Version

A

KRF-TECH

WINDRIVER V4

Developer s Guide

WINDRIVER DEVELOPER?®S GUIDE

COPYRIGHT
Copyright & 1997-2000 KRFTech LTD. All Rights Reserved

Information in this document is subject to change without notice. The software described in this document is
furnished under a license agreement. The software may be used, copied or distributed only in accordance with
that agreement. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or any means, electronically or mechanical, including photocopying and recording for any purpose
without the written permission of KRFTech Ltd.

Windows, Win32, Windows 95, Windows 98, Windows NT and Windows 2000 are trademarks of Microsoft
Corp. WinDriver and KernelDriver are trademarks of KRFTech. Other brand and product names are
trademarks or registered trademarks of their respective holders.

WinDriver V4 Developer 3 Guide
For Windows 95, 98, NT3.51,
NT4.0, 2000, CE, Linux, Solaris
and OS/2.

For ISAZISA PnP
/PCI/USB/EISA/PCMCIA
Based Devices

a KRF-Tech
POB 8493 Netanya Zip - 42504 Israel
Phone (USA) 1-877-514-0537 (WorldWide) +972-9-8859365
Fax (USA) 1-877-514-0538 (WorldWide) +972-9-8859366
Web: www.krftech.com

3

WINDRIVER DEVELOPER?®S GUIDE

WINDRIVER DEVELOPER?*S GUIDE

Contents Summery

WINDRIVER OVERVIEW 15
WINDRIVER USB OVERVIEW 33
INSTALLATION AND SETUP 45
THE DRIVERWIZARD 57
CREATING YOUR DRIVER 71
DEBUGGING 77
WINDRIVER FUNCTION REFERENCE 83
WINDRIVER STRUCTURE REFERENCE 117
WINDRIVER ENHANCED SUPPORT FOR SPECIFIC PCI CHIP

SETS. 155
WINDRIVER IMPLEMENTATION ISSUES 185
|MPROVING PERFORMANCE 195
WINDRIVER KERNEL PLUGIN OVERVIEW 201
WINDRIVER KERNEL PLUGIN ARCHITECTURE 205
KERNEL PLUGIN -- HOW IT WORKS 211
WRITING A KERNEL PLUGIN -- STEP BY STEP INSTRUCTIONS 221
KERNEL PLUGIN FUNCTION REFERENCE 225
KERNEL PLUGIN STRUCTURE REFERENCE 241
DEVEL OPING IN VISUAL BASIC AND DEL PH] 249
TROUBL E-SHOOTING 251
DYNAMICALLY L OADING YOUR DRIVER 257
DISTRIBUTING YOUR DRIVER 261

APPENDI X 269

WINDRIVER DEVELOPER?®S GUIDE

WINDRIVER DEVELOPER?*S GUIDE

Table of Contents

WINDRIVER OVERVIEW 15
INTRODUCTION TO WINDRIVER 15
BACKGROUND 16
WINDRIVER OVERVIEW 17
WINDRIVER FEATURE LIST 19
WINDRIVER ARCHITECTURE 21
WHAT PLATFORMS DOES WINDRIVER SUPPORT? 22
CANI| TRY WINDRIVER BEFORE | Buy? 22
How Do | DEVELOP MY DRIVER WITH WINDRIVER? (OVERVIEW) 23
WHAT DOESTHE WINDRIVER TOOLKIT INCLUDE? 25
CAN | DISTRIBUTE THE DRIVER CREATED WITH WINDRIVER? 28
DEeVICE DRIVER OVERVIEW 28
WINDRIVER USB OVERVIEW 33
INTRODUCTION TO USB 33
WINDRIVER USB 40
WINDRIVER USB ARCHITECTURE 42
WHAT DRIVERSCAN | WRITE WITH WINDRIVER USB? 44
INSTALLATION AND SETUP 45
SYSTEMS REQUIREMENTS 45

WINDRIVER DEVELOPER?®S GUIDE

INSTALLING WINDRIVER 47
INSTALLING WINDRIVER CE 48
INSTALLING WINDRIVER FOR L INUX 50
INSTALLING WINDRIVER FOR SOLARIS 52
INSTALLING WINDRIVER ALPHA NT (NT FOR THE ALPHA PROCESSOR) 53
CHECKING YOUR INSTALLATION 54
THE DRIVERWIZARD 57
DRIVERWIZARD - AN OVERVIEW 57
WI1zARD WALKTHROUGH 58
DRIVERWIZARD NOTES 66
SHARING A RESOURCE 66
DISABLING A RESOURCE 66
DRIVERWIZARD LOGGER 67
AUTOMATIC CODE GENERATION 67
CREATING YOUR DRIVER 71
USING THE DRIVERWI1ZARD TO BUILD A DEVICE DRIVER 71
WRITING THE DEVICE DRIVER WITHOUT THE WIZARD 73
WIN CE - TESTING YOUR DRIVER ON YOUR CE EMULATION UNDER

WINDOWSNT. 74
USING THE HELP FILES 75
DEBUGGING 77
USER M ODE DEBUGGING 77
DEBUGMONITOR 79
USING DEBUGMONITOR 79
WINDRIVER FUNCTION REFERENCE 83
WD_OPEN() 84
WD_CLOsE() 85
WD_VERSION() 86
WD_PCISCANCARDS() 87

WINDRIVER DEVELOPER?*S GUIDE

WD_PcIGETCARDINFO() 88
WD_PcICONFIGDUMP() 89
WD_PcMCIASCANCARDS() 90
WD_PcMCIAGETCARDINFO() 91
WD_PcMCIACONFIGDUMP() 92
WD_ISAPNPSCANCARDS() 93
WD_ISAPNPGETCARDINFO() 94
WD_IsaAPNPCONFIGDUMP() 95
WD_CARDREGISTER() 96
WD_CARDUNREGISTER() 98
WD_TRANSFER() 99
WD_MULTITRANSFER() 100
WD_INTENABLE() 101
WD _INTDISABLE() 103
WD_INTWAIT() 104
WD_INTCOUNT() 105
WD_DMALOCK() 106
WD_DMAUNLOCK() 107
WD_SLEEP() 108
WD_USBSCANDEVICE() 109
WD_UsBGETCONFIGURATION() 110
WD_UsBDEVICEREGISTER() 111
WD_UsBDEVICEUNREGISTER() 112
WD_USBTRANSFER() 113
WD_USBRESETPIPE() 114
WD_USBRESETDEVICE() 115
WINDRIVER STRUCTURE REFERENCE 117
WD_DMA 117
WD_DMA_PAGE 118
WD_TRANSFER 119
WD_INTERRUPT 120
WD_VERSION 121
WD_CARD_REGISTER 122
WD_CARD 123
WD_ITEMS 124
WD_SLEEP 125
WD_PCI_SLOT 126

WINDRIVER DEVELOPER?®S GUIDE

WD_PCI_ID 127
WD_PCI_SCAN_CARDS 128
WD_PCI_CARD_INFO 129
WD_PCI_CONFIG_DUMP 130
WD_ISAPNP_CARD_ID 131
WD_ISAPNP_CARD 132
WD_ISAPNP_SCAN_CARDS 133
WD_ISAPNP_CARD_INFO 134
WD_ISAPNP_CONFIG_DUMP 135
WD_PCMCIA_SLOT 136
WD_PCMCIA_ID 137
WD_PCMCIA_SCAN_CARDS 138
WD_PCMCIA_CARD_INFO 139
WD_ PCMCIA_CONFIG_DUMP 140
WD_USB_ID 141
WD_USB_PIPE_INFO 142
WD_USB_CONFIG_DESC 143
WD_USB_INTERFACE_DESC 144
WD_USB_ENDPOINT_DESC 145
WD_USB_INTERFACE 146
WD_USB_CONFIGURATION 147
WD_USB_HUB_GENERAL_INFO 148
WD_USB_DEVICE_GENERAL_INFO 149
WD_USB_DEVICE_INFO 150
WD_USB_SCAN_DEVICES 151
WD_USB_TRANSFER 152
WD_USB_DEVICE_REGISTER 153
WD_USB_RESET_PIPE 154
WINDRIVER ENHANCED SUPPORT FOR SPECIFIC PCI CHIP

SETS. 155
OVERVIEW 155
WHAT ISTHE PC| DIAGNOSTICS PROGRAM? 156
USING YOUR PCI CHIP-SET DIAGNOSTICS PROGRAM 156
SAMPLE CODE 162
WINDRIVER’SSPECIFIC PCI CHIP-SET APl FUNCTION REFERENCE 163
XXX_COUNTCARDS () 164
XXX_OPEN() 165

10

WINDRIVER DEVELOPER?*S GUIDE

XXX_CLOSE() 166
XXX_|ISADDRSPACEACTIVE() 167
XXX_GETREVISION() 168
XXX_READREG () 169
XXX_WRITEREG () 169
XXX_READSPACEBYTE() 170
XXX_READSPACEWORD() 170
XXX_READSPACEDWORD() 170
XXX_WRITESPACEBYTE() 170
XXX_WRITESPACEWORD() 170
XXX_WRITESPACEDWORD() 170
XXX_READSPACEBLOCK() 171
XXX_WRITESPACEBLOCK() 171
XXX_READBYTE() 172
XXX_READWORD() 172
XXX_READDWORD() 172
XXX_WRITEBYTE() 172
XXX_WRITEWORD() 172
XXX_WRITEDWORD() 172
XXX_READBLOCK() 173
XXX_WRITEBLOCK() 173
XXX_INTISENABLED() 174
XXX_INTENABLE() 175
XXX_INTDISABLE() 176
XXX_DMAOPEN() 177
XXX_DMACLOSE() 178
XXX_DMASTART() 179
XXX_DMAISDONE() 180
XXX_PULSELOCALRESET() 181
XXX_EEPROMREAD() 182
XXX_EEPROMWRITE() 182
XXX_READPCIREG () 183
XXX_WRITEPCIREG() 183
STRUCTURE REFERENCE FOR WINDRIVER'S SPECIFIC PCl APIS 184
WINDRIVER IMPLEMENTATION ISSUES 185
PERFORMING DMA. 185
HANDLING INTERRUPTS 190

11

WINDRIVER DEVELOPER?®S GUIDE

IMPROVING PERFORMANCE 195

IMPROVING THE PERFORMANCE OF YOUR DEVICE DRIVER - OVERVIEW 195

PERFORMANCE IMPROVEMENT CHECKLIST 196
IMPROVING THE PERFORMANCE OF YOUR USER M ODE DRIVER 198
WINDRIVER KERNEL PLUGIN OVERVIEW 201
BACKGROUND 201
Do | NEED TOWRITE A KERNEL PLUGIN? 202
WHAT KIND OF PERFORMANCE CAN | EXPECT? 202
OVERVIEW OF THE DEVELOPMENT PROCESS 203
WINDRIVER KERNEL PLUGIN ARCHITECTURE 205
TYPICAL EVENT SEQUENCE WHEN USING A KERNEL PLUGIN 207
KERNEL PLUGIN -- HOW IT WORKS 211
MINIMAL REQUIREMENTSFOR CREATING A KERNEL PLUGIN 211
DIRECTORY STRUCTURE FOR THE WINDRIVER KERNEL PLUGIN 212
KERNEL PLUGIN IMPLEMENTATION 212
KPTEST -- A sSAMPLE KERNEL PLUGIN DRIVER 216
INTERRUPT HANDLING IN THE KERNEL PLUGIN 216
M ESSAGE PASSING 219

WRITING A KERNEL PLUGIN -- STEP BY STEP INSTRUCTIONS 221

DETERMINING WHETHER A KERNEL PLUGIN ISNEEDED 221
PREPARING THE USER M ODE SOURCE CODE: 222
CREATING A NEW KERNEL PLUGIN PROJECT (MODIFYING THE KP_TEST
SAMPLE FOR YOUR NEEDS) 222
CREATING A HANDLE TO THE WINDRIVER KERNEL PLUGIN IN YOUR USER
M ODE DRIVER 222
INTERRUPT HANDLING IN THE KERNEL PLUGIN 223
IO HANDLING IN THE KERNEL PLUGIN 223
COMPILING YOUR KERNEL PLUGIN DRIVER 223

12

WINDRIVER DEVELOPER?*S GUIDE

KERNEL PLUGIN FUNCTION REFERENCE 225
WD_KERNELPLUGINOPEN() 226
WD_KERNELPLUGINCLOSE() 227
WD_KERNELPLUGINCALL() 228
WD _INTENABLE() 229
KP_INIT() 232
KP_OPEN() 233
KP_CLosE() 234
KP_CALL() 235
KP_INTENABLE() 236
KP_INTDISABLE() 237
KP_INTATIRQL() 238
KP_INTATDPC() 240
KERNEL PLUGIN STRUCTURE REFERENCE 241
WD_KERNEL_PLUGIN 242
WD_INTERRUPT 243
WD_KERNEL_PLUGIN_CALL 244
KP_INIT 245
KP_OPEN_CALL 246
DEVELOPING IN VISUAL BASIC AND DELPHI 249
TROUBLE-SHOOTING 251
WD_OPEN() (OR XXX_OPEN()) FAILS. 251
WD_CARDREGISTER() FAILS 252
CAN'T OPEN USB DEVICE USING THE WI1ZARD. OR

WD_USBDEVICEREGISTER FAILS. 253
CAN'T GET INTERFACES FOR USB DEVICES. 253
PCI CARD HASNO RESOURCESWHEN USING THE WIZARD 253
COMPUTER HANGSON INTERRUPT 254
WD_DMALOCK() FAILSTO ALLOCATE BUFFER 255

13

WINDRIVER DEVELOPER?®S GUIDE

DYNAMICALLY LOADING YOUR DRIVER 257
WINDOWS NT/2000 AND 9X 257
DYNAMIC LOADING - BACKGROUND 257
WHY DO YOU NEED A DYNAMICALLY LOADABLE DRIVER? 258
DYNAMICALLY LOADING AND UNLOADING YOUR DRIVER 258
DYNAMICALLY LOADING YOUR KERNEL PLUGIN 259
LINUX 260
DISTRIBUTING YOUR DRIVER 261
GET A VALID LICENSE FOR YOUR WINDRIVER 261
WINDOWS 9X AND NT/2000 262
CREATING AN .INF FILE 263
For WiNDOWS CE 266

ADD WINDRIVER TO THE LIST OF DEVICE DRIVERSWINDOWS CE LOADS

ON BOOT 267
APPENDI X 269
PC-BASED DEVELOPMENT PLATFORM PARALLEL PORT CABLE

SPECIFICATION (FOR WINDOWS CE) 269
LIMITATIONS ON DEMO VERSIONS 271
VERSION HISTORY LIST 272
PURCHASING WINDRIVER 276
DISTRIBUTING YOUR DRIVER - LEGAL ISSUES 278

14

WINDRIVER DEVELOPER?*S GUIDE

Chapter

WinDriver Overview

In this chapter you will explore the uses of WinDriver, and learn the basic
steps of creating your driver.

Introduction to WinDriver

WinDriver is a device driver development toolkit that dramatically simplifies
the very difficult task of developing a device driver. The driver you develop
using WinDriver will be source code compatible between all supported
operating systems (WinDriver currently supports Windows 95, 98, NT3.51,
NT4.00, 2000, CE, Linux, Solaris and OS/2.) It will also be binary compatible
between Windows 9x, NT and 2000. Bus architecture support includes PCI
/PCMCIA/ ISA /1SA PnP /EISA and USB. WinDriver provides a complete
solution for creating high performance drivers, which handle interrupts and
170 at optimal rates.

