

The business rules that may be applied to an element in a data model depend on the element’s
object type, as shown in the following table.

Derivation rules
Derivation rules define how an attribute’s value is computed when a database update occurs.
Derivations can be aggregations of child record values (sums or counts), replicates of parent
record values, or formulas based on values of other attributes in the same record. You define
derivation rules on the Attributes: Derivation tab of the Transaction Logic Designer.

You can create derived attributes that are used for calculation of other attributes’ values but are
not stored in the database. These attributes are called virtual attributes. A virtual attribute is
calculated on the Versata Logic Server as needed rather than being physically stored in the data
source. The Persistent check box on the Derivations tab indicates whether an attribute is virtual
or stored. The decision of whether to make a derivation virtual or stored has significant
implications for optimization of your applications. For information about defining and using
virtual attributes, see “Virtual attributes” on page 104.

Whenever an attribute has a derivation rule, the Versata Logic Studio by default generates a
validation rule to prevent user updates. This validation rule can be changed, if necessary.

Each derivation rule can cause other derivation rules to fire. This cascading of rules enables
complex update processing across multiple data objects. For an example of this process, see
“Multiple data object updates through cascading rules” on page 192.

Type of business rule Applicable data element

Derivation, Validation, and Presentation Attribute

Constraints, Actions, and Presentation Data object

Referential Integrity and Presentation Relationship
189

UNDERSTANDING TRANSACTION LOGIC
TYPES OF BUSINESS RULES
The following are types of derivation rules.

Rule type Explanation

Sum A sum rule derives a parent attribute value by adding values of a specified attribute
in a child data object. A sum rule optionally can include a qualification expression
that restricts child records included in the sum.

The generated component code for a sum rule:

• Initializes the parent sum attribute value to be 0 on insert of parent record.

• By default, raises an error when a user tries to insert or update the parent sum
attribute directly. (This default can be overridden by changing the Prevent User
Updates validation rule.)

• Adjusts the sum attribute value by subtracting values of deleted child rows,
adding values of inserted child rows, and subtracting or adding the changes to
values of updated rows. (Note that most processing occurs in the child data
object’s component.) Defining sums as described here results in superior
performance because it does not result in aggregate queries every time the
summed value needs to be changed.

Count A count rule derives a parent attribute value by counting the number of records in
a specified child data object. A count rule, optionally, can include a qualification
expression that restricts the child records included in the count.

The generated component code for a count rule:

• Initializes the parent count attribute value to 0 on insert.

• By default, raises an error when a user tries to insert or update the parent count
attribute directly. The default can be overridden by changing the Prevent User
Updates validation rule.

• Adjusts the count attribute value: decreases the value by one for each deleted
child row and each updated child row that no longer meets the specified
condition, and increases the value by one for each inserted child row and each
updated child row that newly meets the specified condition. (Note that most
processing occurs in the child data object’s component.) Defining counts as
described here results in superior performance because it does not result in
aggregate queries every time the counted value needs to be changed.
190

UNDERSTANDING TRANSACTION LOGIC
TYPES OF BUSINESS RULES
Note: Derivation rules other than defaults are not supported on primary or foreign keys.

Parent Replicate A parent replicate rule derives a child attribute value by copying a value from an
attribute in a related parent data object. A replicate occurs when a new child record
is inserted or when a new parent is assigned to an existing child.

Additionally, a Maintained option is available to specify whether updates to the
replicated attribute in the parent should be cascaded to related children. By default,
replicates are not maintained.

Replicates are useful in reducing joins, and in making parent data values available
for use in other business rules.

The generated component code for a parent replicate rule:

• Copies the parent attribute value to the child replicate attribute on insert.

• Copies the new parent attribute value to the child replicate attribute if a foreign
key is changed in the child.

• Changes the child replicate attribute value to NULL if a foreign key is nullified.

• Cascades updates to parent attribute to child replicate attribute, if replicate is
maintained. (Note that most processing occurs in the parent data object’s
component.)

• By default, raises an error when a user tries to insert or update the child replicate
attribute directly. The default can be overridden by changing the Prevent User
Updates validation rule.

Formula A formula rule derives an attribute value by evaluating an expression on other
attribute values from the same record. Formula rules can reference data
modification operations (Inserting, Updating, Deleting), include
system-supplied or developer-defined methods that return a value, and include
if-then-else conditional structures.

The generated code for a formula rule calculates attribute value on insert or
update.

Default A default rule specifies the value of an attribute when a user does not enter a value
on insert. This specification can be a literal number value, a quoted string, or a
method that returns a value. Subsequent user updates can change a default value.

The generated code for a default rule:

• On insert, checks if an attribute is NULL.

• If an attribute is NULL, inserts the default attribute value.

Rule type Explanation
191

UNDERSTANDING TRANSACTION LOGIC
TYPES OF BUSINESS RULES
Multiple data object updates through cascading rules

A derivation rule fires when a user action changes the value of an attribute used in the rule.
The firing of one rule often results in changes to other attributes, causing the firing of rules
that use those attributes’ values. Because of this cascading of rules, one user action can result
in updates to multiple data objects, including changes that start in a parent and cascade to its
children. The cascading can begin with a number of user actions, including a change in the
value of a primary key, the deletion of a parent record, and the deletion of a child record.

Child to parent cascade

A change to the value of a child record that is used to provide a sum, used as a qualification
condition in a validation rule, or used as a foreign key, can cause an adjustment to a parent
record. The change in the parent record may trigger other rules in turn. For example, in the
sample applications included with the Versata Logic Suite (with presentation design only),
when a user changes the value of the QtyOrdered attribute for an ORDERITEM, many other
attribute values change.

n PART.QtyUnshipped is adjusted, because its derivation rule uses
ORDERITEM.QtyOrdered as a summed attribute.

n ORDERITEM.Amount is recalculated, because its derivation rule uses
ORDERITEM.QtyOrdered.

n ORDERS.AmountItems is recalculated, because its derivation rule uses
ORDERITEM.Amount as a summed field.

n ORDERS.OrderTotal is adjusted, because its derivation rule uses ORDERS.AmountItems
in a formula.

n CUSTOMERS.ActBalance is recalculated, because its derivation rules uses
ORDERS.OrderTotal as a summed field.

n A constraint on the CUSTOMERS data object is fired by this recalculation. The change to
PART.QtyUnshipped also causes the firing of other rules for the PART data object.

Parent to child cascade

A change to a parent record that is used in a maintained replicate rule may cause an update to
child records to receive the new value. For example, when a user changes the value of the
ShippedFlag attribute for an ORDER, the value of the ShippedFlag changes for each
ORDERITEM in the ORDER. The change to ShippedFlag values for ORDERITEM records
adjusts the values of the QtyShipped and QtyUnshipped attributes for related PART records.

Parent-to-child cascades also may result from referential integrity updates.

Note: The sample database includes examples of how different types of derivation rules can
cascade to implement updates across multiple data objects.
192

UNDERSTANDING TRANSACTION LOGIC
TYPES OF BUSINESS RULES
Attribute validation rules
Validation rules define limitations for attribute values. These limitations can be based on a
developer-defined condition or on a coded values list. The Versata Logic Studio also allows
you to restrict attributes’ updatability and nullability through validation rules.

You define validation rules on the Attributes: Validation / Data Type tab of the Transaction
Logic Designer. On this same tab, you can review and change attributes’ data types. For details
about working with attribute data types, see “Changing an attribute's data type” on page 103.

Note: Data object validation rules are defined as “constraints” in the Transaction Logic
Designer. For information about these, see “Constraints” on page 198.

The following are types of validation rules.

Validation rule type Explanation

Condition A condition validation rule limits values in an attribute to those that meet a
defined conditional expression. For each condition validation rule, the
Transaction Logic Designer allows you to enter a custom error message that
appears when a violation occurs.

Condition validation rules can:

• reference data modification operations (Inserting, Updating,
Deleting);

• use the :Old function to reference attribute values prior to update;

• include system-supplied methods and developer-defined methods (that are
registered and listed in the Enterprise Object Browser.)

The generated code for a validation condition rule raises an error if the
condition is not met.

Coded values list A coded values list validation rule limits attribute values to the values in a
coded values list. A coded values list consists of pairs of corresponding
values. Each pair has a stored value and a display value. The stored values are
stored on the database server. The display values are shown in a combo box
to the user.

The generated code for a coded values list validation rule validates attribute
data against stored values. In addition, a coded values list rule on an attribute
drives the client application to build either a combo box (by default) or option
buttons for the attribute (with presentation design only).

For more information about coded values lists, see “Working with coded
values lists” on page 95.
193

UNDERSTANDING TRANSACTION LOGIC
TYPES OF BUSINESS RULES
Presentation rules
Presentation rules define certain aspects of Versata Logic Studio-generated application user
interfaces. Archetypes and application diagrams define other aspects. Presentation rules are
not implemented through business object code and do not affect server processing.

Nullability The Transaction Logic Designer provides a Value Required validation rule
with a system-supplied error message. You can specify in this rule that an
attribute value cannot be NULL.

The generated code for a Value Required rule defines the attribute as not
NULL, and nullability is checked in the client application during update
processing.

Updatability The Transaction Logic Designer provides a Prevent User Updates validation
rule with a system-supplied error message. You can specify in this rule that an
attribute value is not updatable by users.

The Versata Logic Studio automatically defines a Prevent User Updates
validation rule for an attribute in the Transaction Logic Designer if the
attribute has a derivation rule. You can override this default, even for non-
persistent, derived attributes.

The generated code for a Prevent User Updates validation rule raises an error
when a user tries to update the attribute directly. (A user can enter an attribute
value for a newly inserted record. If the attribute is derived, the newly entered
value is overridden by the derivation when the record is saved.) In Java
applications, non-updatable fields are built as disabled on forms (with
presentation design only). In HTML applications, non-updatable fields
display as empty at design time, while at run time, text displays in the field
but is not editable (with presentation design only).

Data type The Transaction Logic Designer displays the data type of each attribute, and
allows you to change data types for attributes displayed in scalar fields. For
Text, Number, and DateTime types, you also indicate a sub type. In the case
of Text attributes, you also can change the size.

The Transaction Logic Designer checks data type changes, prohibiting
changes between mismatched types, changes to indexed attributes and key
attributes, and changes to AutoNumber when data already exists in an
attribute. Data type checking is performed on both the client and the server.

Validation rule type Explanation
194

UNDERSTANDING TRANSACTION LOGIC
TYPES OF BUSINESS RULES
The following table lists the types of presentation rules.

Rule type Explanation

Attribute presentation Define attribute presentation properties on the Attributes: Presentation
tab of Transaction Logic Designer. These properties include:

• A caption that appears as a label for the field on generated forms or
pages.

• A format for text in the field.

• A status bar message that appears in the window status bar when the
attribute receives focus (for Java applications only).

• An archetype to be associated with the attribute, that determines the
control or element to be used for the field on generated forms or pages.

Definition of these presentation properties is optional. The Versata Logic
Studio provides a default caption and archetype for each attribute.

Data object presentation Define data object presentation properties on the Properties: Presentation
tab of Transaction Logic Designer.

The Versata Logic Studio provides default presentation properties for
data objects. You may change the defaults. These properties include:

• Singular and plural captions that appear on generated forms or pages
where the data object is a root RecordSource. In Java applications,
these captions are used for controls and appear as references in the
status bar. In HTML applications, these captions are used for page
elements.

• An image to be added to the data object. The image appears on toolbar
buttons in Java applications.

Relationship presentation Define relationship presentation properties on the Relationships:
Presentation tab of Transaction Logic Designer.

The Versata Logic Studio provides default presentation properties for
relationships. You may change the defaults. These properties include:

• A caption that appears as a label for data in transitions from parent to
child forms or pages.

• A caption that appears as a label for data in transitions from child to
parent forms or pages.

• A child role name used in APIs that retrieve child data for the parent
data object in the relationship.

• A parent role used in APIs that retrieves parent data for the child data
object in the relationship.
195

UNDERSTANDING TRANSACTION LOGIC
TYPES OF BUSINESS RULES
Captions

The Versata Logic Studio uses captions to generate RecordSource labels and command button
labels on the applications it builds. Generated captions are based on defaults for data objects
and relationships. You can override most of the defaults in either the Transaction Logic
Designer and/or the forms or pages.

There are three kinds of captions:

n Attribute captions

n Data object captions

n Relationship captions

Note: If you change captions in the Transaction Logic Designer after you have generated an
application, modified captions do not appear on forms or pages until you rebuild the
form or page layout.

Attribute captions

Define attribute captions on the Attributes:Presentation tab. The attribute names are the
default.

In forms and pages, attribute captions are the default label captions for fields and attributes.

Data object captions

Define singular and plural data object captions on the Properties:Presentation tab. The singular
caption defaults to the data object name and the plural caption defaults to the data object name
with an appended “(s)”. For query objects that are used as RecordSources, the childmost data
object in the query is used to derive the default caption.

The singular data object caption is the default label for display forms or pages where the data
object is a root RecordSource. The plural data object caption is the default label for grid forms
or grids on pages where the data object is a root RecordSource. Plural data object captions also
are used as RecordSource references in the status bar.

Relationship captions

Define relationship captions on the Relationships:Presentation tab. Target data object captions
are used by default. The parent-to-child relationship caption defaults to the child’s plural data
object caption. The child-to-parent relationship caption defaults to the parent’s singular data
object caption.

On forms in Java applications, relationship captions are the default captions for command
buttons that execute form transitions.
196

UNDERSTANDING TRANSACTION LOGIC
TYPES OF BUSINESS RULES
Referential integrity rules
Referential integrity rules preserve relationships between data objects when data manipulation
language (DML) updates occur. You define referential integrity rules on the Relationships tab
of the Transaction Logic Designer. For each relationship in your data model, you can indicate
whether you want to enforce referential integrity; however, you must enforce it to use the
relationship in rules.

You can define separate rules for parent updates, parent deletes, and child inserts/updates. The
Versata Logic Suite supports standard referential integrity rules with additional provisions for
Cascade Update, Cascade Delete, and Cascade Nullify.

The generated code for a default referential integrity rule rolls back the entire user update
request if a referential integrity violation occurs. The rollback reverses all changes to data
objects that were caused by the update request. By default, the Versata Logic Server enforces
referential integrity. You have the option of enforcing referential integrity in the database
server as well; you select this option when you deploy the data model to the database server.

The following table lists the types of referential integrity rules available in the Versata Logic
Studio.

Rule type Explanation

Restrict There are three Restrict rules:

1) Prevent parent update if children are present.

2) Prevent parent delete if children are present.

3) Prevent child insert/update if parent is not present.

Each of these rules can be defined separately. You may edit the rules and the
system-supplied error messages.

Cascade Update A cascade update rule, or Update Children on Parent Update, indicates that
foreign key values for child records should be updated to match an updated
parent key value.

Cascade Delete A cascade delete rule, or Delete Children on Parent Delete, indicates that related
child records should be deleted when a parent is deleted.

Cascade Nullify A cascade nullify rule, or Null Children Foreign Key on Parent Delete, indicates
that foreign key fields for related child records should be nullified when a parent
key is deleted.

Cascade Insert A cascade insert rule, or Insert Parent If None on Child Insert/Update, indicates
that if an inserted or updated child record has no parent record, a record should
be inserted into the parent data object with a primary key that matches the child
foreign key. Note that this option is available only if the parent object does not
have required fields other than the primary key fields.
197

UNDERSTANDING TRANSACTION LOGIC
TYPES OF BUSINESS RULES
Constraints
Constraints are object-level rules you can use to enforce value changes to attributes.
Constraints consist of a condition (such as whether the Account Balance exceeds the Credit
Limit), an action (either to accept or reject the pending change), and an error message. When
the condition evaluates to true, then the action is taken, and a specified error mesage is
returned, along with a specified field to be highlighted. The condition is evaluated whenever
any attribute specified in the condition is going to change.

While this is similar to a validation, an attribute can have multiple constraints but only a single
validation.

Constraints can:

n Reference data modification operations (Inserting, Updating, Deleting).

n Use the :Old function to reference attribute values prior to update.

n Include system-supplied and developer-defined methods. (These methods must be
registered and listed in the Enterprise Object Browser.)

n Govern derived attributes.

All attributes, derived or otherwise, in the conditional expression of a constraint must be
located in the same data object.

You define constraints on the Constraints tab of the Transaction Logic Designer. You may
define multiple constraints on a data object. All constraints are evaluated when an update to a
data object occurs. The generated code for a constraint rolls back the entire user update request
if a constraint violation occurs during the update. The rollback reverses all changes to data
objects that were caused by the update request. A transaction is rolled back when the
conditional expression for a Reject When constraint evaluates to true or when the conditional
expression for an Accept When constraint evaluates to false.

The Versata Logic Studio provides a default error message, but you may enter a customized
message to display when the constraint prevents a user transaction from committing. You also
may define the attribute where the cursor is placed after the error is raised. The error attribute
is client-side information only.

Note: Constraints are inherently unordered. We do not recommend that you attempt to reorder
them.

Business rule actions
Business rule actions extend the transaction logic processing capability of the Versata Logic
Suite by incorporating your procedural code into the declarative model. Actions enable you to
customize the Versata Logic Studio-generated business objects through calls to developer-
defined methods. Action customizations are preserved automatically when business rule
components are regenerated.
198

UNDERSTANDING TRANSACTION LOGIC
TYPES OF BUSINESS RULES
An action rule executes a call to an external method when certain conditions are met. You can
pass parameters from the attribute values of the current row.

You must register an object for it to be available to a method call from an action rule. To
register an object, click Add in the Enterprise Object Browser, or choose Tools � Add Object
to Registry in the main menu.
199

UNDERSTANDING TRANSACTION LOGIC
TRANSACTION LOGIC PROCESSING
Transaction logic processing
After you declare business rules for each data object, you can build and compile the rules logic
into a Java business object for each data object, choosing implementation as either a Java class
or an EJB for each one. In Versata Logic Studio you define derivations and constraints on data,
not transactions, because the system automatically generates transaction-specific transaction
logic when you build and compile business rules into the business objects. Code generated to
implement business rules is added into the business objects that execute on the Versata Logic
Server and IBM WebSphere Application Server. The Versata Logic Server provides logic
execution services and acts as an EJB container for any business objects implemented as EJBs,
while IBM WebSphere Application Server provides application execution services. The
execution of transaction logic code on the middle-tier Versata Logic Server guarantees data
integrity and reduced network traffic, enhancing performance.

Also, because the Versata Logic Suite centralizes the transaction logic execution on the
Versata Logic Server, each application automatically inherits transaction logic. There is no
need to recode or even recompile business rules for each application, whether for rapid
iterative development, or simple maintenance. When you redeploy business rules, the Versata
Logic Studio automatically analyzes all data dependencies, rebuilding to achieve a correct and
optimal processing order. This rebuilding protects against a gradual loss of coding efficiency
due to multiple patches.

Most of the processing logic for rules resides in the business object files, in pure Java code.
The object files have pluggable data access modules, and separate files called Versata
Connectors execute data access. The Versata Logic Suite includes default Connectors for
SQL-based data sources, like RDBMSs. You must obtain specialized Connectors separately or
write your own Connectors to provide data access to non-SQL data sources.

The four basic activities of rules processing on the Versata Logic Server are:

n Analyze the update. The first step is to determine the values that the user has changed.

n Adjust dependent data. The dependencies among data are computed when business rules
are compiled, so the generated components automatically adjust the correct data when
users change values. Dependencies are recomputed each time you alter the rules, so they
are always correct, complete, and consistent. Queries and Where clauses within rule
expressions are implemented in SQL and passed to the data source.

n Check constraints and data restrictions. These include referential integrity, coded value
lists, attribute constraints, and nullability. Basic referential integrity enforcement for
RDBMS objects is supported in the database server in the form of DDL constraints, if this
option was selected during data model deployment.

n Invoke events. Each data object’s Java implementation file exposes server events. You can
add code to these events to modify server processing. Your server event code may extend
the logic for the client application and/or the Versata Logic Server. The system calls any
event handlers you have defined to extend declarative rules processing with your own
procedural code.
200

UNDERSTANDING TRANSACTION LOGIC
TRANSACTION LOGIC PROCESSING
Order of rule processing operations
To use rules effectively, you should understand the order in which they are executed. As in a
spreadsheet, the processing order is implicit, and cannot be modified directly by you, although
you can nest rules to model complex behavior among multiple objects. For some information
about nesting, see “Nest levels” on page 204.

The Versata Logic Server’s Transaction Logic Engine processes business rules in a defined
order. This ordered dependency enables rules to be captured declaratively and implemented
procedurally. To achieve this, business objects interact with each other to enforce rules across
objects at a predefined stage of the dependency graph.

When a modification (insert, update, or delete) is made to a business object and then saved, a
set of operations are carried out in the business object. The following table summarizes these
operations in the order in which they occur. Specific information about each operation follows
the table.

Note: You can change the sequence that the rules fire in the javaComponent.tpl file, which
is the template used during building and compiling.

Operation Scope Insert Update Delete

Before Insert/Update/Delete Event local x x x

Set Defaults local x

Attribute Alterability Check local x

Parent Check / Fetch Parent Replicate local x x

Evaluate Formula local x x

Coded Value Constraint Check local x x

Attribute Validation Check local x x x

Business Object Constraint Check local x x x

Nullability Check local x x

Conditional Action local x x x

Child Cascades child x x x

Parent Adjustment parent x x x

 After Insert/Update/Delete Event local x x x
201

UNDERSTANDING TRANSACTION LOGIC
TRANSACTION LOGIC PROCESSING
Each type of modification (insert, update, or delete) enforces the set of rules indicated by an
‘x’. For each modification, all local calculations and validations are done first. These are
followed by modifications to related objects in the form of cascades to child objects and
adjustments to parent objects. Each of these related modifications then implements the
dependency graph in its entirety as well.

Rules processing also includes defined nest levels and modification state flags.

Before insert/update/delete event

Before any generated transaction logic is executed, developer-supplied event code is executed.
This is recommended for setting up conditions or capturing data to be used later.

Set defaults

For inserts, default values are inserted into attributes.

Attribute alterability check

For updates, a check is made to verify that any attributes that are modified by the user are
modifiable.

Parent check/fetch parent replicate

For inserts and updates, a referential integrity check is performed to verify that child rows
have related parent rows. If the “Insert Parent if None” rule is declared, a new parent row is
created and inserted using the child foreign key as the parent primary key. Other attributes
must have defaults or formulas associated with them, or they must be nullable.

Also, if there are any parent replicates in the child, the value is fetched from the parent.

Evaluate formula

For inserts and updates, all formula values are calculated.

Coded value constraint check

For inserts and updates, if any attributes have Coded Values Lists validations, it is verified that
the attribute value is in the Coded Values List.

Attribute validation check

For inserts, updates, and deletes, it is verified that all attribute validation conditions are met.
202

UNDERSTANDING TRANSACTION LOGIC
TRANSACTION LOGIC PROCESSING
Business object constraint check

For inserts, updates, and deletes, it is verified that all constraints within the business object are
satisfied.

Nullability check

For inserts and updates, it is verified that any attributes with null values are not required.

Conditional action

After all local modifications have been made in the business object, a developer-supplied
condition is tested. If the condition is true then a developer-supplied method call is made. This
is recommended when there are other declarative rules in the business object or related
business objects.

Child cascades

After local calculations and validation checks are performed, child cascades are done. This
applies to insert, update, and delete. For each related child business object, one or more of the
following may occur:

n Cascade update foreign key. If the parent primary key has changed, the change is
propagated to each related child.

n Nullify foreign key. If this rule is declared and a parent is deleted, the foreign key is set to
null in all related children.

n Cascade delete. If this rule is declared and a parent is deleted, all related children also are
deleted.

n Cascade update parent replicates (Maintained). If the value of a replicate is modified in
the parent, the new value is cascaded to the children. Note that the parent business object
performs the change on the child and then saves the child. This causes the scope of logic
execution to be nested in the child.
203

UNDERSTANDING TRANSACTION LOGIC
TRANSACTION LOGIC PROCESSING
Parent adjustments

Parent adjustments are done if a child row participates in an aggregate calculation in one or
more related parent objects. When an attribute in the child affects a sum or a count in a parent,
the change is passed to the parent and the parent is adjusted by the amount of the change. The
following conditions may cause a parent adjustment:

n A changed attribute in the child may be a value that is summed in the parent. In this case,
the net value of the change is transmitted to the parent, which adds that to the existing
aggregate value.

n A changed attribute in the child may participate in a qualifying Where clause for a sum or
a count. In this case, the row with the changed attribute may no longer qualify for the
aggregate where once it did, or it may now qualify where it did not previously. In either
case, the aggregate must be adjusted accordingly.

n A changed attribute in the child may be part of a foreign key that has caused the child to be
‘re-parented’. If a child is re-parented, both the old and new parents must be adjusted to
reflect the change.

Note that the child business object transmits the change to the parent and then saves the parent.
This causes the scope of logic execution to be nested in the parent. Each of the parent
adjustments is done one at a time from the child. If the resulting change in a parent results in a
new parent replicate value for the child, the value will be cascaded (and therefore the child
business object code will be re-entered) from within the scope of the parent update.

After insert/update/delete event

After all generated transaction logic is executed, developer-supplied event code is executed. It
is recommended that you add event code here for cleanup of other conditions or for capturing
audit data.

Nest levels

When changes are propagated across multiple business objects, the scope of execution is
nested. Within each nest level, rules are reexecuted in the same order of operations. Business
rules can be reentered multiple times across nesting levels. The same object (row) instance is
used to prevent lost updates in complex recursive cases. After all of the nest levels are
completed, the transaction logic returns to its starting point at the first nest level. The examples
used to illustrate nested rules processing are based on the sample repository:
204

UNDERSTANDING TRANSACTION LOGIC
TRANSACTION LOGIC PROCESSING
For example, if a user updates an ORDERITEM form or page, local modifications to the
ORDERITEM business object take place at nest level 1. This modification causes a parent
adjustment to the ORDERS business object (for example, update the ORDERS Total Amount).
In this case, the ORDERS transaction logic is processed at nest level 2. This modification, in
turn, causes another parent adjustment to the CUSTOMERS business object (for example,
update the CUSTOMERS Account Balance). The CUSTOMERS transaction logic is
processed at nest level 3.

It is possible for transaction logic to be re-entered. In the example above, suppose that there are
volume discounts that apply a 10% discount to all ORDERITEMS under $50 in any ORDER
that has in excess of 100 ORDERITEMS. When an ORDERITEM business object (nest level
1) adjusts an ORDER so that the 100 ORDERITEM condition is met, the discount is replicated
from the ORDERS object (at nest level 2) back down to the ORDERITEM object (which is re-
entered at nest level 3).

After necessary calculations are made to each ORDERITEM under $50 (using a conditional
formula), the ORDERS Total Amount would need to be recalculated with another parent
adjustment (nest level 4). Finally, the CUSTOMERS Account Balance would be adjusted
again (nest level 5). After each nest level is completed, the transaction logic ‘unwinds’ like
function calls being popped off of a stack, until the transaction is completed back at nest
level 1.

Modification state flags

Logic code in a business object can determine whether an insert, update, or delete is taking
place on it by using the following methods: isInserted(), isUpdated(), and
isDeleted(). It is possible for isInserted() and isUpdated() to return different
Boolean (Yes/No) values depending upon the current nest level. The operation on the
component differs depending upon the context, as shown in the next example.

For example, if a row is being inserted, and transaction logic execution has entered a related
object (thus incrementing the nest level), and then the logic re-enters the original object
(incrementing the nest level again), isInserted() would return True in the first nest level
and isUpdated() would return False. However, upon re-entry in the third nest level,
isInserted() would return False and isUpdated() would return True.

In general, isInserted() returns True only if the current nest level is equal to the nest level
in which the insert actually was initiated. This nest level is not necessarily nest level 1, because
an ‘Insert Parent if None’ rule or custom code could be doing an insert from within some other
nest level.

There is a method available called isChanged()to determine whether or not an attribute has
changed. This method returns True if this attribute has changed, or if other attributes that it
depends upon have changed, as in the case of a formula. For example, if a formula says a + b
= c, and a changes then isChanged(“c”) returns True, even if the formula has not yet been
reevaluated.
205

UNDERSTANDING TRANSACTION LOGIC
ANALYZING BUSINESS REQUIREMENTS
Analyzing business requirements
Before you can begin defining business rules in the Versata Logic Studio, you need to spend
some time defining the business functions and requirements related to your applications.

This analysis can occur outside of the Versata Logic Studio development environment. You
can use whatever methods and tools you would like for requirements analysis and definition.
What is different with the Versata Logic Suite is that after you have analyzed and defined
business requirements, you need to translate requirements to declarative business rules. This
process does not have an explicit road map, because you can complete it in a variety of ways.
This section provides some hints and guidelines for this process. For more information about
the Versata Logic Suite development process, see the Architecture and Project Guide.

Business function definition
A business function is a business operation to be supported by one or more applications. It
corresponds to or includes one or more database transactions. Entering a new order and
deleting a customer are examples of business functions.

You may need to break down business functions by business areas. For example, you could
define business functions for the area of order processing that would include entering an order,
adding an order item, and so on.

Generally, you should express business functions with verbs to describe the operations or
actions, the tasks someone would need to perform using the application(s).

Business requirements definition
A business requirement is a condition or statement to be satisfied or enforced in the
application. This requirement can be high-level or low-level.

Generally, each requirement indicates what must be done or satisfied in carrying out one or
more business functions. When defining a requirement, you should state what your customers
or users want in terms that you and they can understand. To continue with the example begun
with business functions, you cannot add an order item unless the part on the item is recognized
by the application.

Declarative business rules can serve as the specifications that support your business
requirements. Some requirements map to a single rule each, while others require multiple
rules.
206

UNDERSTANDING TRANSACTION LOGIC
ANALYZING BUSINESS REQUIREMENTS
Mapping requirements to rules
This list of tasks provides general suggestions for steps to follow in mapping requirements to
rules:

1. List business functions to be addressed by applications.

2. List business requirements for each function. (Some requirements may apply to more than
one function.)

3. Break down requirements to their simplest level.

4. Map lowest level requirements to the data model objects and attributes to which they apply.
(If necessary, add objects and/or attributes to the data model.)

5. Declare one or more business rules for the applicable objects and attributes.

6. Identify key transactions of the business function for testing and performance analysis
purposes.

Top-down approach

The task list above uses a top-down approach to mapping requirements to rules. This approach
starts with the big picture and breaks down high-level processes into tasks, defining what must
be checked or calculated for each task. An alternative approach is to start from the bottom with
individual actions and move upwards to more complexity.

With the top-down approach, you break down requirements into their simplest level. The
following are examples of simple requirements that can be translated into rules:

n Customer account balance cannot exceed the customer credit limit.

n Customer account balance is the sum of unpaid order totals.

n Order total is the amount of order items plus freight.

n Amount of order items is the sum of order item amounts.

n Order item amount is price times quantity ordered.

The following are examples of larger requirements that have been broken down to a simpler
level:

n Check credit limit for each customer upon order entry.

n Customer account balance is the sum of unpaid order totals.

n Customer account balance cannot exceed customer credit limit.

n Compute order total for each order entry.

n Order total is equal to freight plus tax plus the total amount for order items.

n Total amount for order items is the sum of the amount for each order item.

n Each order item amount is equal to the quantity ordered times item price.

n Order item price is equal to the part price at the time of order.
207

UNDERSTANDING TRANSACTION LOGIC
ANALYZING BUSINESS REQUIREMENTS
Selecting rules

After you have stated requirements at their simplest level, you need to select a rule or rules to
implement each requirement. When you have decided the type of rule(s) to use to implement a
requirement, you are ready to define it in the Transaction Logic Designer. For instructions on
defining rules, see “Procedures for defining business rules” on page 232.

You can analyze requirements and use categories to limit the possible choices of rules. The
language of the requirement can help you to choose the type of rule. The words “have” or “is
in” usually point to a relationship. Definitions often are derivations, sometimes constraints. If-
then-else wording is available in formula expressions. Note that parent replicates are not
always explicitly stated, but are often implied by another requirement that needs parent data to
be available in child records.

Your answers to the following questions can help you to select the rule or rules for
implementing a business requirement:

n Is the requirement covered already by the data model and referential integrity?

n Does the requirement have to do with the data itself (uniqueness, nullability, updatability)?

n What data element(s) are needed to satisfy the requirement?

n Does the requirement involve a single object or multiple objects?

n If the requirement involves a single object, does it involve a single attribute or multiple
attributes?

n If the requirement involves multiple objects, in what direction is the calculation: up
from children to parents (sum, count), or down from parent to children (replicate)?

The following table provides some further guidelines about translating requirements into
rules:

Object/Attribute Involvement Type of Rule

Single Object, Single Attribute Default

Validation Condition

Coded Values List

Single Object, Multiple Attributes Formula

Constraint

Multiple Objects Sum (Calculate up from children to parent)

Count (Calculate up from children to parent)

Parent Replicate (Bring down from parent to child)
208

UNDERSTANDING TRANSACTION LOGIC
ANALYZING BUSINESS REQUIREMENTS
Mapping requirements to the data model

As stated at the beginning of this chapter, the biggest issues to solve when you are defining a
rule are:

n Identifying which data should own the rule.

n Gathering the data into the right object.

n Figuring out how to change data to fire the rule.

To solve these issues, map requirements to the data model as part of mapping requirements to
rules. You should be able to map each term in a requirement to an object or attribute in the
logical data model. (This data model is considered logical, because some attributes in it may be
non-persistent, meaning they are virtual rather than physically stored.) If the requirement
involves more than one object, look for relationships between objects.

You may need to modify the data model if you are unable to map some requirement terms. You
can add data objects, attributes, and/or relationships. If you need to define a rule that uses a
relationship between two objects, such as a sum, count, or replicate, referential integrity must
be enforced for the relationship. For example, if you derive the customer account balance as
the sum of order totals, the relationship between customers and orders must be enforced. For
each derived attribute you add, you need to decide whether it is stored or virtual. This decision
has implications for performance.

n For information about adding data objects, see “Adding data objects” on page 84.

n For information about adding attributes, see “Adding attributes to data objects” on page
102.

n For information about adding relationships, see “Adding relationships” on page 113.

n For information about virtual attributes, see “Virtual attributes” on page 104.

Rules design patterns
In many cases, you may need to combine rules to enforce a business requirement. The
following combinations are common design patterns:

n Constraining derived attributes.

Start with the desired constraint, then define derivations to gather data required for
constraint comparison into attributes that can be compared.
209

UNDERSTANDING TRANSACTION LOGIC
ANALYZING BUSINESS REQUIREMENTS
n Gathering required data from other attributes in the same data object or from related data
objects.

n Formulate. Value for attribute calculated from other attributes in same data object.

n Replicate. Value moves downward, copied from attribute in a parent data object into
an attribute on the child data object.

n Aggregate. Value moves upward into parent data object, summed or counted from
child data object attribute values.Using count rules as existence checks (determining if
count greater than zero).

n Using count rules as existence checks (determining if count greater than zero).

n Comparing old and new values to determine if state transition occurred.

The sample repository included with the Versata Logic Suite includes many examples of these
common design patterns as well as others. In addition, this Guide provides examples; see
“Transaction Logic Examples” on page 397.

Recognizing non-declarative patterns

As you map requirements to rules, it is important to recognize requirements that cannot be
translated to declarative business rules.These types of requirements, called non-declarative
patterns, include the following:

n More complex relationships than parent-child such as siblings, cousins.

n Quantity-based discount schedules.

n Batch driver loops.

n Workflow, including time-based and calendar-driven rules enforcement.

n Data retrieval with a user-defined business function.

The Versata Logic Suite provides a variety of ways for you to extend and customize rules in
order to meet these non-declarative requirements, including extending rules with method calls,
adding event-handling code, adding custom Java methods, and subclassing the Versata Logic
Server Classes included with the product. For information about these techniques, see
“Extending Business Object Code” on page 321. For examples of these techniques, see the
sample repository and “Transaction Logic Examples” on page 397.
210

CHAPTER 7 Defining Business Rules
211

DEFINING BUSINESS RULES
CHAPTER OVERVIEW
Chapter overview
This chapter discusses the process for defining declarative business rules to implement
transaction logic. After you read this chapter, you should have a basic understanding of how to
use the Transaction Logic Designer to define rules. This chapter includes the following:

n “Overview of business rules definition” on page 213, provides background information
about business rules definition tasks, including the following:

n “Business rules design issues” on page 213, describes issues you need to consider
before you define rules.

n “General process for defining business rules” on page 216, outlines the steps for
defining all of your business rules as part of an iterative process.

n “Understanding the Transaction Logic Designer” on page 220, describes the user interface
available for rules definition.

n “Procedures for defining business rules” on page 232, provides specific procedures for
defining different types of rules.

n “Business rule syntax” on page 244, describes the syntax supported for rules expressions.
212

DEFINING BUSINESS RULES
OVERVIEW OF BUSINESS RULES DEFINITION
Overview of business rules definition
After you have analyzed business requirements for your system and built a data model in a
Versata repository, you are ready to begin the business rules definition process. You need to
break down requirements into rules, recognizing design patterns for rules combinations. Also
you need to recognize non-declarative patterns in your requirements. To satisfy non-
declarative requirements, you can extend business rules, modifying generated code for
transaction logic. But before you begin customizing with your own code, you should fully
define declarative rules in the Versata Logic Studio.

Defining declarative business rules in the Versata Logic Studio is an iterative rather than a
rigidly sequential process. You have a lot of flexibility in determining the order in which you
complete tasks. You most likely will define rules in stages. As users review the application
prototype and you refine and add to requirements, you will need to modify and add to rules
definitions. In many cases, rules definition and data modeling tasks will overlap.

In order to review rules as you define them, you need to build and compile the business object
files that include code for rules’ logic execution, then deploy these to the Versata Logic Server
and the IBM WebSphere Application Server. For information about these tasks, see “Building
and Deploying Business Objects” on page 255.

After you have iteratively refined declarative rules, you can begin extending generated
transaction logic code as necessary to fulfill your requirements. For information about
generated code, see “Understanding Business Object Files” on page 285. For information
about how to extend this code, see “Extending Business Object Code” on page 321.

Business rules design issues
Consider the following general issues when you are defining business rules for your Versata
repository:

n You define business rules on data objects and their attributes, not on query objects. The
system enforces rules for both query objects and data objects during run-time execution.
Query objects inherit rules from underlying data objects and projected attributes. During
logic execution, query objects are decomposed to data objects so rules can be enforced.

n Data model definition and rule definition often overlap. You may discover as you attempt
to define rules that you need to refine the data model. You can use the Transaction Logic
Designer to add, delete, and rename data objects; add, delete, and modify relationships;
add, delete, and modify indexes; and add, delete, rename, and change data types for
attributes. For information, see “Developing a Data Model” on page 31.
213

DEFINING BUSINESS RULES
OVERVIEW OF BUSINESS RULES DEFINITION
n After you have deployed the business objects that include rules execution code, rules are
executing against the data source(s) so that any data values entered subsequently conform
to rules or cannot be saved. However, preexisting data values may not conform to rules. To
address this issue, the system provides a recomputeDerivations() function that you
can execute to modify preexisting data so that it does not violate rules. You can create an
administrative application that incorporates this API in its client event coding. For
information about recomputing, see “Recomputing derivations” on page 354.

n A key decision as you define derivation rules is whether to make derived attributes
persistent (stored) or non-persistent (virtual). For information about virtual attributes, see
“Virtual attributes” on page 104. Consider the following guidelines as you define
derivation rules:

n For attributes with sum and count derivation rules, it is usually wise to keep these
attributes persistent, since the storage overhead is minimal. The reason is that
recreating the value requires reading all child records. There is little harm in making
sum and count attributes non-persistent if these attributes are not included in displayed
RecordSources and if they tend to have a small number of children. If the attribute is
displayed in a grid, or is part of a query used to display a grid, or if its base data object
is displayed in a grid, the attribute should definitely remain persistent. It should also
remain persistent if the record is updated often, and its value is compared against an
attribute that often changes in a constraint.