Don 1 let the size of this manual fool you -- WinDriver makes developing
device drivers an easy task that takes hours instead of months. Most developers
will find that reading this chapter and glancing through the DriverWizard and
function reference chapters is all they need to successfully write their driver.
The bulk of this manual deals with the features that WinDriver offers to the
advanced user.

15

WINDRIVER DEVELOPER?®S GUIDE

WinDriver supports all PCI bridges, from all vendors. Enhanced support is
offered for the PLX / Altera / Galileo / QuickLogic / PLDA / AMCC and
V3 PCI chips. A special chapter is dedicated to developers of PCI card drivers
who are using PCI chips from these vendors. The last several chapters of this
manual explain how to tune your driver code to achieve optimal performance.
The “Kernel Plugin®*feature of WinDriver will be thoroughly explained there.
This feature allows the developer to write and debug the entire device driver in
the User Mode, and later tirop “performance critical parts of it to the Kernel
Mode. This way, your driver development achieves optimal Kernel Mode
performance, with User Mode ease of use.

It is recommended to periodically check out KRFTech's web site at
www.krftech.com for the latest news about WinDriver and other driver
development tools that KRFTech offers.

Good luck with your project!

Background

In protected operating systems (such as Windows, Linux, Solaris and OS/2), a
programmer cannot access hardware directly from the application level (the
“User Mode™) where development work is usually done. Hardware access is
allowed only from within the operating system itself (the “Kernel Mode’”or
“Ring 07, by software modules called “Device Drivers™’ In order to access a
custom hardware device from the application level, a programmer must do the
following:

1. Learn the internals of the operating system he is working on (95/98/NT /
CE / Linux / Solaris...)

2. Learn how to write a device driver.

3. Learn new tools for development / debugging in the Kernel Mode (DDK,
ETK..).

16

WINDRIVER DEVELOPER?*S GUIDE

4. Write the Kernel Mode device driver that does the basic hardware input /
output.

5. Write the application in the User Mode, which accesses the hardware
through the device driver written in the Kernel Mode.

6. Repeat steps 1-4 for each new operating system on which the code should
run.

WinDriver Overview

Easy development - WinDriver enables Windows programmers to create
PCI/ ISA /EISA /1SA PnP/PCMCIA /USB based device drivers in an
extremely short time. WinDriver allows you to create your driver in the “User
Mode”in the familiar environment - using MSDEYV, Visual C/C++, Borland,
Delphi, Visual Basic or any other Win32 compiler. WinDriver eliminates the
need for you to be familiar with the operating system internals, kernel
programming or with the DDK or have any device driver knowledge.

Multi Platform - The driver created with WinDriver will run on Windows
95/ 98/NT3.51 /NT4.0 /2000 /CE, Linux, Solaris and OS/2,(NT version
available for x86 and Alpha processors), - i.e. write once - run on any of these
platforms.

Friendly Wizards - The DriverWizard (included) is a Graphical diagnostics
tool that lets you write to, and read from the hardware, before writing a single
line of code. With a few clicks of the mouse, the hardware is diagnosed -
memory ranges are read, registers are toggled and interrupts are checked. Once
the device is operating to your satisfaction, the DriverWizard creates the
skeletal driver source code, giving access functions to all of the resources on the
hardware.

Kernel Mode Performance - WinDriver 3 API is optimized for
performance. For the drivers that need kernel mode performance,
WinDriver offers the "Kernel PlugIn". This powerful feature enables you

17

WINDRIVER DEVELOPER?®S GUIDE

to create and debug your code in the user mode, and run the
performance critical parts of your code, (such as the interrupt handler, or
access to 1/0 mapped memory ranges), in kernel mode, thereby
achieving kernel mode performance (zero performance degradation).
This unique feature allows the developer to run the user mode code in
the OS kernel without having to learn how the kernel works. When
working on Windows CE, there is no need to use the Kernel Plugin
since the CE has no separation between user mode and kernel mode,
thus enabling you to easily achieve optimal performance from the user
mode code.

How fast can WinDriver go? Using the WinDriver Kernel Plugin you
can expect the same throughput of a custom Kernel Driver. You are
confined only by your operating system and hardware limitations. A
ballpark figure of the throughput you can reach using the Kernel Plugin
would be more than 100,000 interrupts per second.

““User Mok ease - Kemel Mock performance!

To conclude -- using WinDriver, all a developer has to do to create an
application that accesses the custom hardware is:

1. Start up the DriverWizard, and detect the hardware and its resources.
2. Automatically generate the device driver code from within the Wizard.
3. Call the generated functions from the User Mode application.

The new hardware access application now runs on all Windows platforms
(including CE), on Linux, on Solaris and on OS/2 (just recompile).

18

WINDRIVER DEVELOPER?*S GUIDE

WinDriver Feature List
Easy User Mode driver development.
Kernel Plugln for high performance drivers.

Friendly DriverWizard allows hardware diagnostics without writing
a single line of code.

The DriverWizard automatically generates the driver code for the
developer in C\C++ or Delphi (Pascal).

Supports any PCI/ ISA/ ISA PnP/ EISA/ PCMCIA/ USB chip
regardless of manufacturer.

Enhanced —support for the PLX 9050/ 9054/ 9060/ 9080/ I0OP
480, Altera, Galileo, QuickLogic, PLDA, V3 and AMCC PCI
bridges, therefore hiding the PCI bridge details from the developer.

Applications are binary compatible across Windows 9x and
Windows NT/2000.

Applications are source code compatible across Windows 9x, NT,
2000, CE, Linux, Solaris and OS/2.

WinDriver can be used with common development environments
including Visual C++, Borland C++, VB4 and Delphi.

No DDK, ETK, DDI or any system-level programming
knowledge is required.

Detailed examples in C, Delphi and Visual Basic are included.

Supports 1/0, DMA, Interrupt handling and Access to memory
mapped cards.

Supports Multiple CPU and Multiple PCI-bus platforms.

19

WINDRIVER DEVELOPER?®S GUIDE

Includes Dynamic Driver Loader.
Comprehensive documentation and help files.
Six months Free technical support.

No run time fees or royalties.

Notes:
1. Inversion 4.2 and below, PCMCIA is only supported in the Windows CE version.

2. VxWorks and DOS will be supported soon by WinDriver.—Please refer to the
KRFTech site at http://www .krftech.com for updates.

20

WINDRIVER DEVELOPER?*S GUIDE

WinDriver Architecture

|:|ComponentsYou Write Your application

(Your App.EXE)
l:'WinDriver Components

Your Driver code

WinDriver
UserMode Library

(Windrvr.h)

User Mode
e Kernel Mode
: Kernel Plugin :

(SYS, VxD)
E o | WinDriver - {1l winDriver - Kernel Your
: " Kernel Plugln i—>
H critical L <) Hardware
: ' Functions (Optional in 9%, NT) (VXD, SYS, DLL, O)

For hardware access, your application calls one of the WinDriver functions
from the WinDriver User Mode library (windrvr.h). The User Mode library
calls the WinDriver Kernel, which accesses the hardware for you, through the
native calls of the operating system.

WinDriver 3 design minimises performance hits on your code, even though it is
running in the User Mode. However, some hardware drivers need
performance, which is not achievable from the User Mode. This is where
WinDriver 3 edge sharpens - after easily creating and debugging your code in
the User Mode, you may tirop “the performance critical modules of your code
(such as a hardware interrupt handler) to the WinDriver Kernel Plugin without
changing a single line of it. Now, the WinDriver Kernel will call this module
from the Kernel Mode, thereby achieving maximal performance. This allows

21

WINDRIVER DEVELOPER?®S GUIDE

you to program and debug in the User Mode, and still achieve kernel
performance where needed. In Windows CE there is no separation between
User Mode and Kernel Mode, therefor you may achieve optimal performance
directly from the user mode, eliminating the need to use the Kernel Plugin in
this OS.

What Platforms does WinDriver Support?

WinDriver Supports Windows 95/ 98/ NT/2000 /CE, Linux, Solaris and
OS/2 (NT and 2000 versions are also available for the Alpha processor). Same
source code will run on All supported platforms. Same executable you write
will operate on Windows 9x N'T and 2000. Even if your code is meant only for
one of these operating systems, using WinDriver will give you the flexibility of
moving your driver to the other operating system without changing your code.

Can | Try WinDriver Before | Buy?

Yes! —Evaluation versions of WinDriver for all supported operating systems
and buses are available at the KRFTech web site at http://www.krftech.com.

Limitations of the different evaluation versions
All the evaluation versions of WinDriver are fully featured. No function were
limited or crippled in any way. The following is a list of the differences between
the evaluation versions to the registered ones.

1. At first use of the driver, an 'unregistered' message appears.
2. Delay when reading or writing to hardware through the Wizard.
3. Delay when calling the ‘close’ function in WinDriver's API.

4. Inthe Linux, Solaris and CE versions - Driver is operational for 10 minutes
after re-starting it.

Evaluation will expire within 30 days of installation.

22

WINDRIVER DEVELOPER?*S GUIDE

How Do | Develop My Driver with WinDriver?
(Overview)

On Windows 9x, NT and 2000

Start the DriverWizard (See the DriverWizard *chapter for details). Diagnose
your card, and let DriverWizard generate a skeleton code for you. The code
generated by DriverWizard is a diagnostic program, containing functions that
read and write to any resource detected or defined (including custom defined
registers), and enables and listens to your card interrupts. Modify the code
generated by the DriverWizard, to suit your particular application needs.

Run and debug your driver in the User Mode.

If your code contains performance critical sections, improve their performance
by turning to the “Improving performance’”chapter. This chapter provides a
checklist of tune-ups you can make in your code, and shows you how to take
the performance critical sections and move them into the "Kernel Plugin®.

On Windows CE
Plug your hardware in to your NT machine. Install the CE ETK on the NT.

Diagnose your hardware via the DriverWizard and then let it generate your
driver 3 skeleton code. Modify this code using Visual C++ to meet your
specific needs. Test and debug your code and hardware from the CE emulation
running on the N'T machine.

If you cannot plug your hardware in to your NT machine you may still use the
DriverWizard by manually entering all your resources into it. Let the
DriverWizard generate your code and then test it on your hardware using serial
connection. After verifying that the generated code works properly, modify it
to meet your specific needs. You may also use (or combine) any of the sample
files for your driver 3 skeletal code.

If your code contains performance critical parts, you may improve their
performance by turning to the “Improving performance’”chapter in the
WinDriver manual.

23

WINDRIVER DEVELOPER?®S GUIDE

On Linux and Solaris

When purchasing the Linux or the Solaris version of WinDriver you also
receive a license for the Windows version of the DriverWizard. It is
recommended to start the development process on your Windows machine,
using DriverWizard in the same way described above. After the wizard
automatically generates your driver code, you may move the code, (as is), to
your Linux\Solaris machine and alter it to perform your specific needs.

If you do not have a Windows machine, you may use the sample files included
with WinDriver as skeletons for your driver and change them using the
WinDriver API.

24

WINDRIVER DEVELOPER?*S GUIDE

What Does the WinDriver Toolkit Include?
The WinDriver CD
A printed version of this manual.
Six months of free technical support (Phone —Fax —Email).
45 days of free version upgrades.

The WinDriver CE license also enables you to run your CE driver
code on your NT machine via the CE emulation.

The WinDriver Linux and Solaris license also enables you to use
DriverWizard on your Windows machine to diagnose your
hardware and automatically generate your driver skeletal code. You
may then compile and run the code created on your Linux\Solaris
machine. The code will not run on your Windows machine
without WinDriver for Windows licensing.

The following modules are included in your WinDriver toolkit:

WINDRIVER MODULES

WinDriver Version 4' - (\windriver\include) - The general-purpose
hardware access toolkit.

DriverWizard (accessible through Start menu \Programs
\WinDriver \DriverWizard) - A graphical debugging tool which collects
debugging information on your driver as it runs. In Linux you may use the
console version of this file.

WinDriver distribution package (\windriver\redist) - The files needed
to be included in the driver you distribute to your customers.

25

WINDRIVER DEVELOPER?®S GUIDE

WinDriver Version 4 electronic manual - (accessible through Start
menu\Programs\windriver J - Full WinDriver manual, in pdf (Adobe
Acrobat) format.

WinDriver Kernel Plugln “(\windriver\kerplug) - The files and
samples needed to create a ®ernel Plugin *for WinDriver.

Utilities:

PCI_SCAN.EXE (\windriver\util\pci_scan.exe) - A utility for
getting a list of the PCI cards installed and the resources allocated for each one of
them.

PCI_DUMP.EXE (\windriver\util\pci_dump.exe) - A utility for
getting a dump of all the PCI configuration registers of the PCI cards installed.

PCMCIA_SCAN.EXE ((\windriver\util\pcmcia_scan.exe) - A
utility for getting a list of the PCMCIA cards installed and the resources
allocated for each one of them

USB_DIAG.EXE ((\windriver\util\usb_diag.exe) - A utility for
getting a list of the USB devices installed, the resources allocated for each one of
them, and for accessing the USB devices.

The CE version Also Includes:

\REDIST\... \X86EMU\WINDRVR_CE_EMU.DLL: The
DLL that communicates with the WinDriver kernel for the X86 HPC
emulation mode of Windows CE

\REDIST\... \X86EMU\WINDRVR_CE_EMU.LIB: The import
library for linking with WinDriver applications that are compiled for the
X86 HPC emulation mode of Windows CE

26

WINDRIVER DEVELOPER?*S GUIDE

WinDriver 3 SPECIFIC CHIP-SET SUPPORT.

These are APIs that support the major PCI bridge chip-sets, for even faster code
development.

WinDriver PLX APIs (for the 9050, 9054 and 9060/9080 PCI
bridges) - \windriver\pIx\9050 and ~\9054, ~\9060, ~\9080
respectively.

WinDriver Galileo APIs (for the Galileo GT64 PCI bridges) -
\windriver\galileo\gt64

WinDriver AMCC APIs (for the AMCC S5933 PCI bridges) -
\windriver\amcc

WinDriver V3 APIs (for the V3 PCI bridges) - \windriver\v3

Each of these directories includes the following directories:

- \lib - the special chip set API for the PLX/AMCC/V3 chip st,
written using the WinDriver API.

- \xxx_diag - a sample diagnostics application, which was written using
the special library functions available for the these chip sets. This
application may be compiled and executed as-is (xxx_diag i.e.
p9054 diag.c for the PLX 9054 chip).

Samples:

Here you will find the source code for the utilities listed above, along with other
samples which show how various driver tasks are performed. Find the sample which
is closest to the driver you need. Use it to jump-start your driver development process.

WinDriver samples - (\windriver\samples) - Samples which
demonstrate different common drivers.

WinDriver for PLX | GALILEO | AMCC | V3~samples -
(\p9054_diag ~\p9080_diag etc.) - Source code of the diagnostics
applications for the specific chipsets that WinDriver supports.

27

WINDRIVER DEVELOPER?®S GUIDE

Can I Distribute the Driver Created with
WinDriver?

Yes. WinDriver is purchased as a development toolkit, and any device driver
created using WinDriver may be distributed royalty free in as many copies as
you wish. See the license agreement (\windriver\docs\license.txt) for more
details.