If an attribute is non-persistent, you cannot examine its old value. If you have
constraints or other expressions anywhere in your business rule repository that need to
access the old value of this attribute, for instance, to check if it has just been updated,
then do not make the attribute non-persistent.
214

DEFINING BUSINESS RULES
OVERVIEW OF BUSINESS RULES DEFINITION
Be aware that if you are redesigning a production system that a change from persistent
storage to non-persistent storage is a change to the data model. Any existing tables will
have to be recreated. If production data is stored in those tables, it will have to be
converted using a SQL database tool, or by writing conversion programs.

n For attributes with parent replicate rules, there is no easy, general rule to follow.
Instead, the decision to store a parent replicate is the same as the decision to
denormalize a physical database model, which is based upon performance trade-offs.
The first thing to look for, as with sums and counts, is whether the attribute is displayed
or retrieved as part of a displayed RecordSource. If it is displayed, it might be best to
keep the attributes persistent. Next, you might want to look at where the values
originate. If they are stored in the parent, a single read is all that is required to retrieve
them, but if they are actually stored in grandparents, or great-grandparents, there must
be a read at each level of the hierarchy.

n Attributes with formula rules are usually the best candidates for non-persistent storage,
as long as all the inputs into the formula are persistent. Then no additional database
reads are required to reconstruct the value, so even displayed attributes can be
recalculated quickly. Of course, you may find exceptions to this general principle if
your formulas reference methods which are computationally complex. If the source
attributes are not persistent, these must be calculated before the formula is calculated,
and that can be costly.

If you need to display formula values but not the derived attributes used as inputs, an
interesting design strategy is to make the formula a persistent attribute, but not the
inputs. Then no recalculation will be necessary because displayed values are stored.

n Attribute references in rule expressions must be local to the data object on which the rule is
being defined. For sum and count qualification expressions, attributes must be local to the
child data object that the rule references, rather than the parent data object on which the
rule is defined. You can use derivations to reference attributes from related data objects.
For more information about syntax for rule expressions, see “Business rule syntax” on page
244.
215

DEFINING BUSINESS RULES
OVERVIEW OF BUSINESS RULES DEFINITION
General process for defining business rules
The following steps provide an overview of the tasks you perform to define declarative
business rules in the Versata Logic Studio. Review these steps to get a sense of the order in
which you should perform tasks. For more detailed instructions for specific tasks, see
“Procedures for defining business rules” on page 232.

Completing the prerequisites for business rule definition

1. Define the business processes to be automated and the business requirements to be
enforced in your applications. For information about getting started with business
requirements definition, see the Architecture and Project Guide.

2. Make sure you understand the different types of business rules available and how they can
be used to implement business requirements. Then break down requirements into business
rules that can enforce them. For overview information about business rules, see
“Understanding Transaction Logic” on page 183.

3. Produce a data model in a Versata repository. You can import a data model from an
RDBMS database or create the data model in the Versata Logic Studio. For information,
see “Developing a Data Model” on page 31.

Defining basic declarative business rules

1. Double-click a data object to open it in the Transaction Logic Designer.

2. Indicate which data objects are to be used as coded values lists by opening each data object
in the Transaction Logic Designer, selecting the Properties:Coded Values Lists tab,
enabling the option, and completing dialogs as prompted.

3. Determine how attribute values will be calculated by entering attribute derivation rules for
each data object. You can use derivations to reference attributes from related data objects.
As you build rule expressions to define derivations, keep track of any new attributes you
may need to add in order to automate calculations and other data model changes that may
be necessary. Determine which derived attributes you want to physically store and which
you want to define as virtual. Also note where you need to reference methods within rules
expressions.

4. Determine restrictions for single attribute values by entering attribute validation rules for
attributes in each data object. You can build a conditional expression to limit values, or
select a coded values list to provide valid values. Define which attributes can be null and
which can be updated by users.

5. Define constraints that validate data against conditions involving multiple attributes in a
data object. You build a rule expression to define the condition and have the option of
defining a custom error message.
216

DEFINING BUSINESS RULES
OVERVIEW OF BUSINESS RULES DEFINITION
6. On the Relationships tab of the Transaction Logic Designer, indicate whether referential
integrity will be enforced for each data object’s relationships and how it will be enforced
for each type of data change.

7. In many cases, rules are automatically saved when you move the cursor within the
Transaction Logic Designer or when you close it. To explicitly save rules entries, choose
File � Save Transaction Logic.

Defining presentation rules

Presentation rules determine characteristics of the user interface for applications designed in
the Versata Logic Studio. The Versata Logic Studio provides default rules, but it is a good idea
to define your own rules early in the development process in order to obtain user feedback.
Define attribute-level rules on the Attributes:Presentation tab. Define data object-level rules on
the Properties:Presentation tab. Define relationship-level presentation rules in the Presentation
frame of the Relationships tab.

Testing business rules and obtaining user feedback

1. To review the rules that you have defined, you can generate a business rules report to
analyze your rules input at any time. This function is available from an option in the File
menu. For information about business rules reports, see “Generating business rules
reports” on page 239.

2. Deploy the data model and business object files so rules can execute against data and you
can review the results. For instructions, see “Deploying Data Models” on page 121 and
“Building and Deploying Business Objects” on page 255.

3. Build a test application that you can run to review business rules execution. This test
application should include operations required for the production application to ensure that
rules are firing as expected for these operations. For information about defining
applications in the Versata Logic Studio, see the sections on designing Java and HTML
applications in the Application Developer Guide.

4. Run the application to test the rules and illustrate their execution to users.
217

DEFINING BUSINESS RULES
OVERVIEW OF BUSINESS RULES DEFINITION
The Versata Logic Studio provides several ways for you to obtain additional information about
rules.

n Once you have built and deployed business object Java files that include rules execution
code, you can view and print the component file for a data object by choosing options in
the File menu.

n You can fire rules for run-time applications without immediately saving the resultant data
changes, by adding a rules test button to your applications. You can run the applications,
make changes, and click the button to see which rules fire for which data changes and the
results of firing. In this manner, you can ensure rules are firing when expected with the
expected results. For more information, see “Computing results without saving” on page
355.

n The Versata Logic Server includes a rule tracing utility that you can use to debug rule
errors that may not be apparent in run time. For information, see the Administrator Guide.

n You can use a third party debugger to step through business objects’ rules code. For
information about supported debuggers, see “Debugging business object code” on page
279.

Redefining the data model and rules

User feedback and test results may cause you to change the data model, define additional
business rules, or redefine rules. Versata Logic Studio allows you to iterate through the rules
definition process. You can add, delete, and rename attributes, change attributes’ data types,
add, delete, and modify relationships, and add, delete, and modify keys and indexes. You can
add data objects, including those that are abstracted from standard relational tables and those
that have other types of data sources. You can define additional rules and refine previously
defined rules.

After you make changes to the data model and rules, redeploy the data model to the database
server, then redeploy transaction logic to the Versata Logic Server. Then you can retest your
rules and refine them until they meet your needs.
218

DEFINING BUSINESS RULES
OVERVIEW OF BUSINESS RULES DEFINITION
Defining extensions and customizations for rules

The following steps list tasks you can perform to extend and customize declarative business
rules. For more detailed information about these tasks, see “Extending Business Object Code”
on page 321.

1. Identify the methods to be referenced or called in rule expressions. These may include
those supplied by the Versata Logic Suite and those you write yourself. You can view
system-supplied methods in the Enterprise Object Browser. The ones you will use most
frequently are those in the versata.vls.DataObject class.

2. Write your own methods. You can add them to an existing class or create a new class file,
for example, a subclass of versata.vls.DataObject. If you create a new class file, you
can add the class file to your repository, so its methods are available to be referenced in that
repository’s rules. Or you can add the file to the registry, so its methods are available to all
repositories system-wide.

3. Define action rules that call methods and build other rule expressions that reference
methods. If the method does not exist in the current data object, you must specify its class
name. By default, versata.vls.DataObject is the superclass for all data objects, so
they inherit all its members. If methods are members of a DataObject subclass that you
created, you can define this subclass as the superclass for a data object on the
Properties:Data Access tab of the Transaction Logic Designer. Then the subclass’s methods
exist in the data object.

4. Add event-handling code to the server events exposed by the Versata Logic Studio. To
view a data object’s events, click the Files tab in the Versata Logic Studio Explorer, double-
click an implementation file to open the Code Editor, click the right button to display
events, and select an event from the drop-down list. You can review or add to the code in
the designated section.

5. Set up data objects so you can define rules on data from sources other than relational
tables. After you have added data objects to the data model you can define specialized data
access by choosing the Custom option on the Properties:Data Access tab. You then must
write custom Versata Connectors, add them to the repository, and provide their name on
this tab.
219

DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER
Understanding the Transaction Logic Designer
The Transaction Logic Designer provides a graphical user interface to define transaction logic
in the form of declarative business rules and to modify your data model from within the
Versata Logic Studio. Data modeling tasks you can complete in the Transaction Logic
Designer include adding, deleting, renaming, and changing data types of attributes; adding,
deleting, and modifying relationships; and adding, deleting, and modifying indexes and keys.
For information about these tasks, see “Developing a Data Model” on page 31.

The Transaction Logic Designer consists of several overlapping tab sheets where you can
define different types of business rules and data object properties, and a Rule Builder, where
you can graphically build expressions. Once you have defined business rules, you can print
business rules reports by choosing File � Print Reports � Business Rules.

Figure 10 Transaction Logic Designer
220

DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER
Attributes tab
The Attributes tab of the Transaction Logic Designer has a read-only grid of all the attributes
in the selected data object, with their attribute-level rule information. Rules are not input
directly into the grid. This tab also contains a tab control with tabs for each type of attribute-
level rule. To define an attribute-level rule, select an attribute in the grid, and click one of the
following tabs: Derivation, Validation / Data Type, Presentation, or Notes.

Also on this tab you can add, modify, and delete attributes, and define extended properties for
them. For information about these tasks, see “Working with coded values lists” on page 95.

Note: The Presentation tab is not available if you have not purchased presentation design
capabilities for the Versata Logic Suite.

Derivation tab

The Derivation tab allows you to enter rules that define how an attribute's value is derived
when inserts or updates to the data object occur.

Select an option from the Derivation Type box. Types of derivation rules available include
sums and counts (which are aggregates of child record values), parent replicates, formulas, and
defaults.

Individual combo boxes list valid data objects and/or attributes to build sum, count, or parent
replicate rules.

n Sum Rules. A combo box lists children of the selected data object. A second combo box
lists attributes in the selected child data object.

n Count Rules. A combo box lists children of the selected data object.

n Parent Replicate Rules. A combo box lists parents of the selected data object. A second
combo box lists attributes in the selected parent data object.

For all derivations other than default, a Persistent check box appears next to the derivation type
box. The setting of this option determines whether the attribute is stored or virtual. By default,
the check box is enabled, indicating the attribute is stored. For information about virtual
attributes, see “Virtual attributes” on page 104.

For parent replicates, a Maintained check box appears. The setting of this option determines
whether previously calculated replicates are recalculated when the parent data object's attribute
is updated. Enable the Maintained option if you want updates to the parent attribute named in
the parent replicate rule to cascade to child attributes. Disable this option to prevent cascading
updates to children, if you want the parent replicate to occur on the initial value only. This
option is disabled by default.
221

DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER
For sums and parent replicates, a dfn (definition) button is available. Click this button to go to
the derivation rule for the referenced attribute in the parent data object.

For sums, counts, defaults and formulas, two other buttons are available, a browse button that
invokes the Rule Builder, and a syntax checker button that opens the Syntax Checker.

n In the Rule Builder you can point and click to enter a qualification expression for the sum
or count, a literal number value or quoted string for the default, or a calculation expression
for the formula. For more information, see “Rule Builder” on page 230.

n The Syntax Checker checks whether the expression you entered is syntactically correct. If
an error exists, a message is displayed to alert you. The Syntax Checker verifies the
internal consistency and correctness of the rule expression. It does not check for
inconsistencies or errors between rules, such as cyclical dependencies. It does not verify
the compatibility of attribute data types.

Validation/Data Type tab

The Validation / Data Type tab allows you to enter rules that define limitations for attribute
values. These limitations can be based on a user-defined condition or on a specified list of
values in a Coded Values List, as indicated in the Validation Type box.

n If you select Condition in the Validation Type box, you can enter a conditional expression
to limit the valid values for the attribute. Click the browse button to open the Rule Builder,
where you can enter the expression. After writing the expression and closing the Rule
Builder, you can verify the syntax of your condition is correct by clicking the syntax
checker button.

You also can enter a brief error message to display to users when data they enter causes the
specified validation condition to be evaluated as FALSE.You can use the system-supplied
error message of "Rule <condition-text>: Validation violation" by leaving
the Validation Error text box blank

n If you select Coded Values List in the Validation Type box, you can complete the Coded
Values List Manager.

Coded Values List Manager

Use the Coded Values List Manager to select a coded values list to provide valid values for an
attribute.

n To select an existing coded values list, select it in the Coded Values Lists list box on the
right and click OK.

n To select a data object that is not yet designated as a coded values list, select it in the Data
Objects in the Repository list box and click the unfold button to move it to the Coded
Values Lists list box. Then select it and click OK.
222

DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER
n To create a new coded values list, click the New button. The Create Coded Values List
dialog opens. Enter a name and stored value type and click OK. The new data object
appears in the Coded Values List list box. Select it and click OK.

Prevent User Updates check box

The Validation/ Data Type tab allows you to specify updatability for attributes. Enable Prevent
User Updates to make this attribute non-modifiable by users running the application. This
option is the default for derived attributes that the Versata Logic Server calculates and for
virtual attributes, but it can be used for any attribute in which you do not want end users to
enter values. This option should always be enabled for attributes with an Autonumber data
type.

When this check box is enabled, end users running the application will see this non-
customizable error message if they try to make an entry in the field: Attribute
<attribute_name> in data object <data_object_name> is not alterable.

You can disable this option for any attribute that has it enabled by default, including virtual
attributes. For an attribute with this option enabled, a user can enter an attribute value for a
newly inserted record. If the attribute is derived, the newly entered value is overridden by the
derivation when the record is saved.

Value Required check box

The Validation/ Data Type tab allows you to specify nullability for attributes. Enable Value
Required to require users to provide a value in any field representing this attribute at run time.
Disable this option to permit NULL values to be stored in the server.

When this check box is enabled, end users running the application will see this non-
customizable error message if they try to save without making an entry in the field:
‘<Field_Name>’ Requires Non NULL Value.

Data Type combo box

The Data Type combo box identifies the data type defined for this attribute in the data model.
You can make a selection from the combo box to select a different data type. Available data
types are:

n Text. For a Text attribute, you need to enter the number of characters permitted for the
attribute value in the Size field. Up to 255 characters are permitted. The defined attribute
size is used to determine the width of the attribute’s controls or elements in run-time
applications.

You also need to enter a sub type. The following sub-types are supported:

n Variable Length. This is the default sub type.

n Fixed Length.
223

DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER
n Memo.

n Number. For a Number attribute, you need to enter a sub type. The following sub types are
supported:

n Byte.

n Integer.

n Long Integer.

n Double.

n Single.

n Decimal. For a Decimal, you need to enter values for precision, the total number of
digits stored for the attribute, and for scale, the total number of decimal places stored
for the attribute.

n Date/Time. For a Date/Time attribute, you need to enter a sub type. The following sub
types are supported:

n Date and Time. This is the default sub type.

n Date.

n Time.

n Yes/No.

n Currency.

n LongBinary.

n AutoNumber.

The Transaction Logic Designer checks data type changes, prohibiting changes between
mismatched types, changes to indexed attributes and key attributes, and changes to
AutoNumber when data already exists in attributes.

For information about data type mappings between the Versata Logic Suite and supported
RDBMSs, see “Data type mapping between the Versata Logic Suite and RDBMSs” on page
40.
224

DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER
Presentation tab

Note: This tab is not available if you have not purchased presentation design capabilities with
the Versata Logic Suite.

The Presentation tab allows you to define presentation properties for an attribute in generated
applications, including:

n Caption. Appears as a label for the attribute.

n Format. Specifies the appearance of numeric and date fields at run time. Specifies a format
that determines how this attribute’s data is displayed to users. For example, a currency
format might be $#,##0.00;($#,##0.00).

The format you specify here is used by default wherever this attribute is displayed on
application forms or pages. For Java applications, Versata Logic Studio also allows you to
modify the format through a property sheet for the attribute’s graphical control.

For more information about supported formats and modifying them, see the appendix on
localization in the Application Developer Guide.

Note: Users can enter values for Date Time attributes in any form. When the cursor leaves the
attribute cell, the value is formatted to fit the assigned format, by default the universal
form (yyyy-mm-dd hh:mm:ss).

n Status Bar Message. Appears in the status bar at the bottom of the application window
when the attribute is selected (Java applications only).

n Archetype Name. Determines the control or element to be used for the field.

n Layout by Default. De-select this check box if you do not want the attribute to appear on
forms or pages by default. This is particularly useful for derived attributes that are used in
calculations but do not need to be displayed.

Notes tab

The Notes tab allows you to record descriptions and comments for each attribute in the
selected data object. This information is especially useful in a team development environment.

Relationships tab
The Relationships tab provides information about parent-child relationships for the selected
data object. This tab allows you to modify referential integrity rules, specify customized error
messages to appear when referential integrity violations occur, and specify relationship-level
presentation properties.

Also on this tab you can add, modify, and delete relationships, and define extended properties
for them. For information about these tasks, see “Working with relationships” on page 107.
225

DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER
Referential Integrity tab

The Referential Integrity tab allows you to modify Versata Logic Server’s default referential
integrity rules to preserve relationships between data objects when updates occur. This tab
contains an Enforce referential integrity check box. Separate sets of referential integrity rule
option buttons exist for parent updates, parent deletes, and child inserts/updates:

On Parent Update

n Choose Prevent If Children to prevent changing the primary key in a record in the parent
data object if there are related records in child data objects.

For example, you establish a relationship between a Customers (parent) data object and
an Orders (child) data object. If a user tries to update the primary key for a customer that
has outstanding orders, the update is not permitted.

n Choose Update Children to update the foreign key in all related records in the child data
object when the primary key in a parent record changes.

For example, you establish a relationship between a Customers (parent) data object and an
Orders (child) data object. If the primary key in a record in the Customers data object is
updated, the foreign keys for all order records for that customer are also updated.

On Parent Delete

n Choose Prevent If Children to prevent deleting the record in the parent data object if there
are related records in a child data object.

For example, you establish a relationship between a Customers (parent) data object and an
Orders (child) data object. If a user tries to delete a record for a customer that has
outstanding orders, the deletion is not permitted.

n Choose Delete Children to delete related records in a child data object when a record in the
parent data object is deleted.

For example, you establish a relationship between a Customers (parent) data object and an
Orders (child) data object. If a user deletes a record in the Customers data object, all order
records for that customer are also updated.

n Choose NULL Children Foreign Key to nullify the foreign key in related records in a child
data object when a record in the parent data object is deleted. This option deletes the child
record’s pointer to the parent while preserving child data.

For example, you establish a relationship between a Department (parent) data object and
an Employees (child) data object. If a department is deleted, each employee record that has
a foreign key value corresponding to the deleted department’s primary key is updated by
setting the foreign key (for example, the WorksForDeptNum field) to NULL. Those
employees with the WorksForDeptNum field set to NULL can be reassigned to a new
department and employee records can be updated with new foreign key values.
226

DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER
On Child Insert/Update

n Choose Prevent If No Parent to prevent inserting a record into a child data object when the
appropriate related record does not exist in the parent data object.

For example, you establish a relationship between a Customers (parent) data object and an
Orders (child) data object. If a user tries to insert an order for a customer who does not yet
exist in the Customers data object, the insert is not permitted.

n Choose Insert Parent If None to add a record in the parent data object and fill in the foreign
key when a user adds a related record in a child data object. This option provides a good
way to implement time-based summary data, for example monthly forecasts.

For example, you establish a relationship between a Daily Orders (parent) data object and
an Orders (child) data object. You can automatically maintain summary data in the parent
based on order activity by creating a sum rule for a DailyTotal attribute in the Daily Orders
data object based on the Amount attribute in the Orders data object, for example,
DailyTotal = sum(Orders.Amount).

Error Messages While Preventing frame

The Error Messages While Preventing frame allows you to enter custom messages that appear
when a user attempts a parent update, parent delete, or child insert/update that violates a
prevent referential integrity rule. A blank text box appears in the frame for each prevent rule
you define. If you do not enter a message, Versata Logic Server uses the default error message.

Delete Parent Error Message

If you enable Prevent If Children on Parent Delete, you can enter a brief message to display
when a user attempts to perform an invalid operation.

You can use the system-supplied error message of "Delete Rejected Because There
are existing <child-data object-name> found for <parent-data object-
name>" by leaving the Delete Parent error text box blank. For example, if an end user tried to
delete a customer with unpaid orders, a system-supplied error message similar to this example
would appear:

’Delete Rejected Because There are existing ORDERS found for
CUSTOMERS’

Update Parent Error Message

If you enable Prevent If Children on Parent Update, you can enter a brief message to display
when a user attempts to perform an invalid operation.

You can use the system-supplied error message of "Update Rejected Because There
are existing <child-data object-name> found for old <parent-data
object-name>" by leaving the Update Parent error text box blank.
227

DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER
Insert/Update Child Error Message

If you enabled Prevent If No Parent on Child Insert/Update, enter a brief message to display
when a user attempts to perform an invalid operation.

You can use the system-supplied error message of "<parent-data object-name> not
found for <child-data object-name>" by leaving the "Insert/Update Child" error text
box blank.

Presentation tab

The Relationships:Presentation tab allows you to specify customized captions for transitions
from parent to children and for transitions from children to parent.

Note: This tab is not available if you have not purchased presentation design capabilities with
the Versata Logic Suite.

Extended tab

The Relationships:Extended tab allows you to define extended properties for the relationship.
For information about this task, see “Relationships tab of Transaction Logic Designer” on
page 111.

Constraints tab
The Constraints tab allows you to define data object-level constraints that enforce multiple
attribute conditions for data validation. This tab provides a grid that lists information for all
constraints defined for the selected data object. When the Constraints tab is selected, Add
Constraint and Delete Constraint are available in the Edit menu.

n The Constraint Name field allows you to specify a unique name for a constraint.

n The Condition field allows you to enter an expression describing the constraint's condition,
optionally using the Rule Builder. The condition can be one of two types:

n An Accept When type indicates that an update to the data object is rolled back if the
condition is not true.

n A Reject When type indicates that an update to the data object is rolled back if the
condition is true.

n The Error Message field allows you to specify a customized error message that appears
when the constraint is violated. You can use the system-supplied error message of
"Constraint: <constraint-condition> is violated" by leaving the Error
Message text box blank.

n The Error Attribute field allows you to specify the attribute in which the cursor is placed
after a constraint is violated and the error message is dismissed.
228

DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER
Actions tab
The Actions tab allows you to incorporate custom code into Versata Logic Studio-generated
business rule components. Action rule code calls a specified action (method) to be executed
when a defined condition evaluates to true. This tab provides a grid that lists a name and
description for each business rule action defined for the selected data object. Action
information is not input directly into the grid.

When the Actions tab is selected, Add Action and Delete Action are available in the Edit
menu.

n The Action Name field enables you to specify a unique name for the action rule. Code
generated by Versata Logic Suite refers to the action rule by this name.

n In the Event Condition field, enter an expression to define the condition that must evaluate
to True for a call to be executed to the specified action (method call). The Rule Builder is
available to complete this field as necessary. The Syntax Checker button also is available.

n In the Action (Method Call) field, specify the method to be executed when the condition
evaluates to True. The Rule Builder’s Methods list box and the Enterprise Object Browser
are available for you to select a method. The method can be local, inherited, or from an
object outside the data object's hierarchy. If the method is from an outside object, you must
reference it in this format: <object name>.method. Note that such methods must be
static.

n The Description field is available for documentation of the action's purpose and
implementation. This information is especially useful in a team development environment.

Note: For information about using the Rule Builder to complete the Event Condition and
Action (Method Call) fields, see “Rule Builder” on page 230.
229

DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER
Properties tab
The Properties tab has tabs to define data object presentation rules (with presentation design
only) and other data object characteristics. For information about using this tab, see
“Properties tab of the Transaction Logic Designer” on page 90.

Rule Builder
Use the Rule Builder to create business rule expressions graphically, limit typographical
errors, and help to ensure that rule syntax is correct. The Rule Builder has lists and buttons
with expression elements. Click a list item to include it in an expression. The Rule Builder’s
contents vary according to the type of rule being defined when it is opened.

Figure 11 Rule Builder
230

DEFINING BUSINESS RULES
UNDERSTANDING THE TRANSACTION LOGIC DESIGNER
Rule expression elements may include the following:

n Data object attributes. Click the attribute from the selected data object to enter it in the
Rule Expression text box. The list of attributes uses standard outline controls. Click the
plus (+) symbol to the left of an attribute name to display valid values for an attribute that
has a Coded Values List validation rule. You can click a value to enter it in the Rule
Expression text box.

n The list of attributes changes according to the data object selected.

n If an attribute name contains spaces, it is enclosed in quotes within the rule expression.

n System-supplied or developer-defined methods. Listed methods include
currentEvent(), date(), isChanged, isNull, and isOldNull. You also can click
listings to select from methods listed in the Enterprise Object Browser. You can open this
browser to display the methods from versata.vls.DataObject, or you can open the
browser to display all methods. The Methods list box also includes many methods that start
or modify processes through the Process Logic Add-On. For information about these
methods, see the Logic Integration Guide.

Methods can be included when you are entering qualification expressions for sum, count,
attribute validation, or constraint rules, formula expressions for formula rules, default
expressions for default rules, or event conditions for action rules.

Note: The isNull and isOldNull methods can be used to indicate whether the value of an
attribute is NULL where the argument is of type String and provides the attribute name.

n Keywords, including Inserting, Updating, Deleting, and :Old. Keywords are
available when you are entering formula, sum, or count derivation rules for attributes or
data object constraints.

The :Old keyword allows you to differentiate between a changed attribute value and its
value before the transaction that caused the change. You can refer to the value that existed
before the change with a :Old prefix. For example, use :Old in the conditions for data
object constraints that prevent updates and deletes.

n If-Then conditions, including If-Then, If-Then-Else, If-Then-Elseif-Else, and
IIF() constructs. These constructs are available for formula rules expressions only. Once
you have clicked a construct to include it in the expression, to complete the expression, fill
in the <condition> and <expr> parameters.

Note: When opened from the Actions tab of the Transaction Logic Designer, the Rule Builder
includes a Process Model Browser button. Use this button only if you have installed the
Process Logic Add-On.

For more details about supported syntax for rule expressions, see “Business rule syntax” on
page 244. For instructions for building rule expressions, see “Building rules expressions in the
Rule Builder” on page 239.
231

DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES
Procedures for defining business rules
This section provides procedures for defining specific types of rules. For an overview of the
business rules definition process, see page 213.

Defining a derivation rule
Derivation rules define how an attribute is computed when an update occurs. Types of
derivation rules include sums, counts, parent replicates, formulas, and defaults.

For information about the Transaction Logic Designer tab where you define derivation rules,
see “Derivation tab” on page 221.

To define a derivation rule:

1. Double-click a data object in the Versata Logic Studio Explorer to open the Transaction
Logic Designer.

2. Click the Attributes:Derivation tab in the Transaction Logic Designer.

3. Select the attribute in the grid.

4. On the Derivation tab, select the type of rule from the Derivation Type combo box.
Different text fields appear according to the type selected.

5. Select or make entries to the fields that appear for the rule type you selected:

n Sum rules

n Select a parent data object and attribute from the combo boxes.

n Indicate whether the attribute whose value is defined by the sum rule is stored or
virtual. To indicate the attribute is stored, enable the Persistent check box. To
indicate the attribute is virtual, disable the check box.

n (Optional) Enter a qualification expression in the text box. A qualification
expression limits the records to be included in the sum to those that meet the
specified condition.

n Count rules

n Select a parent data object from the combo box.

n (Optional) Enter a qualification expression in the text box. A qualification
expression limits the records to be included in the count to those that meet the
specified condition.
232

DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES
n Parent replicate rules

n Select a child data object and attribute from the combo boxes.

n (Optional) Click the Maintained check box if you want changes in the parent record
to cascade to the child. This option is disabled by default, so parent record changes
do not cause the record to change.

n Formula rules

Enter a formula expression in the text box. This expression should be a calculation of
other attribute values from the same record.

n Default rules

Enter a default expression in the text box. This expression can be a literal number value
or a quoted string.

6. If you want the derived attribute to be virtual rather than stored, disable the Persistent
check box. For information about virtual attributes, see page 104.

7. For any rule where you enter an expression, click the browse button to write the expression
in the Rule Builder.

8. After defining the derivation rule and closing the Rule Builder, you may want to verify the
syntax with the syntax checker.

9. Choose File � Save Transaction Logic.

Note: All attribute references in a rule expression must be local to the data object on which the
rule is being defined. Use derivations to reference attributes from related data objects.

When defining formula rules with divide operations, check to make sure that no divide
by zero equations will occur. This type of equation will cause an error.

If you define a formula rule for an attribute, its data type, subtype, and length
information is not used, except to determine the archetype for presentation formatting.

When selecting an atttribute to be replicated for a parent replicate rule, be sure that its
data type matches the type of the attribute with the rule defined.

If you define a parent replicate rule where the attribute to be replicated has a data type
of LongBinary, invalid Java syntax may be generated, resulting in compile errors.

The syntax checker no longer perform attribute validation in formulas in order to allow
constants to be used. Any errors are raised at run time rather than design time. Syntax
checking still occurs at design time.
233

DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES
Deleting a derivation rule

To delete a derivation rule:

1. Double-click a data object in the Versata Logic Studio Explorer to open the Transaction
Logic Designer.

2. Select the attribute with the rule to delete.

3. On the Attributes: Derivation tab, select None in the Derivation Type combo box.

4. Choose File � Save Transaction Logic.

Defining a condition validation rule
Condition validation rules enable you to enforce single attribute conditions for data validation.
For information about the Transaction Logic Designer interface for defining this type of rule,
see “Validation/Data Type tab” on page 222.

To define a condition validation:

1. Double-click a data object in the Versata Logic Studio Explorer to open the Transaction
Logic Designer.

2. Click the Attributes:Validation/Data Type tab.

3. Select the attribute in the grid.

4. Select Condition in the Validation Type frame.

5. Enter a qualification expression in the Condition text box to indicate the limitations for
valid attribute values. Click the browse button to use the Rule Builder.

6. In the Validation Error field, enter a customized error message or accept the system-
supplied message.

7. Choose File � Save Transaction Logic.

Defining a coded values list validation rule
Coded values list validation rules enable you to limit values for an attribute to a defined list of
values in another data object. In run-time applications, attributes with coded values list
validation rules display as drop-down lists where users can select from a list of values but not
enter a different value.

For information about designating a data object as a coded values list and entering valid
values, see “Defining a coded values list” on page 96.
234

DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES
To define a rule that uses a coded values list to validate user input:

1. Double-click a data object in the Versata Logic Studio Explorer to open the Transaction
Logic Designer.

2. Select the Attributes:Validation/Data Type tab.

3. Select the attribute to be validated.

4. Select Validation Type:Coded Values List.

5. Click the browse button in the Coded Values List Validation text box to open the Coded
Values List Manager. Use this dialog to select the data object to be used as a coded values
list.

n To select a data object that is already designated as a coded values list, select it in the
Coded Values Lists list box on the right and click OK.

n To select a data object that is not yet designated as a coded values list, select it in the
Data Objects in the Repository list box and click the > button to move it to the Coded
Values Lists list box. Then select it and click OK.

n To create a new coded values list, click the New button. The Create Coded Values List
dialog opens. Enter a name and stored value type and click OK. The new data object
appears in the Coded Values List list box. Select it and click OK.

6. Choose File � Save Transaction Logic.

Note: There is only one way to stop using a coded values list. On the Attributes:Validation/
Data Type tab, select the data object name in the Coded Values List text box and press
Backspace. If you previously have deployed the business rules, redeploy them so that
Versata Logic Studio generates new code without the coded values list.

If you choose the Coded Values List option button, but do not specify a data object to
use as a coded values list, the validation rule is recorded as a condition validation rule at
repository load time.

Defining a constraint
Constraints enforce validation conditions on database updates. They apply to all updates of the
data object, rather than to updates of specific attributes.

For information about the Transaction Logic Designer tab where you can view, define, and
modify constraints, see “Constraints tab” on page 228.

To define a constraint:

1. Double-click a data object in the Versata Logic Studio Explorer to open the Transaction
Logic Designer.

2. Click the Constraints tab in the Transaction Logic Designer.

3. Choose Edit � Add Constraint.
235

DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES
4. Enter the name of the constraint.

5. Enter the conditional expression in the Condition text box. The expression indicates when
the constraint fires.

6. Select Accept When or Reject When to indicate whether to roll back the update when the
condition evaluates to False (Accept When) or to roll it back when the condition evaluates
to True (Reject When).

7. Enter a customized error message or accept the system-supplied message.

8. Select the error attribute in which the cursor is placed after a constraint evaluates to true
and the error message is dismissed.

9. Choose File � Save Transaction Logic.

Note: All attribute references in a constraint’s conditional expression must be local to the data
object on which the constraint is being defined. Use derivations to reference attributes
in related data objects.

You may define multiple constraints on a data object. All constraints are evaluated
when an update to a data object occurs. A transaction is rolled back when the
conditional expression for a Reject When constraint evaluates to True or when the
conditional expression for an Accept When constraint evaluates to False.

If you use the keyword NULL in the conditional expression for a constraint, keep in
mind that the :New value is set to NULL on delete and the :Old value is set to NULL on
insert. These settings could cause unexpected errors if you do not take them into
account when defining the constraint.

Defining an action rule
Action rules are calls to methods that are executed when data meet certain conditions. They
allow you to extend Versata Logic Suite-generated rule components from within the
Transaction Logic Designer. Creating audit records and notifying management when a
customer has placed a large order are examples of processes that action rules can automate.

For information about the Transaction Logic Designer tab where you can view, define, and
modify action rules, see “Actions tab” on page 229.

To define an action rule:

1. Determine how to implement the method to be called by the action rule. You can use a
method from a packaged EJB component. You can create your own class and add the
method to it. You can subclass the versata.vls.DataObject class and add the method
to it. You can add the method directly to the data object where you are defining the action
rule.

2. Register the class so its methods are available in the Enterprise Object Browser.
236

DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES
3. If the method belongs to a subclass of versata.vls.DataObject, add the new subclass
to the repository in the Other Files folder.

4. Double-click the data object in the Versata Logic Studio Explorer to open the Transaction
Logic Designer.

5. If the rule will be calling a method from a subclass of versata.vls.DataObject, record
this subclass as the superclass for the currently selected data object. Enter the superclass on
the Properties:Data Access tab.

6. Click the Actions tab.

7. Choose Edit � Add Action.

8. Enter a name for the action.

9. Use the Rule Builder to enter a conditional expression in the Event Condition text box. The
expression indicates when the action fires.

10. Enter the method to be executed, and any arguments, in the Action text box. Enter the
method name as the name of the action. If the method is not a member of the data object
itself or of its superclass, you must include the object name, in the following format:
<object name>.<method name>.

The Rule Builder lists a few standard utility methods. You can double-click one of these
methods to enter it as the action. The Methods list box also includes many methods that
start or modify processes through the Process Logic Add-On. For information about these
methods, see the Logic Integration Guide.

11. You can click the browse button to open the Enterprise Object Browser and select a
method.

12. Enter a description of the action for other developers.

13. Choose File � Save Transaction Logic.

Defining a presentation rule to select a non-default archetype for
an attribute

Note: This type of rule is not available if you have not purchased presentation design
capabilities with the Versata Logic Suite.

Archetypes define the controls or elements generated for attributes in an application. By
default, the archetype for an attribute or element depends on the attribute data type, but you
can override the default by changing the presentation rule to use another archetype.

Note: Archetypes and presentation rules are available in the presentation design only.
237

DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES
To specify a non-default archetype for an attribute at the repository level:

1. Double-click a data object in the Versata Logic Studio Explorer to open the Transaction
Logic Designer.

2. Click the Attributes:Presentation tab.

3. Select the attribute for which you are choosing an archetype.

4. Click the browse button for the Archetype Name field to open the Choose Archetype
dialog.

5. Select an archetype from the list in the dialog and click the OK button.

6. Choose File � Save Transaction Logic.

The archetype you selected is now the default archetype for this attribute for all applications
built from this repository.

Note: To specify a non-default archetype for an attribute in one application, use the Attributes
tab on the RecordSource properties sheet in the Application Designer.

Defining a presentation rule to add an image to a data object in
a Java application

You may use any .gif or .jpg image to represent a data object on forms and appear on
toolbar buttons in a Java application. To do so, specify the image in a presentation rule for the
data object.

Note: This type of rule is not available if you have not purchased presentation design
capabilities with the Versata Logic Suite.

To assign an image to a data object:

1. Double-click the data object in the Versata Logic Studio Explorer to open the Transaction
Logic Designer.

2. Click the Properties:Presentation tab.

3. Click the browse button for the Image Reference text box.

4. Navigate to the image file and double-click it.

5. Choose File � Save Transaction Logic.

Versata Logic Studio stores a copy of the selected image file in the \Images subdirectory of
the repository directory.
238

DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES
Building rules expressions in the Rule Builder
To avoid typographical and syntax errors in rules, use the Rule Builder to build expressions
graphically.

For details about the Rule Builder interface, see “Rule Builder” on page 230.

To build a rule expression:

1. Review the guidelines in “Business rule syntax” on page 244.

2. From any place in the Transaction Logic Designer in which you are creating an expression,
click the browse button.

3. If you want to use conditional language in an expression for a formula derivation rule, click
a construct from the If-Then Conditions list to enter it in the Rule Expression text box.
Fill in the <condition> and <expr> parameters.

4. For all expressions, click the attributes, keywords, and/or operator buttons as necessary, to
enter each item that you need in the Rule Expression text box.

5. To include a method in a rule, find it in the Methods box and double-click it. Enter
arguments as necessary. To include a method not listed in this box, click the DataObject
Methods listing or the Object Browser listing to open the Enterprise Object Browser and
select a method.

6. If necessary, enter additional expressions to achieve the processing logic you need.

7. Repeat steps as needed to build your expression.

8. Click the OK button to save the definitions and close the Rule Builder.

9. Check the syntax of the expression by clicking the syntax checker button.

Note: Be sure to include spaces between variables and operators in rule expressions. If you do
not include a space between a variable and operator, the syntax checker returns an error.

Generating business rules reports
You can generate business rules reports that provide summary records of the data model and
business rule definitions in the Transaction Logic Designer. These reports can be a useful tool
for allowing users to review the business rules. You can generate reports to the screen, to a file,
or directly to a printer.

Versata Logic Suite reports are generated using the Crystal Reports tool. The original reports
are located in the \Reports subdirectory of the product installation directory.
239

DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES
To generate a business rules report:

1. Choose File � Print Reports � Business Rules to open the Business Rules Reports dialog.

2. In the dialog, move the data object(s) for which you want to generate reports into the
Selected Data Objects list box on the right.

3. Select the type of data object rules and/or attribute rules to include.

4. Select the report output. You may want to print to the screen first, in order to verify the
format and content before you save it to a file or send it to the printer.

n For file output, specify the output file name. The file name must be unique. You cannot
choose an existing file name and overwrite the previous report information with this
new report information.

n For printer output, you must have a default printer set in order to specify this option.

5. Click the Print button.

Note: To review the Java code that implements rules for a data object, open the data object’s
component file in the Code Editor. (To do so, in the Files view of the Versata Logic
Studio Explorer, click the Files button, and double-click the data object’s
implementation file.) Once the file is open, press CTRL+P or choose File � Print
<file_name>.
240

DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES
Business Rules Report dialog

Figure 12 Business Rules Report dialog
241

DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES
Printing data object rules

Choose one or more of the following types of business rules to be included in the business
rules report for one or more data objects.