Device Driver Overview

The following is an overview of the common types of device driver
architectures:

Monolithic drivers:

These are the "classic” device drivers, which are primarily used to drive custom
hardware. A monolithic driver is accessed by one or more user applications,
and directly drives a hardware device. The driver communicates with the
application through 10 control commands - (IOCTLs), and drives the
hardware through calling the different DDK functions.

Application

28

WINDRIVER DEVELOPER?*S GUIDE

Layered drivers:

Layered drivers are device drivers that are part of a "stack" of device drivers,
that together process an 10 request. An example of a layered driver is a driver
which intercepts calls to the disk, and encrypts / decrypts all data being written
/ read from the disk. In this example, a driver would be hooked on to the top
of the existing driver and would only do the encryption decryption.

Application

$ Kernd Mode

29

WINDRIVER DEVELOPER?®S GUIDE

Miniport drivers:

There are classes of device drivers in which much of the code has to do with
the functionality of the device, and not with the device's inner workings. In
these classes of drivers, these code elements will be duplicated.

The Windows NT/2000, for instance, provides several driver classes (called
"ports") which handle the common functionality of their class. It is then up to
the user to add only the functionality that has to do with the inner workings of
the specific hardware.

An example of Miniport drivers is the "NDIS™ miniport driver. The NDIS
miniport framework is used to create network drivers which hook up to the
NT's communication stacks, and are therefore accessible by the common
communication calls from within applications. The Windows NT kernel
provides drivers for the different communication stacks, and other code that is
common to communication cards. Due to the NDIS framework, the network
card developer does not have to write all of this code, the developer must only
write the code that is specific to the network card that he is developing.

Application

NDIS Framework

[T 11
Miniport
Driver
[T 11

;

HW

I

30

WINDRIVER DEVELOPER?*S GUIDE

Matching the right tool for your driver

WinDriver is a tool designed for monolithic type drivers. WinDriver enables
you to access your hardware directly from within your Win32 application,
without writing a kernel mode device driver. Using WinDriver You may either
access your hardware directly from your application (in user mode) or write a
DLL you can call from many different applications.

WinDriver also provides a complete solution for high performance drivers.
Using WinDriver's Kernel Plugln, you will be able run your user mode code
from the kernel and reach full kernel mode performance without doing any
kernel programming. A driver created with WinDriver runs on Windows 95,
98, NT, 2000, CE, Linux, Solaris and OS/2. Typically, a developer without any
previous driver knowledge can get a driver running in a matter of a few hours
(compared to several weeks with a kernel mode driver).

For Layered or Miniport drivers, kernel programming is necessary. To Simplify
this difficult task, KRFTech provides "KernelDriver" - a C++ toolkit which
provides classes that encapsulate thousands of lines of kernel code, enabling
you to focus on your driver's added-value functionality, instead of your OS
internals.

31

WINDRIVER DEVELOPER?®S GUIDE

32

WINDRIVER DEVELOPER?*S GUIDE

Chapter

WinDriver USB Overview

This chapter explores the basic characteristics of the USB bus and introduces VWinDriver
USB features and architecture.

Introduction to USB

USB, Short for Universal Serial Bus, is a new industry-standard extension to
the PC architecture, for attaching peripherals to the computer. The Universal
Serial Bus was originally developed in 1995 by leading PC and
telecommunication industry companies, such as Intel, Compag, Microsoft and
NEC. The motivation for the development of the USB emerged of several
considerations. Among them are the need for an inexpensive and widespread
connectivity solution for peripherals in general and for the “Computer
Telephony Integration”’in particular, the need for easy to use and flexible
method of reconfiguring the PC and a solution for adding a large number of
external peripherals.

The USB interface meets the above-mentioned needs. A single USB port can
be used to connect up to 127 peripheral devices. USB also supports Plug-and-
Play installation and hot swapping. USB 1.1 supports both isochronous and
asynchronous data transfers and has dual-speed data transfer; 1.5Mbps
(Megabit per second) for low-speed USB devices and 12Mbps for high-speed
USB devices (much faster than the original serial port). Cables connecting the

33

WINDRIVER DEVELOPER?®S GUIDE

device to the PC can be up to five meters (16.4 feet) long. USB also
includes built-in power distribution for low power devices, and can provide
limited power (maximum: 500mA of current) to devices attached on the bus.
Because of these benefits, USB is enjoying broad market acceptance today.

The next USB generation (USB 2.0), which is expected to be finalized in
thefirst quarter of 2000, will support a transfer rate of 480 Mbs
(megabits per second) - 40 times faster than USB 1.1. USB 2.0
maintains full compatibility with USB 1.1; therefore same cables,
connectors and software interfaces can be used.

Because its relatively low speed USB 1.1 was aimed to replace existing serial
ports and parallel ports, keyboard and monitor connectors,
telephone/fax/modem adapters, and to be used with keyboards, mice,
monitors, printers, low-speed scanners, answering machines and removable
hard drives. USB 2.0 implementers will benefit from an additional range of
higher performance peripherals, such as video-conferencing cameras, next-
generation scanners and printers, and fast storage devices. These devices
are anticipated in the market in the second half of 2000.

Feature list
Externa connection; easy to usefor end user.

Self-identifying peripherals, automatic mapping of function to driver, and
configuration.

Dynamically attachable and re-configurable peripherals.
Suitable for device bandwidths ranging from a few Kb/s to several Mb/s.

Supports isochronous as well as asynchronous transfer types over the same
set of wires.

Supports simultaneous operation of many devices (multiple connections).
Supports up to 127 devices.

Guaranteed bandwidth and low latencies; appropriate for telephony, audio,
etc. (Isochronous transfer may use almost entire bus bandwidth).
Flexibility: Supports a wide range of packet sizes and a wide range of data
rates.

Robustness: Error handling mechanism built into protocol, dynamic
insertion and removal of devices identified in user observed real-time.

34

WINDRIVER DEVELOPER?*S GUIDE

Synergy with PC industry.

Optimised for integration in peripheral and host hardware.

Low-cost implementation, therefore suitable for development of low-cost
peripherals.

Low-cost cables and connectors.

Uses commodity technologies.

Built in power management and distribution.

USB Components

USB Host: The USB host computer, where the USB host controller is
installed, and where the client software\device driver runs. The USB host
controller is the interface between the host and the USB peripherals. The host
responsible for detecting attachment and removals of USB devices, managing
the control and data flow between the host and the devices, providing power to
attached devices and more.

USB Hub: A USB device that enables connecting additional USB devices to a
single USB port on the USB host. Hubs on the back plane of the hosts are
called root hubs. Other hubs are external hubs.

USB Function: The USB device that is able to transmit or receive data or
control information over the bus, and provides a function. Compound device
provides multiple functions on the USB bus.

35

WINDRIVER DEVELOPER?®S GUIDE

Data Flow in USB Devices

During the operation of the USB device, Data flows between the client
software and the device. The data is moved between memory buffers of the
software on the host and the device, using pipes, which end in endpoints on
the device side.

An endpoint is a uniquely identifiable entity on the USB device, which is the
source or the terminus of the data that flows from or to the device. Each USB
device, logical or physical, has a collection of independent endpoints. Endpoint
attributes are their bus access frequency, their bandwidth requirement, their
endpoint number, their error handling mechanism, their maximum packet size
that the endpoint can transmit or receive, their transfer type and their direction
(into the device \out of the device).

Pipes are logical components, representing association between an endpoint on
the USB device and software on the host. The data moved to and from the
device through ”a pipe. Pipe can be of two modes: stream pipe and message
pipe, according to the type of data transfer used in that pipe. Pipes, sending
data in interrupt, bulk or isochronous types are stream pipes, while control
transfer type is supported by the message pipes. The different USB transfer
types are discussed below.

Endpoints |

i
|
; >
! - Memory H
: - Buff ost
i p| Buffers

N

|
jS— Data Pipes/

Data Transfers

36

WINDRIVER DEVELOPER?*S GUIDE

USB data transfer types

The USB device (function) communicates with the host by transferring data
through a pipe between a memory buffer on the host and an endpoint on the
device. The USB provides different transfer types, that best suit the service
required by the device and by the software. The transfer type of a specific
endpoint is determined in the endpoint descriptor.

There are four different types of data transfer within the USB specification:

Control Transfer: The control transfer is mainly intended to support
configuration, command and status operations between the software on the
host and the device. Each USB device has at least one control pipe (default
pipe), which provide access to the configuration, status and control
information. The control pipe is a bi-directional pipe. The control transfer is a
bursty, non-periodic communication. Control transfer has a robust error
detection, recovery and retransmission mechanism and retries are made with
no involvement of the driver. Control transfer is used by low speed and high-
speed devices.

Isochronous Transfer: A type usually used for time dependent information,
such as multimedia streams and telephony. The transfer is periodic and
continuous. The isochronous pipe is uni-directional and a certain endpoint can
either transmit or receive information. For a bi-directional isochronous
communication there 3 a need to use two isochronous pipes, one in each
direction. The USB guarantees the isochronous transfer access to the USB
bandwidth (that is reserves the required amount of bytes of the USB frame)
with bounded latency and guarantees the data transfer rate through the pipe
unless there is less data transmitted. Up to 90% of the USB frame can be
allocated to periodic transfers (isochronous and interrupt transfers). If, during
configuration, there is no sufficient bus time available for the requester
isochronous pipe, the configuration is not established. Since time is more
important than correctness in these types of transfers, no retries are made in
case of error in the data transfer, though the data receiver can determine error
occurred on the bus. Isochronous transfer can be used only by high-speed
devices.

Interrupt Transfer: Interrupt transfer is intended for devices that send and
receive small amount of data, in low frequency or in an asynchronous time

37

WINDRIVER DEVELOPER?®S GUIDE

frame. An interrupt transfer type guarantees a maximum service period and a
retry of delivery to be attempted in the next period, in case of an error on the
bus. The interrupt pipe, like the isochronous pipe is uni-directional. The bus
access time period (1-255ms for high-speed devices and 10-255ms for low-
speed devices) is specified by the endpoint of the interrupt pipe. Although the
host and the device can count only on the time period indicated by the
endpoint, the system can provide a shorter period up to 1 ms.

Bulk Transfer: Bulk transfer is a non-periodic, large packet, bursty
communication. Bulk transfer typically supports devices that transfer large
amount of non-time sensitive data, and that can use any available bandwidth,
such as printers and scanners. The bulk transfer allows access to bus on
availability basis, guarantees the data transfer but not the latency and provides
error-check mechanism with retries attempts. If part of the USB bandwidth is
not being used for other transfers, system will use it for bulk transfer. Like
previous stream pipes (isochronous and interrupt) the bulk pipe is also uni-
directional. Bulk transfer can be used only by high-speed devices.

USB Configuration

Before the USB function (or functions in a compound device) can be operated,
the device must be configured. The host does the configuring, by acquiring the
configuration information from the USB device. USB devices report their
attributes by descriptors. Descriptor is the defined structure and format in
which the data is transferred. A complete description of the USB descriptors
can be found in Chapter 9 of the USB Specification (See www.usb.org for the
full specification).

It is best to view the USB descriptors as a hierarchic structure of four levels:
The Device level
The configuration level

The interface level (this level may include an optional sub-level called
alternate settings)

The endpoint level.

38

WINDRIVER DEVELOPER?*S GUIDE

There is only one device descriptor for each USB device. Each device has one
or more configurations, that have one or more interfaces, and each interface
has zero or more endpoints.

Device: In the top level is the tlevice descriptor 7 which includes general
information about the USB device, that is global information for all of the
device configurations. The device descriptor describes, among other things, the
device class (USB devices are divided into device classes, such as HID devices,
hubs, locator devices etc.), subclass, protocol code, Vendor ID, Device 1D and
more. Each USB device has one device descriptor.

Configuration: A USB device has one or more configuration descriptors,
which describe the number of interfaces grouped in each configuration and
power attributes of the configuration (such self-powered, remote Wakeup,
maximum power consumption and more).. At a given time, only one
configuration is loaded. An example of different configurations of same device
may be an ISDN adapter, where one configuration presents it with a single
interface of 128KB/s and a second configuration with two interfaces of
64KB/s.

Interface: The interface is a related set of endpoints that present a specific
functionality or feature of the device. Each interface may operate
independently. The interface descriptor describes the number of the interface,
number of endpoints used by this interface, and the interface specific class,
subclass and protocol values when the interface operates independently. An
interface may also have alternate settings. The alternate settings allow the
endpoints or their characteristics to be varied after the device was configured.

Endpoint: The lowest level is the endpoint descriptor that provides the host
with the information regarding the data transfer type of this endpoint and the
bandwidth of each endpoint (the maximum packet size of the specific
endpoint). For isochronous endpoints, this value is used to reserve the bus time
required for the data transfer. Other endpoints "attributes are their bus access
frequency, their endpoint number, their error handling mechanism, and their
direction

Seems complicated? Not at all! WinDriver automates the USB
configuration process. The included DriverWizard and USB diagnostic

39

WINDRIVER DEVELOPER?®S GUIDE

application scan the USB bus, detect all USB devices and their different
configurations, interfaces, settings and endpoints, and enable the developer to
pick the desired configuration before starting the driver development.
WinDriver also identifies the endpoint transfer type as determined in the
endpoint descriptor. The driver created with WinDriver will contain all
configuring information acquired at this early stage.

WinDriver USB

WinDriver USB enables developers to quickly develop high performance
drivers for USB based devices, without having to learn the USB specs or the
OS internals. Using WinDriver USB, developers can create USB drivers
without having to use the DDK (Microsoft Driver Development Kit), and
without having to be familiar with Microsoft's WDM (Win32 Driver Module).

The driver code developed with WinDriver USB is binary compatible between
Windows 2000 and Windows 98 and supports Microsoft 3 WDM interface.
The source code will be code-compatible among all other operating systems,
supported by WinDriver USB. For up to date information regarding operating
systems currently supported by WinDriver USB check out KRFTech 3 web site
at www.krftech.com.

WinDriver USB encapsulates the USB specification and architecture, letting
you focus on your application logic. WinDriver USB features the
DriverWizard, with which you can detect your hardware, configure it and test it
before writing a single line of code. The DriverWizard will lead you through the
configuration procedure first, enable you to choose the desirable configuration,
interface and alternate setting through a friendly graphical user interface. After
detecting and configuring your USB device, you can then test it, listen to pipes,
write and read packets and validate all your hardware resources function as
expected. WinDriver USB is a generic tool kit, which supports all USB devices,
from all vendors and with all kind of configurations.

After your hardware is diagnosed, the DriverWizard will automatically generate
your device driver source code in C or in Delphi. WinDriver USB provides
user-mode APIs to your hardware, which you can call from within your
application. WinDriver USB API is specific for your USB device and includes

40

WINDRIVER DEVELOPER?*S GUIDE

USB unique operations such as reset-pipe and reset-device. Along with the
device API, WinDriver USB creates a diagnostic application, which just need to
be compiled and run. You can use this application as your skeletal driver to
jump-start your development cycle. If you are a VB programmer, you will find
all WinDriver USB API supported for you also in VB, giving you all you need
to develop your driver in VB.

The DriverWizard also automates the creation of an .INF file where needed.
The .INF file is a text file used by the Plug-&-Play mechanisms of Windows
95/98 and Windows 2000 to load the driver for the newly installed hardware or
to replace an existing driver. The .INF file includes all necessary information
about the device(s) and the files to be installed. .INF files are required for
hardware that identifies itself, such as USB and PCI. In some cases, the .INF
file of your specific device is included in the .INF files that are shipped with the
operating system. In other cases, you will need to create an .INF file for your
device. WinDriver automates this process for you. More information on how
to create your own .INF file with the DriverWizard can be found in chapter 4
The DriverWizard 7 Installation instructions of .INF file can be found in
chapter 21 Distributing your Driver”

Using WinDriver USB, all development is done in the user mode, using the
familiar development and debugging tools and your favourite compiler (such
as MSDEV, VC++, Chuilder, Borland Delphi).

WinDriver USB API is designed to give you optimised performance. In the
cases where native kernel mode performance is needed, use WinDriver USB's
unique KernelPlugln *feature (included). This powerful feature enables you to
write and debug your code in the user mode, and then simply ‘drop' it into the
Kernel Plugin for kernel mode execution. This unique architecture enables you
to achieve maximum performance with user mode ease of use.

All other WinDriver USB features can be found in the WinDriver feature list in
the first chapter WinDriver Overview?

41

WINDRIVER DEVELOPER?®S GUIDE

WinDriver USB Architecture

[Jcomponentsvouwrite i Your application

I:IWinDriver Components (YOUI’ AppEXE)

Your Driver code
I:IOS(Zomponents
I:IHardwareC()mponents WinDrin_er
H UserMode Library
Windrvr.h)
AR e A ... :
.
WinDriver APl ——— —— —— T T T T 7T Kerne Mode |
: Kernel Plugin = : WinDriver Kernel Module
. o I ——— i
- 1
: vour AMinDriver | : n]
: Percf:)i::'gzlnceKernelplugln Windrvr.sys EWdusb.sys
Functions {Optional in 9x, NT) | = |
1
1
USB Driver interface: — — — — — — v-——————————

_Host Controller
Driver Interface

Host
Controller
Driver
(HCD)

Host:Controller

Device Device

To access your hardware, your application calls the required WinDriver USB
API function from the WinDriver User Mode Library (windrvr.h). The User

42

WINDRIVER DEVELOPER?*S GUIDE

Mode Library calls the WinDriver Kernel Module. The WinDriver Kernel
Module is comprised of windrvr.sys and wdusb.sys. The WinDriver Kernel
Module accesses your USB device resources through the native operating
system calls.

There are two layers responsible to abstract the USB device to the USB device
driver: The upper one is the USB Driver layer (including the USB Driver
(USBD) and USB Hub Driver) and the lower one is the host controller driver
layer (HCD). The division of duties between the HCD and USBD is not
defined, and is operating system dependent. Both HCD and USBD are
software interfaces and components of the operating system, where the HCD
layer represents a lower level of abstraction.

The HCD is the software layer that provides an abstraction of the host
controller hardware while the USBD provides an abstraction of the USB device
and the data transfer between the host software and the function of the USB
device.

The USBD communicates with its clients (the specific device driver for
example) through the USB Driver Interface —USBDI. At the lower level, the
USBD and USB Hub Driver implement the hardware access and data transfer
by communicating with the HCD using the Host Controller Driver Interface
(HCDI).

The USB Hub Driver is responsible for identifying addition and removal of
devices from a particular hub. Once the Hub Driver receives a signal that a
device was attached or detached, it uses additional host software and the USBD
to recognise and configure the device. The software implementing the
configuration can include the hub driver, the device driver and other software.

WinDriver USB abstracts the configuration procedure and hardware access
described above for the developer. With WinDriver USB API, developers can
do all hardware-related operation without having to master the lower levels of
implementing these activities.

43

WINDRIVER DEVELOPER?®S GUIDE

What drivers can | write with WinDriver USB?

Almost all monolithic drivers (drivers that needs to access specific USB
devices), can be written with WinDriver USB. In cases where a "'standard"
driver needs to be written (e.g. NDIS driver, SCSI driver, Display driver, USB
to Serial port drivers, USB layered drivers, etc.)., use KernelDriver USB (also
from KRFTech)

For quicker development time, prefer WinDriver USB over KernelDriver USB
where possible.

44

WINDRIVER DEVELOPER?*S GUIDE

Chapter

Installation and Setup

This chapter takes you through the WinDriver installation process, and shows you how to
check that your VWinDriver is properly installed.

Systems Requirements

For Windows 95/ 98
1. An x86 processor

2. Any 32bit development environment supporting C, VB or Delphi.

For Windows NT/2000
1. Anx86 or Alpha NT processor.

2. Any 32bit development environment supporting C, VB or Delphi.

For Windows CE
1. Windows NT Workstation 4.0 host development platform

2. Microsoft Developer Studio 97 including:
Microsoft Visual C++ V5.0 or higher
Windows CE Platform SDK

45

WINDRIVER DEVELOPER?®S GUIDE

If you are using a commercial Windows CE handheld Computer like the
HP Jornada or the Sharp Mobilon, you will need the following items in
addition:

3.

4.

Your handheld computer.

Serial PC link cable for communication via Windows CE Services (This
cable is normally custom manufactured and supplied by the manufacturer
of the handheld computer. Do not attempt to use different cables for this
purpose.)

If you are using an X86 PC or a commercial target board like the Hitachi
ODO, you will need the following items in addition:

1.

2.

Your target platform.

The Windows CE Embedded Toolkit for Visual C++ (ETK) V2.10, or
Platform Builder V2.11 and above. IF you have the ETK V2.0, you should
upgrade to 2.1 via the ETK 2.1 Enhancement Pack (available at a retail
price of US $14.95 with major online resellers as of March 99) and upgrade
your installation before installing WinDriver CE.

A serial null modem cable for debugging. A null modem cable can be
purchased from a computer hardware store and wired by hand using a
soldering iron (please see the Appendix of this manual for the pinout
diagram of a null modem cable, and for information on purchasing such a
cable)

A custom parallel port cable for downloading of the OS image and
dynamic loading of WinDriver CE.

This procedure is explained in great detail in the online documentation of the
Windows CE ETK and Platform Builder.

For Linux

1.

2.

An x86 processor

Any 32bit development environment supporting C (such as GCC).

46

WINDRIVER DEVELOPER?*S GUIDE

Installing WinDriver

The WinDriver CD contains all versions of WinDriver for all the different
operating systems. The CD 3 root directory contains the Windows 9x and
NT/2000 version. This will automatically start upon entering the CD into your
CD drive in your 9x or NT machine. The other versions of WinDriver are
located in subdirectories i.e. \Alpha, \Linux, \Wince and so on. Following you
will find installation instructions for the registered versions of WinDriver.

Installing WinDriver for Windows 9x / NT /
2000

1. Insert the WinDriver CD to your driver. (When installing
WinDriver by downloading it from KRFTech 3 web site instead of
using WinDriver CD —Double click the downloaded WinDriver
file (wdxxx.exe) in your download directory, and go to step 3).

2. Wait a few seconds until the installation program automatically
starts. If for some reason it does not start automatically, double
click the file “Wdxxx.exe””(where “%xx’’is the version number).
Press the “Install WinDriver’”button.

3. Read the license text carefully, and press YYES ~if you accept its
terms.

Registered users:

4. Choose tnstall registered version *when prompted for which
version to install

5. Inthe “Setup type’’screen, choose one of the following:

- Typical - To install all WinDriver modules. (Generic
WinDriver toolkit + specific chip set APISs).

- Minimal - To install only the generic WinDriver toolkit.

47

WINDRIVER DEVELOPER?®S GUIDE

- Custom - To choose which modules of the WinDriver to
install. 'You may choose which APIs will be installed.

6. You will now be prompted for an 8-digit password to continue the
installation. Type in the password you received when purchasing
WinDriver. Take care when entering the password. The installation
will fail if the wrong password is written here. Note that the
password is case sensitive.

7. After completing the set-up, It is recommended to reboot your
computer.

8. Activate the DriverWizard from Start | Programs | WinDriver |
DriverWizard. Enter the Register WinDriver option from the File
menu and insert your license string there.

9. To activate source code you have developed in the evaluation
version simply follow the instructions in
\windriver\redist\register\register.txt.

Installing WinDriver CE

IF YOU ARE INSTALLING WINDRIVER CE FOR A HANDHELD
COMPUTER:

1. Insert the WinDriver CD into your NT machine CD drive.

2. Exit from the auto installation and double click the
“Cd_setup.exe’” file from the \Wince directory inside the CD.
This will copy all needed WinDriver files to your development
platform (NT).

3. Copy the WinDriver CE kernel file
(\windriver\redist\registerN\TARGET_CPU\windrvr.dll) to the
\WINDOWS subdirectory of your HPC.

48

WINDRIVER DEVELOPER?*S GUIDE

4. Use the Windows CE Remote Registry Editor tool or the Pocket
Registry Editor on your HPC to modify your registry so that the
WinDriver CE kernel is loaded appropriately. The file
\windriver\samples\wince_instal\PROJECT_WD.REG contains
the appropriate changes to be made.

5. Restart your HPC. The WinDriver CE kernel will be automatically
loaded. You will have to do awarm RESET rather than just
Suspend/Resume. You should look for a button labelled RESET
on your HPC. On the HP 3xx/6xx series, this button can be
found under the reserve battery cover.

6. Compile and run the sample programs (see the section on
CHECKING YOUR INSTALLATION below) to make sure that
that WinDriver CE is loaded and us functioning correctly.

If You Are Using ETK / Platform Builder And Installing
WinDriver CE For CE PC

Itis highly recommended that you read the ETK documentation and

understand the Windows CE and device driver integration procedure

before you perform the following installation procedure:

1. Repeat steps 1-2 in above.

2. Open an ETK Build Command Window using the MAXALL
project on your NT development platform.

3. Copy the WinDriver CE kernel file
(\windriver\redist\registerA\TARGET_CPU\windrvr.dll) to the
%_FLATRELEASEDIR% subdirectory on your development
platform. This environment variable is set by the WinCE ETK and
may be D:\WINCE210\RELEASE for example.

4. Append the contents of the file PROJECT_WD.REG to the file
\windriver\samples\wince_instal\PROJECT_WD.REG in the
% _ FLATRELEASEDIR% subdirectory.

49

WINDRIVER DEVELOPER?®S GUIDE

5. Append the contents of the file
\windriver\samples\wince_instal\PROJECT_WD.BIB to the file
PROJECT.BIB in the %_FLATRELEASEDIRY subdirectory.
This step is only necessary if you want the WinDriver CE kernel
file (WINDRVR.DLL) to be part of the WinCE image (NK.BIN)
permanently. This would be the case if you were transferring the
file to your target platform using a floppy disk. If you prefer to
have the file WINDRVR.DLL loaded on demand via the
CESH/PPSH services, you need not carry out this step until you
build a permanent kernel.

6. Use the WinCE ETK tool MAKEIMG.EXE to generate a new
WIinCE kernel called NK.BIN. Transfer this kernel to the target
platform using the PPSH/CESH service or via a floppy disk.

7. Restart your target CE platform. The WinDriver CE kernel will be
automatically loaded.

8. Compile and run the sample programs (see the section on
CHECKING YOUR INSTALLATION below) to make sure that
that WinDriver CE is loaded and us functioning correctly.

If You Will Be Testing Your Applications on The X86 HPC
Emulation on Windows NT
1. Repeat step 1-2 in the first CE installation set of instructions.

2. Compile and run one of the sample programs making sure to
choose the X86EMU target to make sure that it works correctly.

Installing WinDriver for Linux

Installing WinDriver for Linux on your Linux machine

1. Insert the WinDriver CD into your Linux machine CD drive.

50

WINDRIVER DEVELOPER?*S GUIDE

2. Create a directory /usr/bin/windriver

/usr/bin> mkdir windriver

3. Make windriver your active directory

/usr/bin> cd windriver

4. Extract the file wdxxxIn.tgz (where xxx is the version number)

/usr/bin/windriver> tar —xvzf /mnt/cdrom/LINUX/wdxxxIn.tgz

5. Install WinDriver
/usr/bin/windriver> make install

The following steps are for Registered Users only

6. Change directory to /windriver/redist/register/

/usr/bin/windriver> cd /redist/register

7. Extract the file wdxxxreg.zip using the password you have
received with the WinDriver package.

/usr/bin/windriver/redist/register> unzip wdxxxreg.zip

8. Change directory to windriver/redist/

/usr/bin/windriver/redist/register/> cd ..

9. Remove the evaluation module.

Jusr/bin/windriver/redist/> /sbin/rmmod windrvr

10. Clean the evaluation version module directory

/usr/bin/windriver/redist/> make clean

11. Install registered version

/usr/bin/windriver/redist/> make install IS_REGISTERED=1

51

WINDRIVER DEVELOPER?®S GUIDE

12. To activate source code you have developed in the evaluation

version simply follow the instructions in
\windriver\redist\register\register.txt.

Installing the DriverWizard on your Windows machine

1.

2.

Insert the WinDriver CD into your Windows machine CD
drive.

Follow steps 2-9 of the Windows installation instructions
(above).

Installing WinDriver for Solaris

Installing WinDriver for Solaris on your Linux machine

1.

2.

Insert your CD into your Solaris machine CD drive.

Create a directory /usr/bin/windriver:
/usr/bin> mkdir windriver

Make windriver your active directory :
/usr/bin> cd windriver

Copy the file WDXXXSLS.tgz (Sparc) or WDXXXSL.tgz
(Intel) from it's directory (the CD or your download directory)
to the current directory:

/usr/bin/windriver> cp file_directory/WDXXXSLS.tgz ./

(XXX — WinDriver 3 version number).

Extract the file:
/usr/bin/windriver> gunzip -c WDXXXSLS.tgz | tar -xvf -

Installing WinDriver for Solaris:
/usr/bin/windriver>./ install_windrvr

The following steps are for Registered Users only:

52

WINDRIVER DEVELOPER?*S GUIDE

1. Change directory to /windriver/redist/register/:
/usr/bin/windriver> cd /redist/register

2. Extract the file found in wdXXXreg.zip and enter the
password you have received with the WinDriver package:
/usr/bin/windriver/redist/register> unzip wdXXXreg.zip

3. Replace the evaluation WinDriver kernel (windrvr) with the
registered version you have extracted in item 6 above:
copy platform/kernel/drv

4. To activate source code you have developed in the evaluation
version simply follow the instructions in
/windriver/redist/register/register.txt

Installing the DriverWizard on your Windows machine

1. Insert the WinDriver CD into your Windows machine CD
drive.

2. Follow steps 2-9 of the Windows installation instructions
(above).

Installing WinDriver Alpha NT (NT for the
Alpha processor)
1. Insert the WinDriver CD into your NT machine CD drive.

2. Unzip the file “WdXXXaxp.zip>>found on \Alpha.

3. Activate the DriverWizard from Start | Programs | WinDriver |
DriverWizard. Enter the Register WinDriver option from the File
menu and insert your license string there.

53

WINDRIVER DEVELOPER?®S GUIDE

4. To activate source code you have developed in the evaluation
version simply follow the instructions in
\windriver\redist\register\register.txt

Checking Your Installation

On your Windows machine (Including Alpha processors):
1. Start the DriverWizard by choosing Programs | WinDriver |

DriverWizard *from the start menu.

Registered users:

2.