Printing attribute rules

To print a report on attribute rules, enable the Attributes option in the data object rules list.
Then choose one or more of the following types of attribute rules to be included in the
business rules report.

Type of business rule Information in report

Attributes Attribute definitions for any or all of the attribute rules options
you select

Relationships Parent and child data object(s), and cascade options for each of the
current data object’s parents and children

Constraints Constraint name (in bold typeface), condition type, rule, and
(optional) error message for each currently defined constraint

Actions Action name (in bold typeface), and one or more of the options for
description, condition, and method call

Properties Singular and plural captions (with presentation design only)

Type of Attribute Rule Information in Report

Attribute Type Information Attribute data type and size, if appropriate

Derivation Defined sums, counts, parent replicates (including its maintained/
unmaintained status), formulas, and defaults

Validation The Coded values list or condition used to validate the attribute
and the validation error message, if applicable

Presentation Captions, formats, status bar messages, default archetypes, and
whether an attribute will appear in the default layout (with
presentation design only)

Notes Attribute descriptions and comments
242

DEFINING BUSINESS RULES
PROCEDURES FOR DEFINING BUSINESS RULES
Updating business rules
As you more clearly define the needs of users, as business requirements are updated, and as
you test and debug previously defined rules, you will need to update business rules defined in
the Transaction Logic Designer.

To update the business rules:

1. Use the Transaction Logic Designer to make changes to business rules.

2. Rebuild and compile rules.

3. If the rule changes include any of the following, you need to use the Server Manager
wizard to redeploy the data objects with changed rules to the development database.

n Constraints

n Updatability validation rules

n Nullability validation rules

n Referential integrity (If you have elected to enforce referential integrity on the database
server)

4. Use the Versata Logic Server Deployment wizard to deploy the updated rules components
to the development Versata Logic Server.

5. If the rule changes include any of the following, rebuild and compile the client application.

n Presentation rules (with presentation design only): attribute-level (captions, formats,
status bar messages), data object-level (captions, images), or relationship-level
(captions)

n Data type definitions

n Coded values list validation rules

n Updatability rules

6. Run the application locally against the development database to test the changes.

7. If your application is in production, complete the following additional steps:

n If the rule changes included types listed in step 3, use the Server Manager wizard to
deploy the data objects with changed rules to the production database.

n To make the Server Manager automatically select for deployment the data objects
whose rules have changed, enable Auto-select Data Objects in the Connect for Auto
Selection dialog. Otherwise, in the Select Data Objects dialog, manually select the data
objects with changed rules. In the Data Model Deploy Options dialog, enable
Synchronize the Repository with the Server.

n Use the Versata Logic Server Deployment wizard to deploy the updated rules
components to the production Versata Logic Server.
243

DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX
Business rule syntax
Versata Logic Suite’s declarative rules language provides conventions for you to enter SQL-
like rule expressions consisting of supported elements.

Rule expressions can be divided into four types:

n Conditional expressions (also known as qualification expressions)

n Formula expressions

n Default expressions

n Action expressions

Each type of rule expression has syntax particular to its use. Review the following general
syntax guidelines common to all rule expressions, as well as the specific syntax conventions
for each of specific types of expressions.

General guidelines for writing rules expressions
Follow these general principles when you write expressions in the Transaction Logic
Designer:

n Rule expression syntax is not database-specific. The same rule expressions can be used
with all database servers supported by Versata Logic Suite.

n All language in rule expressions is case insensitive, except for attribute references that use
quoted identifiers.

n Attribute references in a rule expression must be local to the data object on which the rule
is being defined. For sum and count qualification expressions, attributes must be local to
the child data object that the rule references, rather than the parent data object on which the
rule is defined.

n The use of an attribute reference to an attribute value before an update is supported via the
:Old prefix. An attribute reference with an :Old prefix indicates the value of the
attribute before the user update occurred. An attribute reference without this prefix
indicates the current value of the attribute after the update.

n The isNull and isOldNull methods can be used to indicate whether the value of an
attribute is NULL where the argument is of type String and provides the attribute name.
You need to ensure there are no spaces in an attribute name in an isNull statement.

n Use the Rule Builder to avoid syntax errors.
244

DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX
Syntax for conditional expressions
Conditional, or qualification, expressions are used in the following ways:

n In sum rules, to define child condition(s) that limit child records to be summed

n In count rules, to define child condition(s) that limit child records to be counted

n In validation rules, to define condition(s) that limit the valid values for an attribute

n In constraints, to define multiple attribute condition(s) for the constraint

n In action rules, to define a condition that causes the action to be executed

The expressions may consist of combinations of supported identifiers, tokens, reserved words,
methods that return a value, and/or constants.

Conditional expression syntax approximates the syntax of SQL Where clauses. The “Where”
is implicit and does not have to be entered in the expression you define.

Note about using isNull in conditional expressions

If you are entering a conditional expression in the Rule Builder, and you put text like the
following in the expression:

If you select <arg1> and double-click an attribute to put the applicable attribute in the rule, the
attribute is inserted with spaces on either side of it. These spaces cause the following error:

This error does not occur if you manually remove the spaces.

Syntax for formula expressions
Formula expressions are used in formula rules to calculate the value of an attribute. The
expressions may consist of combinations of supported identifiers, tokens, reserved words,
methods that return a value, and/or constants.

The ability to return a value based on a condition is supported through

n If-Then, If-Then-Else, If-Then-Elseif-Else statements

n IIF statements

Self-assignment is supported through the use of the $value keyword.

 isNull(’<arg1>’) = true

Null value encountered in ’’ while validating constraint
245

DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX
Syntax for default expressions
Default expressions are used in default rules to provide the value of an attribute when there is
no user update. The expressions may consist of constants that return a value.

Note: Do not use methods in default expressions. If you attempt to use a method in a default
expression, the literal string will be used instead of the value for the method. For
example, if you typed in the method VSSession.getUserName(), the column would
display the string “VSSession.getUserName()” instead of returning the value of
getUserName.

Syntax for action expressions
Action expressions are used in action rules to define the method that is executed when a
specified condition is met. The expressions may consist of methods, keywords, and attribute
name identifiers passed as arguments.

Note about using LIKE in rule expressions
Use of the LIKE operator in conditional expressions for rules results in the Java compiler
issuing a syntax error.

You can use a Java method to get around most cases where you might want to use the LIKE
operator. You need to put the method code in and external Java file and add the file to the
repository. Then you can reference the method in the rule expression.

So for example, instead of using rule text like the following:

You can use a call to a helper object like the following:

Reject when UPDATING and PSWRD LIKE ‘%USER_NM%’

Reject when SomeOtherObject.contains(PSWRD, USER_NM) = true
246

DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX
For this example, code like the following is in an external file called SomeOtherObject.java
that has been added to the repository:

For more information about this workaround, see the KnowledgeBase.

Elements supported in rule expressions

Identifiers supported in rule expressions

n Rule expression identifiers are used for method names and attribute names.

n Identifiers may consist of alphanumeric or underscore (“_”) characters. Identifiers may not
begin with a number.

n Double-quoted identifiers are supported for use with attribute names and method names
that are case sensitive or contain spaces.

Reserved words in rule expressions

The following words are reserved:

public class SomeOtherObject {
public static boolean contains(String s, String substring)
{
char [] master = s.toCharArray();
char [] sub = substring.toCharArray();
return foundSubString;
}
}

AND END INSERTING OR

BETWEEN ESCAPE IS SOME

DELETING IF LIKE THEN

ELSE IIF NOT UPDATING

ELSEIF IN NOT LIKE $VALUE

TRUE FALSE NULL :OLD
247

DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX
Constants supported in rule expressions

Rule expressions support integer, float, and string constants in standard formats, such as the
following examples. Hex constants are treated as integers. Single quotes are supported for use
with string literals.

Tokens supported in rule expressions

The following tokens are supported:

Constant Value

Integer 0, 123, -45

Float 0.5, 5e23, 45.2, 2.3e-2

String ‘a string’

‘a string with a new line’

Hex 0xA2, 0x00F

Token Description

> Greater than

< Less than

(Left Parentheses

) Right Parentheses

* Multiply

/ Divide

+ Plus

- Minus

>= Greater than or equal to

<= Less than or equal to

= Equal to

<> Not equal to

, Comma
248

DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX
; Semicolon

/*<text>*/ Comments

[0-9]* Integer

[0-9]+”.”[0-9]*([Ee][+-]?[0-9]+)? | [0-9]+[Ee][+-
]?[0-9]+

Float

\‘[AsciiChars]*\’ String

0x[0-9a-fA-F]+ Hex

> Greater than

Token Description
249

DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX
BNF for rule expression syntax

BNF for Rule Expression
Syntax

<rule expression> := <statement>;

<statement> := <scalar expression or IIF>

| <if then else statement>

| <conditional expression>

<scalar expression or IIF> := <scalar expression>

| <IIF>

<scalar expression> := <term>

| <scalar expression> + <term>

| <scalar expression> - <term>

<term> := <factor>

| <term> * <factor>

| <term> / <factor>

<factor> := <primary>

| + <primary> /*Unary Plus*/

- <primary> /*Unary Minus*/

<primary> := <literal constant>

| <attribute reference>

| <function reference>
250

DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX
| (<scalar expression>)

<IIF statement> := IIF (<conditional expression>,
 <scalar expression or IIF>,
 <scalar expression or IIF>)

| IIF (<conditional expression>,
 <scalar expression or IIF>)

<if then else statement> := IF (<conditional expression>) THEN
 <self assign or ifelse>
<else list>
END IF

<self assign or ifelse> := <self assignment>

| <if then else statement>

<self assignment> := $value = <scalar expression>

<else list> := <else clause>

| <else if> <else list>

| <else if>

<else clause> := ELSE <self assign or elseif>

<else if> := ELSEIF<conditional expression> THEN
 <self assignment>

<conditional expression> := <Boolean term>

BNF for Rule Expression
Syntax (Continued)
251

DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX
| <conditional expression> OR <Boolean term

<Boolean term> := <Boolean factor>

| <Boolean term> AND <Boolean factor>

<Boolean factor> := <Boolean primary>

| NOT <Boolean primary>

<Boolean primary> := <comparison predicate>

| <between predicate>

| <like predicate>

| <test for NULL>

| <in predicate>

| INSERTING

| UPDATING

| DELETING

<comparison predicate> := <scalar expression> <compare ops> >scalar
expression>

<between predicate> := <scalar expression> BETWEEN <scalar
expression>
 AND <scalar expression>

| <scalar expression> NOT BETWEEN <scalar
expression>
 AND <scalar expression>

BNF for Rule Expression
Syntax (Continued)
252

DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX
<like predicate> := <attribute reference> LIKE <literal constant>

| <attribute reference> LIKE <literal constant>
 ESCAPE <literal constant>

| <attribute reference> NOT LIKE <literal
constant>

| <attribute reference>NOT LIKE <literal
constant>
 ESCAPE <literal constant>

<test for NULL> := <attribute reference> IS NULL

| <attribute reference> IS NOT NULL

<in predicate> := <attribute reference> IN (<expression list>)

| <attribute reference> NOT IN (<expression
list>)

<expression list> := <scalar expression>

| <expression list>, <scalar expression>

<function reference> := IDENTIFIER (<expression list>)

| DBMS_IDENTIFIERS (<expression list>)

<attribute reference> := IDENTIFIER

| “:OLD”.IDENTIFIER

<compare ops> := “=”

| “<>”

BNF for Rule Expression
Syntax (Continued)
253

DEFINING BUSINESS RULES
BUSINESS RULE SYNTAX
| “<”

| “>”

| “<=”

| “>=”

<literal constant> := INTEGER_CONSTANTS
[0-9]*

| FLOAT_CONSTANTS
[0-9]+”.”[0-9]*([Ee][+-]?[0-9]+)? | [0-
9]+[Ee][+-]?[0-9]+

| STRING_CONSTANTS
\‘[AsciiChars]*\’

| HEX_CONSTANTS
0x[0-9a-fA-F]+

BNF for Rule Expression
Syntax (Continued)
254

CHAPTER 8 Building and Deploying
Business Objects
255

BUILDING AND DEPLOYING BUSINESS OBJECTS
CHAPTER OVERVIEW
Chapter overview
Read this chapter to understand how the Versata Logic Studio allows you to package
transaction logic and data structure information into business object files. These business
object files make transaction logic operational against real data sources at run time.

After reading this chapter, you should have a basic understanding of how the files for Versata
Logic Server business objects are generated, compiled, and deployed to the Versata Logic
Server.

This chapter includes the following:

n “Overview of business object generation and deployment” on page 257, describes the steps
involved in creating files for business objects and copying them to the Versata Logic
Server, including the following:

n “Setting deployment options” on page 257

n “Files created during object generation” on page 259

n “Files created during object compilation” on page 259

n “Additional files for deployment” on page 261

n “Deploying to IBM WebSphere Application Server 4.0” on page 262

n “Setting up deployed objects in the Versata Logic Server Console” on page 263

n “Redeploying business objects” on page 264

n “Using menu options to build and compile business objects” on page 265, provides
instructions for building and compiling business objects directly in the Versata Logic
Studio.

n “Using the Versata Logic Server Deployment wizard” on page 268, provides instructions
for using the Deployment wizard to package business object files and copy them to a
Versata Logic Server on IBM WebSphere Application Server 4.0 Single Server Edition.
This deployment to a staging area allows you to test transaction logic before a production
deployment.

n “Testing transaction logic” on page 279, provides an overview of how to test business rules
once business objects have been deployed. More detailed information is available in the
Administrator Guide and in the supported third party debugger’s information.

n “Deploying business objects to a production environment” on page 281, provides
instructions for copying business object files’ deployed packages to a Versata Logic Server
on IBM WebSphere Application Server 4.0 Advanced Edition and running a batch file to
register files on WAS.

Note: For more detailed information about business object files’ contents, see
“Understanding Business Object Files” on page 285.
256

BUILDING AND DEPLOYING BUSINESS OBJECTS
OVERVIEW OF BUSINESS OBJECT GENERATION AND DEPLOYMENT
Overview of business object generation and
deployment

After you have defined data objects and query objects in the Versata Logic Studio, you can
build and compile files for these business objects. These files package the rules logic code,
object instantiation code, and other required code into objects that can be accessible to running
applications. Java files that contain business object definitions are generated, then these files
are compiled into class files.

The next step is deployment, meaning packaging the compiled class files and copying them to
a Versata Logic Server, so that at run time, these files can instantiate business objects as
necessary. These instantiated business objects process changes to underlying data sources.
This processing includes the execution of transaction logic (business rules) defined in the
Transaction Logic Designer.

Deployment of business objects to the Versata Logic Server is a two-step process.

n The first step is deployment to a development environment. The Versata development
environment is the Versata Logic Server on WAS 4.0 Advanced Edition - Single Server
option (AES) running on Windows.

The Versata Logic Studio provides a wizard for this task. For a description of this wizard,
see “Deployment wizard user interface” on page 269. For instructions for development
deployment, see “Deploying business objects to a development environment Versata Logic
Server” on page 273.

n The second step is deployment to a production environment. The production environment
is the Versata Logic Server on WAS 4.0 Advanced Edition (AE) running on Windows,
AIX, or Solaris.

This task involves copying of the <repository>_Deployed.ear file. For instructions,
see “Deploying business objects to a production environment” on page 281.

Setting deployment options
Each data object and query object has deployment options that you should set before you
build, compile, or deploy Versata Logic Server objects.

EJB deployment

The first option relates to whether to deploy each object as an EJB. You can deploy each data
object as an entity bean and each query object as a session bean. By default, each object is
deployed as a Java class file.
257

BUILDING AND DEPLOYING BUSINESS OBJECTS
OVERVIEW OF BUSINESS OBJECT GENERATION AND DEPLOYMENT
If you want to enable an object for remote access, deploy it as an EJB. Remote object access is
required for another remote object to invoke remote methods on an object. For information
about remote method invocation, see “Accessing remote objects from clients” on page 350.

When you deploy an object as an EJB, the object’s files are added to the repository .jar file
in the same manner as those for non-EJB objects, so the implementation files are available to
provide object instantiation and logic processing. In addition, the object’s files are packaged to
create an object in compliance with the EJB standard for remote access, and the EJB object is
installed on the IBM WebSphere Application Server, with the Versata Logic Server as its EJB
container.

Objects are not deployed as EJBs by default, because EJB capability is required only for
remote access, and each object that is deployed as an EJB slows the deployment process. To
mark a data object to be deployed as an EJB, enable the Deploy as EJB Entity Bean check box
on the Properties:Data Access tab of the Transaction Logic Designer. To mark a query object
to be deployed as an EJB, enable the Deploy as EJB Session Bean check box on the
Properties:General tab of the Query Object Designer.

Note: If you use the Deployment wizard to deploy an object as an EJB, and then later deploy
it without enabling EJB deployment, the original EJB files remain in the repository
.jar file. This does not cause problems, because the EJB is removed from the
application server. To remove these files from the .jar, uncheck the incremental check
box in the wizard dialog.

Attribute-level security deployment

For each data object and query object, you have the option of deploying the names of
attributes to the Versata Logic Server so that attribute-level security can be set in the Versata
Logic Server Console. Enable this option only for objects where you plan to set attribute-level
security, as it can slow the deployment process.

To enable this option for a data object, enable the Deploy Attribute Security Data check box
on the Properties:Data Access tab of the Transaction Logic Designer. To enable this option for
a query object, enable the Deploy Attribute Security Data check box on the Properties:General
tab of the Query Object Designer.

For information about setting up attribute-level security in the Versata Logic Server Console,
see the Administrator Guide.

Note: If you deploy attribute-level security information to the Versata Logic Server, then do
another deployment without this option enabled, the preexisting attribute security
information remains in the Versata Logic Server Console. You need to manually
remove this information if you no longer want it to be used.

Also, if you delete an attribute for which security data has been deployed, its security
data is not deleted. This attribute is still displayed in the Versata Logic Server Console,
even after deletion.
258

BUILDING AND DEPLOYING BUSINESS OBJECTS
OVERVIEW OF BUSINESS OBJECT GENERATION AND DEPLOYMENT
Files created during object generation
The following table lists the files that the Versata Logic Studio creates for each data object and
query object when you elect to build objects. These files are located in the
<repository>\Source\Vls directory, within group subdirectories, if applicable.

n For more details about each file’s contents, see “Generated files for business objects” on
page 290.

n For information about using Versata Logic Studio menu options to build objects, see
“Using menu options to build and compile business objects” on page 265.

Note: If the disk is full when you attempt to build objects, an error occurs. This error message
incorrectly mentions a form; it should reference a data object.

Files created during object compilation
This table lists the files that the Versata Logic Studio creates for each data object and query
object when you elect to compile objects. These files are located under the
<repository>\Lib directory.

n For information about using Versata Logic Studio menu options to compile objects, see
“Using menu options to build and compile business objects” on page 265.

File Type Purpose of file

<object>BaseImpl.java Base implementation file Contains system-generated code,
including rules.

<object>Impl.java Main implementation file Contains developer-defined, custom
code.

<object>.java Remote interface file

(Generated only if object is to
be deployed as EJB)

Defines support for transactions,
threading, and security for the EJB.

<object>Home.java Home interface file

(Generated only if object is to
be deployed as EJB)

Defines methods called by remote
clients or objects to create, find, and
remove instances of the EJB.

<object>DD.xml Deployment descriptor file

(Generated only if object is to
be deployed as EJB)

Defines basic properties that
determine characteristics of the
invoked EJB.
259

BUILDING AND DEPLOYING BUSINESS OBJECTS
OVERVIEW OF BUSINESS OBJECT GENERATION AND DEPLOYMENT
Note: If the disk is full when you attempt to compile objects, a Versata termination error
occurs.

Compiler defaults and option settings

By default, the compiler denoted by %JAVA_HOME%\bin\javac is used to compile Versata
business objects. You can specify a different compiler to be used on the Executables tab of the
Environment Options dialog. To open this dialog, choose Tools � Options from the Versata
Logic Studio main menu.

For this release, the default Java compiler is
<install_directory>\java\bin\javac.exe, where <install_directory> is the
directory where IBM WebSphere Application Server is installed. This is the location where the
JDK 1.3.0 is installed when you install it along with the IBM WebSphere Application Server.

At installation time, a batch file called setVersataEnv.bat is created in the Versata Logic
Studio installation directory. This file sets the JAVA_HOME and JAVAC_OPTIONS variables. If
you want to use a compiler other than the default, you can change these variables by manually
editing this file. To change the javac variable, specify a different compiler on the Executables
tab of the Environment Options dialog.

Note: Changing variables might not work in all cases. You need to review the compil.bat
and other related files to ensure that the correct classpaths are picked up because they
may be hardcoded in some places.

It is possible to invoke compiler options to set the maximum heap size for the Java compiler
and to ensure that dependent Java files get compiled if necessary.

File Type Purpose of file

<object>BaseImpl.class Object base class Executes system-generated code,
including rules, for the object.

<object>Impl.class Object class Extends the base class to implement
additional custom code.

<object>.class Compiled remote interface file

(Created only if object is to be
deployed as EJB)

Used to invoke the business object’s
methods after home interface has
been used to gain access to the EJB.

<object>Home.class Compiled home interface file

(Created only if object is to be
deployed as EJB)

Used to gain access to the EJB.
260

BUILDING AND DEPLOYING BUSINESS OBJECTS
OVERVIEW OF BUSINESS OBJECT GENERATION AND DEPLOYMENT
To set the maximum heap size for the Java compiler, specify the value in the following registry
setting: LOCALMACHINE/Software/<install_directory>/EnvironmentOptions/
MaxHeap_ForJava. The value is specified in bytes with a default of 64000000.

Do not define a value for the -D option in the setVersataEnv.bat file. This option specifies
where compiled files are saved and interferes with Versata Logic Suite conventions.

For more information about batch files, see the Administrator Guide.

Additional files for deployment
You need to deploy some files to the Versata Logic Server in addition to those that are built and
compiled in the Versata Logic Studio. This section summarizes these files.

Required Versata Logic Suite JAR files

During both Versata Logic Studio and Versata Logic Server installations, several .jar files are
copied to the WebSphere installation directory. These .jar files are necessary for your
Versata-generated applications to run. The following table provides the location and
description of each of these files.

Optional external dependent classes or JAR files

When using external .class or .jar files, make sure that your applications can find the files.
You should also plan for whether the files will be referenced by a single Versata repository or

Class files Location Description

vlsEJB55.jar %WAS_HOME%\lib\app System classes - server runtime

vlsBeans55_Client.jar %WAS_HOME%\lib\app System classes - client classes of
the context beans

vfcEJB55.jar %WAS_HOME%\lib\app System classes - client runtime

vlsBeans55.jar %VERSATA_HOME%\vls\lib\
Versata_Logic_Server.
ear

System beans - VLSContext and
PLSContext

<repository>.jar %VERSATA_HOME%\
VLSComponents\Classes\
<repository>.ear

Business objects and business
objects as beans. The
<application>.xml file will
have an entry for a Web module
even when there are no HTML
application deployed.
261

BUILDING AND DEPLOYING BUSINESS OBJECTS
OVERVIEW OF BUSINESS OBJECT GENERATION AND DEPLOYMENT
multiple Versata repositories. Doing so can prevent duplicate copies of the files, which can be
harder to manage.

Class files

If you have external dependent .class files for a single repository, you can simply include
the .class files in the repository .jar file. If the .class files are for multiple repositories,
put the files in the %WAS_HOME%\lib\app folder.

JAR files

If you have external dependent .jar files, you must decide if the files are needed for multiple
Versata repositories or a single Versata repository. If the .jar files are needed for multiple
repositories, put the files in the %WAS_HOME%\lib\app folder. For a single repository, or to
keep external classes in a separate .jar file, use the following steps:

To keep external classes in a separate .jar:

1. Copy the external .jar file in the root level of the .ear folder:
%VERSATA_HOME%\VLSComponents\classes\<repository>.ear

2. Add the name of the .jar in the classpath entry of the war manifest file:
%VERSATA_HOME%\VLSComponents\classes\<repository>.ear\<repository>.
war\META-INF\manifest.mf

3. The external classes that are common for all the repositories should be copied to the
%WAS_HOME%\lib\app folder.

Deploying to IBM WebSphere Application Server 4.0
Using the Versata Logic Suite with IBM WebSphere Application Server 4.0 gives you the
flexibility of deploying to either the Versata development environment or the Versata
production environment.

The Versata development environment is the Versata Logic Server on WAS 4.0 Advanced
Edition - Single Server option (AES) running on Windows. Use the Versata Logic Studio
development and deployment wizards to build, and then deploy your applications to this
environment. Doing so allows for fast application development and deployment, enabling you
to quickly test and debug your applications before deploying them to the Versata production
environment.

When using the Versata Studio deployment wizards to deploy to Versata’s development
environment, you can hot deploy or dynamically reload application components without
having to restart the Versata Logic Server. Hot deploying and dynamic reloading application
components also allow you to quickly test applications before deploying them to Versata’s
production environment.
262

BUILDING AND DEPLOYING BUSINESS OBJECTS
OVERVIEW OF BUSINESS OBJECT GENERATION AND DEPLOYMENT
After you have sufficiently tested your application in the Versata development environment,
deploy your application <repository>_Deployed.ear file to Versata’s production
environment. The production environment is the Versata Logic Server on WAS 4.0 Advanced
Edition (AE) running on Windows, AIX, or Solaris. WAS 4.0 AE provides a highly scalable
Versata production environment, allowing for multiple VERSATA application server instances
and clones on both local and remote machines.

n For information about deploying to Versata’s development environment, see “Using the
Versata Logic Server Deployment wizard” on page 268.

n For information about hot deploying to the development environment, see “Hot deploy and
dynamic reloading task reference” on page 276.

n For information about deploying to Versata’s production environment, see “Deploying
business objects to a production environment” on page 281.

n For information about deployment of client application files, see the Application Developer
Guide.

Setting up deployed objects in the Versata Logic Server Console
After business objects have been deployed to the Versata Logic Server, you can set up data
source connectivity and security in the Versata Logic Server Console.

During deployment each business object is assigned to a Versata Logic Server data server
whose type and connection properties match those used for the last data model deployment of
that object. Data objects from multiple repositories can share the same data server in the
Versata Logic Server Console if they are deployed using the same connection properties.

If no data server with matching connection properties is found, a new data server definition is
created with the name “Data Server#”, and the object is associated with the new data server.
You then need to define a data server type and connection properties for this data server. This
situation occurs most often when the business object represents a non-supported data source
and requires a custom Versata Connector.

In the development environment, it is recommended that you use the default security manager
so you can perform all security tasks, such as defining users, assigning them to roles, and
assigning privileges to objects in the Versata Logic Server Console. Integration with IBM
WebSphere Application Server functionality is available primarily for use in production
environments.

For more information about administration and security for business objects, see the.
Administrator Guide.
263

BUILDING AND DEPLOYING BUSINESS OBJECTS
OVERVIEW OF BUSINESS OBJECT GENERATION AND DEPLOYMENT
Redeploying business objects
Business objects are often redeployed to the Versata Logic Server numerous times during
development, and sometimes in production as well. When you redeploy to the Versata Logic
Server, you have the choice of deploying files only for business objects that have changed
since the last deployment. For this choice, enable the Incremental Build of Deployed Jar
option in the Choose Versata Logic Server for Deployment dialog.

In cases of redeployment, objects are redeployed so that security data in the Versata Logic
Server Console need not be redefined. This is accomplished as follows:

During Versata Logic Server deployment, the system checks to see if the repository name/
object name combination for each business object already exists in the Versata Logic Server. If
a match is found, the determination of what happens depends on the type of object:

n Non-data server objects: new information overlays old information, but all security
references remain intact.

n Data server objects: are not explicitly deployed during the Versata Logic Server
deployment process. Instead, the Versata Logic Server deployment wizard creates new
data servers as follows:

n If a data object has never been deployed before, the wizard looks for an existing
connection that has the same connection properties (login, password, ODBC DSN,
schema, database), and if it finds a match, the wizard assigns the new data object to the
matching data server.

n If a data object has never been deployed before and the wizard cannot find an existing
connection that has the same connection properties, it creates a new data server and
assigns it the connection properties of the new data object.

n If a data object has already been deployed and is assigned to a data server, the wizard
does not try to match to an existing connection, nor does it cause the creation of a new
connection. Instead, the object remains assigned to its current data server to ensure that
no assignments made by the administrator are overwritten during deployment.
264

BUILDING AND DEPLOYING BUSINESS OBJECTS
USING MENU OPTIONS TO BUILD AND COMPILE BUSINESS OBJECTS
Using menu options to build and compile business
objects

The Build menu in the Versata Logic Studio provides the following options for building and
compiling business objects:

n The top section of the menu is context-dependent and contains the following options:

n Rebuild Selected (Ctrl+F9)

n Compile Selected (Ctrl+F8)

These options apply to the currently selected object, file, or group.

n On the Objects tab of the Explorer, you can select an object and choose one of the top
menu options to rebuild or compile all of the files for that object.

n On the Files tab of the Explorer, you can select a file for an object and choose one of the
top menu options to rebuild or compile that particular file.

n On either tab of the Explorer, you can select a group and choose one of the top menu
options to rebuild or compile all files for objects in the group.

n The second section of the menu contains the following options:

n Rebuild Components (Shift+F9)

n Rebuild All Components

n Compile Components (Shift+F8)

n Compile All Components

Select an “All” option to rebuild or compile all business objects in the repository. Select an
incremental option to rebuild objects that have changed since the last build or to compile
objects that have changed since the last compile.

When a group is selected in the Explorer, the incremental and “All” options operate on the
whole repository, not just the group. To rebuild or compile only objects in the selected
group, choose a “Selected” option or an option from the group’s Files tab right-click menu.

n The third section of the menu, if any, applies to the currently open application. For
information about this section’s options, see the Application Developer Guide.

n Rebuild and Compile menu options also are available from the right-click menus of
individual files and groups on the Files tab of the Versata Logic Studio Explorer.

Note: If you select a Compile menu option, the objects to be compiled are checked and rebuilt
as necessary before the compile occurs.

Errors may occur if you choose a Compile option for an individual file or group before
all objects in the repository have been compiled at least once. Because classes may
reference each other, you may have to compile the entire repository before you can
compile an individual file or group. If your repository directory or any of its
subdirectories are read-only, compiles fail.
265

BUILDING AND DEPLOYING BUSINESS OBJECTS
USING MENU OPTIONS TO BUILD AND COMPILE BUSINESS OBJECTS
In some cases, remote interface files may not be compiled when you choose the
Compile Components option. If this occurs, choose the Compile All Components
option to ensure remote interface files get compiled.

If you have made changes to column captions for a query object, an incremental build
option may not properly rebuild the query object. If this problem occurs, the
workaround is to close and reopen the repository, then retry the changes and the
rebuild.

If you have just converted your repository to release 5.5, you may encounter generation
errors the first time you select the Rebuild All Components menu option. If this error
occurs, reselect this menu option. If errors continue to occur, you may need to correct
duplicate role names in the repository. For information, see the Migration Guide.

Saving changes to rebuilt query objects
Because query objects are dependent on data objects, changes to data objects may cause
changes to query objects. After you have rebuilt repository business objects, a dialog may
appear asking you whether to save changes to query objects. Generally, you should click OK
to save these changes and continue. However, if you have manually customized query text in
the Query Object Designer, you should click Cancel in order to preserve the current text. In
this case, you can make changes manually to reflect changes in underlying data objects
without unnecessarily overwriting other query text.
266

BUILDING AND DEPLOYING BUSINESS OBJECTS
USING MENU OPTIONS TO BUILD AND COMPILE BUSINESS OBJECTS
Figure 13 Queries Loaded During Component Generation dialog
267

BUILDING AND DEPLOYING BUSINESS OBJECTS
USING THE VERSATA LOGIC SERVER DEPLOYMENT WIZARD
Using the Versata Logic Server Deployment wizard
When deploying business objects, use the Versata Logic Server deployment wizard to deploy
to Versata’s development environment: the Versata Logic Server on WAS 4.0 AES, running on
Windows.

The deployment wizard copies the business objects, and then registers the business objects to
WebSphere 4.0 AES. The registration information is stored as an enterprise application inside
the <versata_logic_suite>\Config\versata-cfg.xml file. Once you have deployed
your application, open the WebSphere Console to see that your VERSATA_<repository>
enterprise application is registered (Figure 14).

Note: Ensure that the versata-cfg.xml file is in use and appears at the top left panel of the
WebSphere Console. If the versata-cfg.xml file does not appear, newly deployed
and updated repositories will not be recognized by the Versata Logic Server.

Figure 14 WAS 4.0 AES Console
268

BUILDING AND DEPLOYING BUSINESS OBJECTS
USING THE VERSATA LOGIC SERVER DEPLOYMENT WIZARD
Deployment wizard user interface
To start the Versata Logic Server Deployment wizard, do one of the following:

n Choose Versata Logic Server � Deploy Transaction Logic.

n Choose Managers � Deployment Manager, and in the Choose Deployment Target dialog,
choose Deploy Transaction Logic under Versata Logic Server.

In the wizard dialogs, you can click the Help button or press F1 to obtain more information
about the current task.

Deployment Options dialog

As the first step in the deployment process, a dialog appears where you can elect options for
the rebuild and compile of business objects before they are deployed to the Versata Logic
Server:

n Choose the Force option buttons to indicate that business objects should always be rebuilt
and/or compiled before deployment.

n Choose the Incremental option buttons to indicate that only business objects that have
changed since the last build and compile should be rebuilt and/or compiled before
deployment.

n Choose the None option buttons to indicate that business objects should never be rebuilt or
compiled before deployment.

Figure 15 Deployment Options dialog
269

BUILDING AND DEPLOYING BUSINESS OBJECTS
USING THE VERSATA LOGIC SERVER DEPLOYMENT WIZARD
After you have completed this dialog, objects are rebuilt and compiled, if indicated and
necessary.

Choose Versata Logic Server for Deployment dialog

The next step in the deployment process is to choose the Versata Logic Server where business
objects will be deployed, in the following dialog:

n In this dialog, you choose the Versata Logic Server where the J2EE Enterprise Application
(EAR) containing your repository’s business object files will be deployed. You indicate the
Versata Logic Server by entering the path of the folder where the Versata Logic Server is
installed. By default, this is your Versata Logic Studio installation directory.

Figure 16 Choose Versata Logic Server for Deployment dialog
270

BUILDING AND DEPLOYING BUSINESS OBJECTS
USING THE VERSATA LOGIC SERVER DEPLOYMENT WIZARD
To select from available folders, click the Browse button in the dialog that appears, browse
until you find the right folder, then select it and click the Open button.Once you have
entered the path of a folder, click the Next button.

Note that you must not use spaces in the path name, or it will not work.

n Also in this dialog, you have the option of choosing to deploy files only for changed
objects, by enabling the Incremental Build of Deployable Jar check box. This option causes
individual object files to be added to the existing repository .jar file instead of a complete
regeneration of the .jar. This option allows you to preserve anything you have added to
the .jar file as well as save time during deployment.
271

BUILDING AND DEPLOYING BUSINESS OBJECTS
USING THE VERSATA LOGIC SERVER DEPLOYMENT WIZARD
Finished dialog

In this dialog, you confirm the Versata Logic Server, choose options for deployment
processing, specify a unique name for the Versata Logic Server application server process on
IBM WebSphere Application Server, and then start the deployment processing.

n To confirm the Versata Logic Server, review entries in the Host and Server fields.

n The Host field displays the location of the machine where the Versata Logic Server is
installed.

n The Server field displays the name of the Versata Logic Server specified in the
configuration file you entered in an earlier dialog.

These fields are read-only. You cannot modify them directly. If the host or server name is
not correct, click the Back button to return to the Choose Versata Logic Server for
Deployment dialog and enter a different install folder.

Figure 17 Deployment Finished dialog
272

BUILDING AND DEPLOYING BUSINESS OBJECTS
USING THE VERSATA LOGIC SERVER DEPLOYMENT WIZARD
n The option for the wizard to stop and restart the Versata Logic Server on IBM WebSphere
Application Server ensures that business object changes are applied. By default, this option
is enabled. You need to start and stop the application server for changes to be applied, but
in some cases, it may be faster for you to do it manually from the IBM WebSphere
Administrative Console than for you to wait for the wizard to do it.

n The option for the wizard to register EJBs for business objects in IBM WebSphere
Application Server uses WebSphere’s XMLConfig tool for registration. By default, this
option is enabled. Registration process information is displayed in a log file, so you can
verify whether registration succeeded and use troubleshooting information in case of
failure.

n The WebSphere AppServer Name field displays the name of the selected Versata Logic
Server’s application server process on the IBM WebSphere Application Server node where
it is running. By default, this name is VERSATA. If you intend to run multiple instances of
Versata Logic Server on the WebSphere node, change this name to something unique.

If you have deployed previously, a confirmation dialog may appear asking you whether
existing files should be overwritten. When deployment is completed, a notification dialog
appears.

Note: The Versata Logic Server verifies whether you have access to the file system. If you
have problems deploying to the Versata Logic Server, check your permissions.

Deploying business objects to a development environment
Versata Logic Server

To deploy business objects to a development environment Versata Logic Server:

1. Start the Deployment Manager and select Deploy Transaction Logic under Versata Logic
Server deployment.

2. In the Deployment Options dialog, indicate the cases in which business object files should
be rebuilt and recompiled before deployment:

n Force indicates that files for all objects should always be rebuilt and/or recompiled
before deployment.

n Incremental indicates that only files for new or changed objects should be built and/or
compiled before deployment.

n None indicates that no files should be built and or compiled before deployment.

3. In the Choose Versata Logic Server for Deployment dialog, enter the path of the folder
where the development Versata Logic Server is installed. By default, this is your Versata
Logic Studio installation directory path. Note that you must not use spaces in the path
name, or it will not work.
273

BUILDING AND DEPLOYING BUSINESS OBJECTS
USING THE VERSATA LOGIC SERVER DEPLOYMENT WIZARD
If you have previously deployed repository business objects to this Versata Logic Server,
and you want to redeploy only changed business objects without overwriting the whole
repository .jar file, enable the Incremental Build for Deployable Jar check box. Click
Next.

4. In the Finished dialog, review the names of the host and of the Versata Logic Server. Make
a note of these names, because you may need to record them as the server location in the
Application Properties dialog for Versata Logic Studio-generated applications using this
Versata Logic Server. Keep in mind that these names are case-sensitive.

5. Enable or disable the check box for the wizard to stop and restart the Versata Logic Server
on IBM WebSphere Application Server. You can restart in order to ensure the objects are
registered already.

6. Enable or disable the check box for the wizard to register business object EJBs in IBM
WebSphere Application Server. These Beans must be registered.

7. If you want to run multiple instances of Versata Logic Server on the same IBM WebSphere
Application Server node, change the WebSphere AppServer Name field from VERSATA
to a unique application server process name.

8. Click Finish to execute the deployment.

If you encounter any problems with deployment, check the deployment log file for
troubleshooting information. This file is located in the
<install_directory>\Logs\vlsdeploy.log folder.

Note: Customizations to the deployment descriptor (<object>DD.xml) file, such as a
change to the jndi-name, may not be picked up during EJB deployment. To work
around this issue, make the necessary changes in the WebSphere Administrative
Console after deployment.

Note: Be careful to deploy only to a release 5.5 Versata Logic Server. The wizard allows you

to deploy to a 5.1 Versata Logic Server.
274

BUILDING AND DEPLOYING BUSINESS OBJECTS
HOT DEPLOY AND DYNAMIC RELOADING
Hot deploy and dynamic reloading
WebSphere 4.0 AES allows you to hot deploy and dynamically reload application components.
The Versata Logic Studio deployment wizards support both of these features. The following
sections provide information on hot deploying and dynamic reloading using the Versata Logic
Server deployment wizard to deploy to Versata’s development environment (the Versata Logic
Server on WAS 4.0 AES, running on Windows).

For a summary of deployment scenarios involving hot deployment and dynamic reloading, see
“Hot deploy and dynamic reloading task reference” on page 276.

Note: The hot deployment and dynamic reloading features are not applicable for deployment
to Versata’s production environment (the Versata Logic Server on WAS 4.0 AE,
running on Windows, AIX, or Solaris).