Make sure that your WinDriver license is installed (see the tnstalling
WinDriver *section). If you are an evaluation version user, you do not need
to install a license.

For PCI cards - Insert your card into the PCI bus, and check that the
DriverWizard detects it.

For ISA cards - Insert your card into the ISA bus, Configure the
DriverWizard with your card 3 resources and try to read / write to the card
using the DriverWizard.

On your Windows CE machine:

1.

Start the DriverWizard on your NT machine by choosing Programs |
WinDriver | DriverWizard from the start menu.

Make sure that your WinDriver license is installed (see the tnstalling
WinDriver *section). If you are an evaluation version user, you do not need
to install a license.

For PCI cards - Insert your card into the PCI bus, and check that the
DriverWizard detects it.

54

WINDRIVER DEVELOPER?*S GUIDE

4, For ISA cards - Insert your card into the ISA bus, Configure the
DriverWizard with your card 3 resources and try to read / write to the card
using the DriverWizard.

5. Activate Visual C++ for CE and load one of the WinDriver samples (e.g.
\windriver\samples\speaker\speaker.dsw)

6. Select the target platform as X86em from the VisualC++ WCE
Configuration Toolbar.

7. Compile and run the speaker sample. The NT speaker should be activated
from within the CE emulation environment.

On your Linux machine:
1. Run the precompiled speaker sample found in
\windriver\samples\speaker\LINUX\speaker

2. If the sample program works —you have installed you WinDriver for Linux
properly.

55

WINDRIVER DEVELOPER?®S GUIDE

56

WINDRIVER DEVELOPER?*S GUIDE

Chapter

The DriverWizard

DriverWizard - An Overview

The DriverWizard (included in the WinDriver toolkit) is a Windows-based
diagnostics tool that lets you write to and read from the hardware, before
writing a single line of code. The hardware is diagnosed through a Windows
interface - memory ranges are read, registers are toggled and interrupts are
checked.

Once the card is operating to your satisfaction, DriverWizard creates the
skeletal driver source code, creating functions accessing all your hardware
resources including custom defined registers. The DriverWizard generates an
API, which is specific to your hardware. This specific API is implemented by
calling the WinDriver generic API. For example, WinDriver's API contains a
function called WD _Transfer() for exchanging data with your hardware. The
Wizard might generate a more specific function such as
MyCard_ReadStatusRegister() (where 'status register' is a register you have
defined on your hardware).

It is recommended to start your driver development by letting the
DriverWizard generate the driver code for you. If you are developing a driver
for a PLX /Altera /Galileo /AMCC /QuickLogic /PLDA / V3 based card, it

57

WINDRIVER DEVELOPER?®S GUIDE

is recommended to move straight to the “Enhanced Support for specific PCI*”
chapter, and to start your driver development from there.

The DriverWizard is an excellent tool for two major phases in your HW /
Driver development:

1. Hardware diagnostics: After the hardware has been built, insert the
hardware into the PCI / ISA / PCMCIA bus or attach your new USB
device to the USB port in your machine, and use the DriverWizard to check
that the hardware is performing as expected.

2. Code generation: Once you are ready to build your code, let the
DriverWizard generate your driver code for you.

The code generated by the DriverWizard is composed of the following
elements:

1. Library functions for accessing each element of your device 3 resources
(Memory ranges, 1/0 ranges, registers and interrupts).

2. A 32 bit diagnostics program, in console mode with which you can diagnose
your device. This application utilises the special library functions, (described
above), which were created for your device by the DriverWizard. Use this
diagnostics program as the skeleton for your device driver.

3. A project workspace which you can use to automatically load all the above
project information and files into your development environment. In
WinDriver Linux and WinDriver Solaris the driver wizard generate the
makefile for the relevant operating system.

Wizard Walkthrough

Following are the five steps in using the DriverWizard:

1. Insert your card in your hardware bus (PCI /7 ISA / PCMCIA) or
attach your USB device to the USB port in your machine.

58

WINDRIVER DEVELOPER?*S GUIDE

2. Run the Wizard

Click /Start/WinDriver/DriverWizard from the start menu or
doubleclick the DriverWizard icon on your desktop.

The start-up dialog will appear. Click your mouse to start the
DriverWizard. If you are using an evaluation copy of WinDriver,
you will be notified of the time left for your evaluation period.

Choose your PnP device from the list of devices detected by
DriverWizard or configure it manually (for non PnP cards like
ISA)

i Card information Es:

|
Flease select vour card brom the-list of detected cards below,
ar.chooss S8 card' for nioh plug & play cards.

|58 Card,

Other hardware

Parallel port

FCI: Intel 52443Bx 440Bx AGP:et
FCl: Intel - 82443B% 440B: AGF Set
FCI Intel S23F1AB Pilx4 154 Bridge
PCL Inktel 82371AB PI<4.IDE Interface Edit Bl
PCL: Inkel 8237148 Fl4-USE Interface Fegisters.
PCL: Intel 823714B [PIE<4] powerd/device management compotient L e
PCl Realtek ME2000 compatible Ethernet
Pl AT 30 Hags Pro Generate
158 PrP: PrP Sound Chip . AMF file
158 PnP: PrP Sound Chip —
154 PnP: PrP Sound Chip
154 PnP: PrF Sound Chip
PEMClE: Mo cards found |
LISE: WLSI Vizion Ltd. . ProductlD 0002

IISE: &trnel Carporation ., Product! D 3307

LISE: Creative Labs | Producti D 1050 _ﬂ

CordDesoipion
endaor I3 DEI'?.'D@VE:E; 04742
Buss 1 5lot O Function 0

>

ok | canee

59

WINDRIVER DEVELOPER?®S GUIDE

In some cases the DriverWizard will notify you of the need to
generate an INF file, in order to continue your hardware
diagnostics. (If after pressing the OK button no message
popped up —move to the next step).

To generate an INF file simply press the Generate .INF file”
button in the Tard information *screen and save the generated
INF file (the default name given to the file by the Wizard is
fny_device.inf7.

To install the .INF file follow the instruction displayed by the
DriverWizard or refer to the Treating INF file “section in
Chapter 21 Distributing your Driver ”of this manual.

Why should | create an INF file?
1. To stop the 'new hardware wizard' of the Windows operating system from
popping up after boot.

2. Insome cases the OS doesn't initialize the PCI configuration registers in
Win98 without an INF file. In these cases you will not be able to diagnose
your hardware with the DriverWizard until creating the INF file.

3. Insome cases the OS doesn't assign physical address to USB devices
without an INF file. In these cases you will not be able to diagnose your
USB device with the DriverWizard until creating the INF file..

4. To load the new driver created for the card\device. Creating an INF file is
required whenever developing a new driver for the hardware.

5. To replace the existing driver with a new one.

60

WINDRIVER DEVELOPER?*S GUIDE

3. Configure your USB device (developers working with
ISA/PCI/1SA PnP/PCMCIA cards should skip this step):

Choose the desired configuration\interface \settings from the
list.(Note: The Wizard reads all the supported devices Interface
and alternate settings and display them. For USB devices with
only one interface configured, the wizard automatically selects
the detected interface and the fnterface selection *screen will
not be displayed).

Interface zelection

Choose interface for the device:

Config. 1: interface no. 1, altemate setiing: 0, index: 0
Config. 1: interface no. 1, altemate setiing: 1, index: 0
Config, 1: interface no. 1. altemate setting: 2 indes: 0
Lonfig, 1 inkerface no. 1, 3 indes: [

j—y

end-paints: 1. class: Oxff, sub-clazs: 00, pratocal: O=ff
1. end-point address: 0281, attributes: 01
max packet size: 960 (0x3c0], Interval 1

oK I Canecel

4. Diagnose your device:

Test your card 3 1/0, memory ranges, registers and interrupts.
Test the USB device 3 pipes.

All of your activity will be logged on the DriverWizard logger,
so that you may later analyze your testing.

Make sure your card is performing as expected.

61

WINDRIVER DEVELOPER?®S GUIDE

A PCI diagnostic screen:
~ Resources B B |

140 Memom | Iﬂterrupts.l Heg'lsters.l
— lEw !
Marme I Range | Digscription |
BZcini | Dxe5A00000-Dxe 5 Edi |
+ BaR1 (xeB800000-0xebHE1
+ BARZ (eB000000-0xe 530 |d=iEr
Move X
—Action |
Read Reset Aiction-
Anite: [~ Action HB—a_d‘
poat || |ttt |
Dt _
frab01 0] = e —
—_ o OHOOT 1
|abab0023

For USB testing: The Wizard shows the pipe detected
according to the selected configuration.

In order to perform data transfers follow the below steps:
Select the desired pipe.

For control pipe (a bi-directional pipe) - press 'read/write
to pipe'. New dialog will pop up where you enter a setup
packet and for fvriting operation *also input data. The
setup packet should be 8 bytes long (little endian) and
according to the USB spesfication parameters
(bmRequestType, bRequest, wValue, windex, wLength).

For input pipe (moves data from device to the host) - press
‘listen to pipe’ To succesfully accomplish this operation
with devices other then HID, first you need to verify that
the device sends data to the host. If no data is being sent,
after fistening >for a short period of time the wizard will

62

WINDRIVER DEVELOPER?*S GUIDE

notify you Transfer failed J.
To stop reading press 'stop listen to pipe".

For output pipe (host to device) - press ‘write to pipe'.
New dialog will pop up asking you to enter the data to
write. The Wizard logger will contain the outcome of the

opreation
A USB diagnostic screen:
Fipes | |
Description M
% out, packet size: 8 Edit
+ PipeBl lsachronous direction: in, packet size: 960 =
Readhwfite to
pipe
Reset Pipe
Reset Device
Setip Packet, |30 05 00 01 000012 00 ,—-' i
o |1
Cista B [
[Hex) |

|

5. Generate the skeletal driver code.

Choose the Generate code "option from the Build menu.

ﬁWinD river Wizard -

File Edt ‘iew PBesouces

B =3

Select the WinDriver option on the Thoose type of driver”
screen. Selecting the KernelDriver option will generate kernel
source code designed for full kernel mode drivers —See the
KernelDriver documentation or the KRFTech web site for

=

window Help
Generate Code

63

WINDRIVER DEVELOPER?®S GUIDE

more details (Note: this screen appears only when both
WinDriver and KrnelDriver are installed on your machine.

DriverWizardisatod
Choose type of driver shared by WInDriver

ad KendDrive. Itis

lect the type of driver you wish to create:

TheKendDriver Choose "winDriver" ting a User Mode dii oode ed m.rg
: oose "WinDriver" for creating a User Mode driver. i
quan shoudbe Chaoze "Femellriver” for creating a Kemel Maode driver, IJIh IN s
usd for full kemd Press "which Ciriver is good for me' to leam which type of d (VViI’DI‘IVB‘) ad
I’Tﬁ'bd'lVG’S(Sm you need ta create. Kand node
asNDIS minipart (KemdDriver). Use
andoon). If you * winDriver user modecode
aenda aregsaed - Supports Windows 3, NT, 2000, CE and Cirmw: (WinDrive) whenever
usy of KRFTeh's - N kernel or DDK knowledge needed. possiblesince Ussr
. - Partable acrass operating systems, ;
KemdDriver The -Wemy short development time. ITTIPCBIG@ITH’I I.S
Kemd Cae much fader and esder
geaaed will nat \f then Kemd mode
conyile KetmelDriver devdopatt. If you
- Supports Windows NT and 2000. nesd high pafomence
- For creating NT Miniport drivers. dhoud ill choose
- For creating driver that communicate with ather kemel dri WI’]D’IVG’d;]II; wethe
Kend Augin festure
‘whhich Driver is good far rme? | to S}mj your
pafomenceaiticd
Cancel | patsdf your code

On the following screen, choose the language in which the
code will be generated , and choose your desired development
environment for the various operating systems.

64

WINDRIVER DEVELOPER?*S GUIDE

“Which language do you yant your code to be gererated?

| & cicw PasceliDelph) |

Generale project makefilefor

¥ M5 Developer Studio 4

I” M5 Developer Studia 5

¥ M3 Developer Studio &

V' Linus make

I~ Sofans make

W M5 Developer Studio & - For CE
1™ M5 Developer Studio & - For CE
I Botland T+ Builder 3

v Botland T+ Builder 4

IDE talvioke:
IM\CIUSUﬂ Developer Studio B ﬂ

ierierae Lode |

Cancel I

Press the fenerate code *button at the bottom of the screen.

6. Compile and run the generated code.

Use this code as a skeleton for your device driver. Modify
where needed to perform your driver's specific functionality.

The source code that DriverWizard creates can be compiled
with any Win32 compiler immediately, and will run on ALL
Supported platforms (9x, NT, 2000, CE, Linux, Solaris and
0S/2) without needing modification!

65

WINDRIVER DEVELOPER?®S GUIDE

DriverWizard Notes

Sharing a Resource

When two or more drivers want to share the same resource, you must define
that resource as Shared”

To define a resource as shared:
1. Select the resource.
2. Right click *the resource.
3. Select Share *from the menu.

(Note: The default for new defined interrupt is ‘shared’. If you wish to
defineit as unshared interrupt, follow steps 1-2 and select ‘ Unshared’
from the menu in step 3).

Disabling a Resource

During your diagnostics, you may wish to disable a resource, so that
DriverWizard will ignore it, and not create code for it.

Disabling a resource:
1. Select the resource.
2. Right - click "on the resource name.

3. Choose Disable *from the menu.

66

WINDRIVER DEVELOPER?*S GUIDE

DriverWizard Logger

The DriverWizard Logger is the blank window that opens up along with the
device resources dialog when opening a new project.

The logger keeps track of all your input / output in the diagnostics stage, so
that the developer may analyze his device 3 physical performance at a later time.

Itis possible to save the log for future reference.

When saving the project, your log is saved as well. Each log is associated with
one project.

Automatic Code Generation

After you have finished diagnosing your device and have ensured that it runs
according to your specifications, you are ready to write your driver.

Step One — Generating your code.
Choose Generate Code *from the Build menu (shown in step 5 above).

DriverWizard will generate the source code for your driver, and placeit
along with the project file (xxx.wdp where xxx is your project name). The
filesare saved in adirectory the DriverWizard creates for every development
environment and operating system chosen in the * Generate Code' screen.

In the source code directory you now have anew ‘xxxlib.h’ file which states
the interface for the new functionsthat DriverWizard created for you, and
the source of these functions ‘xxxlib.c’, where your device specific AP is
implemented. In addition, you will find the sample main() functionin the
file‘xxxdiag.c'.

The code generated by DriverWizard is composed of the following elements
and files (%xx ™—your project name):

67

WINDRIVER DEVELOPER?®S GUIDE

1. Library functions for accessing each element of your card 3 resources
(Memory ranges, 1/0 ranges, registers, interrupts or the USB pipes).
xXX_lib.c —Here you can find the implementation of your hardware
specific API, (found in xxx_lib.h), using the regular WinDriver API.
xXX_lib.h —This is the header file of the diagnostic program. Here you can
find all your hardware specific API created by the DriverWizard. You
should include this file in your source code to use this API.

2. A general PCI utility library

A diagnostics program, which is a console application with which you can
diagnose your card. This application utilizes the special library functions,
which were created for your device by the Wizard. Use this diagnostics
program as the skeleton for your device driver.

xXx_diag.c —This is the source code of the diagnostics program the
DriverWizard creates.

3. Alist of all files created can be found at xxx_files.txt.

After creating your code, compile it with your favourite Win32 compiler, and
see it works!

Change the function main() of the program so that the functionality fits your
needs.

Step 2 - Compiling the generated code

For Windows 9X, NT, 2000 and CE (Using MSDEV)

For Windows platforms, DriverWizard generates the project files (for MSDEV
4,5 and 6 ,C Builder and Delphi 2, 3, 4). After the code generation, the chosen
IDE (Integrated development environment) will launch automatically. You
may immediately compile and run the generated code.

For Linux and Solaris
The wizard creates a makefile for your project.

68

WINDRIVER DEVELOPER?*S GUIDE

Compile the source code using the makefile generated by the wizard.

For Other OSs or IDEs
Create a new project in your IDE (Integrated development environment)

Include the source files created by the DriverWizard into your project.
Compile and run the project.
The project contains a working example of the custom functions that

DriverWizard created for you. Use this example to create the functionality you
want.

69

WINDRIVER DEVELOPER?®S GUIDE

70

WINDRIVER DEVELOPER?*S GUIDE

Chapter

Creating Your Driver

This chapter takes you through the VWinDriver driver development cycle.

IMPORTANT NOTE:

If your card 3 PCI bridge is either a PLX, Altera,
PLDA, Galileo, QuickLogic, AMCC or V3, then
WinDriver 3 special chip-set APIs will dramatically
shorten your development time. If this is the case,
read the following overview, and jump straight to
the chapter discussing this or refer to the electronic
reference manual.

Using the DriverWizard to Build a Device

Driver

1. Use the DriverWizard to diagnose your card. Read / Write to the
10 / Memory ranges / registers that your card supports or the
pipes of your USB device. Check that your device operates as
expected. (See the DriverWizard *Chapter for details)

71

WINDRIVER DEVELOPER?®S GUIDE

2. Use the DriverWizard to generate the skeleton code for your
device in C or in Delphi. (See the DriverWizard *Chapter for
details)

3. Ifyou are using one of the supported chip sets (PLX / AMCC /
V3 / Altera) as your PCI bridge - it is recommended that you use
the p9054_diag.exe | p9050_diag.exe | p9080_diag.exe |
p9060_diag.exe | p480_diag.exe |gt64 diag.exe | amccdiag.exe |
pbc_diag.exe (respectively) as a skeleton for your driver code.
These executables are applications that access all the registers and
memory ranges through the respective bridge. Their full
WinDriver source code is included. (See the respective chip-set
chapter for more details on using the diagnostics applications).

4. Use any 32bit compiler (such as MSDEV, Borland C/C++ and
Watcom C/C++ or Delphi 2/3/4) to build your code.

5. That3all you need to create your User Mode driver. If you
discover that better performance is needed see the “Improving
performance””section for details. This section will suggest some
performance enhancements you can make in your User Mode
driver, or instruct you on how to move parts of your code to the
WinDriver Kernel PlugIn. This will eliminate any performance
problem.

6. For a more detailed explanation please go back to chapter 4 of this
manual.

See the WinDriver Function Reference “and
the WinDriver Structure Reference "and the
Implementation Issues “chapters for more
details.

72

WINDRIVER DEVELOPER?*S GUIDE

Writing the Device Driver without the Wizard

It is recommended to use the Driver Wizard to generate the skeleton of the
driver you need. If you choose to write your driver directly without using the
Wizard, proceed according to the below steps, or choose a sample that most
closely resembles what your driver should do, and modify it.

1.

2.

Copy the file windrvr.h to your source code directory.
Add these lines to the source code:

#include <windows.h>

#include <winioctl.h>

#include "windrvr.h"

Call WD_Open() At the beginning of your program to get a
handle for WinDriver.

Call WD_Version() to make sure the WinDriver version installed is
up to date.

For PCI cards: call WD_PciScanCards() to get a list of the PCI
cards installed. Choose your card and call WD_PciGetCardInfo().

For ISA Plug and Play (PnP) cards: call WD _IsapnpScanCards() to
get a list of the ISA PnP cards installed. Choose your card and call
WD _ IsapnpGetCardInfo().

For ISA (non PnP) cards: fill in your card information (1O,
memory & interrupts) in the WD_CARD structure.

For PCMCIA Cards: call WD_PcmciaScanCards to get a list of the
PCMCIA cards installed. Choose your card and call
WD_PcmciaGetCardinfo().

73

WINDRIVER DEVELOPER?®S GUIDE

10.

11.

12.

13.

14.

Note: WD _ PcmciaGetCardinfo() inserts a ITEM_BUS item
as the first element of the WD_ITEMS array of the WD_CARD
structure that it returns. This item must be present for PCMCIA
card configuration to work correctly. If you are filling up the
WD_CARD structure yourself without the help of WD _
PemciaGetCardInfo(), then you must set up this item yourself and it
must be the first entry in the WD_ITEMS array

For USB devices — Call WD_UsbScanDevice() to get your device
unique ID.

For USB devices —an optional step is to call
WD _UshGetConfiguration to learn about your device
configurations and interfaces.

Call WD_CardRegister(). For USB devices call
WD _UsbDeviceRegister() instead, to open a handle to your device
with the desired configuration.

Now you can use WD _Transfer() to perform 10 and memory
transfers or opreate your USB device by calling
WD_UsbTransfer()

For ISA 7 ISA PnP/ PCI / PCMCIA cards: If the card uses
interrupts call WD _IntEnable(). Now you can wait for interrupts
using WD _ IntWait().

To finish call WD_CardUnregister() or
WD_USBDeviceUnregister() for your USB device, and at the end
call WD_Close().

Win CE - Testing Your Driver on Your CE
Emulation under Windows NT.

WinDriver is currently the only tool that enables you to test your driver code
with your hardware on your NT machine —under the CE emulation

74

WINDRIVER DEVELOPER?*S GUIDE

environment. This can dramatically shorten your development time by
eliminating the need to work via a serial cable each time you want to see how
your driver code operates your hardware.

If your NT host development workstation already has the target hardware
plugged in, you can use the X86 HPC software emulator to test your driver.
You need to generate the code as usual using the DriverWizard, or from
scratch as described earlier in this chapter. When compiling the code, select the
target platform as X86em from the VisualC++ WCE Configuration Toolbar.
You will need to link the import library
\windriver\redist\register\x86emu\windrvr_ce_emu.lib with your application
program objects.

Using the Help Files

You may use the help files supplied to you with the WinDriver toolkit. Use
these files by pressing Start >on your task bar, and choosing Programs \
WinDriver \ WinDriver Help *from there.

75

WINDRIVER DEVELOPER?®S GUIDE

76

WINDRIVER DEVELOPER?*S GUIDE

Chapter

Debugging

Debugging your hardware access application code should be approached in the
following manner:

User Mode Debugging

Since WinDriver is accessed from User Mode, it is recommended you first
debug your code using your standard debugging software.

- Use Set Debug On”and Set Debug Off *to toggle WinDriver runtime
debugging. This will check the validity of the addresses sent to the register
commands in run-time, and report errors.

Use the DriverWizard to check values of memory and registers in the
debugging process.

- When developing for windows CE - If you are using the WinDbg debugger
from Microsoft to connect to your target platform using a serial (COM1)
port, you can use the DEBUGMSG macro inside your user-mode driver
code to send printf style debugging output to the debugger window. Refer to
the following files or directories for more information. (The ETK

77

WINDRIVER DEVELOPER?®S GUIDE

documentation also includes detailed documentation on using WinDbg for
user mode or driver debugging)

- \WINCE210\PUBLIC\COMMON\DDK\INC\DBGPRINT.H

- \WINCE210\PUBLIC\COMMON\OAK\DEMOS\DBGSAMP1

78

WINDRIVER DEVELOPER?*S GUIDE

DebugMonitor

DebugMonitor is a powerful graphical and console mode tool for monitoring
all activities handled by the WinDriver Kernel (windrvr.sys/ windrvr.vxd /
windrvr.dll / windrvr.o / wdusb.sys). Using this tool you can monitor how
each command sent to the kernel is executed.

Using DebugMonitor

DebugMonitor has two modes —Graphic and Console mode. The following is
an explanation on how to operate DebugMonitor in both modes.

DebugMonitor — Graphical mode:

Applicable for Windows 9x, NT, 2000. You may also use DebugMonitor to
debug your CE driver code running on CE emulation on Windows NT. For
Linux, Solaris and CE targets use the console mode DebugMonitor.

1. Start DebugMonitor from the Start | Programs | WinDriver |
DebugMonitor menu.

BE'Untitled - WinDriver Debug
Eie Edi | View Help

Dl 5| =) 2|

URDEBUC GUT w4 .20 Debugaing Monitor. =
Purming Minbriver ¥4 20 KRFTech (&) 1393

Time: Mom Jan 17 16:28:55 2000

08: Windows 8% 4.10 Build &77682ZZZ

79

WINDRIVER DEVELOPER?®S GUIDE

2. Activate and set the trace level you are interested in from the View |
Debug Options menu or using the change status button.

Modify statusz | %]

[Sfatus - Section
Vi v Dma

W Mem [V Kerplug
¥ Int ¥ Miso

V| Pei IV License

¥ Pemaia v E_iaid_reg_
W lsapnp ¥ Kel_dw

¥ Lsh

iz
" Emor a0 nfo 8 Trace

Ok | Eatizel |

Status - Set trace on or off.

Section - Choose what part of the WinDriver API you are interested to
monitor. If you are developing a PCI card and experiencing problems with
your interrupt handler you should check the Int box and the PCI box.
Checking more options than necessary could amount to overflow of
information making it harder for you to locate your problem. USB developers
should choose the USB box.

The Ker_drv option is for KernelDriver users, monitoring communication
between their custom Kernel mode drivers (developed using KernelDriver)
and the WinDriver kernel.

Level - Choose the level of messages you are interested to see for the resources
defined. Error is the lowest level of trace, resulting with minimum output to the

80

WINDRIVER DEVELOPER?*S GUIDE

screen. Trace is the highest level of tracing displaying every operation the

WinDriver Kernel performs.

3. Once you have defined what you want to trace and on what level just
press OK to close the “Modify status””window, activate your program,
(Step by step or in one run), and watch the monitor screen for error or

any unexpected messages.

F__.' Untitled - WinDriver Debug

Ele Edt View Help

SEFTEET

Do_ush_scan devices: found 3 devicels)

Ush urdaue id to_vendor: returnning: venld: DEE%, proald; 0x2, devium: L
Do ush_get device config - found | interfaces '

Do ush get dewice confiy - sxamining interface O

Do sk get dewvice config — examining interface 1

Do ush_get device confiy - exawining incerface Z

Do ush_get device config — exeuining interface 3

Do ush get dewice confiy - found 4 interfaces alternatives

Table add (usb): new handle 1

Ush scan hub: no dewice connected to hub O, port 1

Ush scan hub: found dewice 0, WenID: Ox2301, ProdID-Ox3ek, ac hub 0, port 2
Usb-sean hub: no device connected co hub Z, pors 1

Ush..=zcan hub: found device 1, WenID: 0x1050, ProdID:Oxdle, at hub 2, port Z
Usk_scan hub: found dewice 2, WenID: 02, DrodID:0x553, st hub 2, port 3
Ush scan hub: no device connacted to hub 2, port 4 ' '

Do usb scan devices: found 3 dewvicais)

Ush unige id to wvendor: returnning: wenld: 0x583, prodid; 0x2, devium: 1
Do ush register device: suceess (hendle L)

ﬁc;ﬁsbdunta'g:.i.st,Et'_d'evice: L

Usb'._r:lbse_h"sﬁd.la: sueccess

Table remove gensral {ushk): removed handle 1f

ﬁ_n_pci_scani enterad

Do_pci_scan: found '8 cards

Do pci_card: snterad

L",.et._In_t,err_upt'._'Dat‘a_: Entered for Bus 0, 5lot O function O

Do pei card: found 0 iteus

Do pei_card: entersd

Get.;l‘m;armpt'._Dat,a: ‘Entered for Bus 0, Blot 1, furection O

Do_pci_sard: found 0 iteus

Do pei_card; entered

L]

Ready

DebugMonitor —Console Mode

This tool is available in all operating systems supported including Linux. To
use it simply type “DebugMonitor’’from the \WinDriver\util\ directory
with the appropriate switches. For a list of switches available with the
DebugMonitor in console mode just type “WDDebug’”and a help screen

will appear, describing all the different options for this command.

To see activity logged with the DebugMonitor simply type “WDDebug

dump”’

81

WINDRIVER DEVELOPER?®S GUIDE

82

WINDRIVER DEVELOPER?*S GUIDE

Chapter

WinDriver Function Reference
Use this chapter as a uick reference >to the WinDriver functions. This
reference may also be found in YWinDriver Help 7

The definition of the structures used in the following functions may be found
in the WinDriver Structure Reference “section.

83

WINDRIVER DEVELOPER?®S GUIDE

WD_Open()

Open WinDriver device & return a handle to the device. WD_Open must be
called before any other WinDriver functions can be used.

Prototype

HANDLE WD_Open();

Return Value

INVALID_HANDLE_VALUE if device could not be opened, otherwise returns the handle.
Example

HANDLE hWD;

hwD = WD_Open();

if ("WD==INVALID_HANDLE_VALUE)
{

printf ("Cannot open WinDriver device");

}

84

WINDRIVER DEVELOPER?*S GUIDE

WD_Close()

Closes the WinDriver device. Must be called when finished using the driver.
Prototype

void WD_Close(HANDLE hWD);

Parameters

hWD - handle of driver from WD_Open().

Example

WD_Close (hWD);

85

WINDRIVER DEVELOPER?®S GUIDE

WD Version()
Returns the version of WinDriver currently running.

Prototype

void WD_Version(HANDLE hWD, WD_VERSION *pVer);

Parameters (WD_VERSION elements)

dwVer - returns WinDriver's version.
cVer - returns a string of the driver's version.

Example

WD_VERSION ver,;

BZERO(ver);

WD_Version (hWD, &ver);
printf ("%s\n", ver.cVer);
if (ver.dwVer<WD_VER)

{
}

printf ("error incorrect WinDriver version\n");

86

WINDRIVER DEVELOPER?*S GUIDE

WD_PciScanCards()

Scan the PCI bus for cards installed.
Prototype
void WD_PciScanCards(HANDLE hwD, WD_PCI_SCAN_CARDS *pPciScan);

Parameters (WD_PCI_SCAN_CARDS elements)

searchld.dwVendorld - PCI Vendor ID to detect. If O then detect cards from all vendors.
searchld.dwDeviceld - PCI Device ID to detect. If 0 then detect all devices.
dwCards - returns the number of cards detected.

cardSlot[] - list of the PCI slots (dwBus, dwSlot and dwFunction) where matching cards were
detected.

cardld[] - list of the corresponding PCI IDs (dwVendorld and dwDeviceld) where matching
cards were detected.