Hot deploying to Versata’s development environment
Hot deployment is the process of adding new components, such as enterprise beans, servlets,
and JSP files to a running application without having to stop the VERSATA application server
instance, and then restart it again. Use Versata Logic Studio deployment wizards to hot deploy
application components to Versata’s development environment.

n For business object hot deployment:

Business and query repository objects are packaged as .class files in a
<repository>.jar file. When you deploy the <repository>.jar file for the first
time, you must stop and restart the WebSphere Application Server. However, if you change
any of the .class files within the <repository>.jar file that was previously deployed,
you can then hot deploy the updated <repository>.jar file. The Versata Logic Studio
deployment wizards will restart only the VERSATA application server instance and the
VERSATA_<repository> enterprise application, rather than the entire WebSphere
Application Server. This save significant time during deployment.

n For client application hot deployment:

With Versata-generated HTML applications, you can hot deploy client application
components (such as <servlet>.class files and <page>.class files). If you do not
change any of your application .class files, the Versata Logic Studio deployment wizards
will copy all of the other changed files without re-starting the VERSATA application server
instance, allowing for even faster deployment.

In addition to hot deploying updated applications to Versata’s development environment,
you can also hot deploy new applications that have not yet been deployed—without having
to restart the VERSATA application server instance.
275

BUILDING AND DEPLOYING BUSINESS OBJECTS
HOT DEPLOY AND DYNAMIC RELOADING
Dynamic reloading in Versata’s development environment
Dynamic reloading allows you to change existing application components without having to
restart the WebSphere Application Server or the VERSATA application server instance in
order for the changes to take effect. Such changes can include:

n Changes to the settings of an application, such as changing the deployment descriptor for a
Web module.

n Changes to the implementation of a servlet.

Use the Versata Logic Studio deployment wizards to dynamically reload application
components in Versata’s development environment.

Hot deploy and dynamic reloading task reference
The following table summarizes various tasks you can perform using the Versata Logic Studio
that will update Versata application components. The table describes the action you must take
to make the changes effective in the running VERSATA application server instance.

For additional information, refer to IBM’s documentation on WebSphere 4.0 hot deployment
and dynamic reloading. In particular, refer to IBM’s documentation on changes to application
components not listed in the table below, and how changes to these components affect the unit
that needs restarting (for example the module, application, or the application server instance).

Task WebSphere action Versata Studio action Notes

Initial deployment of a
Versata repository

Restarts The Versata Logic Studio
deployment wizard detects
this scenario, and if the
Restart WebSphere
Applications check box is
checked, the wizard will
restart the VERSATA
application server instance.

Deploying business
objects or an HTML
application for the first
time for each repository
requires restarting the
WebSphere Application
Server. This is so the
versata-cfg.xml file
can recognize future
changes to a repository.
276

BUILDING AND DEPLOYING BUSINESS OBJECTS
HOT DEPLOY AND DYNAMIC RELOADING
Changes to a servlet such as:

• Adding a new servlet,
including a new definition
of the servlet in the
web.xml deployment
descriptor for the
application.

• Changing the .class file
of an existing servlet by
either editing or
recompiling it.

None Users must uncheck the
Restart WebSphere
Applications check box in the
Versata Logic Studio
deployment wizard.

Changes to an HTML page None Users must uncheck the
Restart WebSphere
Applications check box in the
Versata Logic Studio
deployment wizard.

The Versata template
(.htm file) is not loaded
by WebSphere.

The HTML page is read by
the corresponding Java
<page>.class file
every time the HTML
page changes.

Changes to the .java file
for a page. Such a change can
include:

• Updating the
implementation class for
an EJB.

• Updating a dependent
class of the
implementation class for
an EJB.

Restarts the WebSphere
Application Server, the
Versata Logic Server,
and the VERSATA_
<repository> enterprise
application.

Users must check the Restart
WebSphere Applications
check box in the Versata
Logic Studio deployment
wizard.

The page class is loaded
by the VLS runtime
supporting the
PLSContext bean.

These classes can be
thought of as dependent
class of the PLSContext
bean. However, to enable
dynamic reloading of these
dependent classes, these
classes are loaded by the
classloader instance that
loads the bean itself.

Task WebSphere action Versata Studio action Notes
277

BUILDING AND DEPLOYING BUSINESS OBJECTS
HOT DEPLOY AND DYNAMIC RELOADING
Changes to business objects
such as:

• Updating the
implementation class for
an EJB.

• Updating a dependent
class of the
implementation class for
an EJB.

Restarts the WebSphere
Application Server, the
Versata Logic Server,
and the
VERSATA_<repository
> enterprise application.

Users must select the Restart
WebSphere Applications
check box in the Versata
Logic Studio deployment
wizard.

Business object classes are
loaded by the Versata
Logic Server runtime
supporting the
VLSContext bean.

These classes can be
thought of as dependent
classes of the VLSContext
bean. However, to enable
dynamic reloading of these
dependent classes, these
are loaded by the
classloader instance that
loads the bean itself.

Task WebSphere action Versata Studio action Notes
278

BUILDING AND DEPLOYING BUSINESS OBJECTS
TESTING TRANSACTION LOGIC
Testing transaction logic
After defining transaction logic (business rules) and deploying business objects to the Versata
Logic Server, you can verify that the rules execute as you expected. The Versata Logic Server
Console provides a rule tracing facility that you can use to review details of rules processing.
In addition, you can use a third-party debugger to step through business object code.

Using Versata Logic Server Console rule tracing
For further information about Versata Logic Server Console functionality, see the
Administrator Guide.

To test business rules with the rule tracing facility:

1. Start the Versata Logic Server Console. Ensure that the guest user is set up with proper role
and privileges.

2. Execute an application, logging on as guest.

3. In the Versata Logic Server Console, expand the User Sessions object and select the guest
object. (This object represents your current session on the application.)

4. Enable the Trace user activity check box, and leave the Versata Logic Server Console open.

5. Modify records in ways that should cause the business rules to fire.

6. Review the entries in the Versata Logic Server Console trace window. Note that a number
of entries are written as the transaction is processed, and that most recent entries are at the
top. Scroll down through the trace window so you can see the first entries at the bottom,
then review the entries from the bottom up.

7. When an error is raised, click More Details on the error dialog to find out which data object
and rule raised the error.

8. If the error is related to business rules, return to the Transaction Logic Designer and review
the data object’s rule definitions.

n As needed, update your derivation, validation, or referential integrity rules.

n You also may need to update the data object constraints and action rule definitions.

9. After you have updated business rules, you can redeploy them to the Versata Logic Server
and repeat the steps in this procedure to retest business rules.

Debugging business object code
The Versata Logic Suite allows you to use a third-party debugger designed specifically for
debugging Java and HTML client applications as well as business objects deployed in a
supported application server platform.
279

BUILDING AND DEPLOYING BUSINESS OBJECTS
TESTING TRANSACTION LOGIC
This edition supports the use of IBM’s Object Level Trace (OLT) and Distributed Debugger.
For procedures explaining how to use IBM’s Distributed Debugger with Versata applications
and business objects, see the Application Developer Guide. To learn more about using the
tools featured in IBM’s Distributed Debugger, see the IBM Distributed Debugger User’s
Guide.
280

BUILDING AND DEPLOYING BUSINESS OBJECTS
DEPLOYING BUSINESS OBJECTS TO A PRODUCTION ENVIRONMENT
Deploying business objects to a production
environment

Once you have tested business objects in the development environment, you can deploy them
to a production environment Versata Logic Server running on IBM WebSphere Application
Server 4.0 Advanced Edition. Before you deploy business objects to the Versata production
environment, you must create a <repository>_Deployed.ear file. The .ear file contains
all the business object .class files and HTML application files in the repository. Web server
files and security data are not contained in the .ear file.

To create the .ear file, use either the WebSphere Application Assembly Tool, or use the
Versata wsEARCreate.bat script. Directions are provided for both methods.

Creating the .ear file

To create the <repository>_Deployed.ear file using the WebSphere Application Assembly Tool:

1. Run the WebSphere Application Assembly Tool.

2. Open the <versata_logic_suite>\VLSComponents\Classes\<repository>.ear
folder.

Do not add any files inside the folder after you opened it in the WebSphere Application
Assembly Tool. The files will not be included in the output .ear file.

3. From the WebSphere Application Assembly Tool main menu, choose File � Save As to
open the Save dialog.

4. Locate the <versata_logic_suite>\VLSComponents\Classes folder in the list box.

5. Type <repository>_Deployed.ear in the File name text field.

6. Click the Save button.

The WebSphere Application Assembly Tool creates the output .ear file.

To create the <repository>_Deployed.ear file using the wsEARCreate. bat script:

1. Open a DOS console window.

2. Go to the <versata_logic_suite>\VLS\bin folder.

3. Type wsEARCreate.bat -repository <repository> [-earfile <output ear
file>]

The -repository <repository> is mandatory, however the [-earfile <output
ear file>] is optional. If you do not specify the -earfile, the wsEARCreate.bat
script will create the .ear file in the VLSComponents\Classes folder.
281

BUILDING AND DEPLOYING BUSINESS OBJECTS
DEPLOYING BUSINESS OBJECTS TO A PRODUCTION ENVIRONMENT

sh.
The two commands listed below create SampDB1_Deployed.ear in
VLSComponents\Classes folder.

n wsEARCreate.bat -repository SampDB1 -earfile C:\Versata\Suite-
5.5-WebSphere\VLSComponents\Classes\SampDB1_Deployed.ear

n wsEARCreate.bat -repository SampDB1

Deploying the .ear file
Once you have created the <repository>_Deployed.ear file, you can then deploy it to the
Versata production environment. You must also copy your application’s Web files and security
files over to the Versata production environment. Use the following steps to complete the
deployment process. For UNIX deployment, use the steps below, replacing \ with / and .bat with .

To deploy the .ear file and copy the application Web and security files:

1. Copy your .ear file over to the production platform into the
<versata_logic_server>\VLSComponents\Classes folder.

2. Copy the folder <document_root>\<repository> over to the
<document_root>\<repository> in the production platform.

3. Copy all the .dat files in the <versata_logic_suite>\VLSComponents\Admin
folder over to <versata_logic_server>\VLSComponents\Admin folder in the
production platform.

4. Go to <versata_logic_server>\Vls\bin in a DOS console window.

5. Type wsEARDeploy.bat -repository <repository> to deploy the copied .ear file
to WebSphere 4.0 Advanced Edition.

The wsEARDeploy.bat file is located in the <versata_logic_server>\VLS\bin
folder. It’s usage is as follows:
n wsEARDeploy.bat -repository <repository name> [-earfile <output

ear file>] [-logfile <output log file>]

The -repository <repository name> is mandatory, however the [-earfile
<output ear file>] and the [-logfile <output log file>] are optional. If
you do not specify the -earfile, the wsEARDeploy.bat script will locate the
<versata_logic_server>\VLSComponents\Classes\<repository>
_Deployed.ear file and deploy it to the
<versata_logic_server>\VLSComponents\
Classes\<repository>.ear folder. If you do not specify the -logfile, the
wsEARDeploy.bat script will put its progress data in
<versata_logic_server>\Logs\
eardeploy.log file.
282

BUILDING AND DEPLOYING BUSINESS OBJECTS
DEPLOYING BUSINESS OBJECTS TO A PRODUCTION ENVIRONMENT
The two commands listed below deploy SampDB1_Deploy.ear in
VLSComponents\Classes folder.
n wsEARDeploy.bat -repository SampDB1 -earfile C:\Versata\Suite-

5.5-WebSphere\VLSComponents\Classes\SampDB1_Deployed.ear

n wsEARDeploy.bat -repository SampDB1

Setting default deployment values
Use the defdeploy.properties file, located in the VLS\bin\ directory to set the default
deployment values for the wsVLSDeploy.bat and wsHTMLDeploy.bat scripts. Setting the
default values for each property eliminates the need for repeatedly typing the values when
running the wsVLSDeploy.bat and wsHTMLDeploy.bat scripts.

The following example shows the new default values that have been set for the VLSFolder,
Host, and Node properties:

VLSFolder=D:\Versata\VLS-5.5-WebSphere

Host=cchui2240

Node=cchui2240

Port=900

AppServer=*

WebApp=*

Note: The * symbol used for the AppServer and WebApp properties tells the
wsVLSDeploy.bat file to use the values from the vlsdeploy.properties file and
the wsHTMLDeploy.bat file to use the values from appdeploy.properties file.
283

BUILDING AND DEPLOYING BUSINESS OBJECTS
DEPLOYING BUSINESS OBJECTS TO A PRODUCTION ENVIRONMENT
284

CHAPTER 9 Understanding Business
Object Files
285

UNDERSTANDING BUSINESS OBJECT FILES
CHAPTER OVERVIEW
Chapter overview
Read this chapter to gain an understanding of the business objects generated and deployed by
the Versata Logic Studio to the Versata Logic Server. This chapter discusses the files generated
to process run-time business objects and some of the code contained in these files. After
reading this chapter, you should have a clear understanding of the names and contents of
generated business object files, and how to view them in the Code Editor.

This chapter includes the following:

n “Overview of Versata Logic Server business objects” on page 287, outlines business object
definition and deployment, and introduces the basic architecture of business objects.

n “Generated files for business objects” on page 290, lists the different types of generated
business object files, explaining naming conventions and providing details about the code
contained in each type of file.

n “Reviewing file properties” on page 306, explains how to use the File Properties dialog to
view information about generated and external files in the repository.

n “Working with external files” on page 308, describes how to make external files available
in a Versata repository.

n “Using a code editor” on page 313, describes how to view and add custom code to
generated business object files in the Versata Code Editor and how to use an external code
editor for these purposes.
286

UNDERSTANDING BUSINESS OBJECT FILES
OVERVIEW OF VERSATA LOGIC SERVER BUSINESS OBJECTS
Overview of Versata Logic Server business objects
Versata Logic Server hosts the business objects generated by the Versata Logic Studio. You can
define two types of business objects in the Versata Logic Studio: data objects and query
objects.

n Data objects. Process the logic defined in business rules and perform data retrieval and
processing. For information about creating and modifying data objects, see “Working with
Data Objects” on page 81.

n Query objects. Select attributes from one or more data objects to create a composite
object; they are similar to RDBMS views. By default, query objects provide only client
behavior (retrieval and modification) and delegate transaction logic enforcement to the
data objects on which they are based. For information about creating and modifying query
objects, see “Working with Query Objects” on page 145.

Business object deployment
After you have defined data objects and query objects, you can build and compile these
business objects in the Versata Logic Studio in order to generate 100% Java objects. These
objects contain code to implement the business rules and other object definition information.
You have the choice of deploying business objects as Enterprise JavaBeans (EJBs) or simply
as Java class files. You should deploy an object as an EJB when you want to make it remotely
accessible. You mark a data object for deployment as an EJB by enabling a check box in the
Transaction Logic Designer. You mark a query object for deployment as an EJB by enabling a
check box in the Query Object Designer.

Deployment of the generated business objects places them in a location accessible to the
Versata Logic Server and to IBM WebSphere Application Server, where they can execute
transaction logic for applications. These business objects provide the middle tier that links
client applications to data sources. For information about building and deploying business
objects, see “Building and Deploying Business Objects” on page 255.

If you deploy a data object as an EJB, it as packaged as an entity bean. Each entity bean
encapsulates permanent data, which is stored in a data source such as a database or a file
system, and associated methods to manipulate that data. In most cases, an entity bean must be
accessed in some transactional manner. Instances of an entity bean are unique and they can be
accessed by multiple users. Entity beans for Versata Logic Server data objects implement
bean-managed persistence (BMP). Each EJB handles its own synchronization with its data
source. BMP allows Versata Logic Server EJBs to run against a wide variety of data sources,
both those for which IBM WebSphere Application Server provides data access and data
sources that the Versata Logic Server can access through a system-supplied or custom Versata
Connector.
287

UNDERSTANDING BUSINESS OBJECT FILES
OVERVIEW OF VERSATA LOGIC SERVER BUSINESS OBJECTS
If you deploy a query object as an EJB, it is packaged as a session bean. Each session bean
encapsulates nonpermanent data associated with a particular EJB client. Unlike the data in an
entity bean, the data in a session bean is not stored in a permanent data source, and no harm is
caused if this data is lost. However, a session bean can update data in an underlying database,
usually by accessing an entity bean. A session bean can also participate in a transaction. When
created, instances of a session bean are identical. A session bean is always associated with a
single client; attempts to make concurrent calls result in an exception being thrown.

Business object basic architecture
The business objects inherit business-logic processing behavior from a common framework
that the Versata Logic Server provides. Any interactive GUI application (such as a Java stand-
alone application, Java applet, HTML client, or JSP client running in a browser) can interact
with Versata Logic Server business objects. Applications developed outside of the Versata
Logic Studio can interact through standard API calls.

Versata Logic Server business objects also leverage the capabilities of the IBM WebSphere
Application Server, particularly if they are implemented as EJBs. These capabilities include
transaction management; business objects are fully compliant with the JTA standard using the
JTA API. Objects that are implemented as EJBs provide remote access and can be reached by
any EJB client using pure EJB APIs.

The Versata Logic Server itself manages state, transaction, and session information. All
common logic-processing behavior is abstracted in the Versata Logic Server automation
framework so that it is reusable across user components. This abstraction ensures that the user
components are as thin as possible.

The generated business object code includes a rich set of common APIs that provide intra-
object and inter-object access. So, when logic that is executing in one object needs to access
another object, the first object can call a published API that finds the related object based on
the state of the calling object. For example, logic executing in a customer’s business object
may need to find related orders objects.

The business objects also provide APIs to access their state information. For example, suppose
a customer’s object has a state in which properties such as name and address are defined.
When these properties’ values are changed for a customer, a new customer is created, or an
existing customer is deleted, an API call is issued to make the change permanent and the
system guarantees that the appropriate business rules are processed before the change can be
considered successful. This guarantee includes recursive processing of the rules across
multiple objects. For example, deleting a customer not only requires processing rules on the
customer but also on related orders, including deleting the customer’s orders.

Because the business objects are 100% Java, their behavior is extensible at several levels. For
example, the objects can provide event-handling behavior in a particular situation or create
subclasses that inherit and extend behavior from their superclasses.
288

UNDERSTANDING BUSINESS OBJECT FILES
OVERVIEW OF VERSATA LOGIC SERVER BUSINESS OBJECTS
Versata Connectors provide data access via pluggable modules. After logic processing is
completed, the Transaction Logic Engine passes the objects to appropriate Versata Connectors
to make the changes permanent in the data source. Using the Connectors instead of directly
accessing the data during transactions ensures that the data storage mechanism is completely
independent of the logic processing.
289

UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS
Generated files for business objects
The Versata Logic Studio generates the following files for each business object you build and
compile:

n Base implementation file, <object_name>BaseImpl.java, is the base class for the
object, that contains all system- generated code, including rules.

n Main implementation file, <object_name>Impl.java, extends the base class and serves
as the container for any developer-defined, or custom, code.

n Internal implementation file, <object>Impl.built, is not listed in the Versata Logic
Studio Explorer and not described in detail here. These files are stored in cache and used
by the system to optimize when to rebuild and revalidate objects. You should not need to
edit these files or maintain them in source control, as they are used for internal purposes
only during design time and do not get deployed for run-time use.

If you indicate a business object should be deployed as an Enterprise JavaBean (EJB), the
following additional files also are created for the object:

n Remote interface file, <object_name>.java

n Home interface file, <object_name>Home.java

n Deployment descriptor file, <object_name>DD.xml

When you deploy business objects, all of these files are added to a repository .jar file, which
is packaged in a J2EE application that can be copied to a location accessible to the Versata
Logic Server and to IBM WebSphere Application Server.

Note: In addition to the files described here, each business object also has an .xml file which
contains metadata for that object. These .xml files are not listed in the Versata Logic
Studio Explorer, as they are in a different category from the generated files that execute
for run-time applications. For information about the .xml metadata files, see the
Project Guide.

You can open these files and review their contents in the Versata Logic Studio, from either the
Objects tab or the Files tab of the Versata Logic Studio Explorer. The Files tab of the Explorer
lists files generated for repository objects as well as files that developers have added to the
repository. Each file has an icon next to it. File icons with black text indicate the file is
generated by the Versata Logic Studio. Icons with red text indicate the file is developer-
defined. An icon with an included satellite icon indicates the object has been configured for
remote access.

You can right-click a file and choose Properties to review information about it, including its
full path location. You can open files as follows:

n To open a base implementation file, on the Objects tab of the Explorer, right-click the
object and choose Open File � Base Implementation File. You cannot modify the contents
of this file, but you can copy code from it.
290

UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS
n To open an implementation file, on the Objects tab of the Explorer, right-click the object
and choose Open File � Implementation File. Or, on the Files tab of the Explorer, double-
click the file.

n To open a remote interface, home interface, or deployment descriptor file, on the Files tab
of the Explorer, double-click the file.

The selected file opens in the Code Editor. For information about modifying files in the Code
Editor, see “Methods for instantiating business objects” on page 326.

Implementation files
For all deployed business objects, the Versata Logic Server uses the implementation files to
instantiate objects for logic processing and saves to the data source. Versata Logic Server
provides “Just-In-Time” (J.I.T.) business object instantiation, meaning objects are created only
when necessary, for example when updates must be saved. The implementation files also
contain logic execution code, which enforces rules during updates of object data.

The Versata Logic Studio generates by default most of the blocks of code for the business
object implementation files, except for event blocks in the implementation file and the
business object factory methods block in the base implementation file. The event blocks are
where you can add your custom event-handling code. Use the Code Editor to add custom code
to a particular event for a business object. If you enable remote access for a business object, the
Versata Logic Studio generates code for this purpose in the business object factory methods
block of the base implementation file.

Data object implementation files

The base implementation file for each data object (<data_object>BaseImpl.java)
contains generated transaction logic. The implementation file for each data object
(<data_object>Impl.java) contains custom server event handlers and custom server
methods (both new and overloaded).

By default, each data object base implementation file extends versata.vls.DataObject.
Each data object implementation file extends the base implementation file. To provide
additional methods to a data object, you can create a subclass of the
versata.vls.DataObject class to contain these methods, then specify this subclass as the
superclass of the data object base class. You enter this property on the Properties:Data Access
tab of the Transaction Logic Designer. For more information about creating data objects with
additional methods, see “Creating a DataObject subclass with specialized methods” on page
339.

Blocks of code included in data object base implementation files and implementation files are
described below.
291

UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS
Component import blocks

Each data object base implementation and implementation file begins with imports of JDK
and Versata packages, as illustrated in the following examples:

Data object declarations and constructors

After the import statements, the base implementation file declares the data object base class as
a subclass of versata.vls.DataObject or one of its subclasses. The implementation file
declares the data object as a subclass of the base class. In each file, this declaration is followed
by a constructor block that initializes the class, as shown in the following examples.

This example is from a base implementation file:

//{{COMPONENT_BASE_IMPORT_STMTS
package SampDB1;
import java.util.Enumeration;
import java.util.Vector;
import versata.common.*;
import versata.vls.*;
import java.util.*;
import java.math.*;
//END_COMPONENT_BASE_IMPORT_STMTS}}

//{{COMPONENT_IMPORT_STMTS
package SampDB1;
import java.util.Enumeration;
import java.util.Vector;
import versata.common.*;
import versata.vls.*;
import java.util.*;
import java.math.*;
//END_COMPONENT_IMPORT_STMTS}}

abstract public class CUSTOMERSBaseImpl extends DataObject{
public CUSTOMERSBaseImpl () {

super();
addListeners();

}

292

UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS
This example is from an implementation file::

//{{COMPONENT_RULES_CLASS_DECL
public class CUSTOMERSImpl extends CUSTOMERSBaseImpl
//END_COMPONENT_RULES_CLASS_DECL}}

{

//{{COMP_CLASS_CTOR

public CUSTOMERSImpl (){

super();

}

public CUSTOMERSImpl(Session session, boolean makeDefaults)

{

super(session, makeDefaults);

//END_COMP_CLASS_CTOR}}
}

293

UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS
Data definition block

The data definition block in a data object’s base implementation file defines the package name
and metadata (data objects and attributes). Also, for each attribute, the data type is defined and
a variable is set to indicate whether the attribute is updatable, nullable, derived, or incremented
automatically, and a caption is defined. The following example illustrates the data definition
block for a data object with only one attribute, in order to conserve space.

Note: The implementation file for a data object does not contain a data definition block.

//{{COMPONENT_META_QRY
private final static String deployedFromRepository =

"SampDB1";
private static VSQueryDefinition q= null;
public String getPackageName() {

return deployedFromRepository;
}
static {

q= new VSQueryDefinition("CUSTOMERS");
q.setPackageName(deployedFromRepository);
//{{META_QUERY_COLUMN_CTOR
c = new VSMetaColumn("CustNum", DataConst.BIGINT);
c.setAutoIncrement(true);
c.setAlterability(false);
c.setNullability(VSMetaColumn.columnNoNulls);

 c.setCaption("Cust#");
t.addColumn(c);

t.addUniqueKeyColumn("CUSTOMERS Unique Key", "CustNum");

t.useQuotedIdentifier(false);
t.setOptLock(DataConst.OptLockingOnApplicable);

//END_META_QUERY_COLUMN_CTOR}}
q.addTable(t);
q.populateQCArray();
VSQueryDefinition qTemp = (VSQueryDefinition)

getMetaQuery("CUSTOMERS",deployedFromRepository);
if (qTemp == null) {

addMetaQuery(q, deployedFromRepository);
}
else

q = qTemp;// Keep the old query as it has cached object
//END_COMPONENT_META_QRY}}
294

UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS
Rules blocks

The rules block is generally the largest block of code in the data object’s base implementation
file. This block consists of processing code for inserts, updates, and deletes. The code that
enforces rules is built into this processing code. The rules enforcement code is based on the
rules you defined in the Transaction Logic Designer. This block includes code to instantiate the
object so that rules logic can be executed against it, including factory methods for data objects,
and get and set methods for each object attribute, code to cascade updates to related objects’
records as necessary, code that adds default listeners for factory events, and code that creates a
default Versata Connector for the data object. This block also includes a
RecomputeDerivations() method, that executes rules logic against preexisting records.
See “Recomputing derivations” on page 354 for more information. For more information
about factory methods, see “Factory methods” on page 326.

Because this block is lengthy and has diverse contents, an example is not provided here. To
view examples of this code, build and compile business objects in the sample repository, then
open a data object base implementation file in the Code Editor and search for
//{{COMPONENT_RULES.

The rules block in a data object’s implementation file simply gets the object, as shown in the
following example:

//{{COMPONENT_RULES
public static VSMetaQuery getMetaQuery() {

 //return CUSTOMERSBaseImpl.getMetaQuery();
return getMetaQuery("CUSTOMERS", "SampDB1");

}
public static CUSTOMERSImpl getNewObject(Session

session, boolean makeDefaults)
{

return new CUSTOMERSImpl(session, makeDefaults);
}

//END_COMPONENT_RULES}}
295

UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS
Data object event blocks

Each data object implementation file provides event blocks where you can add your own
custom code that is executed at the specified event time. The Versata Logic Studio preserves
the code in these blocks whenever objects are rebuilt and recompiled. In addition to the event
handlers that you write, the Versata Logic Studio generates listener code to register an object
as a receiver of the event callback.

Exposed events for data objects include: afterCommit, afterDelete, afterInsert,
afterQuery, afterRollback, afterUpdate, beforeCommit, beforeDelete,
beforeInsert, beforeQuery, beforeResultSetFill, beforeRollback, and
beforeUpdate.

For more information about the code in event blocks, see “Methods for instantiating business
objects” on page 326.

The following event code example from the sample repository writes a record to the
EMPLOYEESAUDIT data object whenever a salary change occurs in the EMPLOYEES data
object:

Note: Data object base implementation files do not contain event blocks.

public void afterUpdate(DataObject obj)
{
long empId = ((EMPLOYEESImpl) obj).getEmpID(); // get values from current row
BigDecimal newSalary = getSalary(); // running in Employees Object,
BigDecimal oldSalary = getOldSalary(); // so this. is implicit

EMPLOYEESAUDITImpl empSalHist = EMPLOYEESAUDITImpl.getNewObject(getSession(),
true);

empSalHist.setOldSalary(oldSalary);
empSalHist.setNewSalary(newSalary);
empSalHist.setEmployeeID(empId);
empSalHist.save(); }

// note that this server code uses objects, not rows. As a general rule:
// - client code: use rows (these consume fewer server resources)
// -- except when you need to invoke Remote Methods
// - server code: use objects (since you are already in the server)

}

296

UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS
Other data object code blocks

Both the base implementation files and implementation files for data objects include some
additional blocks of code.

Each base implementation file contains an abstract custom methods block. This section
includes abstract prototypes for any custom methods added to the implementation file. The
following excerpt from the ORDERSBaseImpl file in the sample repository provides an
example:

Each implementation file contains an event add listeners block and a factory methods block.
The Versata Logic Studio generates code for the event add listeners block in files containing
custom event code. You can add your own custom factory methods to the factory methods
block. For information about factory methods, see “Factory methods” on page 326. You should
add any other custom methods after the factory methods block and before the end of the file.

Methods inherited from the superclass

Generated data objects share many common methods inherited from
versata.vls.DataObject, which is the default superclass for data object base classes. You
should be aware of these methods, as they are used throughout data object implementation
files. These methods include the following:

n isChanged(AttributeName) method indicates whether the value of an attribute has
been modified in the current transaction.

n raiseException method throws an exception in the server.

n Methods to obtain context information, including current session, Versata Connector in
use, current user, and current date. Methods include getSession, getXDAConnector,
getUser, and getDate. A setSession method also is provided.

n Methods to demarcate transaction boundaries, including beginTransaction,
commitTransaction, and abortTransaction.

n IsNull and IsOldNull methods that indicate whether the value of an attribute is null.

//{{ABSTRACT_CUSTOM_METHODS
//Print abstract prototype for custom methods.
abstract public void beforeCommit(Session session,Response

response);
abstract public void sendBigOrderMail(long SalesRepID,long

CustNum,long OrderNumber) throws ServerException;
abstract public void purge();

//END_ABSTRACT_CUSTOM_METHODS}}
297

UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS
Query object implementation files

The base implementation file for each query object
(<query_object>BaseImpl.java)contains generated transaction logic. The
implementation file for each query object (<query_object>Impl.java) contains custom
server event handlers and custom server methods (both new and overloaded).

By default each query object base implementation file extends versata.vls.QueryObject.
Each query object implementation file extends the base implementation file. To provide
additional methods to a query object, you can create a subclass of the
versata.vls.QueryObject class to contain these methods, then specify this subclass as
the superclass of the query object base class. You enter this property on the Properties:General
tab of the Query Object Designer. For more information, see “Properties tab” on page 171.

Blocks of code included in query object base implementation files and implementation files
are described below.

Component import blocks

Each query object base implementation and implementation file begins with imports of JDK
and Versata Logic Suite packages, as illustrated in the following examples:

//{{COMPONENT_BASE_IMPORT_STMTS
package SampDB1;
import java.util.Enumeration;
import java.util.Vector;
import versata.common.*;
import versata.vls.*;
import java.util.*;
import java.math.*;
//END_COMPONENT_BASE_IMPORT_STMTS}}

//{{COMPONENT_IMPORT_STMTS
package SampDB1;
import java.util.Enumeration;
import java.util.Vector;
import versata.common.*;
import versata.vls.*;
import java.util.*;
import java.math.*;
//END_COMPONENT_IMPORT_STMTS}}
298

UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS
Query object declarations

After the import statements, the base implementation file declares the query object base class
as a subclass of versata.vls.QueryObject or one of its subclasses. The implementation
file declares the query object as a subclass of the base class.

The following example is from a base implementation file.

The following example is from an implementation file.

Query object constructors

The constructor block in each query object base implementation file includes code to populate
metadata for the query object, to define SQL text for the query object, and to create a Versata
Connector for the query object, as well as factory method code. Some example excerpts of this
code appear on the following pages.

The constructor block in each query object implementation file simply gets the object, as
shown in the following example:

abstract public class OrderItemJoinPartBaseImpl extends
QueryObject

//{{COMPONENT_RULES_CLASS_DECL
public class OrderItemJoinPartImpl extends
OrderItemJoinPartBaseImpl
//END_COMPONENT_RULES_CLASS_DECL}}

{
//{{COMPOSITE_COMPONENT_METHODS

public static VSMetaQuery getMetaQuery() {
return getMetaQuery("OrderItemJoinPart", "SampDB1");

 }

//END_COMPOSITE_COMPONENT_METHODS}}
299

UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS
The following code from the OrderItemJoinPart base implementation file populates metadata
for query object attributes:

{
//{{BASE_COMPOSITE_COMPONENT_METHODS
// Constructors

static {
VSQueryDefinition q = new VSQueryDefinition(

"OrderItemJoinPart");
q.setPackageName("SampDB1");
// Construct a query column definition.
// Syntax is:
//new VSQueryColumnDefinition("<tableName>", "<tableAlias>",

"<col
umnName>", "<columnAlias>");
// Alternate syntax is:
// add("<tableName>", "<tableAlias>","<columnName>",
"<columnAlias>");

//{{QRYDEF_COLUMN_CTOR
q.add ("PART", "PART", "Name", "Name");
q.add ("ORDERITEM", "ORDERITEM", "QtyOrdered", "QtyOrdered");
q.add ("ORDERITEM", "ORDERITEM", "PartPrice", "PartPrice");
q.add ("ORDERITEM", "ORDERITEM", "Amount", "Amount");
q.add ("PART", "PART", "ImageName", "ImageName");
q.add ("ORDERITEM", "ORDERITEM", "PartAutoBucks",

"PartAutoBucks");
q.add ("ORDERITEM", "ORDERITEM", "AutoBucksEarned", "AutoBuck
sEarned");
q.add ("ORDERITEM", "ORDERITEM", "PartNum", "PartNum");
q.add ("ORDERITEM", "ORDERITEM", "ShippedFlag",

"ShippedFlag");
q.add ("ORDERITEM", "ORDERITEM", "OrderNum", "OrderNum");
q.add ("ORDERITEM", "ORDERITEM", "Notes", "Notes");
q.add ("PART", "PART", "AutoBucks", "AutoBucks");
q.add ("PART", "PART", "Make", "Make");
q.add ("PART", "PART", "Model", "Model");
q.add ("PART", "PART", "UnitOfSale", "UnitOfSale");

//END_QRYDEF_COLUMN_CTOR}}
300

UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS
The following code from the OrderItemJoinPart base implementation file defines the SQL text
and childmost data object for the query object:

Query object event blocks

Each query object implementation file provides event blocks where you can add your own
custom code that is executed at the specified event time. Versata Logic Studio preserves the
code in these blocks whenever objects are rebuilt and recompiled. In addition to the event
handlers that you write, Versata Logic Studio generates listener code to register an object as a
receiver of the event callback.

Exposed events for query objects include: afterQuery, beforeQuery, and
beforeResultSetFill.

For information about writing server event code, see “Adding files to a repository” on page
308.

Note: Query object base implementation files do not contain event blocks.

q.setSQL(" SELECT PART.Name AS Name, ORDERITEM.QtyOrdered AS QtyOrdered,
ORDERITEM.PartPrice AS PartPrice, ORDERITEM.Amount AS Amount,
ORDERITEM.PartAutoBucks AS PartAutoBucks, ORDERITEM.PartNum AS PartNum" +
 ", ORDERITEM.ShippedFlag AS ShippedFlag, ORDERITEM.OrderNum AS OrderNum,
ORDERITEM.Notes AS Notes, PART.AutoBucks AS AutoBucks, PART.Make AS Make,
PART.Model AS Model, PART.UnitOfSale AS UnitOfS" +
 "ale FROM <dbschema>.PART PART, <dbschema>.ORDERITEM ORDERITEM WHERE
PART.PartNum = ORDERITEM.PartNum");

q.setChildMostTableName("ORDERITEM");
301

UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS
The following example event code is from the CustQueryVirtuals implementation file in the
sample repository:

Other query object code blocks

The implementation files for query objects contain an additional block of code to contain any
custom factory methods that have been added to the object. You should add any other custom
methods after this block and before the end of the file.

//{{EVENT_CODE

//{{COMP_EVENT_beforeResultsetFill
public static void beforeResultsetFill(DataRow rowToBeAdded,
Response response)
{

System.err.println("CustQueryVirtual: " +
rowToBeAdded.getData("Name").getString());

Enumeration e = rowToBeAdded.getAllColumnValues();
Data d;
while (e.hasMoreElements())

{
d = (Data)e.nextElement(); // get Data Object
System.err.println(" Data: " + d); }

System.err.println(" CustQueryVirtual : " +
 rowToBeAdded.getData("AddressLine"));
rowToBeAdded.getData("AddressLine").setString("lll");
System.err.println(" CustQueryVirtual: " +
 rowToBeAdded.getData("Name").getString());

System.err.println("");

}
//END_COMP_EVENT_beforeResultsetFill}}

//END_EVENT_CODE}}
302

UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS
Remote and home interface files
The home and remote interface files, which are generated for each Versata Logic Server
business object, are used only for objects deployed as EJBs. These files allow remote clients
and objects to access business object methods.

Home interface file

The home interface file (<object>Home.java) defines methods called by remote clients or
objects to create, find, and remove instances of the EJB. This interface is used to obtain a
reference to an EJB’s remote interface. It provides bean creation and is similar to a class
factory in CORBA. Home interfaces for Versata Logic Server business objects extend
javax.ejb.EJBHome. The following example from the sample repository illustrates code in a
home interface file

package SampDB1;

import java.rmi.*;
import javax.ejb.*;
import java.util.*;
import versata.common.*;

/*
** Home Interface ORDERSHome
*/

public interface ORDERSHome extends javax.ejb.EJBHome {
public ORDERS findByPrimaryKey (PrimaryKey key) throws

RemoteException, FinderException;
public Enumeration findObjects(SearchRequest sr) throws

RemoteException, FinderException;
public ORDERS create(Properties values) throws

RemoteException, CreateException;
}

303

UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS
Remote interface file

The remote interface file (<object>.java) provides an interface that remote clients or
objects can use to invoke the business object’s methods after they have used the home
interface to gain access to the EJB. This interface adds support for transactions, security, and
threading. Remote interfaces for Versata Logic Server business objects extend
versata.common.BusinessObject. Each remote interface file inherits all generic methods
from versata.common.BusinessObject and may contain other methods that need to be
remotely accessible, such as instance methods. One of the most important generic methods
provided is a save() method that saves the business object on the Versata Logic Server to the
data source and can throw a VSORBException.

The following example from the sample repository illustrates code in a remote interface file.
This file does not include any remote methods. You need to add any methods you want to
make available remotely by copying them from the base implementation file or
implementation file.

import versata.vls.* ;
import java.util.* ;
import java.math.* ;
import java.rmi.* ;

/*
** interface ORDERS
*/

public interface ORDERS extends BusinessObject
{

public void purge() throws java.rmi.RemoteException;
}

304

UNDERSTANDING BUSINESS OBJECT FILES
GENERATED FILES FOR BUSINESS OBJECTS
Deployment descriptor file
The deployment descriptor file (<object>DD.xml) contains attribute and environment
settings that define how the EJB container invokes EJB functionality. The Versata Logic
Studio generates a deployment descriptor that contains all required settings. The following
example from the sample repository illustrates deployment descriptor settings for an entity
bean. Note that session beans require a few additional attribute settings: a state management
attribute, which defines the state of the session bean as either STATEFUL or STATELESS, and
a time-out attribute which defines the bean’s associated idle time-out value in seconds.

Note: Customizations to the deployment descriptor (<object>DD.xml) file, such as a change
to the jndi-name, may not be picked up during EJB deployment. To work around this
issue, make the necessary changes in the WebSphere Administrative Console after
deployment.