Example

WD_PCI_SCAN_CARDS pciScan;
DWORD cards_found;
WD_PCI_SLOT pciSlot;

BZERO(pciScan);

pciScan.searchld.dwVendorld = 0x12bc;
pciScan.searchld.dwDeviceld = 0x1;
WD_PciScanCards (hWD, &pciScan);

if (pciScan.dwCards>0) // Found at least one card

{
pciSlot = pciScan.cardSlot[0];
}
else
{
printf (‘No matching PCI cards found\n};
}

87

WINDRIVER DEVELOPER?®S GUIDE

WD _PciGetCardinfo()

Get PCI card information: interrupts, IO & memory.
Prototype

BOOL WD_PciGetCardInfo(HANDLE hwD, WD_PCI_CARD_INFO *pPciCard);

Parameters (WD_PCI_CARD_INFO elements)

pciSlot - the slot of the card needed, from WD_PciScanCards().
Card - returns the card information.

Example

WD_PCI_CARD_INFO pciCardInfo;
WD_CARD Card;

BZERO(pciCardInfo);

pciCardInfo.pciSlot = pciSlot;
WD_PciGetCardInfo (hWD, &pciCardinfo);
if (pciCardInfo.Card.dwltems!=0)

Card = pciCardInfo.Card;
}

else

printf (“Failed fetching PCI card information\n”};
}

88

WINDRIVER DEVELOPER?*S GUIDE

WD_PciConfigDump()

Read / Write the PCI configuration registers.
Prototype
void WD_PciConfigDump(HANDLE hWD, WD_PCI_CONFIG_DUMP *pConfig);

Parameters (WD_PCI_CONFIG_DUMP elements)

pciSlot - PCI bus, slot and function number

pBuffer - buffer for read/write

dwOffset - offset in PCI configuration space to read/write from

dwBytes - bytes to read/write from/to buffer, returns the number of bytes read/wrote
flsRead - if TRUE then read PCI config, FALSE write PCI config

dwResult - returns

PCI_ACCESS_OK if read/write ok

PCI_ACCESS_ERROR if error

PCI_BAD_BUS if bus doesn't exist

PCI_BAD_SLOT if slot and function don't exist
Example

WD_PCI_CONFIG_DUMP pciConfig;
WORD aBuffer[2];

BZERO(pciConfig);
pciConfig.pciSlot.dwBus = 0O;
pciConfig.pciSlot.dwSlot = 3;
pciConfig.pciSlot.dwFunction = 0;
pciConfig.pBuffer = aBuffer;
pciConfig.dwOffset = 0;
pciConfig.dwBytes = sizeof (aBuffer);
pciConfig.flsRead = TRUE;

WD_PciConfigDump(hWD, &pciConfig);
if (pciConfig.dwResult!=PCI_ACCESS_OK)

printf (“No PCI card in Bus 0 Slot 3\n”);
}

else

printf (“‘Card in Bus O Slot 3 has VendorID %x””
“DevicelD %x\n”; aBuffer[0], aBuffer[1]);

89

WINDRIVER DEVELOPER?®S GUIDE

WD_PcmciaScanCards()
Scan the PCMCIA bus for PCMCIA cards installed.

Prototype

BOOL WD_PcmciaScanCards(HANDLE hwD, WD_PCMCIA_SCAN_CARDS *pBuf)

Parameters (WD_PCMCIA_SCAN_CARDS elements)

Searchld. cManufacturer —PCMCIA Card manufacturer name string

Searchld.cProductName - PCMCIA Card product name string

DwcCards —returns the number of cards detected

CardSlot[] —list of the PCMCIA slots (uSocket, uFunction) where matching cards were

detected.

Cardld[] —list of the corresponding PCMIA Ids (cVersion, cManufacturer, cProductName,
CheckSum) where matching cards were detected

Example

WD_PCMCIA_SCAN_CARDS pcmciaScan;
DWORD cards_found;
WD_PCMCIA_CARD pcmciaCard;

BZERO(pcmciaScan);

// Kingston DATAFLASH ATA Flash Card

strepy (pecmciaScan.searchld.cManufacturer, “Kingston Technology’);
strepy (pecmciaScan.searchld.cProductName, “DataFlash’);

WD_PcmciaScanCards (hWD, &pcmciaScan);
if (pcmciaScan.dwCards>0) // Found at least one card

{
pcmciaCard = pcmciaScan.Card[0];
}
else
{
printf (“No matching PCMCIA cards found\n”);
}

90

WINDRIVER DEVELOPER?*S GUIDE

WD_PcmciaGetCardinfo()

Get PCMCIA card information: interrupts, 10 & memory.

Prototype

BOOL WD_PcmciaGetCardInfo(HANDLE hwD, WD_PCMCIA_CARD_INFO pPcmciaCard);

Parameters (WD_PCMCIA_CARD_INFO elements)

pcmciaSlot - the slot/function information of the card needed, from WD_PcmciaScanCards().
Card - returns the card information.

Example

WD_PCMCIA_CARD_INFO pcmciaCardinfo;
WD_CARD Card;

BZERO(pcmciaCardinfo);

// get this from WD_PcmciaScanCards()
pcmciaCardlInfo.pcmciaSlot = pecmciaSlot;

WD_PcmciaGetCardInfo (hWD, &pcmciaCardinfo);
if (pcmciaCardInfo.Card.dwltems!=0)

{

Card = pcmciaCardInfo.Card;

}

else

printf (“Failed fetching PCMCIA card information\n’};
}

91

WINDRIVER DEVELOPER?®S GUIDE

WD_PcmciaConfigDump()

Read / Write the PCMCIA configuration registers.

Prototype

void WD_PcmciaConfigDump(HANDLE hWD, WD_PCMCIA_CONFIG_DUMP *pConfig);
Parameters (WD_PCMCIA_CONFIG_DUMP elements)

PcmiaSlot - Slot descriptor of PCMCIA card

PBuffer - buffer for read/write

DwoOffset - offset in pcmcia configuration space to read/write from

DwBytes - bytes to read/write from/to buffer returns the number of bytes read/wrote
FisRead - if 1 then read pci config, O write pci config

DwResult - PCMCIA_ACCESS_RESULT

92

WINDRIVER DEVELOPER?*S GUIDE

WD _IsapnpScanCards()

Scan the ISA bus for ISA Plug and Play cards installed.

Prototype

void WD_IsapnpScanCards(HANDLE hWD, WD_ISAPNP_SCAN_CARDS *plsapnpScan);

Parameters (WD_ISAPNP_SCAN_CARDS elements)

searchld.cVendor - ISA PnP Vendor ID. This identifies the vendor and card type. If cVendor[0]
is X0 then this will search for all Vendor IDs.

searchld.dwSerial - ISA PnP serial device number. If zero, then search for all serial numbers.
dwCards - returns the number of cards detected.

Card[] - list of the cards detected.

Example

WD_ISAPNP_SCAN_CARDS isapnpScan;
DWORD cards_found;
WD_ISAPNP_CARD isapnpCard;

BZERO(isapnpScan);

// CTLOO09e - Sound Blaster ISA PnP card

strcpy (isapnpScan.searchld.cVendorld, “CTLO09e’);
isapnpScan.searchld.dwSerial = 0;
WD_IsapnpScanCards (hWD, &isapnpScan);

if (isapnpScan.dwCards>0) // Found at least one card

{
isapnpCard = isapnpScan.Card[0];
}
else
{
printf (‘No matching ISA PnP cards found\n’};
}

93

WINDRIVER DEVELOPER?®S GUIDE

WD _ | sapnpGetCardi nfo()

Get ISA Plug and Play card information: interrupts, 10 & memory.
Prototype

BOOL WD _IsapnpGetCardInfo(HANDLE hWD, WD_ISAPNP_CARD_INFO *plsapnpCard);

Parameters (WD_ISAPNP_CARD_INFO elements)

Cardld - the card ID needed, from WD_IsapnpScanCards().

dwLogicalDevice - if ISA card device is multi-function, then this is the number of the logical
device to use, otherwise set it to zero.

cLogicalDeviceld - returns ascii code of logical device 1D found.

dwCompatibleDevices - returns the number of compatible device 1Ds in CompatibleDevice
array.

CompatibleDevice[] - returns an array of compatible device IDs

cldent - returns the ascii device identification string

Card - returns the card information.

Example

WD_ISAPNP_CARD_INFO isapnpCardinfo;
WD_CARD Card;

BZERO(isapnpCardInfo);

// from WD_IsapnpScanCard():
isapnpCardinfo.Cardld = isapnpCard;
isapnpCardinfo.dwLogicalDevice = 0;
WD_IsapnpGetCardinfo (hWD, &isapnpCardinfo);
if (isapnpCardinfo.Card.dwltems!=0)

Card = isapnpCardInfo.Card;
}

else

printf (“Failed fetching ISA PnP card information\n’};
}

94

WINDRIVER DEVELOPER?*S GUIDE

WD _IsapnpConfigDump()

Read / Write the ISA PnP configuration registers.

Prototype

void WD_IsapnpConfigDump(HANDLE hwD, WD_ISAPNP_CONFIG_DUMP *pConfig);

Parameters (WD_ISAPNP_CONFIG_DUMP elements)

Cardld - the card ID needed, from WD_IsapnpScanCards().
dwOffset - offset in ISA PnP configuration space to read/write from
flsRead - if TRUE then read config, FALSE write config
bData - the data to read or write.
dwResult - returns
ISAPNP_ACCESS_OK if read/write ok
ISAPNP_ACCESS_ERROR if error
ISAPNP_BAD _ID if card does not exist

Example

WD_ISAPNP_CONFIG_DUMP isapnpConfig;

BZERO(isapnpConfig);

// from WD_IsapnpScanCard():
isapnpConfig.Cardld = isapnpCard;
isapnpConfig.dwOffset = 0;
isapnpConfig.flsRead = TRUE;

WD_IsapnpConfigbump(hWD, &isapnpConfig);
if (isapnpConfig.dwResult!=ISAPNP_ACCESS_OK)

{
printf (“No ISA PnP card specified slot\n”};

}

else

{
printf (“1SA PnP config in offset 0 = %x”’

isapnpConfig.bData);

95

WINDRIVER DEVELOPER?®S GUIDE

WD _CardRegister()

Register card - install interrupts & map card memory. For USB device see -
WD _UshDeviceRegister()

Must be called in order to use interrupts & perform 10 & memory transfers to
card.

Prototype

void WD_CardRegister(HANDLE hwD, WD_CARD_REGISTER *pCardReg);

Parameters (WD_CARD_REGISTER elements)

Card - information of card to register (interrupts, 10 & memory)

Card.dwltems - number of items in Card.ltem array.

Card.Item[] - items of card. each item can be an 10 range, memory range or an interrupt.

Card.Item[i].item - can be ITEM_INTERRUPT, ITEM_MEMORY or ITEM_IO

Card.Item[i].fNotSharable - normally should be TRUE, in order that two applications will not
attempt to access the same hardware at the same time.

for 10 range item:

Card.Item[i].1.10.dwAddr - first address of 10 range.
Card.Item[i].1.10.dwBytes - length of range in bytes.

for memory range item:

Card.Item[i].l.Mem.dwPhysicalAddr - first address of physical memory range.

Card.Item[i].l.Mem.dwBytes - length of range in bytes.

Card.Iltem[i].l.Mem.dwTransAddr - returns the base address to use for memory transfers with
WD_Transfer().

Card.Item[i].l.Mem.dwUserDirectAddr - returns the base address to use for memory transfers
directly by user.

for interrupt item:

96

WINDRIVER DEVELOPER?*S GUIDE

Card.Item[i].l.Int.dwinterrupt - interrupt IRQ to install.

Card.Item[i].l.Int.dwOptions - normally 0. for level sensitive interrupts use
INTERRUPT_LEVEL_SENSITIVE.

Card.Item[i].l.Int.hInterrupt - returns interrupt handle to use with WD_IntEnable().

fCheckLockOnly - to register card should be FALSE. in order just to check if card can be
registered (i.e.: not used by someone else) should be TRUE.

hCard - returns the handle of the card, or O if card cannot be registered. if this is just check
lock then hCard will return 1 if card can be registered, or 0 if not.

Example

WD_CARD Card;
WD_CARD_REGISTER cardReg;

// the info for Card comes from WD_PciGetCardInfo()
// for PCI cards. for ISA cards the information has to be
// set by the user (I0/memory address & interrupt number).
BZERO(cardReg);
cardReg.Card = Card;
cardReg.fCheckLockOnly = FALSE;
WD_CardRegister (hWD, &cardReg);
if (cardReg.hCard==0)
printf (“could not lock device - already in use");

97

WINDRIVER DEVELOPER?®S GUIDE

WD_CardUnregister()

Un-register a card, and free its resources. For USB devices see -
WD _UsbDeviceUnregister()

Prototype

void WD_CardUnregister(HANDLE hwD, WD_CARD_REGISTER *pCardReg);

Parameters (WD_CARD_REGISTER elements)
hCard - handle of card to un-register.

Example

WD_CardUnregister (hWD, &cardReg);

98

WINDRIVER DEVELOPER?*S GUIDE

WD_Transfer()

Execute a read/write instruction to 10 port or memory. For USB devices see -
WD_UsbTransfer()

Prototype

void WD_Transfer(HANDLE hWD, WD_TRANSFER *pTrans);

Parameters (WD_TRANSFER elements)

cmdTrans - command of operation: <dir><p>_<string><size>:
dir - R for read, W for write
p - P for port, M for memory
string - S for string, none for single transfer
size - BYTE, WORD or DWORD
dwPort - Port address for 10, or User address for memory transfer. User address for a
memory mapped card is returned by WD_CardRegister(), in the Card structure.
For single transfer:

Data.Byte for Byte read/write.
Data.Word for Word read/write.
Data.Dword for DWord read/write.

For string transfer:

dwBytes - number of bytes to transfer.

fAutoinc - is TRUE if 10 or memory address should increment for transfer. if FALSE, all data is
transferred to the same port address.

dwOptions - should be 0.

Data.pBuffer - the buffer with the data to transfer to/from.

Example

WD_TRANSFER Trns;
BYTE read_data;

BZERO(Trns);

Trns.cmdTrans = RP_BYTE; // Read Port BYTE
Trns.dwPort = 0x210;

WD_Transfer (hWD, &Trns);

read_data = Trns.Data.Byte;

99

WINDRIVER DEVELOPER?®S GUIDE

WD_MultiTransfer()

Perform multiple IO & memory transfers.

Prototype

void WD_MultiTransfer(HANDLE hWD, WD_TRANSFER *pTransArray, DWORD
dwNumTransfers);

Parameters

pTransArray - array of transfer commands, same as in WD_Transfer()
dwNumTransfers - number of commands in array

Example

WD_TRANSFER Trns[4];
DWORD dwResult;
char *cData = "Message to send\n";

BZERO(Trns);

Trns[0].cmdTrans = WP_WORD; // Write Port Word
Trns[0].dwPort = 0x1e0;

Trns[0].Data.Word = 0x1023;

Trns[1].cmdTrans = WP_WORD;
Trns[1].dwPort = 0x1e0;
Trns[1].Data.Word = 0x1022;

Trns[2].cmdTrans = WP_SBYTE; // Write Port String Byte
Trns[2].dwPort = 0x1f0;

Trns[2].dwBytes = strlen(cData);

Trns[2].fAutoinc = FALSE;

Trns[2].dwOptions = 0;

Trns[2].Data.pBuffer = cData;

Trns[3].cmdTrans = RP_DWORD; // Read Port DWord
Trns[3].dwPort = Ox1e4;

WD_MultiTransfer(hWD, Trns, 4);
dwResult = Trans[3].Data.Dword;

100

WINDRIVER DEVELOPER?*S GUIDE

WD _IntEnable()

Enable interrupt processing.