<entity-bean dname="SampDB1/ORDERS.ser">
<primary-key>versata.common.PrimaryKey</primary-key>
<re-entrant value="false"/>
<home-interface>SampDB1.ORDERSHome</home-interface>
<remote-interface>SampDB1.ORDERS</remote-interface>
<enterprise-bean>SampDB1.ORDERSImpl</enterprise-bean>
<jndi-name>SampDB1/ORDERS</jndi-name>

<transaction-attr value="TX_REQUIRED"/>
<isolation-level value="READ_COMMITTED"/>
<run-as-mode value="SYSTEM_IDENTITY"/>

<method-control>
<method-name>init</method-name>
<parameter>class java.util.Properties</parameter>
<parameter>class java.util.Properties</parameter>
<transaction-attr value="TX_MANDATORY"/>
<isolation-level value="READ_COMMITTED"/>
<run-as-mode value="SYSTEM_IDENTITY"/>
</method-control>

</entity-bean>
305

UNDERSTANDING BUSINESS OBJECT FILES
REVIEWING FILE PROPERTIES
Reviewing file properties
The Versata Logic Studio Explorer provides a dialog where you can review the properties of
repository business object files and user-defined files. This dialog, the File Properties dialog,
is available from both the Objects tab and Files tab of the Explorer.

The File Properties dialog displays the following information about the selected file:

n Name

n MS-DOS name

n Full path location

n Type (when opened from Files tab only)

Available types include: Generated Component File, Home Interface, Remote
Interface, Deployment Descriptor, and External File. Each External File is defined as
one of the following subtypes: Interface, XDA Connector, or Other. This subtype is
determined from comment text added by Versata Logic Studio when you add the file to
the repository, based on the menu options you select to add the file.

n Size (when opened from Files tab only)

n Date of creation

n Date of last modification

n Date of last access

n Whether it is a hidden, system, archive, or read-only file.

This dialog also allows you to modify the read-only attribute of the file.

Note: If a file’s attributes are changed outside of Versata Logic Studio while its File
Properties dialog is open, no notification is provided that the information in this dialog
is no longer accurate.

Reviewing file properties from the Objects tab

To open the File Properties dialog from the Objects tab of the Explorer:

1. Right-click an object and choose File Properties dialog.

The File Properties dialog opens, displaying a list of files associated with the object.

n Each data object has an Impl.java file and an .xml file. It may have a .csv file that
contains its data, one or more .xml files for any of its relationships with other data
objects, and interface and deployment descriptor files if it is deployed as an EJB.

n Each query object has an Impl.java file and an .xml file. It may have interface and
deployment descriptor files if it is deployed as an EJB.

2. In the dialog, select a file from the list box.
306

UNDERSTANDING BUSINESS OBJECT FILES
REVIEWING FILE PROPERTIES
Reviewing file properties from the Files tab

To open the File Properties dialog from the Files tab of the Explorer:

1. Right-click a file and choose File Properties dialog.

Modifying a file’s read-only attribute
The File Properties dialog allows you to modify a repository file’s read-only attribute.

To modify a file’s read-only attribute:

1. Open the File Properties dialog. If you have opened it from the Objects tab of the Explorer,
select a file in the list box.

2. Enable or disable the Read Only box.

n Click Apply to confirm the change and leave the dialog open.

n Click OK to confirm the change and close the dialog.

n Click Cancel to dismiss the dialog without any changes.

Note: A file that is read-only appears with a lock icon in the Versata Logic Studio Explorer.
After you make this file writable, the lock icon continues to display. To remove this
icon, choose Versata Logic Server � Refresh.
307

UNDERSTANDING BUSINESS OBJECT FILES
WORKING WITH EXTERNAL FILES
Working with external files
Files must be included in the repository or the classpath in order to be available for use with
Versata Logic Studio-generated applications. In certain circumstances, you may need to add
files to the repository (for example, custom Versata Connectors and subclasses of
versata.vls.DataObject). Generally, though, you need only add a file to the Versata
classpath so that the file can be located. For information about how you can make a file
available to Versata Logic Server business objects and applications without actually adding it
to the repository, see “Adding files and packages to the classpath” on page 310.

Adding files to a repository
To make an existing file available to a repository, you can either add it as a reference or copy it
into the repository. Referencing writes the location of the file into the repository metadata.
Copying writes the location of the file into the repository metadata and copies the file into a
standard subfolder for repository files. Copying a file makes it easier to manage as part of the
repository, for example when doing backups or compiling. Referencing a file allows you to
maintain the file in another location if you need it there for another purpose. In both cases, the
file is listed in the Versata Logic Studio Explorer.

If you have not yet created a file and you want it to be available to a repository, you have the
option of creating it in the Versata Logic Studio.

The Versata Logic Studio offers three menu options for making a file available to the
repository. These menu options are available on the Files tab of the Explorer when you right-
click the Versata Logic Server folder or one of its contained group folders:

n New File/New XDA Connector. Creates a new file in the repository and opens it in an
editor for you to write code or text.

n Add Files. Adds a reference to the existing file(s) in the repository.

n Add File Copies. Copies the existing file(s) into the repository.

Note: If you add a file with a name containing numbers, you may encounter compilation
errors.

Referencing an existing file in a repository (Add Files)

To reference a file in a repository:

1. On the Files tab of the Versata Logic Studio Explorer, right-click the folder where you
want to reference the file, and choose Add Files.

2. In the Import dialog, browse to the file, and click the Open button.
308

UNDERSTANDING BUSINESS OBJECT FILES
WORKING WITH EXTERNAL FILES
The file is added to the Versata Logic Studio Explorer listing, with red lines in its icon. The
file remains in its existing location on the filesystem and is not copied into a repository
subdirectory.

You can double-click the file icon to open it for editing. If it is a Java file, it opens in the
Code Editor. If it is a text file, it opens in Notepad.

Copying an existing file into a repository (Add File Copies)

To copy a file into a repository:

1. On the Files tab of the Versata Logic Studio Explorer, right-click the folder where you want
to copy the file, and choose Add File Copies.

2. In the Import dialog, browse to the file, and click Open.

The file is added to the Versata Logic Studio Explorer listing, with red lines in its icons.
Also, the file is copied into the appropriate repository subdirectory.

You can double-click the file icon to open it for editing. If it is a Java file, it opens in the
Code Editor. If it is a text file, it opens in Notepad.

Creating a new file in a repository

To create a new file in a repository:

1. On the Files tab of the Versata Logic Studio Explorer, right-click the folder where you want
to create the file, and choose New XDA Connector or New File.

2. In the Choose File Name dialog, enter a name for the file. If the file is a Java file, you can
omit the extension. For a text file, enter the extension.

3. If the file is a Java file, complete the Create XDA Connector Class or Create Java Class
dialog. This dialog provides the name of the package to include the new file, the name of
the interface it implements, and the name of the superclass it extends.

For Versata Connectors, this dialog displays defaults for the implemented interface
(XDAConnector) and extended class (XDAConnectorImpl). For all Java files, this dialog
displays a default package name that matches the repository name. Edit these defaults and
make additions as necessary.

4. Click the Finish button when you are done.

The file is added to the Versata Studio Explorer listing. If it is a Java file, it opens in the
Code Editor. If it is a text file, it opens in Notepad.

5. Write code or text in the file. To save the file, click the Save toolbar button, or choose the
Save menu option from the File menu.
309

UNDERSTANDING BUSINESS OBJECT FILES
WORKING WITH EXTERNAL FILES
Removing a user-defined file from a repository
The Versata Logic Studio Explorer provides a right-click menu option you can use to delete a
non-generated file from a Versata repository. This option allows you to completely delete the
file from the filesystem, or just to delete its reference from the repository and leave it on the
filesystem.

An option to move files also is available. For information about this option, see “Working with
groups” on page 68.

To remove a file from a Versata repository:

1. On the Files tab of the Versata Logic Studio Explorer, right-click the file and choose
remove.

2. Click a button in the Versata Action Choice dialog:

n To remove the file reference from the repository and remove the actual file from the
filesystem, click Yes.

n To remove only the file reference and leave the file on the filesystem, click No.

n To dismiss the dialog without any action, click Cancel.

If you have added a copy of the file or newly created it in the repository, you most likely
will want to click Yes. If you have added a file reference to the repository and the file itself
is located elsewhere on the filesystem, you most likely will want to click No. If you are not
sure where the file is located on the filesystem, review the full path displayed in the Action
Choice dialog.

Note: If you added a Java file using the Add Files option, meaning you added a reference but
did not copy it to the repository, if you choose Remove and click Yes, not all class files
associated with the Java file are removed. The class file with the same name is
removed, but not all of the inner classes.

Adding files and packages to the classpath
You can set up and add files and packages to the classpath in the following ways:

n Add files, folders, and packages that you plan to use globally for all Versata Logic Suite
projects to the Environment Options dialog. To open this dialog, choose Tools � Options
from the Versata Logic Studio main menu. The Classpaths tab in this dialog provides
separate text boxes to enter files and folders used by the client, those used by the server,
and those used by both. Files and folders entered in this dialog always appear in the class
path.
310

UNDERSTANDING BUSINESS OBJECT FILES
WORKING WITH EXTERNAL FILES
n Register files that you plan to use sometimes in the Enterprise Object Browser. To register
a file, when it is open, choose Tools � Add Object to System Registry from the Versata
Logic Studio main menu. To open the Enterprise Object Browser, choose Tools �
Enterprise Object Browser.

Once you have registered a file in the Enterprise Object Browser, you can indicate whether
it is used by a Versata Logic Studio-generated application by enabling or disabling its
check box in the Application References dialog. Open this dialog by choosing Application
� References from the Versata Logic Studio main menu.

You can indicate whether the file is used by business objects by enabling or disabling its
check box in the Versata Logic Server References dialog. Open this dialog by choosing
Versata Logic Server � References from the Versata Logic Studio main menu. For more
information about referencing objects, see “Referencing registered objects” on page 312.

Note: You cannot register a folder or package in the Enterprise Object Browser. You can only
register individual files.

Registering objects

Registering a file makes the objects in the file, and their locations, available to the system
environment. Registered object classes are available to all repositories for referencing and
copying, but their source code generally is not available.

You may register the following types of files: COM objects, Java class files, JavaBeans, and
Enterprise JavaBeans (EJBs). These files have the following extensions: .class, .jar,, .zip
and .idl.

To register an object:

1. In the Versata Logic Studio, choose Tools � Add Object to Registry.

2. In the dialog that appears, select the object type, then click the Add button.

3. In the browser dialog that appears, browse to the file and click the Open button.

To view registered objects:

From the Versata Logic Studio main menu, choose Enterprise Object Browser from the Tools
menu.
311

UNDERSTANDING BUSINESS OBJECT FILES
WORKING WITH EXTERNAL FILES
Enterprise Object Browser

The Enterprise Object Browser displays registered objects, including classes provided with
Versata Logic Suite and any other libraries registered by developers, as well as all object
classes in the currently open repository. In the Enterprise Object Browser, you can select a
class and display its members (methods and variables). You can copy the name for a class or
member and copy the definition for a member, in order to paste it into a file. For classes and
members for objects contained in the repository, you also can view source code.

n The System and Repository options allow you to choose whether to view objects contained
in the currently open repository or other objects available on the system.

n The Object Libraries drop-down list allows you to choose a category of registered objects
to display.

n The Methods and Variables frames allow you to specify which categories of members to
display for a selected class.

n To display members for a class, select it in the Classes list box.

n Click the Refresh button to display objects that have been newly registered since the
Enterprise Object Browser opened.

n The Copy Name, Copy Definition, and View Source Code buttons are enabled according
to the item currently selected in the browser.

Note: Do not rename an object when the Enterprise Object Browser is open. If you do this,
the Enterprise Object Browser shuts down with no warning.

Referencing registered objects

Once you have added an object to the system registry for Versata Logic Studio, you can
reference it in repository objects. In order for the repository object to find the referenced
object in run time, you need to add it to the project classpath.

The Versata Logic Server dialog and the Application References dialog (with presentation
design only) in the Versata Logic Studio allow you to indicate objects to be referenced. All
registered libraries are listed in these dialogs. To open a dialog, choose References from the
Versata Logic Server menu or Application menu.

n Local References. On this tab you can indicate registered Java classes and Beans that are
referenced. The Versata Logic Server ensures that the referenced objects are on the
classpath when applications are run locally. You need to manually copy the files to the
correct location when deploying, and set the classpath to that location.

n Remote References. On this tab you can indicate objects containing methods to be
invoked remotely. The objects on this tab contain the stub interfaces required for remote
access. The Application Deployment wizard for Versata Logic Studio-generated Java
applications can automate copying of the referenced package(s). For Versata Logic Server
references and HTML application references, you need to copy objects manually and set
the classpath to the correct location.
312

UNDERSTANDING BUSINESS OBJECT FILES
USING A CODE EDITOR
Using a code editor
The Versata Logic Studio provides an integrated Code Editor that you can use to view code for
generated Java files and external Java files that you have added to the repository. You also
have the option of viewing and modifying Versata repository files’ code in an external Java
code editor. You set this option in the Environment Options dialog. You can use each editor at
different times. If you press the SHIFT key while choosing a menu option to view a file’s code,
the non-default editor is used.

Using an external Java code editor
The Executables tab of the Versata Logic Studio’s Environment Options dialog includes a
Default Java Code Editor option. Your selection for this option indicates which program to use
to display repository Java files whenever they are opened in the Versata Logic Studio. By
default, the option on this tab is set to use the Versata Code Editor.

To use an external Java code editor by default:

1. Choose Tools � Options from the Versata Logic Studio main menu.

2. In the Environment Options dialog, choose External Java Editor for the Default Java Code
Editor option.

3. Enter or select the full path of the external Java code editor. You can click the Browse for
File button to find the file.

4. Click OK.

To use an external Java code editor when the default is the Versata Code Editor:

1. Ensure that the full path of the external Java code editor is entered in the Environment
Options dialog, but leave the Versata Code Editor selected as Default Java Code Editor.

2. As you are choosing an Explorer menu option to view a file’s code, press the SHIFT key.

Using the Versata Code Editor
The main purpose of the Code Editor is to write event-handling code, subclasses, and other
custom code in the Java code files generated by the Versata Logic Studio. When you open
these files in the Code Editor, smart code blocking indicates which code is editable and which
code should not be modified. The Code Editor also may be used as a built-in text editor to edit
files not generated by the Versata Logic Studio, or to create new files. You can open multiple
instances of the Code Editor at one time in order to edit multiple files at once.
313

UNDERSTANDING BUSINESS OBJECT FILES
USING A CODE EDITOR
Note: You can edit generated files for business objects in the Versata Java Code Editor. You
also can edit files generated for application user interfaces. For details on the generated
files that can be edited, see “Tips for editing code in the Versata Code Editor” on page
317.

Viewing code in the Versata Code Editor

Before you begin adding event handlers or writing other custom code in Versata Logic Studio-
generated files, it is a good idea to become familiar with their contents. The Versata Code
Editor allows you to view all code in generated files.
314

UNDERSTANDING BUSINESS OBJECT FILES
USING A CODE EDITOR
Full Mode View

The following screenshot illustrates the Full Mode View of the Versata Code Editor. This is the
default setting. This view allows you to scroll through all of the object’s code from beginning
to end. To view code for a particular method or contained object, select it from the Members
drop-down list.

Figure 18 Full Mode View of Code Editor
315

UNDERSTANDING BUSINESS OBJECT FILES
USING A CODE EDITOR
Event Mode View

The following screenshot illustrates the Event Mode View of the Versata Code Editor. This
View allows you to view code for a selected event. To set the Code Editor to this View, click
the Event Mode view button, the right button of the two available. To view code for an event,
select it from the Events drop-down list. If the open file is for an application form or page, first
select an object from the Objects drop-down list.

Note: The Event Mode View is not available for objects’ base implementation files, because
these files do not contain event blocks.

Figure 19 Event Mode View of Code Editor
316

UNDERSTANDING BUSINESS OBJECT FILES
USING A CODE EDITOR
Smart code blocking

When you edit code generated by the Versata Logic Studio, the Code Editor uses smart code
blocking to protect code that you should not change.

Code is generated in code blocks. Each code block is designated by these markers:

To help you identify editable text within generated files, Versata Logic Suite color codes text.
Black text is editable; gray and green text is not.

Note: To edit generated code, always use the Code Editor. Other IDEs do not implement smart
code blocking and color-coding, so you may inadvertently make changes in a block of
generated code rather than in a block reserved for your additions. If you make changes
in a block of generated code, the block is regenerated the next time the object is built
and your edits are lost.

Tips for editing code in the Versata Code Editor

Review the following tips before you begin editing code in the Versata Code Editor.

n To include references to existing methods, variables, or other code, double-click the text in
the Code Editor Explorer to enter it automatically where the cursor is positioned.

n The Code Editor Explorer provides syntax helpers that you can use to set up expressions
correctly in your custom code. To add other text, type it in as you would in any other editor.

n The following expressions are available in the Syntax Helpers list in the Code Editor
Explorer: if, while, switch, for, System.out.printIn. To add helpers to the list,
edit the file VSSyntax.txt in the Versata Logic Suite root installation directory.

n If you are adding code to a generated file, ensure the cursor is positioned in the correct
block, usually an event block. To find an event block, click the Event Mode View button in
the Code Editor and select an event from the Events drop-down list.

n To edit event code in HTML applications, use one of the following methods. In the Code
Editor, click the Event Mode View button, and select a page object and an event from the
drop-down lists. Or in the application diagram, select a page node, and choose Application
� View Server Page Events from the popup menu, then in the Code Editor, select an event
from the drop-down list. In either case, add code in the designated area.

n To restrict other developers from changing the methods and variables in a class you have
written, declare the class using the final keyword. A method declared with the final
keyword cannot be overridden and a variable declared with the final keyword cannot
change from its initialized value.

//{{BlockName
<code>
//END_BlockName}}
317

UNDERSTANDING BUSINESS OBJECT FILES
USING A CODE EDITOR
Opening the Versata Code Editor as a simple text editor

The File � New File and File � Open File commands open the Code Editor as a simple text
editor. Smart code blocking is disabled, so you should not use these commands to edit
generated files. The files that you edit using these commands are not associated automatically
with the repository or added to the metadata. If you want to add these files to the repository,
you must do so explicitly. For information, see “Adding files to a repository” on page 308.

Printing code from the Versata Code Editor

When a file is open in the Versata Code Editor, Versata Logic Studio’s File menu includes two
print options you can use to print the code in the open file. The Print <File_Name> option
prints all code in the open file. The Print Custom Code option prints the code you have added
to the file.

Types of files that can be edited in the Versata Code Editor

You can edit the following types of files in the Versata Code Editor:

n Implementation files for data objects and query objects. From the Objects view of the
Versata Logic Studio Explorer, right-click an object and choose Open File�
Implementation. Or, from the Files view, right-click a file and choose Edit, or double-click
the file.

To edit server event code in these files: in the Code Editor, click the Event Mode View
button and select an event from the drop-down list. Add code in the designated area.

Note: You cannot edit base implementation files in the Code Editor. You can, however,
review their contents and copy from them.

n Java interface files for data objects and query objects. From the the Files view of the
Versata Logic Studio Explorer, right-click a file and choose Edit, or double-click the file.

n Deployment descriptor files for data objects and query objects. From the Files view of
the Versata Logic Studio Explorer, right-click a file and choose Edit, or double-click the
file. Note that the Code Editor does not provide Mode View buttons or drop-down lists for
this type of file, because it is in XML and does not contain methods or events.

n Other files in the repository. From the Files view of the Versata Logic Studio Explorer,
right-click a file in the Other Files folder and choose Edit.

n Server page files (p<page_name>.java) for HTML applications. The application must
be open. In the application diagram, select a page node and choose Application � View
Server Page Code. Or from the Objects view of the Versata Logic Studio Explorer, right-
click a page and choose View Server Page Code from the popup menu. Or from the Files
view, right-click a server page file and choose Edit.
318

UNDERSTANDING BUSINESS OBJECT FILES
USING A CODE EDITOR
To edit event code in these files: in the Code Editor, click the Event Mode View button, and
select a page object and an event from the drop-down lists. In the application diagram,
select a page node, and choose Application � View Server Page Events from the popup
menu. In the Code Editor, select an event from the drop-down list. Add code in the
designated area.

n Form files (f<form_name>.java) for Java applications. The application must be open.
In the application diagram, select a form node and choose Application � View Code. Or
from the Objects view of the Versata Logic Studio Explorer, right-click a form and choose
View Code from the popup menu. Or from the Files view, right-click a form file and
choose Edit.

To edit event code in these files: in the Code Editor, click the Event Mode View button, and
select a control and an event from the drop-down lists. Or in the Form Designer, right-click
a control and choose Events. In the Code Editor, select an event from the drop-down list.
Add code in the designated area.

n Other application user interface files. The application must be open. From the Files view
of the Versata Logic Studio Explorer, right-click a file and choose Edit.

n Other existing Java files outside of the repository. From Versata Logic Studio’s main
menu, choose File � Open File. In the dialog that appears, browse until you find the file,
then double-click it to open it.

n New Java files you want to create. For example, you may want to create subclasses of
Versata classes, or create a custom Versata Connector. From the Versata Logic Studio’s
main menu, choose File � New File. In the dialog that appears, browse until you reach the
location where you want to save the file, enter a name for the file, and click the Open
button. In the confirmation dialog, click the Yes button.

Note: Event code is placed in the correct event block of the source code automatically. You do
not need to create listeners or adapters for events because the Versata Logic Studio
creates them as needed.

Some objects, such as data objects, can be edited in the Versata Code Editor but not
created there, because they are created with wizards. Other objects, such as archetypes
and data object attributes, have their own editors and cannot be edited in the Versata
Code Editor.
319

UNDERSTANDING BUSINESS OBJECT FILES
USING A CODE EDITOR
320

CHAPTER 10 Extending Business Object
Code
321

EXTENDING BUSINESS OBJECT CODE
CHAPTER OVERVIEW
Chapter overview
Read this chapter for an introduction to extending business object code and examples of some
common extensions. After reading this chapter, if you have limited experience with Java and
EJBs, you should be able to copy some of the simpler event-handling code, and you should
have a basic understanding of other possible customizations. If you have more extensive Java
knowledge, you should be able to begin adding custom code to business objects.

This chapter includes the following:

n “Types of custom code” on page 323, provides a table listing the different types of
extensions possible for Versata Logic Suite applications and objects, including those
documented outside of this chapter.

n “Methods for instantiating business objects” on page 326, introduces the factory and
instance methods used by the Versata Logic Server to create objects from Transaction
Logic Designer definitions.

n “Server event-handling model” on page 333, introduces the event model for Versata Logic
Server business objects and discusses how to add custom event code.

n “Subclassing business object classes” on page 339, provides instructions for subclassing
versata.vls.DataObject, as well as some general information about subclassing
Versata Logic Server classes.

n “Calling business object code from client applications” on page 341, describes how client
applications created in the Versata Logic Studio access data from Versata Logic Server
business objects, including the following specialized functionalities.

n “Remote object access” on page 348

n “Recomputing derivations” on page 354

n “Computing results without saving” on page 355

n “Java mail integration” on page 358

n “SQL expression evaluator” on page 364, describes this Versata Logic Server feature.

n “Working with Versata Logic Server security properties” on page 375, introduces Versata
Logic Server security APIs.

n “Working with JTS transaction management” on page 377, explains the choice between
using the Versata Logic Server or IBM’s implementation of JTS for transaction
management.
322

EXTENDING BUSINESS OBJECT CODE
TYPES OF CUSTOM CODE
Types of custom code
The following table provides an overview of the types of custom code you can add to the files
generated by the Versata Logic Studio. This table includes user interface files as well as
business object files. Many of these customizations can be completed in the Versata Code
Editor but not all of them. For more detailed information about editing user interface files, see
the relevant chapters in Application Developer Guide.

Type of customization Where to customize and effects of customization

Archetypes Create a copy of a system archetype and save it as a repository or
application archetype, then you can edit archetype macro code.
Editing techniques are different for HTML and Java applications.
Putting custom code into archetypes allows you to reuse it for all
objects of a certain type across your repository.

Extended properties When you set extended properties for an object, the Versata Logic
Studio generates custom code.

For data objects, set extended properties on the
Properties:Extended tab of the Transaction Logic Designer.

For attributes, set extended properties on the Attributes:Extended
tab of the Transaction Logic Designer.

For query objects, set extended properties on the
Properties:Extended tab of the Transaction Logic Designer.

For relationships, set extended properties on the
Relationships:Extended tab of the Transaction Logic Designer.

For HTML user interface objects, set extended properties in the
properties sheets in the Application Designer.

For Java user interface objects, set extended properties in the
properties sheet in the Form Designer; for transitions and picks,
you also can set properties in the Application Designer properties
sheets.
323

EXTENDING BUSINESS OBJECT CODE
TYPES OF CUSTOM CODE
Event-handling code The Versata Logic Studio exposes both transaction logic (server)
events and presentation (client) events. You can browse to the
appropriate event blocks in the Versata Code Editor, where you can
add code that is automatically preserved when objects are rebuilt.

Server code

Each data object and query object has events to which you can add
code. The event blocks are in the generated implementation files.
The events relate to data changes.

The Versata Logic Studio generates event listeners for server
events.

Client code

In HTML applications, client event coding is done in the generated
file for each server page. The events exposed vary according to the
type of HTML element.

In Java applications, each control on a form has events to which
you can add code, in the generated form file. The events exposed
vary according to the type of Java control.

Events generally relate to user actions. For data sources/data
controls, events relate to data changes.

When you add code to the event block, you ensure that it gets
iterated over changes and rebuilds to your application.

The Versata Logic Studio generates event listeners and event
adapters for client events.

Type of customization Where to customize and effects of customization
324

EXTENDING BUSINESS OBJECT CODE
TYPES OF CUSTOM CODE
Subclasses The Versata Logic Suite supplies packages of many of the classes it
uses to generate business objects and applications. You can
customize behavior by creating subclasses of these and using the
subclasses to create some objects. To subclass, you need to create a
new file. In this file, you need to declare that the subclass extends
the class, and add custom variables or methods.

Server side

You can subclass versata.vls.DataObject and use it to
generate data objects with custom methods. For more information,
see “Server event-handling model” on page 333.

Client side

For HTML applications, any element may be subclassed. Select the
Class Name in the properties sheet for the application object in the
Application Designer or use versata_class in the HTML text
for the page.

For Java applications, you can subclass versata.vfc.VSForm
to create a custom form or subclass any of the versata.vfc.*
classes used to create custom Java controls. Set the ClassName in
the properties sheet for the control in the Form Designer.

Other server methods You can write your own methods. You then can add these methods
directly to a business object file as custom code. Or you can
reference the methods in the context of rule expressions.

Versata Connectors If you add data objects for non-SQL data sources to your
repository, or you want to provide specialized data access for a
SQL data source, you need to write your own Versata Connectors.

The Versata Logic Studio provides a wizard to set up the structure
of a Versata Connector and open it in a Code Editor where you can
add the code. You also will need to set up a data server type for the
Versata Connector in the Versata Logic Server Console. For more
information, see “Creating custom Versata Connectors” on page
391.

Importing third-party classes You can import an entire library of classes to add or extend
functionality. Imported classes can modify the behavior of existing
methods or provide additional functionality. For example, you
could use an import statement to add a third-party class.

Write the custom import statement after the generated Import
block. Add all classes that you are importing as packages to the
classpath in order for them to be globally available for Versata
Logic Server objects and applications.

Type of customization Where to customize and effects of customization
325

EXTENDING BUSINESS OBJECT CODE
METHODS FOR INSTANTIATING BUSINESS OBJECTS
Methods for instantiating business objects
This section describes system-supplied methods used to create instances of Versata Logic
Server business objects and populate their attributes. The methods used to instantiate objects
are called factory methods. The methods used to populate objects’ attributes are called
instance methods. For more information about these methods, see the Versata Class Libraries
help (vfc.hlp) installed with the product.

Factory methods
Versata Logic Suite factory methods are methods used to instantiate objects. They are static
methods that do not require an instance of a class in order to be invoked. Each implementation
file for a Versata Logic Server business object includes factory methods, used to produce an
object or objects against which rules code can be executed. The following are factory
methods:
n getNewObject

n getObjectByKey

n getObjects

n getMetaQuery

All of these methods throw VSORBException when errors occur. Note that when clients need
to instantiate business objects for remote access, they use different techniques.

The getNewObject method is called in objects’ implementation files. The getObjectByKey
and getObjects methods are called in objects’ base implementation files. The
getMetaQuery method is called in both the base implementation files and the
implementation files.

The following code examples from the sample repository show factory methods in the base
implementation file and implementation file for the CUSTOMERS data object.
326

EXTENDING BUSINESS OBJECT CODE
METHODS FOR INSTANTIATING BUSINESS OBJECTS
This example illustrates the getMetaQuery and getNewObject methods in an
implementation file:

//{{COMPONENT_RULES
public static VSMetaQuery getMetaQuery() {

 //return CUSTOMERSBaseImpl.getMetaQuery();
return getMetaQuery("CUSTOMERS", "SampDB1");

}
public static CUSTOMERSImpl getNewObject(Session session, boolean

makeDefaults)
{

return new CUSTOMERSImpl(session, makeDefaults);
}

//END_COMPONENT_RULES}}
327

EXTENDING BUSINESS OBJECT CODE
METHODS FOR INSTANTIATING BUSINESS OBJECTS
This example illustrates the getObjectByKey method in a base implementation file:

/**
*

* Factory method to create an object based on the unique key value which
* returns an object matching the key value.
* @param searchReq as SearchRequest : the key value as a SearchRequest object.
* @param aSession as Session : object to be associated with the objects.
* @return the object matching the Unique key.
*/
public static DataObject getObjectByKey(SearchRequest key, Session aSession)

throws ServerException
{

if (aSession.getSecurityCheck()) {
try {
if

(!aSession.getMyPrivilegeToObjectName(DataConst.AppObjectPrivilegeImpl_READ,
"CUSTOMERS", DataConst.AppObjectTypeCodeImpl_BUSINESS_OBJECT)) {

throw new ServerException("", VSErrors.VSMSG_SecurityNoReadAccess,
"business", "CUSTOMERS","", null);

}
}
catch(VSORBException e) { e.printStackTrace();}

}

raiseBeforeQueryEvent(key, aSession);

if (aSession.isTransactionInProgress()) {
return

aSession.getTransactionInfo().getObjectByKey(CUSTOMERSBaseImpl.getMetaQuery(),
key);

} else {
return aSession.getObjectByKey(CUSTOMERSBaseImpl.getMetaQuery(),key);

}
}

328

EXTENDING BUSINESS OBJECT CODE
METHODS FOR INSTANTIATING BUSINESS OBJECTS
This example illustrates the getObjects method in a base implementation file:

This example illustrates the getMetaQuery method in a base implementation file:

/**
*

* Factory method to get objects based on the filter (String), which returns
* an enumeration of objects matching the filter.
* @param searchReq as SearchRequest : the filter as a String. (e.g. State =
’NY’).
* @param aSession as Session : object to be associated with the objects.
* @return Enumeration of objects matching the filter criteria.
*/
public static Enumeration getObjects(String filter, Session s) {

SearchRequest searchReq = new SearchRequest();
searchReq.add(filter);
return getObjects(searchReq, s);

}

/**
*

* MetaQuery on the component. This method returns a class defining
* the meta information of the component.
* @return VSMetaQuery : Meta data info class for the component.
*/
public static VSMetaQuery getMetaQuery() {

return q;
 }
329

EXTENDING BUSINESS OBJECT CODE
METHODS FOR INSTANTIATING BUSINESS OBJECTS
Example of a custom factory method

You also can write your own factory methods that return an object or an array of components
other than the standard ones created in generated business objects. The following custom
factory method code is from the DEPARTMENTImpl.java file in the sample repository.

Instance methods
Instance methods can be invoked after a class has been instantiated as an object. The Versata
Logic Studio generates instance methods for each data object. You also can write your own
instance methods. Instance methods are called on an object instance once a handle is obtained
to the object and objects have been gathered by the caller using a static method. These
methods sometimes are referred to as “getters” and “setters”.

Note: Instance methods are not provided for query objects. SQL text is used instead of
“getters” for data retrieval. No “setters” are required, because query object attribute
values are stored only as part of underlying data objects.

public BusinessObjectCollection getAllSubDepartments() {
Vector depts = new Vector();
getMyDepartments(depts, this);
BOCollectionImpl objImpl = new BOCollectionImpl(depts.elements(),

getMetaQuery());
try {

return
(BusinessObjectCollection)ServerEnvironment.getFactoryImpl().makeRemoteReferen
ce((Object)objImpl);

}
catch (Exception e) {

e.printStackTrace();
}
return null;

}

public void getMyDepartments(Vector depts, DEPARTMENTImpl dept) {
Enumeration depList = dept.getSubDepartments();
while (depList.hasMoreElements()) {

DEPARTMENTImpl dep = (DEPARTMENTImpl) depList.nextElement();
depts.addElement(dep);
getMyDepartments(depts, dep);

}

330

EXTENDING BUSINESS OBJECT CODE
METHODS FOR INSTANTIATING BUSINESS OBJECTS
Business objects can be exposed to the client and to remote server objects if they are deployed
as EJBs. Instance methods then can be made available remotely for remote method invocation
from clients. In this case, you can get an object instance by calling
row.getBusinessObject() on any row in a result set before invoking an instance method.
For more information, see “Calling business object code from client applications” on page
341.

System-supplied instance methods

The Versata Logic Suite provides methods for each data object instance that obtain and set
values for its attributes. These methods are contained in the rules block of the implementation
file. Each attribute has a get<Attribute_Name>, set<Attribute_Name>, and
getOld<Attribute_Name> method. This last method gets the value of the attribute before
the most recent update. Virtual attributes are exceptions, because they have only a get
method. Because their values are not stored, they cannot be set and old values cannot be
obtained.

The data type for get and set methods is determined by the native data type for the attribute.
For example, if the attribute’s data type is a string, then the get and set methods return string
values.

The following are examples of get, getOld, and set methods from the CUSTOMERS data
object in the sample repository.

/**
*

* method to get the City attribute for the CUSTOMERS
* @return String : the value of the attribute City as String.
*/
public String getCity()
{

return getData("City").getString();
}

331

EXTENDING BUSINESS OBJECT CODE
METHODS FOR INSTANTIATING BUSINESS OBJECTS
Examples of custom instance methods

The following are example instance methods that could be added to a CUSTOMERS data
object:

n Public void placeOnHold() Updates the CUSTOMERS data object. Other
mechanisms can accomplish this effect, such as calling the save method after the row
value changes, but this method makes client coding much simpler and adds functionality,
such as additional security constraints and removal of existing back orders.

n Public CustomerHistory() get12MonthCreditHistory() Passes objects to the
client, which could display the information in an existing JavaBean or make it the data
source of a VSJavaDataControl in a Java application.

n Public String getCreditReport() Connects to a credit agency to get a report using
stored customer data as input, formats the result as an HTML string, and returns it to the
client. Presumably, the client would then fire a second browser instance to display the
information.

The calls to these routines might be added as event code on client buttons or included in client
batch programs. They can be called from other server code as well and can be called from a
business rule, although this would have to be routed through a utility class.

/**
*

* method to get the old City attribute for the CUSTOMERS
* @return String : the value of the old attribute City as String.
*/
public String getOldCity()
{

return getData("City").getPreviousString();
}

/**
*

* method to set the City attribute for the CUSTOMERS
* @param String : value of the attribute City as String.
* @return nothing
*/
public void setCity(String value)
332

EXTENDING BUSINESS OBJECT CODE
SERVER EVENT-HANDLING MODEL
Server event-handling model
Most developers are familiar with the client-side event-driven programming model. This
model divides code into segments related to events, which are distinct actions that users can
initiate, for example, clicking a button. You can add code to an event in an application user
interface, in order to modify the way it an event is processed.

The Versata Logic Server uses a similar event-driven model to simplify the addition of custom
Java code that modifies business rules and data processing. Each business object exposes a
number of distinct events in Versata Logic Server processing, which are implemented as Java
listeners.

You will use these events to provide event handlers for specific situations. For example, you
could use the beforeCommit event for an order to enforce a validation. Event handlers also
could be used to provide security handling.

Transaction logic event code blocks are located in the <business_object>Impl.java file
for the data or query object. The Versata Code Editor allows you to review the generated
transaction logic events for these business objects. You can use the Verata Code Editor to add
or modify event-handling code to be executed for each event. After you have added code, the
Versata Logic Studio incorporates it into the event blocks for the data object or query object.
This code is preserved when the files are rebuilt. For information about using the Versata Code
Editor or an external code editor, see “Using a code editor” on page 313.

For a description and example of data object event code, see “Data object event blocks” on
page 296. For a description and example of query object event code, see “Query object event
blocks” on page 301.

How event-handling works
Objects receive events to which they have registered. They register to events by implementing
listener interfaces defining events. Listeners respond to an event by providing a callback
method that corresponds to the event.

Each server event object is subclassed from the superclass versata.vls.VLSEvent. All
server listener interfaces are subclassed from versata.vls.VLSEventsListener.

Exposed events for data objects include: afterCommit, afterDelete, afterInsert,
afterQuery, afterRollback, afterUpdate, beforeCommit, beforeDelete,
beforeInsert, beforeQuery, beforeResultSetFill, beforeRollback, and
beforeUpdate.

Exposed events for query objects include afterQuery, beforeQuery, and
beforeResultSetFill.
333

EXTENDING BUSINESS OBJECT CODE
SERVER EVENT-HANDLING MODEL
Types of events
Business objects expose two types of events:

n Transactional events. Occur when a transaction is processed, modifying data. These
events are exposed for data objects.

n Query events. Occur when data are retrieved. These events are exposed for both data
objects and query objects.

Order of processing for commit events
Commit events fire before commit and after commit of data to the data source.
beforeCommit events occur after all rules processing for all objects in the transaction is
complete. The following provides a rough outline of the processing sequence for saving two
objects and committing the transaction:

Object1.save

Object1.beforeUpdate events

*** rules processing (no database save)

Object1.afterUpdate events

Object2.save

Object2.beforeUpdate events

Type of event Event

Transactional afterCommit

afterDelete

afterInsert

afterRollback

afterUpdate

beforeCommit

beforeDelete

beforeInsert

beforeRollback

beforeUpdate

Query afterQuery

beforeQuery

beforeResultSetFill
334

EXTENDING BUSINESS OBJECT CODE
SERVER EVENT-HANDLING MODEL
*** rules processing (no database save)

Object2.afterUpdate events

***raise before commits to all updated objects

Object1.beforeCommit events

Object2.beforeCommit events

***send updates to database

Object1.save to database

Object2.save to database

*** commit the transaction

Object1.afterCommit events

Object2.afterCommit events

Note: Code for afterCommit events is executed after each row is saved.

Adding server event-handling code

To review or modify event-handling code for a data object or query object:

1. In the Versata Logic Studio Explorer, click the Files button and double-click the object’s
implementation file to open it in the Versata Code Editor.

2. The Code Editor has two buttons in its upper left corner; click the right button. Select an
event from the drop-down list box.

3. Add event-handling code below the words “Write Event Code below this line”.

4. Choose File � Save File.

Event-handling code examples
The sample repository includes examples of server event-handling code that you can use as
models to write your own event handlers. Event-handling code is added to a business object,
while code utilizing the server logic is in a sample application.
335

EXTENDING BUSINESS OBJECT CODE
SERVER EVENT-HANDLING MODEL
The following code from the EMPLOYEES data object in the sample repository records any
salary changes in the EMPLOYEESAUDIT data object. You can run the
Server_EventAction_CreateChildren application in the sample repository to see how
this event-handling code executes.

public void afterUpdate(DataObject obj)
{

//Write Event Code below this line.

long empId = ((EMPLOYEESImpl) obj).getEmpID();
BigDecimal newSalary = getSalary();
BigDecimal oldSalary = getOldSalary();

if ((!isNull("Salary") && isOldNull("Salary")) || (isNull("Salary")
/&& !isOldNull("Salary")) || (!newSalary.equals(oldSalary))) {

EMPLOYEESAUDITImpl empSalHist =
EMPLOYEESAUDITImpl.getNewObject(getSession(), true);
empSalHist.setOldSalary(oldSalary);
empSalHist.setNewSalary(newSalary);
empSalHist.setEmployeeID(empId);
empSalHist.save(); }

}

336

EXTENDING BUSINESS OBJECT CODE
SERVER EVENT-HANDLING MODEL
The following code from the ORDERS data object in the sample repository prevents the
insertion of null orders (orders without any order items). This code is added to the
beforeCommit event, because its transaction logic can be executed properly only after
updates have been processed. You can run the Server_Event_Commit application in the
sample repository to see how this event-handling code executes.

public void beforeCommit(Session session, Response response)
{

db("Order>>beforeCommit with getOrderTotal=" +
getOrderTotal());

String isUseTransForSave =
session.getProperty("isUseTransactionForSave");
if (isUseTransForSave != null &&
isUseTransForSave.equalsIgnoreCase("true")) {
db("..checking Order Total to assure some items placed");
if (getOrderTotal().compareTo(new BigDecimal("0.01")) == -1
{ // less than 0.01
raiseException("Sorry, Orders must have Line Item

Information"); } }
}

337

EXTENDING BUSINESS OBJECT CODE
SERVER EVENT-HANDLING MODEL
The following code from the CustQueryVirtuals query object in the sample repository
provides an example of a beforeResultSetFill event handler. You can run the
Server_Event_QueryAttributes application in the sample repository to see how this
event-handling code executes.

public static void beforeResultsetFill(DataRow rowToBeAdded,
Response response)
{

System.err.println("CustQueryVirtual: " +
 rowToBeAdded.getData("Name").getString());

Enumeration e = rowToBeAdded.getAllColumnValues();
Data d;
while (e.hasMoreElements())

{
d = (Data)e.nextElement(); // get Data Object
System.err.println(" Data: " + d); }

System.err.println(" CustQueryVirtual : " +
 rowToBeAdded.getData("AddressLine"));
rowToBeAdded.getData("AddressLine").setString("lll");
System.err.println(" CustQueryVirtual: " +
 rowToBeAdded.getData("Name").getString());

System.err.println("");

}

338

EXTENDING BUSINESS OBJECT CODE
SUBCLASSING BUSINESS OBJECT CLASSES
Subclassing business object classes
In addition to adding event-handling code to the implementation files for data objects and
query objects, you may want to make other sorts of modifications to server processing. To
make these kinds of modifications, you can subclass new server classes from classes in
versata.vls.*. To create a subclass, write the source code in the Versata Code Editor (or
another IDE tool), then compile the class file, and make the file available to applications. If
you create a subclass of another server class, you may add the file to the repository or add it to
a Versata Logic Studio classpath so that it can be used.

Experienced Java developers can use classes from other libraries or original classes that they
write themselves. When using any class that is not subclassed from the system-supplied
libraries, the class must implement the same interfaces that the comparable Versata Logic Suite
classes implement, to ensure compatibility with the system-supplied libraries.

Subclassing versata.vls.DataObject
The class that you most commonly will subclass is versata.vls.DataObject, which is
used as a default superclass for all generated data object base classes.

Creating a DataObject subclass with specialized methods

Creating a data object subclass with specialized methods rather than adding them to a
particular data object renders the methods shareable among many business objects. When you
reference a method that is a member of versata.vls.DataObject, you do not need to
specify a class name, because it exists in the currently selected data object. You can create a
subclass to provide extra business services, such as date functions, financial operations, and
mail.

To create a subclass of DataObject with specialized methods:

1. In the Versata Logic Studio Explorer, click the Files button. Expand the Versata Logic
Server folder.

2. Right-click the Versata Logic Server folder or one of its group folders and choose New
File.

3. In the Choose File Name dialog, enter a file name and click the Next button. In the Create
Java Class dialog, enter versata.vls.DataObject in the Extends field and click the
Next button. In the Finished dialog, click the Finish button.

4. In the Versata Code Editor, add the specialized methods to the class file and save your
changes.
339

EXTENDING BUSINESS OBJECT CODE
SUBCLASSING BUSINESS OBJECT CLASSES
Note: Review the CorpReuseExtRulesDataObject in the sample repository for an
example of data object subclassing to extend rules. To open the file for this object, on
the Files tab of the Versata Logic Studio Explorer, expand the JavaExtensions folder,
and then double-click the file to view its code in Code Editor.

Applying a DataObject subclass to data objects

After you have created a subclass of DataObject and added methods to this file, you need to
determine which data objects need the methods from that subclass.

To specify a DataObject subclass as the superclass for a data object:

1. In the Explorer, click the Objects button. Expand the Business Objects folder.

2. Double-click the object to open the Transaciton Logic Designer.

3. In the Transaction Logic Designer, click the Properties:Data Access tab.

4. In the Superclass frame, enter the name of the new class file you created and save your
changes.

5. Repeat as necessary.

These data objects now include the new methods and you can reference these methods without
specifying a class name. (If a rule expression references a method that does not exist in the
rule’s data object or any of its superclasses, the method name must include the class name.)
340

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
Calling business object code from client applications
This section covers how applications created in Versata Logic Studio use business object
methods, including remote method invocation.

The versata.vls.DataRow class has getComponent, getData, and getMetaColumn
methods that get a handle to a row of a specified business object, including attribute values and
metadata for the row.

The interface versata.vfc.VSResultSet has a save method. This method takes all the
pending changes in the client and passes them to the Versata Logic Server session object, using
the save(ORBrow) method. The session object then creates a business object for each row
and calls the save method on the data object.

Data access to result sets
Applications can access data from data sources through the Versata Logic Server’s Transaction
Logic Engine. Its data access code executes direct queries on business objects to return
collections of objects as result sets. Collections are not scrollable; you can only move forward
through the results.

Object caching

Modules in the run-time client and the Transaction Logic Engineuse buffered updates and
object caching to optimize response time for individual clients while minimizing the load on
server and network resources.

Until a user saves the result set, update requests are buffered in the client by the current data
control using the result set. Because the system caches the changes in the client, it does not
have to call the server each time the user changes data in the client application. The system
makes a transaction request to the Transaction Logic Engine only when the end user explicitly
saves the updates. The Transaction Logic Engine instantiates the business objects during the
transaction and these objects are cached until the transaction completes.
341

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
Caching parent data

The Transaction Logic Engine caches the parent objects while processing child objects. This
caching improves performance because only one trip to the database is required for getting a
parent object for multiple child updates, such as updating summed and counted attributes, and
verifying referential integrity.

This type of object caching can be monitored in the trace file in the Versata Logic Server
Console’s tracing monitor by reviewing update statements to the parent object. For example,
if a parent data object maintains the sum of a child attribute, there should be only one
statement to update the parent sum in the trace file. Any other processing should take place in
memory.

Caching security data

For information about caching security data, see the Administrator Guide.

How an application queries a database

The following is a detailed account of how an application created in the Versata Logic Studio
queries a database:

1. When the system retrieves information from the database (through form initialization,
query by form, or otherwise), the Versata Connector uses the name of the metaquery to
locate the VSMetaQuery class associated with the RecordSource on the form or page.

2. The system concatenates the SQL text defined in the parameters with any whereClause,
orderBy and metaquery supplied by the searchRequest. The system sends the resulting
SQL to the database, and stores it internally in case the same query runs again.

3. When requested, the Versata Connector sends the query through a JDBC statement.

4. Once the query is sent, the system creates a result set object as a cache for rows returned
from the server, and passes the result set’s name to the Java application’s data control or to
the HTML application’s data source. The data control or source must request records from
the new result set to display them.

5. If more rows are retrieved than the VSResultSet can hold (16 rows, by default), the
system holds excess rows in a JDBC buffer.

6. As the data control or source requests new rows (such as when the user scrolls down a
grid), the Versata Connector takes them from the JDBC buffer and converts them into a
VSRow object that is held in the VSResultSet.
342

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
Query instance

A single execution of a query on the database is a query instance. Presentation logic data
access code creates an instance of versata.vfc.VSQuery as the query. The query instance
references the metaquery, the current logical session, and any run-time parameters entered by
the user. The query instance runs the query to produce the result set and applies any changes
from the result set to the database. The query instance also coordinates the transactional
behavior as changes are applied to the database.

The query instance references the metaquery to determine the shape of the result set. Because
it can access this metaquery information, the query instance can provide defaults and
determine whether input is valid, whether an attribute allows nulls, and whether an attribute is
calculated, without accessing the server. The Presentation Logic Engine’s validation optimizes
performance by minimizing the number of times an application must access the Transaction
Logic Engine.

Though the query instance manages the work flow and logic, it relies on the session object and
the metaquery object in order to gather information regarding the type of database used, valid
values for insert and update, and the shape of the query.

Query definition

A query definition is a metaquery. It is information about a query, defined in metadata, that can
be used by multiple query instances. It describes the query objects and data objects involved in
the query, and it is used by query instances to determine the shape of the result set. It is also
used for client-side validation.

A query definition determines the shape of the result set, for example: the number, names, and
data types of the attributes that are returned; the data objects to be included; which data object
is set as the childmost data object. It also includes information about the values in each
attribute: including whether there is a default value, whether it is a derived attribute, whether it
participates in optimistic locking, and other properties.

Query definition generation

When you generate business objects, query objects and data object queries are translated into
VSQueryDefinition and VSQueryColumnDefinition classes.

Each query object in the repository has a corresponding VSQueryDefinition object, which
provides the following metadata:

n Data objects participating in the query.

n Which data object is the childmost in the query.

n User-defined SQL text.

n A collection of VSQueryColumnDefinition objects. These each have a one-to-one
relationship to an attribute projected in the query object.
343

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
Each VSQueryColumnDefinition provides the following attribute-level metadata:

n Base data object name.

n Base attribute name.

n Data object alias.

n Attribute alias.

A derived attribute has an attribute alias, but no attribute name.

Query run-time behavior

At run time, when a query runs against the database, the name of the appropriate metaquery
class passes to the query instance, which finds the actual class and concatenates the developer-
defined SQL text with the additional whereClause and orderBy objects. The system sends
the SQL statement that is generated to the Transaction Logic Engine, which executes it
through a Versata Connector.

The VSResultSet created by the query class consists of rows retrieved from the query. These
rows are ready for display and other user interface manipulation. The following limits apply to
user actions on records retrieved through query objects:

n Inserts and deletes can be applied only to the childmost data object in the result set, unless
the ParentInsertable flag is set. If the result set has no childmost data object, the
system raises an error if the user attempts to insert or delete.

n Updates are always allowed even if there is no childmost data object.

n Non-derived attributes projected in the query object can be updated only if the data object
has a primary key that is projected in the query object.

n Derived attributes cannot be updated.

An update to a joined query is split into multiple, individual data object updates. The updates
occur in sequence, childmost data object first. If any element of the update fails, the entire
sequence of updates is rolled back.

After a row is committed, the entire row is refreshed, including attributes from the modified
data object and any attributes from data objects that were not modified.

You can set the ParentInsertable flag with query properties or with code. If this flag is set,
inserts cause the insertion of both a child record and a parent record.
344

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
whereClause and orderBy

You explicitly define SQL text for query objects in the Versata Logic Studio. SQL text for data
object queries is built at run time. The additional whereClause and orderBy are developer-
or end user-defined SQL strings that are concatenated at run time with the developer-defined
SQL text of a query object or system-generated SQL text of a data object query.

You can define SQL text in a number of places:

n In the Versata Logic Studio on a RecordSource or transition properties sheet.

In both cases, add additional whereClause and orderBy information on the Query tab of
the properties sheet. In Java applications, the generator automatically calls the
setQueryInfo API of VSDataControl. The information passes to VSFormNavigation
through the constructor parameter. In HTML applications, the generator automatically calls
the setQueryInfo API of DataSource. The information passes to PageNavigation
through the constructor parameter.

The whereClause and orderBy created in this situation are persistent, that is, they will
always be added to queries initiated on the associated data control or DataSource.

n To provide whereClause and orderBy information for Java applications at run time, you
can use the setQueryInfo API of VSDataControl and the
setSearchAndSortCriteria API of VSFormNavigation and VSPick. To provide
whereClause and orderBy information for HTML applications at run time, you can use
the setQueryInfo API of DataSource and the setSearchAndSortCriteria API of
PageNavigation and Pick. In this case, the whereClause and orderBy are persistent
as well.

n In Java applications , call the executeQuery(whereClause, orderBy) method of
VSDataControl to include the supplied whereClause and orderBy in the query. You
can call the startForm(formName, whereClause, orderBy) method of VSForm to
supply the whereClause and orderBy to the root data control of the form when it is
opened.
345

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
The executeQuery method appends the supplied whereClause to any persistent
whereClause and substitutes the orderBy in the method for any persistent orderBy. These
whereClauses and orderBys are not persistent. They are replaced when the end user
provides further information through an onscreen query or through the Search and Sort
Criteria dialog.

n You can use the Versata Code Editor to write code in the BeforeQuery event of a data
control or DataSource. The event passes the query object, and you can call
query.addFilter(whereClause)to add the whereClause to another developer-
defined whereClause or to any user-defined information.

For example, consider an application in which all queries use the following criteria:
UserName = USER()

Include this SQL text in the whereClause argument of the query.AddFilter method.

Similarly, you can call query.replaceSortCriteria() to replace any developer-
defined orderBy.

n To execute a query without using a data control or DataSource, pass the whereClause and
orderBy when you create the query object, then open a result set.

For example, you could use code like the following in a Java application:

In Java applications, the end user specifies the SQL that resides in the whereClause and
orderBy objects in one of two ways:

n Using the Search and Sort Criteria dialog to enter a whereClause and orderBy.

n Entering search criteria directly on a form, and using the Get Data button on the default
toolbar.

The system appends the user-defined whereClause to any persistent developer-defined
whereClause. The orderBy defined by the user replaces any developer-defined orderBy.

Server data access by SQL string

You can supply string select statements and Where clauses in your code to provide
Transaction Logic Engine data access. Using this method has implications for cache
management and rules enforcement, so use it only when absolutely necessary. You may
prohibit the use of ad hoc SQL statements for data access by setting the SQLAllowed property
of a data server in the Versata Logic Server Console to false. For information, see the
Administrator Guide.

VSQuery query = new VSQuery(metaQueryName, whereClause, orderBy);
VSResultSet rs = query.execute();
346

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
Most Transaction Logic Engine code performs services that support updates, where system-
constructed rule enforcement code also executes. System code builds a sophisticated cache, to
avoid rereading object instances multiple times within a transaction. This “object sharing”
logic is required for complex update processing. The object cache sorts this complexity, and
ensures that the system is operating upon a single consistent instance of each object. This
cache management is automatically enabled for business object queries that are based on
relationships and SearchRequest objects, but is not available for SQL string queries.

The Versata Logic Suite provides services to simplify SQL queries that return results. You can
create queries by calling the versata.vls.Session method GetResultSetBySQL. Results
return as rows, and attributes as data objects. Accomplish updates through separate update
commands using the versata.vls.Session method executeUpdate, rather than by
altering result rows. When you use basic SQL instead of queries on known components, the
system has no information about the business objects in the query and so cannot perform query
decomposition to disburse query object updates to underlying data objects.

The Versata Logic Server fully enables basic JDBC-level database access. This access can be
useful in allowing you to process queries with multiple result sets and other server-specific
features.

Note: Direct SQL updates are not subjected to business rules, so if you use this method be
certain your updates have no side effects and are written correctly. You also must
ensure that security provisions are made.

Methods to get related data object records

The rules compiler builds standard business object methods that access data from related
objects.

The standard methods for each data object instance to obtain records from its related data
objects are called get<Parent_Role_Name> and get<Child_Role_Name>. The system
bases the names of these methods on the parent and child role names defined on the
Relationships:Presentation tab of the Transaction Logic Designer. The Versata Logic Studio
provides defaults that you can modify.

In a situation where a CUSTOMER data object is a parent of ORDER, and ORDERITEM is a
child, the getPlacedbyCustomer method would get the parent CUSTOMER object for the
given ORDER object, while the getOrderItems method would get the list of
ORDERITEMS for the given ORDER object.
347

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
Other static methods

Other static methods on the business object, such as getObjects, provide the necessary
services to return collections. The rules compiler also constructs get and set methods for
each business object, which you can use to read and write attribute values. To modify the
business objects in the server, issue insert, update, or delete methods directly to data
objects in the result collection. For information about building business object collections, see
“Building business object collections” on page 352.

Editing server result set code

You can use the above standard and static methods in your server code. Also, you can code
SQL requests by using SearchRequest objects. We recommend using these component-
based mechanisms as opposed to writing your own SQL strings in server data access code.

If you are creating result sets through your own code, call a close() on any result set once
the user is finished with it. Otherwise, the resources that are held by a particular result set are
not available.

Remote object access
Remote object access is supported in the Versata Logic Server environment for objects that are
running in the Versata Logic Server and need to be accessed by client programs at the object
API level. The EJB specification describes how access can be achieved; the Versata Logic
Studio implements the EJB specification and automates the creation of most of the files that
are required.

Making an object available for remote access is sometimes called “remoticizing.” Invoking
the methods in the remote object is called “remote method invocation.”

For Versata Logic Server business objects, the remote interface, home interface, and
deployment descriptor files required by EJB for remote access are generated automatically by
the system when deployment as an EJB is elected. The home interface file for each object
extends javax.ejb.EJBHome and includes the findByPrimaryKey, findObjects, and
create methods (with Versata-specific parameters).
348

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
Making methods remotely accessible

The Versata Logic Studio provides tools for you to make generated business objects and their
methods accessible to other objects. The following are the basic steps for making a generated
business object’s methods remotely accessible to a application designed in the Presentation
Logic Designer:

1. Define the business object as available for remote access.

n For a data object, you do so by enabling the Deploy as EJB Entity Bean check box on
the Properties:Data Access tab of the Transaction Logic Designer.

n For a query object, you do so by enabling the Deploy as EJB Session Bean check box
on the Properties:General tab of the Query Object Designer.

2. Add the remotely available method(s) to the remote interface file for the business object.

3. Build and compile the business object files.

4. Deploy business objects to a development environment Versata Logic Server running on
IBM WebSphere Application Server 4.0 Single Server Edition. The Versata Logic Studio
generates the skeleton and stub files required for remote access. The Deployment Manager
deploys the new skeleton and stub files as well as the business object files, and creates an
EAR that is deployed to an enterprise application on IBM WebSphere Application Server.

5. Enable the .jar file containing the deployed business object as a reference for the
application. Choose Application � References, click the Remote References tab, and
enable the check box for the .jar file.

6. Once you have tested in the development environment, use the system-supplied batch file
to deploy business objects to a production Versata Logic Server running on IBM
WebSphere Application Server 4.0 Advanced Edition.

7. Add the method call to the client’s event code. Versata Logic Suite provides two different
ways for a client to access a server object’s code, via row or via factory. The
Demo_BusinessObject_Methods application in the sample repository provides sample
code that illustrates these different types of access.

Normally Versata clients retrieve data as rows. Each row corresponds to an instance of a
business object of the type on which the result set of this row was defined. So, if there is an
object’s result set available, an object instance can be obtained by asking a particular row
about it. You can imagine the existence of a “factory” that can “produce” required objects,
whether there is a row in the client or not. In this case, first, a "factory" for an object is
obtained from the server. Then a request is made on this factory to return an object instance
based on a key.

Once an object is obtained through either of the two mechanisms, the calls to any methods
on this object are identical. In fact, calling methods on this object is just the same as if the
methods were on a local object.
349

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
Integrating with custom applications and business objects

Client applications developed outside of the Versata Logic Studio can make remote method
calls on Versata Logic Server business objects that are deployed as EJBs. These applications
do so in the same manner they would make remote method calls on any EJB.

Applications generated in the Versata Logic Studio can make remote method calls on EJBs
created outside of the Versata Logic Studio with, for example, IBM Visual Age for Java.
Versata applications do not have any special requirements; you simply need to create the
object in accordance with the EJB specification. You need to add the files for the EJB to the
repository, or register the files in the Enterprise Object Browser and add them as references for
the application. Also, you need to add and configure the EJB in IBM WebSphere Application
Server yourself, as the Versata Logic Studio does not automate this step for external business
objects. You can add client event code method calls to any method included in the EJB remote
interface file.

Accessing remote objects from clients

Once you have enabled remote access for business objects, you can invoke remote methods on
these business objects. These methods run within the Versata Logic Server’s Transaction
Logic Engine. You can use either of the following techniques for remote access:

n Obtain a remote object from an existing client row instance and issue the method.

If you already have obtained a row from the Transaction Logic Engine, you can convert it
to a remote object, and then address its methods.

The following sample code illustrates this technique. This code obtains a DEPARTMENT
object and calls its defaultMission method. This code is from the
btnSvr_actionPerformed event on the DEPARTMENT form in the
Basic_Data_Access sample application.

try {
VSRow row = datT1DEPARTMENT.getCurrentRow();
SampDB1.DEPARTMENT dept = (SampDB1.DEPARTMENT)

row.getBusinessObject()dept.defaultMission(choiceSetMissionServer
Code.getText ());
datT1DEPARTMENT.refreshCurrentRow();
datT1DEPARTMENT.refreshControls();
}
350

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
n Obtain a remote object from the Transaction Logic Engine by object factory. If you have
not already fetched a row object that you can convert to a remote object, retrieve remote
business objects by calling one of the factory methods. Remote factory methods belong to a
helper class used to create business objects. These methods encapsulate EJB-required
APIs.

The example code below illustrates the use of this technique. First the code prepares a
search request. It then uses the getObjectByKey method from the
versata.vfc.RemoteFactory class. The system casts the returned object as an
EMPLOYEES business object. This call runs the query, obtains the row, and returns a
remote handle (emp) to the client. The client can then issue remote methods (giveRaise)
on this object.

This code is from the actionPerformed event of the VSOKButton on the
ObjectByFactory form in the Demo_BusinessObject_Methods sample application.

The Versata Logic Server maintains the row until you release your handle to it. This occurs
when this routine exits and the emp object is deallocated. Then the system deallocates the
Versata Logic Server object.

Creating rows versus creating objects

Just in Time Objects conserve server resources by deferring object instantiation until updates
are submitted.

try {
VSRow row = datT1EMPLOYEES.getCurrentRow
//Write Event Code below this line
//Get the business object Factory
VSSession s = VSApplicationContext.getSession();
//Get the object
versata.common.Parameter param = new
 versata.common.Parameter("EMPLOYEES", "EmpID",
 row.getData("EmpID").getString());
versata.common.SearchRequest filter = new
versata.common.SearchRequest();
filter.add(param);
SampDB1.EMPLOYEES emp = (SampDB1.EMPLOYEES)
 RemoteFactory.getObjectByKey(s, "EMPLOYEES", filter);
//Invoke a method
emp.giveRaise(Integer.parseInt(VSTextField1.getText()));
row.refresh();
}

351

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
An important consideration when delivering data to the client is whether to send the data as
instantiated objects, or as self-contained rows. The Transaction Logic Engine provides APIs to
obtain either rows or objects, but sometimes it is better to use rows and sometimes it is better
to use objects.

In general, when sending data rows back to the client, it is not advantageous to send them as
objects, because each row would have to be instantiated on the server, which is a significant
cost in shared memory. Also, when sending objects, client access to the row requires a server
call, such as retrieving each column value to display on the screen. In most situations, it is
better to use rows. The rows are used by the system in a “Just in Time Objects” scheme, which
operates as follows: Rows are sent back as highly optimized byte arrays, which are converted
to numbers, strings, and dates in the client. No server object is created for each row at this
time. However, the component identity is saved with the query and accessible by each row,
enabling the system to instantiate the component when necessary.

Objects are the better choice, however, when sending data back to a client that must access
related data from the server, because of improved performance and cache checking. In this
case, because components access data with the intent to alter it, it is faster to instantiate the
component as an object immediately rather than to create intermediate row objects. In
addition, the component access APIs also provide automatic cache checking, which optimizes
performance.

Building business object collections

You can write server methods that return computed collections of objects that interoperate
with existing automation services such as scrolling and updatable joins.You can write a server
method that returns a new object called a business object collection, which is a set of business
objects. You can build this collection with your code in addition to normal SQL commands.
Second, you can convert these collections on the client to result sets, so they interoperate with
all existing system services for scrolling, update, data bound behavior, and other services.

For example, if you want to retrieve all the subdepartments of a department, you cannot obtain
this result with a SQL query. This example requires transitive closure and you must provide a
programmatic means of concatenating a series of recursive queries.
352

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
The following example code accomplishes this goal. This example code is from the
BeforeQuery event of the datT9DEPARTMENT data control on the Department form of the
Basic_Data_Access sample application:

This example code is from the getAllSubDepartments() method of the DEPARTMENT
data object used by the Basic_Data_Access sample application:

In this example, the client event-handling code invokes the remote method
getAllSubDepartments() that returns a business object collection. This method is defined
in the DEPARTMENT data object. The data is retrieved by recursive calls to the relationship-
based method to obtain subdepartments, concatenating each new result into a vector. When the
transitive closure is complete, the method uses the new BOCollectionImpl service to
convert the vector to a business object collection. The collection is returned to the client
method, where it is converted into a result set and assigned to the data control’s recordset.
All operations that are automated for conventional result sets are automated for this result set,
including buffered scrolling, bound controls, updates, picks, and error handling.

void datT9DEPARTMENT_BeforeQuery(VSQuery query,VSOutParam rs)
{
//Write Event Code below this line
VSRow row = datT1DEPARTMENT.getCurrentRow();
SampDB1.DEPARTMENT dept = (SampDB1.DEPARTMENT)
row.getBusinessObject();

BusinessObjectCollection depts = dept.getAllSubDepartments();
rs.setValue(VSApplicationContext.createResultSet
(VSApplicationContext.getSession(), depts, "DEPARTMENT"));
}

public BusinessObjectCollection getAllSubDepartments() {
Vector depts = new Vector();
getMyDepartments(depts, this);
return (new BOCollectionImpl(depts.elements(),

getMetaQuery()));
}

public void getMyDepartments(Vector depts, DEPARTMENTImpl dept) {
Enumeration depList = dept.getSubDepartments();
while (depList.hasMoreElements()) {
DEPARTMENTImpl dep = (DEPARTMENTImpl) depList.nextElement();
depts.addElement(dep);
getMyDepartments(depts, dep);

}

353

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
Recomputing derivations
After you have deployed the business objects that include rules execution code, rules execute
against the data source(s) so that any data values entered subsequently conform to the rules or
cannot be saved. However, since any preexisting data values may not conform to rules, the
system provides a recomputeDerivations() method that you can execute to modify
preexisting data so that it does not violate rules. You can use the Versata Logic Studio to create
an administrative application that incorporates this API in its client event coding.

The system has reserved a special user defined event called RECOMPUTE_DERIVATIONS.
When this event is set to be the current event, code for the recomputeDerivations()
method for the current data object is executed. This code performs derivations on any
preexisting data values for the data object’s derived attributes. The execution of this method
ensures that even values that were entered to the data source before deployment of business
objects and rules code conform to rules.

To implement this functionality, you can create an administrative application that displays data
for all of the data objects for which you want to enable recomputes. Then, on each form or
page that displays data object data, you can add a button that contains client event code setting
the current event to RECOMPUTE_DERIVATIONS, thus causing the
recomputeDerivations() method to fire for the current data object. Add this event code to
the button’s actionPerformed event, so clicking the button causes the code to be executed.
This event code can cause only the currently selected row to be recomputed, or can cause a
recompute of all rows by setting up a loop. In most cases, you will want recompute all rows.

The following code sample illustrates event code used to cause a recompute of the current
CUSTOMERS row, on a button named VSRecompute. This code is taken from the
Recompute_Derivations sample application:

void VSRecompute_actionPerformed()
{
//Write Event Code below this line
datT1CUSTOMERS.getSession().setUserDefinedEvent("RECOMPUTE_DERIVATIONS")
;
datT1CUSTOMERS.getCurrentRow().save();
datT1CUSTOMERS.refreshControls();
}

354

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
The following code sample illustrates event code used to cause a recompute of all rows in
CUSTOMERS, on a button named VSRecomputeAllRows. This code is taken from the
Recompute_Derivations sample application:

Note: The recomputeDerivations()method is available only for persistent attributes.

When you are designing your administrative application to perform recomputes,
consider the order of computation. It is best to recompute from the “bottom up”. For
example, recompute ORDERITEMS before ORDERS, and ORDERS before
CUSTOMERS.

Computing results without saving
The Versata Logic Server provides a way for you to test rules definitions on applications
generated by the Versata Logic Studio, allowing you to execute rules and review results
without altering data in the data source. This “no-save” compute uses the default save()
method to trigger the execution of business rules and user-defined methods on the server and
return the results to the client, relying on the transaction control capability of the database to
roll back the changes at the end of the operation.

The no-save compute locks database resources for reference or update during the transaction,
but does not commit changes without a separate confirmation from the user. As soon as results
are computed and refreshed to the client, the database immediately rolls back the transaction,
so the session does not use database resources longer than necessary.

void VSRecomputeAllRows_actionPerformed()
{
//Write Event Code below this line
datT1CUSTOMERS.refreshControls(); */

int pos = datT1CUSTOMERS.getResultSet().cursorPosition();
datT1CUSTOMERS.first();
do

{

datT1CUSTOMERS.getSession().setUserDefinedEvent("RECOMPUTE_DERIVATIONS")
;

datT1CUSTOMERS.getCurrentRow().save();
} while(datT1CUSTOMERS.next()!=null);
datT1CUSTOMERS.setCurrentRow(pos);

}

355

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
To compute rules results without saving, you need to design three client actions and attach
their code to buttons in a test application. The three actions are: Submit for Compute, Confirm
Submit, and Cancel Submit.

The Submit for Compute action starts a client-side transaction. A client-side transaction is
used for the following reasons: the user needs to issue a rollback after the calculation, and the
client result set needs to maintain the changes in the stack. This action sends all updates to the
Transaction Logic Engine by executing the updateDataSource method for the data control
(Java application) or DataSource (HTML application). Next, the action executes a refresh and
requery on any row or data control, in order to capture all changes indirectly performed by the
client within the transaction. Last, this action rolls back the transaction. After the Submit for
Compute action has been completed, the normal Save, Query, and Undo buttons should not be
available on the form.

The Confirm Submit action refreshes all updated rows, while keeping all user changes, in
order to reset all temporary computed values resulting from the previous action. Next this
action triggers a normal save() on the data control or DataSource.

The Cancel Submit action refreshes all updated rows, while keeping all user changes, in order
to reset all temporary computed values resulting from the previous action. After this action is
complete, the user can make further changes and resubmit. After the Cancel Submit action has
been executed, the normal Cancel button should be available, so the user can choose to restore
original values.

The following example code is for a form displaying data for a CUSTOMER, ORDERS, and
ORDERITEMS, where users can change the quantity of ORDERITEMS.

This code example is for the Submit for Compute action:

void VSButton1_actionPerformed()
{
//Write Event Code below this line
try {
VSApplicationContext.getSession().beginTrans();
datT5ORDERITEM.updateDataSource();
//get all changes on parent or child row(s)
datT3ORDERS.getCurrentRow().refresh(true);
datT1CUSTOMERS.getCurrentRow().refresh(true);
//refresh control
datT3ORDERS.refreshControls();
datT1CUSTOMERS.refreshControls()/
VSApplicationContext.getSession().rollback();
}
catch(Exception ex) {ex.printStackTrace();}
}

356

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
This code example is for the Confirm Submit action:

This code example is for the Cancel Submit action:

void VSButton2_actionPerformed()
{
//Write Event Code below this line
//restore all derived values
datT5ORDERITEM.getCurrentRow().refresh(true);
datT5ORDERITEM.updateDataSource();
}

void VSButton3_actionPerformed()
{
//Write Event Code below this line
datT5ORDERITEM.getCurrentRow().refresh(true);
datT3ORDERS.getCurrentRow().refresh(true);
datT1CUSTOMERS.getCurrentRow().refresh(true);
datT5ORDERITEM.refreshControls();
datT3ORDERS.refreshControls();
datT1CUSTOMERS.refreshControls();
}

357

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
Java mail integration
The Versata Logic Server provides Java mail integration in conformance with the Java Mail
API specification. This functionality allows an application, or the server it is running against,
to send an SMTP mail to an internet mail address. The Versata Logic Server provides a
convenience class, versata.vls.SendMail, that wraps this functionality. The sendMail
method also is exposed as a remote method on a session object, allowing a client application to
send Internet mail.

The following table lists the methods provided by this class and their purposes:

Method (argument) Purpose

SendMail (String hostName)
Creates a sendmail object to send a single-
part message. HostName is the name of the
mail server, for example, exchange.

SendMail (String hostName, boolean
isMultiPart)

Creates a sendmail object to send a multi-
part or single-part message.

setRecipientsTo (String[] to)
throws SendMailException

Sets the recipients’ Internet mail addresses.

setRecipientsCC (String[] cc)
throws SendMailException

Sets the cc recipients’ Internet mail
addresses.

setIFrom (String from) throws
SendMailException

Sets the sender Internet mail address.

setSubject (String subject)
Sets the subject.

setMsg (String msg)
Sets the message. You can use this method to
attach a URL – make the URL the
parameter.

addMultiPartMsg (Object data,
String mimeType)

Adds a multi-part message object. This
method can be called multiple times to add
messages of different types. Can be used to
send text data only.

attachFile(String path)
Can be used to attach a file of any type.
358

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
The versata.common.VSSession class has two methods that provide remote access to the
sendMail methods, giving the client application the ability to send mail:

n public void sendMail(String[] to, String[] cc, String from,String
mailServer, String subject, String msg, short transactionType)
throws VSException;

n public void sendMail(String to, String cc, String from, String
mailServer, String subject, String msg, short transactionType)
throws VSException

The following packages are needed to implement Java mail integration: activator.jar
(Java activation framework classes) and mail.jar (Java mail classes).

Setting up an email notification system

Using business rules and SQL Server mail, you can create a system that automatically notifies
pre-selected client application users when a given event has occurred. For example, you could
notify the credit manager when any customer places an order exceeding a certain dollar
amount, or you could notify the dispatchers in a service center when referrals to any repair
team reach a certain number.

Note: This feature is available on SQL Server systems only.

There are four steps to setting up the system:

1. Create an e-mail user to send the notifications. See page 360.

2. Subclass versata.vls.DataObject. See page 360.

3. Write the method that sends the mail. See page 361.

4. Define the action rule that sends the mail messages. See page 362.

send(int transactionType) throws
SendMailException

Sends the mail. Possible values for
transactionType are: 0 (non-transactional), 1
(on commit), 2 (on abort).

Method (argument) Purpose
359

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
Creating the e-mail user

These steps provide an example procedure you can use to set up an e-mail user account that
will send notifications from an application, if you are using Microsoft Exchange as your mail
server.

Note that the Versata Logic Server uses MAPI so that Exchange Server is not required. You
just need to check with your system administrator to obtain the name of the mail server. You
may use MS Mail instead of Exchange. The procedure is substantially the same except that
MS Mail uses mailboxes instead of profiles.

1. On the application computer, install an Microsoft Exchange mail client for the user.

2. In the Mail & Fax control panel, create a profile for the user.

3. On the SQL Server computer, use the SQL Server Enterprise Manager to select the
repository database and add the same user. Grant the user system administrator
permissions.

4. Use the Services control panel to make the user the SQL Server start-up account.

5. Use the Enterprise Manager to select the user’s Microsoft Exchange profile for SQL Mail
(Server � SQL Mail � Configure).

6. Use the Server Manager window in the Enterprise Manager to grant xp_cmdshell
permission to the recipients of the notifications.

7. In the sender-user’s MS Exchange address book, set up convenient mail groups and aliases
for the recipient-users.

Subclassing versata.vls.DataObject

Versata Logic Server data objects by default are subclasses of versata.vls.DataObject. If
you want a data object to include methods that are not members of
versata.vls.DataObject, you can subclass versata.vls.DataObject, and define
your data object to be a subclass of the new class.

1. In the Versata Logic Studio Explorer, click the Files button.

2. Right-click Versata Logic Server folder and choose New File.

3. Complete the Add File wizard. In the Choose File Name dialog, enter a name for the file,
using a .java extension. In the Create Java Class dialog, enter
versata.vls.DataObject in the Extends field. Click the Finish button. The new file
appears in the Versata Logic Studio Explorer.

4. In the Explorer, click the Objects button. Double-click the data object where you plan to
define the action rule to send mail. The Transaction Logic Designer opens.

5. On the Properties:Data Access tab, record the name of the new class in the Superclass
field.
360

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
Writing the method

After you have subclassed versata.vls.DataObject, you can add a method that
implements sending mail.

1. In the Versata Logic Studio Explorer, click the Files button.

2. Right-click the new subclass file and choose Edit. The Code Editor opens.

3. Add client-side code like the following:

VSSession _session = VSApplicationContext.getSession();
try {

String to = "MirG@example.com";
String cc = "SmithS@example.com";
String from = "SmithS@example.com";
String mailserver = "MAIL08A";
String subject = "testing";
String msg = "this is a test message from SmithS";
int transType = 0;

_session.sendMail(to, cc, from , mailserver, subject, msg,
transType);

System.out.println("complete");
} catch (VSException ex) {

ex.printStackTrace();
VSApplicationContext.handleException("Mail Error" + new

VSDate(), ex);
}

361

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
4. Add server-side code like the following:

5. Choose File � Save File.

Defining the action rule

The last step is to define an action rule that calls the sendMail method when the defined
condition is met.

1. In the Versata Logic Studio Explorer, double-click the data object where you plan to define
the action rule. The Transaction Logic Designer opens.

2. Click the Actions tab.

3. Choose Edit � Add Action.

4. Enter a name for the action.

5. Define a conditional expression to indicate when the mail will be sent.

6. In the Action/Method Call field, enter the name of the method to be executed. Include the
attributes to be passed.

7. Choose File � Save Transaction Logic.

public void sendMail (String from, String to, String subject,
String msg, int type) {
try {
// Change Mail Server Name here!
versata.vls.SendMail sm = new versata.vls.SendMail("exchange");
String fileName = "d:\\TestFiles\\test.doc";
String[] to = new String[1];
to[0] = new String("PasskeyRepos@example.com");
sm.setRecipientsTo(to);
sm.setFrom("PKREPOSIT@EPEnergy.com");
sm.setMsgText("Testing from SmithS");
sm.setSubject("AppServer User-Role Results");
sm.attachFile(fileName);
sm.send(0);
} catch (SendMailException e) {
e.printStackTrace();
System.out.println(e);
}

362

EXTENDING BUSINESS OBJECT CODE
CALLING BUSINESS OBJECT CODE FROM CLIENT APPLICATIONS
Note: The sample repository includes an example of this type of email notification system,
with an extra level of complexity. The repository includes a
MailEnabledDataObject class that is a subclass of versata.vls.DataObject.
The ORDERS data object uses MailEnabledDataObject as a superclass.
MailEnabledDataObject includes a method called sendMail. The ORDERS data
object includes a method called sendBigOrderMail that calls sendMail. The
sendBigOrderMail method is called from the ORDERS.bigOrder action rule. The
sendBigOrderMail method provides an extra level of complexity because it is totally
declarative.
363

EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR
SQL expression evaluator
The Versata Logic Server’s Transaction Logic Engine now includes a SQL expression
evaluator. The purpose of the SQL expression evaluator is to perform the following functions:

n Support SQL Where clause evaluation for reconciling cached objects with the database
rows if a SQL Where clause is used in the filter (SearchRequest)

n Support SQL Where clause evaluation as a general purpose functionality which can be
used in client, server, or Versata Connector code

n Build a SQL parser that can be used to build other VLS functionality

n Enhance the VSResultSet.findFirst method

The following sample code is provided as part of the SQL expression evaluator feature:

n Code that demonstrates the use of the SQL expression evaluator as a general-purpose
functionality. See “General SQL evaluator example” on page 371.

n VSRowProvider implementation that demonstrates the use of client-side filtering. See
“Client-side filtering example” on page 371.

SQL parser
The Transaction Logic Engine has had an embedded SQL parser that can parse complete
statements such as Select, Delete, Insert, and Transaction. However, the engine
previously used only the SQL expression parser for the Where clause and then started parsing
the expression string directly. The embedded SQL Parser also supports quoted identifiers.

The grammar for the SQL parser is taken from Oracle’s grammar documentation with some
changes. The parser was built using the JavaCC (Java compiler compiler) utility developed by
Sun Microsystems. The grammar is compiled using JavaCC version 2.0, and the package
name for all classes is versata.common.sql.parser.

The following enhancements have been made to the SQL grammar to incorporate Versata
functionality.

n Support of Boolean constants (true, false)

n Support of some known functions.

n APPUSER(), USER(), DBUSER()

n DATE() (or CURDATE(), CURRENT_DATE()), TIME() (or CURRENT_TIME),
DATETIME() (or CURRENT_TIMESTAMP)

n TO_DATE(StringValue, format), Cdate(StringValue)

n LOWER (or LCASE), UPPER (or UCASE), LENGTH, LTRIM, RTRIM, TRIM

Note: Currently the parser does not support some of the ANSI SQL database functions, such
as SUBSTRING, CONCAT, and ABS.
364

EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR
Parse tree data structure

The data structure for the parse tree consists of two main interfaces: SQLStatement and
SQLExp, along with some other classes.

SQLStatement interface

All SQL statements such as Select, Insert, and Delete implement this interface.

SQLExp interface

This interface is implemented by all SQL expressions. Following are the classes that
implement this interface.

SQL Statement Java Class

Select SQLQuery

Delete DeleteStmt

Insert InsertStmt

Transaction TransactStmt

Update UpdateStmt

Class Description Type (if applicable)

SQLConstant Represents SQL constants. The
getValue method of the
SQLConstant object returns a
string, number, or Boolean
object.

COLUMNNAME: Column name.

NUMBER: Numeric constant

STRING: String constant

BOOLEAN: Boolean constant

NULL: null value

SQLFunction Represents SQL function. This
object consists of two variables:
function name and parameter list
(Vector). This structure is not
created for aggregate functions.
Aggregate functions are created
as operators in the
SQLExpression object.
365

EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR
Other classes

SqlParser class

This is the main parser class, which has instance methods such as readStatement,
readStatements, and readExpression for parsing, and static methods such as
parseExpression, removeExpression, and clearExpressionCache for parsing as
well as caching the expression.

It is recommended that custom code does not instantiate this class directly. Instead use the
static method parseExpression to parse the expression. This method caches the expression
so that the same Where clause is not parsed multiple times.

SQLExpression Represents expression that
consists of operator and one or
more operands: one operand in
case of unary operator, two
operands in case of Boolean and
arithmetic operator, multiple
operands in case of IN clause.

SQLQuery SQL query can also be part of
expression, as in the case of a
subquery.

Class SQL Clause

SelectItem Items in select statement *, Count(*) or
aliased names

FromItem Items in from clause, AliasedNames

GroupBy Group By clause

OrderBy Order By clause

AliasedName Table alias or column alias

Class Description Type (if applicable)
366

EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR
SQLParser instance methods

SQLParser static methods

SQLEval class
This class implements the evaluation method eval that takes Tuple and SQLExp as
arguments and returns a Boolean value as the result.

Tuple interface

Aa special interface called Tuple provides a general-purpose Boolean condition evaluator.
This interface is very simple and can be implemented on top of any data such as array, vector,
VSRow, DataRow. The following are the methods in this interface:
n public Object getValue(String columnName) throws UnknownColumnName;

n public int getType(String columnName);

n public boolean isDefined(String columnName);

Method Description

readStatement() Parses a SQL statement

readStatements() Parses multiple SQL statements separated
with “;”

readExpession() Parses a SQL Where clause

Constructor Takes either a Reader or InputStream
representing character stream to be parsed

Method Description

parseExpression(String
whereClause)

Parses the expression as well as caches the
expression (SQLExp)

ClearExpresssionCache Clears the cached expression list

public boolean eval(Tuple tuple, SQLExp exp) throws SQLException;
367

EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR
The DataRow.DataRowTuple and VSRowTuple classes implement this interface to return
data from DataRow and VSRow, respectively. You can call the DataRow.getTuple or
VSRow.getTuple method to get the instance of Tuple.

Multiple eval methods

In addition to the eval methods described earlier, the SQLEval class also supports variations
of eval methods, so that the custom code need not write the conversion from the Where
clause to the SQLExp.

SQLEval constructor

The SQLEval class can be instantiated using the default constructor (for instance, the
constructor without any argument) if the evaluation expression does not use any database-
specific functions or date functions. If the expression contains database-specific functions or
date functions, the database type must be passed through the constructor.

SQLEval.setProperty method

The SQLEval class supports the setProperty method to provide values for some globals
(values not dependent on a row or tuple) such as user name or database user name. If the
expression contains a function such as User(), AppUser(), or DBUser(), then the two
properties SQLEval.USER and SQLEval.DBUSER must be set, as follows:

evaluator.eval(row.getTuple(), whereClause);

public boolean eval(Tuple tuple, String whereClause);

/**
* @paramdbTypeConstant representing database type. Constant
values are defined in DataConst class e.g. DataConst.ORACLE.
*/
public SQLEval(int dbType);

evaluator.setProperty(SQLEval.USER, “Guest”);
evaluator.setProperty(SQLEval.USER, session.getUserID());
evaluator.setProperty(SQLEval.DBUSER, “sa”);
evaluator.setProperty(SQLEval.DBUSER, con.getID());
368

EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR
In the future, more properties may be added to support additional global functions such as
rowCount.

Subclassing the SQLEval class

You can subclass the SQLEval class to enhance the evaluator. To provide a custom evaluator,
set the evaluator variable in the SearchRequest object.

Understanding SQL expression evaluations

Boolean expressions

The SQL expression evaluator evaluates Boolean expressions as used in Where clauses. This
is implemented by SQLEval and supports most of the SQL operators and expression with the
following limitations.

n There is no support for subquery. SQLException will be thrown if it encounters
expression of type SQLQuery.

n No support for aggregate functions such as Max, Avg, Sum, Count, Min. SQLException
will be thrown if evaluator encounters aggregate function as one of the operators in
SQLExpression.

n LIKE operator is not supported completely. Wild card expressions can contain only the
following types of patterns.

“prefix%suffix”, “%suffix“, “prefix%”, “%mid%”.

Numeric expressions

Numeric expressions are evaluated using double as a common data type. This evaluation is
done to take advantage of Java native data types so that all arithmetic operators are applied
using native operators. This evaluation also provides simpler and efficient conversion because
all numbers (Java Number class) provide conversion to double value. It will be enhanced to
support BigDecimal as an option. BigDecimal is required to evaluate expressions that
require larger precision and scale, for example, ColumnX = 22/7.

SearchRequest filter = new SearchRequest();
filter.add(SearchRequest.STRING,
“(a > b and d < 2*e) or (s1 like ‘N*’)”);
filter.evaluator = new CustomEvaluator();
369

EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR
Date constants

Date constants are represented using different formats on different databases. For example,
consider the date “15 November 2000”. The following table illustrates ways of representing
this date in different databases.

Note: Currently the SQL expression evaluator supports only Oracle, DB2, and Microsoft
Access formats.

Time constants and timestamp expressions

The TIME() and DATETIME() functions currently are not evaluated, because they may return
different values when executed on the database server versus when executed in the Versata
Logic Server.

Run-time changes required to use the SQL evaluator
n The Transaction Logic Engine has been enhanced to use the SQL expression evaluator for

reconciling cached objects and rows returned by database queries. This is done by
enhancing the matchesFilter method of the DataObject class. Since the SqlParser
does not support all database functions it will throw a ParseException if the expression
uses such functions. This exception is ignored by the matchesFilter method, which
prints a warning message in the log that custom code should override matchesFilter to
support evaluation using custom code. If the parser is able to parse the expression but the
evaluator is unable to evaluate the expression, as in the case of an aggregate function, a
similar warning message is printed in the log indicating that custom code should override
the matchesFilter method. If a SearchRequest contains a Where clause which is part
of the rule processing, then expressions will not be evaluated.

Database Type Date Representation

Oracle to_date(‘2000-11-15’, ‘yyyy-mm-dd’)

DB2 ‘2000-11-15’

SQL Server (US*)

* SQL Server default format is different for
different locales

“November 15 2000 00:00”

Microsoft Access cdate(‘2000-11-15’)

Informix datetime(2000-11-15) YEAR TO DAY
370

EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR
n The VSDate class has been enhanced to support the compareTo method. This is required
for date comparisons.

n The SearchRequest class has been enhanced to add two additional variables: exp of
type SQLExp and evaluator of type SQLEval.

Note: Expressions are evaluated from left to right. Put the simpler expression on the left side
so that complex expressions may be short-circuited some of the times. For example:
(X > 5) AND (Name LIKE ‘A%) AND LTRIM(UPPER(s1)) = ‘ABC’

SQL expression evaluator examples

General SQL evaluator example

The following code example shows how to use the SQL evaluator in custom code.

Client-side filtering example

This example shows how a custom implementation of VSRowProvider can support client-
side filtering without sending a query to the database. VSRowProvider can also be used to do
client-side sorting as shown in the help text of this interface. An instance of VSRowProvider
can be used to create a custom result set that can then be bound to the DataControl (Java) or
DataSource (HTML).

DataRow row = //;
SQLExp exp = SqlParser.parseExpression(“a > b and c > 2 *d”);
SQLEval evaluator = new SQLEval();
boolean b = evaluator.eval(row, exp);

DataRow row = //;
SQLExp exp = SqlParser.parseException(“datecolumn = Date() &&
logon = User());
SQLEval evaluator = new SQLEval(DataConst.ORACLE,
session.getID(),null);
boolean b = evaluator.eval(row, exp);
371

EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR
Creating a custom result set using an instance of VSRowProvider

import versata.common.sql.parser.*;
import versata.vfc.*;
public class ClientRowProvider implements VSRowProvider
{
 private VSResultSet master;
 private int currentIndex = 0;
 private SQLExp exp = null;
 private SQLEval evaluator = null;
 private VSSession session = null;
 public ClientRowProvider(VSResultSet master, String
whereClause, VSSession session) {
 this.master = master;
 this.session = session;

 try {
exp = SqlParser.parseExpression(whereClause);

 } catch(Exception ex) {
ex.printStackTrace();
throw new VSException(ex);

 }
 }
public boolean isReadOnly() {
 return false;
 }
 public VSMetaQuery getMetaQuery() {
 return master.getMetaQuery();
 }
 public VSMetaColumn[] getMetaColumns() {
return null;
 }
//public VSRow fetchNextRow() throws VSException;
 public boolean fetchNextRow(Object[] dataValues) throws
VSException {
currentIndex++;
372

EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR
 VSRow row = master.getRowAt(currentIndex);
 if (row == null)

return false;
 try {
 while (!evaluator.eval(new VSRowTuple(row), exp)) {

currentIndex++;
row = master.getRowAt(currentIndex);
if (row == null)

return false;
 }
 } catch(Exception ex) {

ex.printStackTrace();
throw new VSException(ex);

 }
 for (int i = 0; i < dataValues.length; i++) {

 //fill data values
 dataValues[i] = row.getData(i+1).getObject();
 }
 return true;
}
public int getRowCount() {
 return -1;
 }
public void close() {
 //free the memory
 master = null;

 exp = null;
 }
public VSSession getSession() {
 return session;
 }
}

373

EXTENDING BUSINESS OBJECT CODE
SQL EXPRESSION EVALUATOR
Binding ClientRowProvider to VSDataControl(Java)

Binding ClientRowProvider to DataSource (HTML)

VSResultSet masterRs = //resultset cached when form is loaded.
VSSession session = VSApplicationContext.getSession();
String whereClause = VSTextField1.getText();
VSResultSet rs = new VSResultSetInternal(masterRs, whereClause,
session);
VSDataControl dataControl = datT1<<TableName>>;
DataControl.setResultSet(rs);

VSResultSet masterRs = //resultset cached when page is loaded.
VSSession session = getPaentApp().getSession();
String whereClause =. . .
VSResultSet rs = new VSResultSetInternal(masterRs, whereClause,
session);
DataSource ds = datT1<<TableName>>;
ds.setResultSet(rs);
374

EXTENDING BUSINESS OBJECT CODE
WORKING WITH VERSATA LOGIC SERVER SECURITY PROPERTIES
Working with Versata Logic Server security properties
Security for the Versata Logic Server is managed in the Versata Logic Server Console, where
you can set up security properties declaratively, create extended security properties, and
customize the security model to use a security manager other than the default Versata Logic
Server security for some tasks. For production systems built with this release, you most likely
will want to use IBM WebSphere Application Server security. You also can choose to use
LDAP and JNDI. For information on setting up custom security managers, see the
Administrator Guide.

Under the default security manager, all security enforcement is handled in the Versata Logic
Server, which connects to files used for security. Applications usually do not have direct
access to these security files. This section describes some of the methods available to write
Versata Logic Server security code and provides examples of custom security code.

Versata Logic Server security APIs
Versata Logic Server provides some security APIs, which you can use to customize security so
that some aspects are managed programmatically. These APIs are provided as methods of a
number of special security classes in the versata.vls.* package, or as methods of the
versata.vls.Session interface. The methods retrieve security properties so you can
reference them in custom code. The methods include the following.

n The following method can be called to return security information for a user, including the
user’s role name and ID:
n Session.AppImpl.getUserRolePropertiesForUser(String userLoginID)

n The following method can be called to return security privileges information for an object,
including a role name and ID for each privilege:
n Session.getObjectPrivilegePropertiesForObject(String objectName,

String objectType)
375

EXTENDING BUSINESS OBJECT CODE
WORKING WITH VERSATA LOGIC SERVER SECURITY PROPERTIES
n The following methods can be called to return security information for the specified
object(s):
n Session.getUserProperties(String userLoginID)

n Session.getRoleProperties(String roleName)

n Session.getObjectProperties(String objectName, String
objectType)

n Session.getUserRoleProperties(String userLoginID, String
roleName)

n Session.getObjectPrivilegeProperties(String objectName, String
objectType, String roleName)

n The following methods can be called after you have called a factory method such as
getObjects, to retrieve one or more objects.
n AppUserImpl.getProperties()

n AppRoleImpl.getProperties()

n AppObjectImpl.getProperties()

n AppUserRoleImpl.getProperties()

n AppObjectPrivilegeImpl.getProperties()

n Session.getUserProperties

Writing custom security applications
The security APIs provided with the Versata Logic Server allow you to build custom security
applications for targeted requirements. These APIs are not designed to allow a complete
rewrite of the Versata Logic Server Console, so they cannot reproduce all of its functionality.
For more information about implementing custom security and examples, see the
Administrator Guide.
376

EXTENDING BUSINESS OBJECT CODE
WORKING WITH JTS TRANSACTION MANAGEMENT
Working with JTS transaction management
Transaction management is generally handled by APIs from Versata Logic Server classes.
Another alternative is available for transaction management for EJB business objects.

n For business objects that use data stored in Oracle or DB2 Universal Database, transactions
can be managed using IBM’s implementation of JTS, which is a wrapper around the OTS
implementation of Encina Transarc.

n Transactions can be started either with the Java Transaction API (JTA) or with the API in
VSSession or VLSContext.The Usejts server property, which is set in the VLS
Console, determines whether transactions are processed using JTS or the Transaction
Logic Engine.

Note: If you use external connection pooling, you also need to use JTS (Java Transaction
Service) to process transactions in order to take advantage of the two-phase commit
provided by the underlying EJB server. As a result, the Transaction Logic Engine starts
a JTS transaction and the commit comes from JTS.

n If developers use the JTA interface to demarcate a transaction boundary, the transaction is
propagated automatically to the server. Developers do not have to write any code to register
the VLSContext with the transaction. When a method such as save is called in the
VLSContext, the server automatically checks whether a JTS transaction is in progress. If a
JTS transaction is in progress, the server initializes transaction information with the JTS
transaction instead of starting a Versata Logic Server transaction.

n The Versata Logic Server business objects’ internal code still uses the VLSContext APIs
(begin, commit, and rollback) to start and commit transactions.

n The VLSContext bean’s transaction attribute is TX_SUPPORTS, so VLSContext methods
can be called with JTS transactions.

n Data objects deployed as entity beans may have different transaction attributes for different
methods. If the transaction attribute of a method is TX_MANDATORY, its transactions must be
started with the JTA interface. If the transaction attribute of a method is TX_REQUIRED, the
application server automatically starts a JTS transaction for it. The transaction attribute of
the save method is TX_REQUIRED, while the transaction attribute of the initialization
method is TX_MANDATORY.

n When a method is called in an entity bean, an instance of VLSContext is created if the
transaction does not have a context associated with it. This context is destroyed as soon as
the transaction is completed.

Note: Do not add code that calls methods on multiple instances of VLSContext within one
transaction.
377

EXTENDING BUSINESS OBJECT CODE
SUPPRESSING CREATION OF ABSTRACT METHODS
Suppressing creation of abstract methods
Whenever you add a custom method to an object’s implementation file, the Versata Logic
Studio automatically creates a corresponding abstract method in the object’s base
implementation file. If the purpose of the custom method is to override a method in the base
implementation superclass, the addition of the abstract method defeats this purpose.

To provide a solution for this problem, Versata business objects provide the capability of
suppressing creation of an abstract method in the base implementation file. To prevent creation
of an abstract method in an object’s base implementation file, place the keyword
@SuppressAbstract in the line immediately following the method declaration in the
object’s implementation file. The following code provides examples of method syntax
containing this keyword:

public void NewMethod()
//@SuppressAbstract
{

...
}

public void NewMethod()
{//@SuppressAbstract

...
}

378

EXTENDING BUSINESS OBJECT CODE
HANDLING JAVA QUOTES INSIDE VERSATA LOGIC SERVER CODE STRINGS
Handling Java quotes inside Versata Logic Server
code strings

If you are adding code containing Java quotes to a Versata Logic Server file, you need to mark
each quotation mark with a backslash (\), as in the following example:

If you do not include backslashes, you will receive errors.

createTransferCredit()
insertObjects(’this’, ’AccountTransactionImpl’,
’setTransAccountNumber(this.getTransferAccount());
setTransCategory(\"A\"); setTransType(\"C\");
setTransAmount(this.getTransAmount());
setTransferAccount(this.getTransAccount()) ’)
379

EXTENDING BUSINESS OBJECT CODE
HANDLING JAVA QUOTES INSIDE VERSATA LOGIC SERVER CODE STRINGS
380

CHAPTER 11 Working with
Versata Connectors
381

WORKING WITH VERSATA CONNECTORS
CHAPTER OVERVIEW
Chapter overview
Read this chapter for an introduction to the data access code generated for Versata Logic
Server data objects to connect to supported RDBMSs. After you read this chapter, you should
have a basic understanding of this data access code and some general ideas of the requirements
for custom data access code to non-supported data sources.

This chapter includes the following:

n “eXtensible Data Access (XDA)” on page 383, describes the architecture for Versata Logic
Server data objects’ access to data sources.

n “Understanding Versata Connectors” on page 384, describes the code generated for access
to supported RDBMSs, which is packaged as objects called Connectors, including
instantiation, classes and methods used, retrieval processing, and save processing.

n “Associating Connectors with data objects” on page 389, explains how to specify that a
custom Connector should be used for a data object’s data access, and how to set up data
access information in the Versata Logic Server Console.

n “Creating custom Versata Connectors” on page 391, outlines the steps required to write
your own custom Connectors.
382

WORKING WITH VERSATA CONNECTORS
EXTENSIBLE DATA ACCESS (XDA)
eXtensible Data Access (XDA)
Versata Logic Studio-generated applications access data through the Versata Logic Server,
which transforms data from different sources into a seamless and transparent set of data that
the client understands. The Versata Logic Server does this by abstracting data access behavior
from higher levels of application behavior and defining it in a small set of APIs that retrieve,
filter, and save row data. Using these APIs, the rest of the system in all the tiers creates display
and calculation functionality that is independent of data access. This unique way of making
data accessible from any data source is called “eXtensible Data Access technology”, or XDA
for short.

Versata Logic Suite’s XDA framework provides the interface between business objects on the
Versata Logic Server and the databases, applications, or middleware that supply the physical
data against which business rules are run. This framework consists of well-defined, generic
Java methods for querying, fetching, updating, and saving data on any type of data source:
relational, object, application, or middleware.

A key benefit of XDA is that it enables the integration of relational data with package, legacy
and other non-RDBMS types of data. One repository can contain data objects that map to all
these different types of data sources, with seamless enforcement of business rules, because
rules logic processing is separated from the physical storage of data.
383

WORKING WITH VERSATA CONNECTORS
UNDERSTANDING VERSATA CONNECTORS
Understanding Versata Connectors
The methods required for data source connectivity are included in objects called Versata
Connectors. A Versata Connector is a data access mechanism that is the interface between the
data controls on a Versata Logic Studio-generated form or the elements bound to data sources
on a Versata Logic Studio-generated page, the data object(s) in the Versata Logic Server, and
the database. Versata Connectors receive requests from data objects and pass them to the
database in the native syntax of the database. They also return the results to the data object so
that it can pass the changes on to the data control in the Versata Logic Studio-generated form
or to the data source on the Versata Logic Studio-generated page. The Connectors’ code
integrates with JDBC interfaces.

RDBMS-specific APIs, such as APIs for handling query definitions and Where clauses in
Versata Logic Studio-generated applications, are managed in the Connectors. (Query
definitions and Where clauses are implemented as SQL statements and passed to the
database.) Error handling is provided in the Connectors, and there is a special SQL service that
maps data type differences between the RDBMSs.

The Versata Logic Suite includes classes that can be implemented and extended to create
Connectors to supported RDBMSs, including Oracle®, Microsoft SQL Server, Sybase®,
Informix®, and DB2® UDB. Some Connectors for other data sources are available for
separate purchase.

If you require connectivity to another type of data source, you can write your own custom
Versata Connector code. Versata Logic Suite provides an interface file that you can implement
and a class file that you can extend to create Connectors. Custom Connectors may be SQL
connectors that extend or replace the behaviors of the supplied connectors, or non-SQL
connectors supporting APIs such as CORBA or SAP.

Instantiating Connectors
Each data object in a repository creates and uses a Versata Connector to connect to, get, and
persist data. For data objects that map to supported RDBMS tables, the Java implementation
file for each data object includes a method that generates a Versata Connector to provide
connectivity to any supported RDBMS. Data objects that map to data sources other than
supported RDBMSs or require other special processing need to use custom Versata
Connectors.
384

WORKING WITH VERSATA CONNECTORS
UNDERSTANDING VERSATA CONNECTORS
Data objects that use custom Connectors are first class objects, with the same business object
code as data objects using standard Connectors. The only difference is in the Versata
Connector code. Thus, you can define rules in data objects that use custom Connectors, and all
Versata Logic Server services, including “just-in-time” object instantiation, automatic
partitioning, and optimized rules processing, are available to these data objects. Also, custom
Versata Connector-based objects are fully automated for Versata Logic Studio-generated
application construction, meaning they can be used as sources of data to be displayed.

The following code provides an example of the method used to create a standard Versata
Connector for a data object that maps to a supported RDBMS table.

Connector classes and methods
Versata Logic Suite provides an interface definition for XDA,
versata.vls.XDAConnector.

/**
*

* a factory method to create the XDAConnector object for this
class.
* @return XDAConnector : if succcessful returns an instance
* of the XDA Connector.
*/

public static XDAConnector createXDAConnector()
{

XDAConnector xda = null;
try {
VSMetaTable table = getMetaQuery().getChildMostTable();
if (table != null)

xda = (XDAConnector)Class.forName
(table.getXDAConnectorClassName()).newInstance();

else
xda = (XDAConnector)Class.forName
("versata.vls.XDASQLConnector").newInstance();

}
catch (Exception ex)
{

ex.printStackTrace();
}

return xda;
}

385

WORKING WITH VERSATA CONNECTORS
UNDERSTANDING VERSATA CONNECTORS
n The versata.vls.XDAConnectorImpl class provides a base implementation of this
interface’s methods. This class includes only those APIs used for internal system
management.

n The versata.vls.XDASQLConnector class is a fully functional subclass of
XDAConnectorImpl that provides connectivity to SQL data sources. This class provides
a variety of services, including RDBMS-specific APIs, query definitions and Where
clauses implemented as RDBMS-specific SQL statements and passed to the database,
special SQL services that map data type differences between RDBMSs, and error
handling.

The default Connectors are instantiated from the XDASQLConnector class. The
XDASQLConnector class can be used as a base to create custom SQL Versata Connectors. The
XDAConnectorImpl typically is used as a base to create custom non-SQL Versata
Connectors.

If you would like to review the methods available in these classes, you can open the Enterprise
Object Browser, select Versata VLS Classes from the Object Libraries drop-down list, and
select a class from the list. Be sure to enable the display of private methods. You can find
information about methods in the vfc.hlp file in the Help subdirectory.

The versata.vls.XDAConnector interface includes a number of methods that perform
standard data access operations, including methods which perform queries, retrieval methods,
and methods for saving. These methods include the following:

n execute, which causes a query to be performed

n fetch, getDataArray, getObjectArray

n save, which includes insert, update, and delete

n getRowCount, getRowSum
n refresh

n synchronizeDataSource

This interface also includes a createConnection method, which creates an object of the
versata.vls.Connection class, and a setProperties method, which stores data source
connection properties used to make connections.

The Versata Connector is an execution channel. It is stateless except when retrieval is in
progress and is not reused across objects. Versata Connectors can be designed to interact with
a data source directly, but in more sophisticated systems the communication link between the
Versata Connector and data source is maintained by another important interface class:
Connection. This is the framework for standard Versata Connectors for supported RDBMSs.

The Connection class provides methods for the following functionalities:

n Transaction control: If a business object is transaction-enabled, as are most RDBMS
objects, its data source session needs to be part of the transaction management. The
Connection class can be used to wrap around a physical link and can be registered in
Versata Logic Studio.
386

WORKING WITH VERSATA CONNECTORS
UNDERSTANDING VERSATA CONNECTORS
n Connection pooling: Participation in connection pooling optimizes performance.

The Connection is a limited resource, which is expensive to create and destroy. It has a state,
either active or idle, and is reused among sessions and objects.

Retrieval processing
This section outlines the methods executed to retrieve data using a Versata Connector in the
XDA framework.

First, a query is inititiated. A client may initiate a query, for example, either through a data
control (in a Versata Logic Studio-generated Java application) or data source (in a Versata
Logic Studio-generated HTML application) or programmatically. The MetaQuery provides
the definition of the query, including the data object or query object and attributes involved.
The Versata Logic Server locates the data object, or the childmost data object for the query
object, and loads the Versata Connector associated with the data object. All properties defined
for the Versata Connector in the Versata Logic Server Console (data server properties) are
passed as arguments.

The Versata Logic Server allocates a connection to the persistent data source for the data
object. First the Versata Logic Server searches the local pool for a login session, then it
searches the global pool for a matching data server and connection ID. The connection ID is
customizable; the default is the database login. If no existing connection is found, the
createConnection method from XDAConnector is called to create one. The Session
holds on to the connection pool information.

The Versata Connector’s execute method should return true if the operation is successful,
regardless of whether any records match the query criteria. The execute method is passed the
ResultSet, MetaQuery, Filter, SortRequest, and Connection objects. A successful
query will open a database cursor at this point. The Versata Connector should maintain the
position of the data buffer and return data in string format.

The Versata Logic Server calls fetch if the query includes virtual attributes, otherwise it calls
getDataArray. The fetch call returns a dataRow in the ResultSet. If the query contains
any virtual attributes, fetch is invoked to construct a dataRow. The server object is created
using values from the row and the caller then populates all virtual attributes. The
getDataArray method is used to fetch a fixed number of rows from the data source in a
chunk. The rows of data are populated into a preallocated two-dimensional array which is
passed to the method. The return value is the number of rows populated. This number can be
smaller than the number of rows in the preallocated array, if the number of available rows is
smaller.

When all data retrieval is complete, the Versata Connector is asked to release all resources. The
Versata Connector should clean up resources (for example, close the database cursor) and
should inform the associated Connection object that the query is over.
387

WORKING WITH VERSATA CONNECTORS
UNDERSTANDING VERSATA CONNECTORS
Save processing
This section outlines the methods executed to save data using a Versata Connector in the XDA
framework.

First, a request is initiated. For example, a client initiates a request to save one or more
records. This starts a transaction. Transaction control tries to allocate an available connection
from the pool; it may require a different type of connection than a query request. For example,
the save may require an exclusive connection. A database transaction is started.

The business object is instantiated and it locks itself on a database, so the database cannot be
altered until commit occurs. Rules code is run against the business object and events are fired
at the appropriate times. The business object is cached in the transaction control buffer.

Once all business object code has been processed without errors or exceptions raised,
transaction control flushes all changes into the persistent data source. The Versata Connector
determines what action is required (insert, update, or delete) by inspecting the
dataRow’s status and this action is performed in the process of the save. The Versata
Connector’s execute method should return true if the operation is successful, regardless of
the number of records saved. Once the action is complete, the connection is released from the
transaction and put back in the connection pool if it is sharable.

The final refresh is used only if necessary to synchronize a query object with the data
source. You can enforce refresh by setting a data server property.
388

WORKING WITH VERSATA CONNECTORS
ASSOCIATING CONNECTORS WITH DATA OBJECTS
Associating Connectors with data objects

Defining Connectors for data objects
You define the Versata Connector class to be used for a data object on the Properties:Data
Access tab of the Transaction Logic Designer. If the data object maps to a supported RDBMS
and no special handling is required, the default SQL Connector is used. If the data object maps
to another type of data source or requires special handling, and uses a custom Connector, you
need to enter the name of the custom Versata Connector class.

Setting up Connectors in the Versata Logic Server Console
Each data source for a Versata Logic Studio-generated application maps to a data server. A
data server is a collection of properties describing connection and location information for the
data source. Data servers are exposed in the Versata Logic Server Console. Each business
object is assigned to a data server. This assignment is initialized when you first deploy
business objects to the Versata Logic Server, and uses information from the most recent data
model deployment.

Data servers are categorized by data server type. Each data server type corresponds to a JDBC
API used for data source connectivity, typically a JDBC driver. Data server types for supported
RDBMSs are preset in the Versata Logic Server Console. Each data server type has a set of
associated connection properties that hold declarative data access information. Examples of
connection properties include default user, DSN (data source name), schema name, and port.
The values for these properties are used by Versata Connectors to establish connections with
the physical data sources.

If you use Versata Logic Studio’s Deployment Manager to automate deployment of data
objects to the RDBMS database and to the Versata Logic Server, values for connection
properties for these data objects’ data server(s) are set automatically, based on the default data
server type for the RDBMS where data objects were deployed.You can review and modify this
information in the Versata Logic Server Console.

For data objects that use custom Connectors, you need to define a new data server type
corresponding to a JDBC API for the physical data source, define connection properties for the
data server type, and set up values for these properties manually. You can complete these tasks
in the Versata Logic Server Console. The properties required for a data server type depend on
the code in the Versata Connector. For information about defining data server types and
connection properties, see the Administrator Guide.
389

WORKING WITH VERSATA CONNECTORS
ASSOCIATING CONNECTORS WITH DATA OBJECTS
Note: The XDAConnector interface has a setProperties method. You can use this method
to store data server connection properties for a data source using a custom Versata
Connector. For more information about this interface and its methods, see the vfc.hlp
file in the Help subdirectory.
390

WORKING WITH VERSATA CONNECTORS
CREATING CUSTOM VERSATA CONNECTORS
Creating custom Versata Connectors
You may want to write your own Versata Connector classes for the following reasons:

n To access data which is not accessible by the default Versata Connectors. For example, to
access data in a legacy database or even data in memory, such as data from the Windows
registry.

n To augment the queries that the default Versata Connectors send to the supported
RDBMSs. For example, you might want to write a Versata Connector to use stored
procedures to retrieve data from a Sybase or Microsoft SQL Server database. Many users
of Sybase and Microsoft SQL Server prefer to use stored procedures to return data, since
these can provide superior performance by reusing query optimization plans. The
Server_XDA_StoredProcedure sample application illustrates how to write a Versata
Connector that uses stored procedures for data retrieval.

n To access a table in a supported database that is not associated with the current database, a
database of another type (such as an Excel spreadsheet or a legacy database), or any other
data source for which the default Versata Connector is inappropriate. You might even use a
Versata Connector to create non-default data access behaviors on the current server and
database.

In order to design a custom Versata Connector, you need a good understanding of:

n the XDAConnector interface

n the target data source and middleware, and their APIs

n the Versata Logic Server’s data object and dataRow behavior

n Session, Connection, ResultSet, and MetaQuery objects

The following tips may help you in getting started with design of a custom Versata Connector:

n Begin by building for a single instance of a data object. You may be able to generalize the
design to provide access to all data objects, or you may need to adapt the initial design to
create separate Connectors per data object. For example, separate Connectors may be
required when the API interface differs for each operation, as in CICS and SAP.

n Defer building filtering (but make sure hooks are available).

n Begin by supporting two standard data types, such as string and integer; consider deferring
support of other data types.
391

WORKING WITH VERSATA CONNECTORS
CREATING CUSTOM VERSATA CONNECTORS
Adding a Versata Connector file to a repository
To create a Versata Connector, you need to create a Java source file for it. You may do this in
three ways, as shown in the following table.

After you create the Java source file, set it up as the Versata Connector for the intended data
object by right-clicking the data object on either tab of the Versata Logic Studio Explorer, and
choosing Transaction Logic Designer. On the Properties: Data Access tab, select Custom and
browse to the custom Versata Connector.

Method Procedure Comments

Use the New XDA
Connector wizard to
start with a basic code
structure and add
other code to the file
in a Code Editor.

On the Files tab of the Versata Logic Studio
Explorer, right-click the Versata Logic
Server folder or one of its subgroup folders,
and choose New XDA Connector to start
the wizard. The Choose File Name dialog
opens. Enter a name and click the Next
button. The Create XDA Connector Class
dialog displays defaults for the package that
contains the class, any interfaces it
implements and any classes it extends. Edit
these if necessary. After you enter
information about the class, the file opens in
the Code Editor, with basic code already in
it.

Writes the source file for the class in the Code
Editor and compiles and registers it. You may
extend a default Versata Connector class or write
an original class.

Versata Logic Suite saves these source files within
\<repository>\
<repository>_JavaFiles folder, in a
subgroup folder if applicable.

The compiled class files are in
\<repository>\
<repository>_JavaFiles\Classes. All
classes in this directory are in the repository
classpath automatically.

Reference an existing
file.

On the Files tab of the Versata Logic Studio
Explorer, right-click the Versata Logic
Server folder or one of its subgroup folders,
and choose Add Files to browse to the file.

Writes the location of the file in the repository
metadata.

The file must be registered before it may be
referenced. Previously referenced classes and
libraries may be viewed in the References dialog.
To open the dialog, choose the References option
of Versata Logic Server in the Versata Logic
Studio main menu.

Copy an existing file
into the repository.

On the Files tab of the Versata Logic Studio
Explorer, right-click the Versata Logic
Server folder or one of its subgroup folders,
and choose Add Copies to browse to the
file.

Writes the location of the file in the repository
metadata and copies the file into the appropriate
subdirectory of
\<repository>_JavaFiles.
392

WORKING WITH VERSATA CONNECTORS
CREATING CUSTOM VERSATA CONNECTORS
Writing code for a custom Versata Connector
Your custom Versata Connector should extend one of the system-provided classes. The
XDASQLConnector class can be used as a base to create custom SQL Versata Connectors. The
XDAConnectorImpl typically is used as a base to create custom non-SQL Versata
Connectors. You may be able to find a SQL interface for a non-SQL data source, then subclass
XDASQLConnector and override those methods that require different behavior.

The code in your custom Versata Connector should include the following:

n execute method. This method processes the multiple record retrieval logic, retain result,
keyset, cursor handle, or object array structure for later fetches; and should be able to parse
SQL or use parameters for filters.

n fetch and getDataArray methods. These methods get the next result, keyset, cursor
record, or object instance, packaging it as an array of strings before returning.

n save method. This method includes insert, update, and delete processing. It requires
the record(s) to be locked. For update, it uses a modified flag to determine which record(s)
to update. This method tells the data source to change its data using its language or API.

n getRowCount and getRowSum methods. These methods are used for attributes derived
through sum and count rules. You can implement this functionality through existing
execute and fetch methods if direct calls do not exist in the data source.

n refresh and synchronizeDataSource methods. These methods must be able to
reread all data for all record values from stored key information. If a connection is in
progress, your code must lock the record in some way.

n Connection methods. You optionally can design your own Connection object to
instantiate during createConnection().

Connection methods allow for transaction control and connection pooling. The
Connection.getID and XDAConnector.getConnectionID methods should be
implemented to return the same value in order for an existing connection to be reused by
the next request that can share the same type of resource. Share the Connection if
possible. Connection provides the setSharable and isSharable methods. If it is not
possible to share the connection, release it as soon as the Versata Connector instance is
released.

The Connection object can control behavior for beginTransaction, rollback, and
commit, and for read properties set in the Versata Logic Server Console for the data server
type.
393

WORKING WITH VERSATA CONNECTORS
CREATING CUSTOM VERSATA CONNECTORS
Whenever an activity gets invoked on a Versata Connector, a Connection object is
passed to it. So the Versata Connector should be designed so it can set a flag on a
Connection when it is being used, and can reset a flag when the task is finished. Because
a Connection can be used by more than one Versata Connector, the Versata Connector
should not directly invoke the release, as it cannot track whether other activities are
using the Connection at the same time. The Connection itself should invoke the
release method.

Note: If you subclass XDASQLConnector, your Versata Connector inherits all the APIs
required by the Versata Logic Server for connection reuse.

Testing a custom Versata Connector
After you have written the code and made the Java source file available to the repository, you
are ready to test your Versata Connector. To test a custom Versata Connector:

n Create a data object in the Versata repository to represent the data source.

n Deploy the data object to the Versata Logic Server.

n Set up a data server type and connection properties for it in the Versata Logic Server
Console. Assign this data server type to the data server holding the just deployed data
object. Then enter values for connection properties. For information, see the Administrator
Guide.

n Build, deploy, and run a Versata Logic Studio-generated application or other client to test
basic functionality.

n Verify that the implementation can support multiple users, and that it supports optimistic
and/or row locking correctly.

n Test and document any limitations relating to support for multi-row update, positioned
update in a list, insert/update/delete, query, refresh of row, and virtual attributes.

n Test rules involving multiple objects, including those representing data source types,
including referential integrity, replicates, formulas, constraints, defaults, and rules on
virtual attributes.

n Test exception handling.

n Check for proper resource usage and cleanup, including closing of connections, connection
pooling if supported, reuse of connections, and closing of sessions.

You also may wish to perform performance testing, installation testing, and end-to-end testing.
394

WORKING WITH VERSATA CONNECTORS
CREATING CUSTOM VERSATA CONNECTORS
Packaging a custom Versata Connector
You need to complete the following tasks to package a custom Versata Connector:

n Document middleware requirements and installation requirements.

n Document data server type and properties to be set in the Versata Logic Server Console.

n Build a .zip file containing specialized classes required for the Versata Connector.

n Document the paths of the .zip file(s) containing Versata Connector classes and of any
classes required for the middleware. These paths will need to be added to the Versata
application server command line arguments in the IBM WebSphere Administrative
Console.
395

WORKING WITH VERSATA CONNECTORS
CREATING CUSTOM VERSATA CONNECTORS
396

APPENDIX A Transaction Logic
Examples
397

TRANSACTION LOGIC EXAMPLES
APPENDIX OVERVIEW
Appendix overview
This appendix is provided to assist you in breaking down business requirements into
declarative business rules. The examples of common patterns here can provide models for you
to think about your own requirements.

Before you begin defining business rules, you should understand what declarative business
rules are and the types of rules available. A familiarity with the order of rule processing
operations is important for understanding how to extend business rules. For information about
these areas, see “Understanding Transaction Logic” on page 183.

You also need to understand how to modify your data model because some business rule
definitions may require data model changes, including the addition of data objects,
relationships, and attributes. Details about these tasks are provided in “Developing a Data
Model” on page 31.

For instructions for the tasks involved in defining business rules, see “Defining Business
Rules” on page 211. For information about extending business rules in cases where declarative
business rules do not fully implement requirements, see “Extending Business Object Code” on
page 321.

The sample repository included with the Versata Logic Suite contains many examples of
declarative rules. You can open this repository and open different business objects in the
Transaction Logic Designer to review these rules and their expressions. Online help for the
sample repository may provide additional explanations of these rules.

In this appendix, each example requirement is displayed in bold, and the solution for
implementing the requirement with declarative business rules is described in the text
following the requirement.
398

TRANSACTION LOGIC EXAMPLES
CALCULATION IN PARENT, BASED ON CHILD DATA
Calculation in parent, based on child data

For every order that includes a blue widget the freight charged is waived.

This requirement involves an Order and an OrderItem data object. The freight charge is
computed in the parent data object, which is Order, while the numbers and/or names
specifying the parts for the order are attributes of the OrderItem data object (a child of Order).
The solution to implementing this requirement includes two declarative business rules:

n A conditional count derivation rule adding a “Number of Blue Widgets” attribute to the
Order data object. The count contains a qualification expression specifying that order items
be counted only where “Part Name = Blue Widget”.

n A condition added to the formula expression for the Order.Freight attribute, specifying “If
Number of Blue Widgets > 0 then $value = 0”.

Note the use of $value for self-assignment in a formula expression ($value represents the
Order.Freight attribute). Also note that counts can be used for existence checks, cardinality
checks, and checks of whether an attribute value has changed.

Comparing values from sibling objects

If an order includes a total of ten or more blue widgets and red widgets, the
eleventh blue widget is free.

This requirement involves the calculation of an amount attribute in the OrderItem data object,
and this calculation requires the addition of two different sibling items, blue and red widgets.
The solution to implementing this requirement involves three declarative business rules:

n A conditional count derivation rule adding a “Number of Blue and Red Widgets” attribute
to the Order data object (which is a parent of OrderItem). The count contains a
qualification expression specifying that order items be counted where “Part Name =
Blue Widget or Part Name = Red Widget”.

n A replicate rule that copies the value for the “Number of Blue and Red Widgets” attribute
in the Order data object to “Number of Blue and Red Widgets” in the OrderItem data
object.

n A condition added to the formula expression for the OrderItem.Amount attribute,
specifying “If Number of Blue and Red Widgets > 10 and Part Name = Blue
Widget then $value = $value - Price”. In this expression, Price is equal to the
price of the blue widget.
399

TRANSACTION LOGIC EXAMPLES
CONSTRAINING UPDATES BASED ON PARENT DATA
Constraining updates based on parent data

Only Sales Reps can place orders.

This requirement involves a Type hierarchy in the Employee data object, where each
employee record has an Employee Type attribute. “Commissioned” is one possible value for
the Employee Type attribute. This requirement also involves the Order data object, which is
where the constraint is defined. In this example, Employee is a parent of Order, because an
employee can place multiple orders, while an order can be placed by only one employee. The
solution to implementing this requirement includes two declarative business rules:

n A Parent Replicate rule that copies the value for the Employee Type attribute in the
Employee data object to the Order data object.

n A constraint in the Order data object, indicating “Reject when Employee Type not
equal to ‘Commissioned’”.

This example is included in the Versata Logic Suite sample repository. More information
about implementing type hierarchies in a data model is included in “Type hierarchies” on page
108.
400

TRANSACTION LOGIC EXAMPLES
NESTING RULES
Nesting rules

If an order has more than 100 order items, there is a 10% discount on all items
less than $50.

This requirement involves the Order data object and its child, the OrderItem data object. This
example requires the determination of whether an order contains more than 100 items, then the
computation of the amount for all items worth less than $50, then a recalculation of the order
value. The solution to implementing this requirement includes two declarative business rules, a
sum and a replicate each with a nested rule:

n A sum derivation rule defining “Number of Order Items” for an order, which sums the
amount ordered for each order item in the order.

n A formula rule defining a Yes/No “DiscountFlag” attribute in the Order data object, with
an expression like: “If ‘Number of Order Items’ > 100 then $value = True”.

n A replicate rule that copies the value of the Order.DiscountFlag attribute to a DiscountFlag
attribute in the OrderItem data object.

n A formula rule for a “Recalculated Price” attribute in the OrderItem data object, with an
expression like “If Price < $50 and DiscountFlag = True, then $value =
.10 * Price”.
401

TRANSACTION LOGIC EXAMPLES
RETRIEVING DATA WITH A USER-DEFINED METHOD
Retrieving data with a user-defined method

Tax computation for an order is based on a tax rate obtained from a
State_Tax_Schedule data object, which depends on the state where the order is
placed and the date of order placement.

In this example, locating the correct row in the State_Tax_Schedule data object requires a
complex query on date ranges, so a simple replicate from this data object to the child Order
data object is not possible. The solution to implementing this requirement involves a custom
business function (Java method) and a formula rule that references this method. Business
functions can be used for many purposes to extend declarative rules functionality. The sample
repository includes multiple examples. Data retrieval is a common use.

n You can write a Java method that retrieves the correct tax rate from State_Tax_Schedule.

n Define a formula rule for Order.Tax that references the tax rate value like a replicate.

The formula expression for Order.Tax in the Versata sample repository references a Java
method called TaxRate that provides the functionality described above:

The Versata Logic Studio automatically builds a predefined set of Java methods for each data
object in the repository, including the getObject methods. These methods can be used to
retrieve data from related data objects.

In this example, the TaxRate method retrieves parameters from two objects: PaidDate from
the Order data object and State from the Customer data object. These parameters are
retrieved with getObject methods. These methods allow you to traverse a relationship chain
to find an instance of the specified object and retrieve attributes from it. Note that
corresponding setObject methods are also built, which can be used to set values for data in
related data objects.

If (Inserting OR (AmountItems <> :Old. AmountItems
Then

$value = AmountItems *
TaxRate(getplacedByCustomer().getState(), getPlacedDate())

End If
402

TRANSACTION LOGIC EXAMPLES
OVERRIDING NORMAL RULE BEHAVIOR WITH USER-DEFINED EVENTS
Overriding normal rule behavior with user-defined
events

The purge operation deletes paid, shipped orders without causing an inventory
adjustment.

In this example, there is a need to override default rule behavior, which normally would not
allow deletion of an order that is paid and shipped. If this deletion was allowed, it would result
in all parts in the order being added back to inventory incorrectly. The solution to
implementing this requirement involves the creation of a user-defined purge event. The
creation of this event requires the addition of a button and Java event-handling code to the user
interface, as well as the addition of references to the event in two declarative business rules.

1. Create a “Purge” button on forms/pages where orders can be modified.

2. Add actionPerformed event code to the “Purge” button, similar to the following
example code from the Server_Extended_Rules_Mods Versata Logic Studio-generated
sample application:

void btnPurge_actionPerformed()
{

VSUserDefinedEvent ude = new VSUserDefinedEvent("ORDERS.Purge",
VSAction.EventTypeDelete);
datT3ORDERS.setUserDefinedEvent(ude);
datT3ORDERS.delete();

// this will fire business rules for purge,
// so that Part onHand / Reorder quantities are not altered.
// contrast to delete, as described in Help.

}

403

TRANSACTION LOGIC EXAMPLES
OVERRIDING NORMAL RULE BEHAVIOR WITH USER-DEFINED EVENTS
3. Add a test for the Purge event to a constraint rule on the Order data object, similar to the
following expression defined in a constraint for the ORDERS data object in the sample
repository:

4. Add a test for the Purge event to the formula expression for the QtyOnHand attribute in the
Part data object, like the following:

Many different user-defined events can be set in the user interface. On the Versata Logic
Server, only one event at a time is “current” for a session. The current event is essentially a
global variable whose value can be tested in two ways:

n The CurrentEvent() function returns the value, or name, of the current event if one is
set.

n The isCurrentEvent(java.lang.String eventName) method returns a value of
“True” if the named event is set.

Reject when
Deleting AND isCurrentEvent(’ORDERS.Purge’) = false AND
:Old.ShippedFlag != false AND
:Old.OrderPaid != false

if Inserting then
$value = 0

elseif (isCurrentEvent(’ORDERS.Purge’) = false) then
$value = QtyOnHand - (QtyShipped - :OLD.QtyShipped) + (QtyReceived -
:OLD.QtyReceived)

end if
404

TRANSACTION LOGIC EXAMPLES
USING BATCH PROGRAMS TO TRIGGER CALENDAR-DRIVEN RULES
Using batch programs to trigger calendar-driven rules
Note: The Process Logic Add-On provides another way to implement calendar-driven rules.

For details about integrating Process Logic Add-On functionality with transaction logic
rules, see the Logic Integration Guide included with that product.

Notify the contract administrator when a contract’s expiration data has passed,
if the contract is of type “Service” and has a value of more than $10,000.

In this example, there is no data update that can trigger the execution of rules. The solution to
implementing this requirement can be to use a batch program for everything, or to combine the
use of a batch program with declarative business rules. The data model is different in each
case.

The first case, where a batch program is used exclusively requires a Contract data object, with
ContractID, ExpirationDate, Type, Value, and Administrator attributes. In this case, the batch
program could be run daily to obtain the current date and compare it with the ExpirationDate
values for each record. In cases where the ExpirationDate matches the current date, the
program could check the type and value attributes, and send emails as appropriate.

The second case, where a batch program is used in combination with declarative business
rules, requires less code and thus can be easier to maintain. This solution requires a
ContractHeader data object that is a parent of the Contract data object. The batch program
updates ContractHeader, while this data update triggers rules in Contract, which handle the
update to this data object. In this case, the ContractHeader data object includes ExpirationDate,
CurrentDate, and ExpireFlag attributes. The batch program can be run daily to update the
CurrentDate. Then three declarative business rules are defined to implement the requirement:

n A formula rule defining the ExpireFlag attribute in the ContractHeader data object, with an
expression like: “If CurrentDate > ExpireDate then $value = True”.

n A maintained replicate rule copying the value for ContractHeader.ExpireFlag to an
ExpireFlag attribute in the Contract data object.

n An action rule for the Contract data object, with a conditional expression like: “If
ExpireFlag = True and Type = Service and Value > 10000”. The action for
this rule would be to send email to the contract administrator.

Note that other attributes such as ExpireDate could also be replicated from ContractHeader to
Contract as necessary. This type of action rule requires integration with a mail program. For
information on how to reference methods for sending email in rules, see “Setting up an email
notification system” on page 359.
405

TRANSACTION LOGIC EXAMPLES
USING BATCH PROGRAMS TO TRIGGER CALENDAR-DRIVEN RULES
406

Index
407

INDEX
A

action rules
defining ...236
expression syntax..246
overview ...198

adding
attributes ...102
files to repositories..308
images to data objects...238
indexes ..119
relationships..113
server event-handling code...............................333, 335
Versata Connectors to repositories392

ANSI SQL
data type mappings ...52

APIs
business object collections..352
Java mail integration...358
recomputing derivations ...354
remote access ..348
transaction management ...377
Versata Logic Server security375

applications
calling business object code341
queries to databases ..342
writing custom security ..376

applying
data elements to business rules189

archetypes
defining a non-default archetype237

attribute naming conventions..39
attribute validation rules193–194
attributes

adding ...102
changing data types ..103
computed ..106, 165
deleting ...103
identity columns ...55
methods for getting and setting331
naming ..100
overview ...98
presentation rules ..195
renaming ...103
security..258
sequential numbering..53
virtual..104–106

B

batch programs
using to trigger calendar rules405

Beans
deploying data objects as..............................83, 91, 148
implementing objects as ...34

benefits of business rules..186
blocks

component declarations ..299
component import...298
component import block...292
data definition block ...294
query object constructor ...299
query object event...301
rules block...295

BNF for rule expression250–254
building

business object collections..352
rules expressions...239

business automation framework288
business logic

deployment ...268–283
processing ...200

business objects
adding event-handling code......................................335
caching..341
calling code from client applications........................341
code...288
collections...352
creating rows versus creating objects351
events ..334
getting and setting attributes.....................................331
instantiating ..326
interface files ..303
redeploying ...264
remote access..348
setting up in Versata Logic Server Console..............263
subclassing classes..339

business rules
action expression syntax...246
action rules..198, 236
adding server event-handling code...........................333
applying to data elements ...189
attribute validation rules193–194
basic steps for defining...213
benefits of ...186
building rules expressions ..239
calling external methods...198
calling user-defined methods....................................402
cascade rules ...197
coded values lists ..235
408

INDEX
combining to implement business requirements...... 192
computing results without saving 355
condition validation rules... 234
conditional counts .. 399
conditional expression syntax 245
constants supported.. 248
constraints .. 198, 235
counts ... 190
data objects... 198
data types ... 194
default expression syntax... 246
defaults ... 191
defining .. 232–238
derivation rules................................. 189–191, 232, 234
design issues... 213
design patterns ... 398–405
enforcing against existing data................................. 354
examples .. 398–405
expression syntax ... 239
extending.. 333
formula expression syntax 245
formulas ... 191
general expression syntax guidelines....................... 244
generating reports... 239
identifiers supported... 247
logic processing ... 200
multiple data object updates..................................... 192
nesting .. 401
no-save firing ... 355
nullability ... 194
overview... 184–188, 189–192
parent replicates ... 191
presentation rules ... 194–195
referential integrity rules.. 197
reserved words supported .. 247
restrict rules.. 197
siblings ... 399
spreadsheet-like functionality 187
sums ... 190
testing... 279
Transaction Logic Designer 220
types ... 189–199
updatability .. 194
updating after delivery ... 243
user-defined events .. 403

C

caching
business objects.. 341
coded values lists ... 96

parent data.. 342
calling

external methods .. 198
captions

data objects .. 196
overview... 196, 198
relationships ... 196

cascade rules .. 197
childmost data object ... 149
classes

subclassing for business objects 339
Versata Connectors .. 385

code
business objects.. 288
custom.. 323
importing classes.. 325
printing from Code Editor.. 318
regenerating blocks .. 317
See also blocks
Versata Logic Server security 375
writing for Versata Connectors 393

Code Editor
editing code.. 317
Event Mode View .. 316
Full Mode View ... 315
overview... 313
printing code .. 318
smart code blocking ... 317
syntax helpers .. 317
types of files that can be edited................................ 318

coded values lists ... 92
caching ... 96
Coded Values List Manager 96
defining .. 96
defining rules ... 235
overview... 37, 95
using in validation rules ... 95

collections of business objects 352
concurrency control ... 94
condition validation rules

defining .. 234
conditional expressions.. 245
Configuration Options dialog 132
Connect for Auto Selection dialog............................... 128
Connection class .. 386
Connectors

See Versata Connectors
constants supported in business rules 248
constraints

defining .. 235
overview... 198
409

INDEX
conventions, naming...38
count rules...190, 232, 399
creating

custom Versata Connectors.......................................391
query objects...152
repositories..58
rows versus objects ...351

.csv files ..56, 83
customer support.. xxii
customizing

business objects ..326–340
code...323–325
security..376
Versata Connectors ...391

D

data
enforcing business rules against existing..................354

data access
query instance ...343
remote object access ...348
SQL string...346
Versata Logic Server...341
XDA..383

data model
characteristics ...36
Data Model Deploy Options dialog..........................132
denormalizing ...38
deploying to database server.....................................123
deployment files ...133
in repository ..33
naming conventions ..38–39
reengineering ..59, 60
validating ..62

data object naming conventions38
data objects

adding images ...238
assigning names..37
captions ...196
common methods..297
creating custom superclass339
defining Versata Connectors389
definition...287
deleting ...87
implementation files ...291
importing from RDBMS...83
presentation rules ..195
reengineering ..59
renaming ...87
superclass..297

data servers
setting properties...389

data types
ANSI SQL ..52
changing..103
DB2 mappings ..49
editing in Business Rules Designer194
Informix mappings ...48
mappings between Versata and RDBMSs40–52
modifying..194
Oracle mappings ...41
SQL Server mappings...44
Sybase mappings ..46

database server
deployment to ...123
setting up DSNs..124

databases
application queries..342
deployment to multiple databases.............................142

DB2
autonumber restriction..51
data type mappings ...49
deployment ...34
locking ..94
quoted identifiers ..133
restriction on unique indexes....................................119
running deployment scripts137
setting up system DSN ...125

DDL.sql file ..135
declarative business rules

See business rules
default rules

description ..191
expression syntax..246

defining
action rules..236
business rules..213, 232–238
coded values list rules...235
coded values lists ..96
condition validation rules ...234
constraints...235
derivation rules ...232
transaction logic..213, 232–238

deleting
attributes ...103
data objects ...87
derivation rules ...234
indexes ..119
relationships..115

denormalizing for performance37
deploying

attribute security information258
410

INDEX
business logic ... 268–283
data model to database server 123
data objects... 83
Deploy to Server or Scripts dialog........................... 130
EJBs ... 257
errors for data models .. 141
generating quoted identifiers.................................... 139
generating scripts for data model 135
granting permissions for data model........................ 138
multiple databases.. 142
running data model scripts 136
Server Deployment Preview dialog 133
setting default values for WebSphere 4.0 production

deployment... 283
transaction logic ... 268–283

deployment descriptors .. 305
derivation rules... 189–191

defining .. 232
deleting... 234
recomputing ... 354

designing
business rules ... 213
query objects .. 150
transaction logic ... 213

development deployment to Versata Logic Server 273
documentation

and other resources for Versata Logic Suite xvi
Web site... xxi

DSN
setting up for a database server................................ 124

E

editing
code in the Code Editor.. 317
data model validation utility commands file........ 40, 83
import statement... 325

EJBs
deploying.. 257
remote object access .. 348

Enterprise JavaBeans
See EJBs
Visual Age for Java.. 350

errors
data model deployment .. 141

events
business rule actions .. 198
event-handling code ... 333
examples of event-handling code..................... 335–338
query .. 334
server events... 334

transactional ... 334
examples

business rules ... 398–405
custom factory method... 330
custom instance methods ... 332
email notification system ... 359
importing classes.. 325
Java mail integration.. 359
server event-handling code 335–338
SQL dialects for outer joins in a query 170
virtual attributes ... 106

executeQuery method .. 346
expression evaluator .. 364
expression syntax ... 239

F

factory methods
example custom ... 330
overview... 326

files
business object interface .. 303
.csv ... 56
data model deployment.................................... 133, 135
data model validation utility commands.............. 40, 83
data object implementation...................................... 291
deployment descriptor.. 305
editing in Code Editor.. 318
home interface files.. 303
making available for applications 308
referencing ..311
registering ...311
remote interface ... 304

forms
captions in Java applications.................................... 196

formula rules .. 191, 232
expression syntax ... 245

G

generating
business rules reports ... 239
deployment scripts ... 135
quoted identifiers ... 139–141
scripts for data model deployment........................... 135

getMetaQuery method ... 326
getNewObject method ... 326
getObjectByKey method.. 326
getObjects method ... 326
granting

data object permissions .. 138
411

INDEX
H

home interface files ..303
how to contact us ... xxii

I

IBM WebSphere Application Server83, 148
identifiers supported in business rules..........................247
identity columns ...54
images, associating with data objects238
Impact Analysis Report ..88–89
implementation files

data objects ...291–296
query objects...298–302

import statement ...325
importing

classes ...325
data objects from other repositories......................65, 85
data objects from RDBMS ...83
data objects from XML...86
relationships from XML ...114

indexes
adding ...119
changing definitions ...120
deleting ...119

Informix
attributes ...119
data type mappings ...47
deploying ..34, 49
indexed attributes..102
naming conventions ..39
quoted identifiers ..133
reengineering ..60
running deployment scripts137
setting up system DSN ...125

instance methods
example custom ..332
overview ...330

instantiating
business objects ..326
Versata Connectors ...384

integrating
Visual Age for Java objects350

J

Java
handling quotes inside code strings379

Java applications
presentation rule ...238

Java mail integration...359
JDK...260
JIT

See Just-In-Time objects
joins ..107, 150, 167
JTS transaction management ..377
Just-In-Time objects ...351

K

keys
changing..115
primary..117

L

labels...196
limits and restrictions

attribute names..38, 39
data object names..40
DB2 and autonumber..51
DB2 data types..49
DB2 unique indexes..119
Informix attributes ..102, 119
SQL Server and outer joins150

locking ..94
log file...96, 134

M

mail integration for Java applications...........................359
Maintained option for parent replicates........................191
Manual conventions...xix
many-to-many relationships ...108
mapping

data types ..49, 50, 51
metaqueries...343
methods

DataObject ..297
factory...326
getting parent and child records................................347
instance ...330
making remotely accessible......................................349
Versata Connectors ...385
Versata Logic Server security375

Microsoft SQL Server
See SQL Server

modifying
data types ..194
412

INDEX
multiple schema deployment 142

N

naming conventions ... 38
data model.. 38–39

nesting business rules... 401
nullability rules .. 194, 234

O

object caching, coded values lists 96
objects

compared to rows... 351
registering ...311

online help
Contents .. xix
Index ... xix

optimistic locking... 94
Oracle

data type mappings .. 41
deployment... 34
granting permissions .. 138
naming conventions ... 40
quoted identifiers 132, 139, 140
running deployment scripts...................................... 136
sequential numbering ... 53
setting up system DSN... 124

outer joins... 107, 150
overview

attributes... 98
business rules ... 184–188
captions .. 196
Code Editor .. 313
coded values lists ... 95
data model deployment .. 123
declarative business rules................................. 189–192
query objects .. 147–148
reengineering.. 59
remote object access .. 348
Transaction Logic Designer 220
Versata Connectors... 384
XDA... 383

P

packaging
Versata Connectors... 395

parent replicate rules .. 191, 232
ParentInsertable flag .. 344
performance

denormalizing for... 37
object caching .. 341
optimistic locking .. 94

permissions, granting for data model........................... 138
presentation rules 194–195, 237, 238
primary keys ...117
production deployment to Versata Logic Server.......... 281

Q

qualification expression syntax.................................... 245
queries

applications to databases.. 342
defining SQL text... 345
Order By clause ... 345
ParentInsertable flag .. 344
run-time behavior... 344
Where clause.. 345

query definition.. 343
query instance .. 343
query objects

childmost data object ... 149
creating... 152
definition.. 287
design guidelines.. 36, 150
implementation files .. 298–302
overview... 147–148
relationships ... 149

quoted identifiers ... 132, 139–141
quotes, handling inside Versata Logic Server code strings

379

R

recomputing derivations .. 354
redeploying business objects 264
reengineering ... 59
Reengineering Manager ... 59
referencing objects ..311
referential integrity rules...................................... 197, 226
registering objects ...311
relationships

adding..113
captions .. 196
changing keys ...115
deleting..115
many-to-many.. 108
presentation rules ... 195
413

INDEX
query objects...149
referential integrity rules ..197
type hierarchies...108–110

remote interface files ..304
remote method invocation349, 350
remote object access ...348
renaming

attributes ...103
data objects ...87

reports
business rules reports..239
Impact Analysis Report ..88

repository
adding files ...308
adding Versata Connectors392
creating ...58
data models stored in ..33

reserved words supported in business rules..................247
resources for developers

technical support.. xxii
Web site ...xxi

restrict rules ..197
result set

optimistic locking ...94
reverse engineering

See reengineering
rows, compared to objects ..351
Rule Builder..239
rules

See business rules
run-time applications

optimistic locking ...94
queries...344

S

schemas, deployment to multiple142
scripts

generated files...135
generating for data model deployment135
running deployment scripts136

security
attributes ...258
writing custom security applications376

Select Data Objects dialog..130
sendMail method ..359
sequential numbering..53–55
server classes, subclassing..340
server events ...334
Server Manager...128–133
ServerDeploy.log file..134
setting up

DSN for a database server ..124
smart code blocking..317
spreadsheet-like functionality of business rules187
SQL

defining for data queries ...345
expression evaluator ...364
in query objects.........................162, 169–171, 177–178
in server data access code...346

SQL Server
data type mappings ...43–45
deployment ...34
displayed in Reengineering Manager60
granting permissions...138
naming conventions..40
primary keys ...117
quoted identifiers ..133, 139
restriction on outer joins ...150
running deployment scripts137
selecting in Rengineering Manager61
sequential numbering......................................53, 54, 55
setting up system DSN ...124
validating data model..62, 64

Store with Super type hierarchies110
strings

handling Java quotes...379
structural denormalization ..37
subclassing

server classes ..340
sum rules...190, 232
superclass

data objects ...297
Sybase

data type mappings ...46
deployment ...34, 47
displayed in Reengineering Manager60
granting permissions...138
naming conventions..40
quoted identifiers ..133, 139
running deployment scripts137
selecting in Rengineering Manager61
sequential numbering..54, 55
setting up system DSN ...124

syntax
action expressions...246
414

INDEX
BNF for rule expression................................... 250–254
business rule expressions ... 239
conditional expressions.. 245
constants supported.. 248
default rules expressions .. 246
formula rules for expressions................................... 245
general guidelines for expressions 244
identifiers supported... 247
reserved words ... 247
Syntax Helpers for Code Editor 317

T

technical support .. xxii
testing

business rules ... 279
Versata Connectors... 394

transaction logic
basic steps for defining .. 213
building rules expressions.. 239
defining .. 232–238
deployment... 268–283
design issues... 213

Transaction Logic Designer
overview... 220

type hierarchies ...108–110
types

business rules ... 189–199
custom code ... 323

U

updatability rules.. 194, 234
updating

business rules after delivery..................................... 243
multiple data objects with business rules................. 192

user-defined events .. 403
using coded values lists in validation rules.................... 95

V

validating
data models .. 62
query object syntax .. 177

validation rules
attributes... 193–194
coded values lists ... 235
data objects... 198
defining .. 234

Versata Connectors
adding to repositories... 392
classes .. 385
custom.. 391, 393
defining for data objects .. 389
instantiating.. 384
methods .. 385
overview... 384
packaging ... 395
setting data server properties 389
testing... 394

Versata Logic Server
data access to result sets... 341
deploying transaction logic to.......................... 268–283
Deployment wizard.. 268
development deployment... 273
production deployment .. 281
redeploying business objects 264
security properties.. 375

Versata Logic Server Console
setting data server properties 389
setting up business objects 263

Versata Logic Suite
classes .. 326
documentation... xvi
manual set ... xvi
methods .. 326

versata.vls.XDAConnector .. 385
versata.vls.XDASQLConnector................................... 385
virtual attributes ... 104–106
Visual Age for Java objects

remote method invocation 350

W

Web site
Versata, Inc.. xxi

WebSphere 4.0
setting default deployment values............................ 283

What to Deploy dialog... 131
wizards

Versata Logic Server Deployment wizard 268

X

XDA... 85, 91, 383
XML

data object definitions .. 83
files for relationships ..107, 114
files in repository ... 33, 56
importing data objects.. 86
415

INDEX
416

	Table of Contents
	Preface
	Versata Logic Suite documentation
	Versata Logic Suite Library
	Versata Logic Suite Library PDF Manuals
	Versata Logic Suite User Interface Help
	Versata Class Libraries Help
	Versata Logic Suite Readme

	Conventions for documentation and user interface help
	Additional documentation
	IBM WebSphere™ Application Server documentation

	Versata Logic Suite resources
	Sample database and sample applications
	Versata Web site
	Versata Knowledge Base
	Versata Developer Discussions
	Versata Customer Support

	Technical support for IBM WebSphere Application Server

	Introduction
	Overview
	Prerequisites
	How to use this guide

	Developing a Data Model
	Chapter overview
	Data model overview
	Data models versus repositories
	Object definitions

	Data model reference information
	Data model design guidelines
	Denormalizing for performance
	Naming conventions for data objects and attributes
	General naming conventions
	Informix naming conventions
	Oracle, Sybase, and Microsoft SQL Server naming conventions

	Data type mapping between the Versata Logic Suite and RDBMSs
	Oracle and Versata Logic Suite data type mappings
	Microsoft SQL Server and Versata Logic Suite data type mappings
	Sybase and Versata Logic Suite data type mappings
	Informix and Versata Logic Suite data type mappings
	DB2 Universal Database and Versata Logic Suite data type mappings
	ANSI SQL and Versata Logic Suite data type mappings

	Sequential numbering in the Versata Logic Suite
	Sequential numbering in Oracle
	Sequential numbering in Microsoft SQL Server and Sybase
	Sequential numbering in DB2 Universal Database

	Building a data model
	Repository file structure
	Creating a new repository
	Upgrading an existing repository
	Using the Reengineering Manager
	Reengineering Manager user interface
	Reengineering data objects into a repository
	Notes on reengineering data models
	Validating a data model
	Editing the data model validation utility commands file

	Using the Repository Exchange Manager
	Import dialog
	Importing repository objects

	Working with groups
	Adding groups
	Moving objects among groups
	Moving a single object
	Moving a single file
	Moving a group
	Using the Business Objects and Files Manager

	Renaming groups
	Deleting groups
	Finding objects and files
	Building and compiling group files

	Working with attribute templates
	Propagating templates
	Issues with attribute templates
	Property inheritance
	Data type changes
	Implementing changes in RecordSources

	Issues with attribute group templates
	Propagation of attribute group template changes
	Implementing changes in RecordSources

	Working with Data Objects
	Chapter overview
	Data object overview
	Adding data objects
	Create New Data Object wizard
	Creating a data object in the Versata Logic Studio
	Importing a data object from another repository
	Reengineering a data object
	Adding a data object from XML

	Modifying data objects
	Renaming data objects
	Deleting data objects
	Generating an Impact Analysis Report
	Data Object Dependency Log

	Setting properties for data objects
	Properties tab of the Transaction Logic Designer

	Setting optimistic locking for data objects
	Enabling resynchronization with a persistent data source
	Working with coded values lists
	Defining a coded values list
	Caching coded values lists

	Working with attributes
	Attributes and declarative business rules
	Attributes tab of the Transaction Logic Designer
	Add Attribute dialog

	Adding attributes to data objects
	Deleting attributes from data objects
	Renaming attributes
	Changing an attribute's data type
	Virtual attributes
	Example - virtual attributes in sum and count rules
	Defining an attribute as virtual

	Working with relationships
	Types of relationships supported
	Many-to-many relationships
	Type hierarchies
	Implementing type hierarchies
	Guidelines for Store with Super type hierarchies

	Relationships tab of Transaction Logic Designer
	Relationship Editor
	Adding relationships
	Adding a relationship from XML

	Deleting relationships
	Changing keys for relationships

	Working with indexes and primary keys
	Primary keys
	Index Editor
	Adding indexes
	Deleting indexes
	Changing index definitions

	Deploying Data Models
	Chapter overview
	Deployment overview
	Setting up a system DSN
	Deploying a data model to a database server
	Working with the Server Manager
	Server Manager Introduction dialog
	Connect for Auto Selection dialog
	Auto-select Changed Data Objects
	Select Data Objects dialog
	Deploy to Server or Scripts dialog
	What to Deploy dialog
	Data Model Deploy Options dialog
	Configuration Options dialog
	Ready to Deploy dialog
	Server Deployment Preview dialog

	Data model deployment files
	Deployment log file

	Generating deployment scripts instead of deploying to server
	Running deployment scripts
	Running deployment scripts against Oracle
	Running deployment scripts against Microsoft SQL Server or Sybase
	Running deployment scripts against Informix
	Running deployment scripts against DB2 Universal Database

	Granting permissions manually
	Permissions for Microsoft SQL Server and Sybase
	Permissions for Oracle

	Generating quoted identifiers
	Quoted identifiers for Oracle
	Quoted identifiers for Microsoft SQL Server and Sybase
	Quoted identifiers for Informix
	Quoted identifiers for DB2 Universal Database
	Testing the repository for quoted identifiers
	Example of quoted identifiers

	Data model deployment errors
	Deploying to multiple databases
	Example of multiple schema deployment

	Working with Query Objects
	Chapter overview
	Query object overview
	Query object definition
	Query object deployment
	When to use query objects in applications
	Childmost data object
	Query object relationships
	Query object design guidelines
	System validation of query objects

	Adding query objects
	New Query Object wizard
	Welcome to the New Query Object Wizard
	Choose Data Objects for the New Query Object
	Choose Attributes for the Query Object
	Specify Where/Order By Clause for the Query Object
	Specify Having/Group By Clause for the Query Object
	Finished

	Modifying query objects
	Query Object Designer
	Data Objects tab
	Attributes tab
	Query Object Expression Builder
	Joins tab
	Where/Order By tab
	Having/Group By tab
	SQL tab
	Properties tab

	Modifying underlying data objects for a query object
	Adding a data object
	Deleting a data object
	Changing a data object

	Modifying attributes for a query object
	Adding an attribute
	Deleting an attribute

	Working with joins
	Adding a join condition
	Deleting a join condition
	Modifying a join condition

	Adding selection and sort criteria for query object records
	Validating query object syntax
	Database and schema references in SQL text

	Defining a custom superclass for a query object
	Enabling deployment of attribute-level security data for a query object
	Enabling inserts to a parent data object
	Setting the ParentInsertable property in the Query Object Designer
	Notes about the ParentInsertable property

	Disabling resynchronization with a persistent data source

	Understanding Transaction Logic
	Chapter overview
	Transaction logic overview
	What are declarative business rules?
	Why use declarative business rules?
	Business rules functionality compared to spreadsheet functionality

	Types of business rules
	Derivation rules
	Multiple data object updates through cascading rules

	Attribute validation rules
	Presentation rules
	Captions

	Referential integrity rules
	Constraints
	Business rule actions

	Transaction logic processing
	Order of rule processing operations
	Before insert/update/delete event
	Set defaults
	Attribute alterability check
	Parent check/fetch parent replicate
	Evaluate formula
	Coded value constraint check
	Attribute validation check
	Business object constraint check
	Nullability check
	Conditional action
	Child cascades
	Parent adjustments
	After insert/update/delete event
	Nest levels
	Modification state flags

	Analyzing business requirements
	Business function definition
	Business requirements definition
	Mapping requirements to rules
	Top-down approach
	Selecting rules
	Mapping requirements to the data model

	Rules design patterns
	Recognizing non-declarative patterns

	Defining Business Rules
	Chapter overview
	Overview of business rules definition
	Business rules design issues
	General process for defining business rules
	Completing the prerequisites for business rule definition
	Defining basic declarative business rules
	Defining presentation rules
	Testing business rules and obtaining user feedback
	Redefining the data model and rules
	Defining extensions and customizations for rules

	Understanding the Transaction Logic Designer
	Attributes tab
	Derivation tab
	Validation/Data Type tab
	Presentation tab
	Notes tab

	Relationships tab
	Referential Integrity tab
	Error Messages While Preventing frame
	Presentation tab
	Extended tab

	Constraints tab
	Actions tab
	Properties tab
	Rule Builder

	Procedures for defining business rules
	Defining a derivation rule
	Deleting a derivation rule
	Defining a condition validation rule
	Defining a coded values list validation rule
	Defining a constraint
	Defining an action rule
	Defining a presentation rule to select a non-default archetype for an attribute
	Defining a presentation rule to add an image to a data object in a Java application
	Building rules expressions in the Rule Builder
	Generating business rules reports
	Business Rules Report dialog
	Printing data object rules
	Printing attribute rules

	Updating business rules

	Business rule syntax
	General guidelines for writing rules expressions
	Syntax for conditional expressions
	Note about using isNull in conditional expressions

	Syntax for formula expressions
	Syntax for default expressions
	Syntax for action expressions
	Note about using LIKE in rule expressions
	Elements supported in rule expressions
	Identifiers supported in rule expressions
	Reserved words in rule expressions
	Constants supported in rule expressions
	Tokens supported in rule expressions

	BNF for rule expression syntax

	Building and Deploying Business Objects
	Chapter overview
	Overview of business object generation and deployment
	Setting deployment options
	EJB deployment
	Attribute-level security deployment

	Files created during object generation
	Files created during object compilation
	Compiler defaults and option settings

	Additional files for deployment
	Required Versata Logic Suite JAR files
	Optional external dependent classes or JAR files

	Deploying to IBM WebSphere Application Server 4.0
	Setting up deployed objects in the Versata Logic Server Console
	Redeploying business objects

	Using menu options to build and compile business objects
	Saving changes to rebuilt query objects

	Using the Versata Logic Server Deployment wizard
	Deployment wizard user interface
	Deployment Options dialog
	Choose Versata Logic Server for Deployment dialog
	Finished dialog

	Deploying business objects to a development environment Versata Logic Server

	Hot deploy and dynamic reloading
	Hot deploying to Versata’s development environment
	Dynamic reloading in Versata’s development environment
	Hot deploy and dynamic reloading task reference

	Testing transaction logic
	Using Versata Logic Server Console rule tracing
	Debugging business object code

	Deploying business objects to a production environment
	Creating the .ear file
	Deploying the .ear file
	Setting default deployment values

	Understanding Business Object Files
	Chapter overview
	Overview of Versata Logic Server business objects
	Business object deployment
	Business object basic architecture

	Generated files for business objects
	Implementation files
	Data object implementation files
	Query object implementation files

	Remote and home interface files
	Home interface file
	Remote interface file

	Deployment descriptor file

	Reviewing file properties
	Reviewing file properties from the Objects tab
	Reviewing file properties from the Files tab
	Modifying a file’s read-only attribute

	Working with external files
	Adding files to a repository
	Referencing an existing file in a repository (Add Files)
	Copying an existing file into a repository (Add File Copies)
	Creating a new file in a repository

	Removing a user-defined file from a repository
	Adding files and packages to the classpath
	Registering objects
	Referencing registered objects

	Using a code editor
	Using an external Java code editor
	Using the Versata Code Editor
	Viewing code in the Versata Code Editor
	Smart code blocking
	Tips for editing code in the Versata Code Editor
	Opening the Versata Code Editor as a simple text editor
	Printing code from the Versata Code Editor
	Types of files that can be edited in the Versata Code Editor

	Extending Business Object Code
	Chapter overview
	Types of custom code
	Methods for instantiating business objects
	Factory methods
	Example of a custom factory method

	Instance methods
	System-supplied instance methods
	Examples of custom instance methods

	Server event-handling model
	How event-handling works
	Types of events
	Order of processing for commit events
	Adding server event-handling code
	Event-handling code examples

	Subclassing business object classes
	Subclassing versata.vls.DataObject
	Creating a DataObject subclass with specialized methods
	Applying a DataObject subclass to data objects

	Calling business object code from client applications
	Data access to result sets
	Object caching
	How an application queries a database
	Server data access by SQL string
	Methods to get related data object records

	Remote object access
	Making methods remotely accessible
	Integrating with custom applications and business objects
	Accessing remote objects from clients
	Creating rows versus creating objects
	Building business object collections

	Recomputing derivations
	Computing results without saving
	Java mail integration
	Setting up an email notification system

	SQL expression evaluator
	SQL parser
	Parse tree data structure
	SqlParser class

	SQLEval class
	Tuple interface
	Multiple eval methods
	SQLEval constructor
	SQLEval.setProperty method
	Subclassing the SQLEval class
	Understanding SQL expression evaluations

	Run-time changes required to use the SQL evaluator
	SQL expression evaluator examples
	General SQL evaluator example
	Client-side filtering example

	Working with Versata Logic Server security properties
	Versata Logic Server security APIs
	Writing custom security applications

	Working with JTS transaction management
	Suppressing creation of abstract methods
	Handling Java quotes inside Versata Logic Server code strings

	Working with Versata Connectors
	Chapter overview
	eXtensible Data Access (XDA)
	Understanding Versata Connectors
	Instantiating Connectors
	Connector classes and methods
	Retrieval processing
	Save processing

	Associating Connectors with data objects
	Defining Connectors for data objects
	Setting up Connectors in the Versata Logic Server Console

	Creating custom Versata Connectors
	Adding a Versata Connector file to a repository
	Writing code for a custom Versata Connector
	Testing a custom Versata Connector
	Packaging a custom Versata Connector

	Transaction Logic Examples
	Appendix overview
	Calculation in parent, based on child data
	Comparing values from sibling objects
	Constraining updates based on parent data
	Nesting rules
	Retrieving data with a user-defined method
	Overriding normal rule behavior with user-defined events
	Using batch programs to trigger calendar-driven rules

	Index