Note: The easiest way to handle interrupts with WinDriver is by defining the
Interrupt in the Wizard, and letting the Wizard generate the code for you. (In
Plug-n-Play cards, the Wizard will auto-detect the interrupts for you).

Prototype

void WD_IntEnable(HANDLE hwD, WD_INTERRUPT *plnterrupt);

Parameters (WD_INTERRUPT elements)

hinterrupt - handle of interrupt to enable. The handle is returned by WD_CardRegister(), in
the Card structure.

Cmd - array of transfer commands to perform on hardware interrupt. These commands are
needed for level sensitive interrupts, to lower the interrupt level. Otherwise, after
WinDriver finishes dealing with the interrupt, another interrupt will immediately occur. If
no commands are needed, this should be NULL. The commands are the same as in
WD_Transfer().

dwCmds - number of transfer commands in Cmd array.

dwOptions - should be 0. If transfer commands are used for the interrupt installed, set the
value to INTERRUPT_CMD_COPY to copy back the transfer to user-mode from the
WinDriver kernel.

kpCall - kernel plugin call

fEnableOk - returns TRUE if enable succeeded.

Example

WD_INTERRUPT Intrp;
WD_CARD_REGISTER cardReg;

BZERO(cardReg);

cardReg.Card.dwltems = 1;

cardReg.Card.Item[0].item = ITEM_INTERRUPT;

cardReg.Card.Item[0].fNotSharable = TRUE;

cardReg.Card.Item[0].1.Int.dwlinterrupt = 10; // IRQ 10

// INTERRUPT_LEVEL SENSITIVE - set to level sensitive

// interrupts, otherwise should be 0.

// 1SA cards usually are edge sensitive, and PCI cards

// usually are level sensitive.

cardReg.Card.Item[0].1.Int.dwOptions =
INTERRUPT_LEVEL_SENSITIVE;

101

WINDRIVER DEVELOPER?®S GUIDE

cardReg.fCheckLockOnly = FALSE;
WD_CardRegister (hWD, &cardReg);
if (cardReg.hCard==0)
printf (“could not lock device - already in use");
else
{
BZERO(Intrp);
Intrp.hinterrupt =
cardReg.Card.Item[0].1.Int.hInterrupt;
Intrp.Cmd = NULL;
Intrp.dwCmds = 0;
Intrp.dwOptions = 0O;
WD_IntEnable(hWD, &Intrp);
if (!Intrp.fEnableOk)
printf (“failed enabling interrupt\n’};

102

WINDRIVER DEVELOPER?*S GUIDE

WD_IntDisable()

Disable interrupt processing
Prototype

void WD_IntDisable(HANDLE hwD, WD_INTERRUPT *plnterrupt);

Parameters (WD_INTERRUPT elements)

hinterrupt - handle of interrupt to disable.

Example

WD_IntDisable(hWD, &Intrp);

103

WINDRIVER DEVELOPER?®S GUIDE

WD_ I ntWait()
Wait for an interrupt.

Prototype

void WD_IntWait(HANDLE hwD, WD_INTERRUPT *plnterrupt);

Parameters (WD_INTERRUPT elements)

hinterrupt - handle of interrupt to wait for.

fStopped - returns TRUE if interrupt was disabled while waiting.

dwCounter - returns the number of interrupts processed.

dwlLost - returns the number of interrupts not yet dealt with.

Cmd - if commands are set on interrupt should point to commands array, otherwise should be
NULL.

Example

for (3)
WD_IntWait (hWD, &Intrp);
if (Intrp.fStopped)

break;

Processinterrupt (Intrp.dwCounter);

}

104

WINDRIVER DEVELOPER?*S GUIDE

WD _ I ntCount()

Count the number of interrupts from the time WD _ IntEnabled was called.

Prototype

void WD_IntCount(HANDLE hWD, WD_INTERRUPT *plnterrupt);

Parameters (WD_INTERRUPT elements)

hinterrupt - handle of interrupt to count.

dwCounter - returns the number of interrupts processed.

dwLost - returns the number of interrupts not yet dealt with.

Cmd - if commands are set on interrupt should point to commands array, otherwise should be
NULL.

Example

DWORD dwNumlnterrupts;

WD_IntCount (hWD, &Intrp);
dwNumlnterrupts = Intrp.dwCounter;

105

WINDRIVER DEVELOPER?®S GUIDE

WD_DMAL ock()

Lock a linear memory region, and return a list of the corresponding physical
addresses.

Prototype

void WD_DMALock(HANDLE hwD, WD_DMA *pDma);

Parameters (WD_DMA elements)

pUserAddr - user base address of region needed to be locked for DMA transfer.
dwBytes - number of bytes to lock.
dwOptions - normally 0.

- Set to DMA_KERNEL_BUFFER_ALLOC so WinDriver will allocate a contiguous
buffer. When this option is set, the user address of the buffer will be returned in
pUserAddr. Use this option if your device does not support scatter/gather
transfers.

- Set to DMA_LARGE_BUFFER for locking down regions larger than 1MB (See
tfmplementing DMA *for more details).

Page[] - returns an array listing the physical addresses of the locked memory ranges. Program
the card's DMA to transfer data to these addresses.

Page[i].pPhysicalAddr - physical address of page i.

Page[i].dwBytes - length in bytes of page i.

dwPages - returns the number of pages in Page array.

hDma - returns the handle for DMA buffer.

Example

WD_DMA Dma;
PVOID pBuffer = malloc (20000);

BZERO(Dma);
Dma.dwBytes = 20000;
Dma.pUserAddr = pBuffer;
Dma.dwOptions = 0;
WD_DMALock (hWD, &Dma);
// on return Dma.Page has the list of physical addresses
if (Dma.hDma==0)
printf (“Could not lock down buffer\n’};

106

WINDRIVER DEVELOPER?*S GUIDE

WD_DMAUnNlock()

Unlock a DMA buffer.

Prototype

void WD_DMAUnlock(HANDLE hwD, WD_DMA *pDma);
Parameters (WD_DMA elements)

hDma - handle for DMA buffer to unlock.

Example

WD_DMAUnlock (hWD, &Dma);

107

WINDRIVER DEVELOPER?®S GUIDE

WD_Sleep()

Delay execution for a specific amount of time. This function is used when
accessing slow hardware.

Prototype

void WD_Sleep(HANDLE hwD, WD_SLEEP *pSleep);

Parameters (WD_Sleep elements)

dwMicroSeconds - time, in microseconds, to sleep.
dwOptions - should be zero.

Example

WD_SLEEP sleep;

BZERO (sleep);

sleep.dwMicroSeconds = 1000; // Sleep for 1 millisecond
sleep.dwOptions = 0;

WD_Sleep (hWD, &sleep);

108

WINDRIVER DEVELOPER?*S GUIDE

WD_UsbScanDevice()

Scan the USB tree for devices installed.

Prototype :

void WD_UsbScanDevice(HANDLE hWD, WD_USB_SCAN_DEVICES *pScan);

Parameters (WD_USB_SCAN_DEVICES elements):

searchld.dwVendorld - USB Vendor ID to detect. If O then detect devices from all vendors.

searchld.dwProductld - USB Product ID to detect. If O then detect all products from the
selected vendor.

DwDevices - returns the number of devices detected.

uniqueld[] - list of the USB unique IDs where matching devices were detected.

deviceGenerallnfo[] - list of the devices general info (Vendor ID, Product ID, device address,
number of configurations ...)

Example:

WD_USB_SCAN_DEVICES scan;
DWORD uniqueld;

BZERO(scan);

scan.searchld.dwVendorld = 0x553;
scan.searchld.dwProductld = 0x2;
WD_UsbScanDevice(hWD, &scan);

if (scan.dwDevices>0) // Found at least one card

{
unigueld = scan.uniqueld[0];
}
else
{
printf (“"No matching USB devices found\n");
}

109

WINDRIVER DEVELOPER?®S GUIDE

WD_UsbGetConfiguration()

Get a USB device information

Prototype:

void WD_UsbGetConfiguration(HANDLE hwD, WD_USB_CONFIGURATION *pConfig);

Parameters (WD_USB_CONFIGURATION elements):

unigueld - the unique ID of the device as received from WD_UsbScanDevice()

dwConfigurationlndex - the index of the configuration to get (zero based). The number of
configurations are received from WD_UsbScanDevice() in the deviceGenerallnfo.

configuration - configuration general data (value, attributes ...)

dwinterfaceAlternatives - how many interfaces (and alternate interfaces) there are on the
device.

Interface[] - list of intrface descriptions (number of endpoints, class, sub class, protocol ...)

Example:

WD_USB_CONFIGURATION config;

BZERO(config);

config.uniqueld = 2;

config.dwConfigurationindex = 0;
WD_UsbGetConfiguration(hWD, &config);

printf("found %d interfaces\n", config.dwlnterfaceAlternatives);

110

WINDRIVER DEVELOPER?*S GUIDE

WD _UsbDeviceRegister()

Register the selected interface of the device. (This tells the hardware which
interface to work with)

Must be called in order to perform data transfers on the pipes.

Prototype:

void WD_UsbDeviceRegister(HANDLE hWD, WD_USB_DEVICE_REGISTER *pDevice);

Parameters (WD_USB_DEVICE_REGISTER elements):

unigueld - the device unique ID as received from WD_UsbScanDevice()

dwConfigurationindex - the index of the configuration to register (zero based). The number of
configurations are received from WD_UsbScanDevice() in the deviceGenerallnfo.

dwinterfaceNum - interface number to register as received from WD_UsbGetConfiguration()

dwinterfaceAlternate - interface alternate number to register as received from
WD_UsbGetConfiguration()

hDevice - the returned handle of the device

Device - the returned device description (number of pipes and their description)

dwOptions; - should be zero

cName[]; - name of card

cDescription[]; - description

Example:

WD_USB_DEVICE_REGISTER device;

BZERO(device);

device.uniqueld = 2;
device.dwConfigurationlndex = 0;
device.dwinterfaceNum = 1;
device.dwlinterfaceAlternate = 1;
WD_DeviceRegister(hWD, &device);

if ('device.hDevice)
printf(“error - could not register device\n");
else
printf(*deivce has %d pipes\n”, device.Device.dwPipes);

111

WINDRIVER DEVELOPER?®S GUIDE

WD_UsbDeviceUnregister()

Un-register the device.

Prototype:

void WD_UsbDeviceUnregister(HANDLE hwD, WD_USB_DEVICE_REGISTER *pDevice);
Parameters (WD_USB_DEVICE_REGISTER elements):

hDevice - the handle of the device to un-register

Example:

WD_UsbDeviceUnregister(hWD, &device)

112

WINDRIVER DEVELOPER?*S GUIDE

WD_UsbTransfer()

Perform Read/Write data transfers drom/to the device using it's pipes.

Prototype:

void WD_UsbTransfer(HANDLE hwD, WD_USB_TRANSFER *pTrans);

Parameters (WD_USB_TRANSFER elements):

hDevice - handle of USB device as recieved from WD_UsbDeviceRegister()

dwPipe - pipe number on the device

fRead - perform read or write

dwOptions - can be USB_TRANSFER_HALT to halt the pervious transfer on the same pipe.
pBuffer - pointer to buffer to read/write

dwBytes - size of the buffer

dwTimeout - timeout for the transfer in milli-seconds. 0==>no timeout.
dwBytesTransfered - returns the number of bytes actually read/written

SetupPacket[8] - 8 bytes setup packet for control pipe transfer

fOK - return TRUE if the transfer was successful

Example:

WD_USB_TRANSFER trans;

BZERO(trans);

trans.hDevice = hDevice;
trans.dwPipe = 0x81;
trans.fRead = TRUE;
trans.pBuffer = malloc(100);
trans.dwBytes = 100;
WD_UsbTransfer(hWD, &trans);

if (1fOK)
printf(“error on transfer\n®);
else
printf(“transfered %d bytes from %d\n", trans.dwBytesTransfered, trans.dwBytes);

113

WINDRIVER DEVELOPER?®S GUIDE

WD _UsbResetPipe()

Reset the pipe to its default state (resets the firmware's pipe's state machine to
first state).

Prototype:

void WD_UsbResetPipe(HANDLE hWD, WD_USB_RESET_PIPE *pReset);

Parameters (WD_USB_RESET_PIPE elements):

hDevice - handle of the USB deivce
dwPipe - the pipe number to reset

Example:

WD_USB_RESET_PIPE reset;

BZERO(reset);

reset.hDevice = hDevice;
reset.dePipe = 0x81,;
WD_UsbResetPipe(hWD, &reset);

114

WINDRIVER DEVELOPER?*S GUIDE

WD_UsbResetDevice()

Reset the USB device to its default state.

Prototype:

void WD_UsbResetPipe(HANDLE hwD, DWORD hDevice);
Parameters:

hDevice - handle of the USB deivce

Example:

WD_UsbResetDevice(hWD, hDevice)

115

WINDRIVER DEVELOPER?®S GUIDE

116

WINDRIVER DEVELOPER?*S GUIDE

Chapter

WinDriver Structure Reference

WD_DMA

Contains information about a DMA buffer.

Used by WD_DMALock() and WD_DMAUnlock().

Members.

TYPE NAME DESCRIPTION

DWORD hDma Handle of DMA buffer

PVOID pUserAddr Beginning of buffer

DWORD dwBytes Size of buffer

DWORD dwOptions Allocation options:
Bit masked flag - set to ©for
no option, or:
DMA_KERNEL_BUFFER_ALLO
C
DMA_KBUF_BELOW_16M
DMA LARGE BUFFER

DWORD dwPages Number of pages in buffer

WD_DMA PAGE Page Array of the pages in the

[WD DMA PAGES] buffer

117

WINDRIVER DEVELOPER?®S GUIDE

WD _DMA_PAGE

Members:
TYPE NAME DESCRIPTION
PVOID pPhysicalAddr physical address of page
DWORD dwBytes size of page

118

WINDRIVER DEVELOPER?*S GUIDE

WD_TRANSFER

This structure defines a single transfer operation to be performed by

WinDriver.

Used by WD _Transfer(), WD_MultiTransfer(), WD _IntEnable().

Members:

TYPE NAME DESCRIPTION

DWORD cmdTrans Transfer command
WD_TRANSFER _CMD

DWORD dwPort io port for transfer or user
memory address

DWORD dwBytes Number of bytes for string
transfer

DWORD fAutoinc transfer from one port/address
or use incremental range of
addresses

DWORD dwOptions must be 0

Union Data the data for transfer

UCHAR Data.Byte Use for byte transfer

USHORT Data.Word Use for word transfer

DWORD Data.Dword Use for dword transfer

PVOID Data.pBuffer Use for string transfer

WINDRIVER DEVELOPER?®S GUIDE

WD_INTERRUPT

Used to describe an interrupt

Used by WD _IntEnable(), WD _IntDisable(), WD _IntWait(), WD_IntCount().

Members:

TYPE NAME DESCRIPTION

DWORD hinterrupt handle of interrupt

DWORD dwOptions interrupt options:
Bit masked flag.
May be 0 *for no option, or:
INTERRUPT_LEVEL_SENSITIVE (for
level sensitive interrupts) or
INTERRUPT_CMD_COPY (choose this
for when you need the WinDriver
kernel to copy the actions of the read
command it has done to acknowledge
the interrupt, back to the user mode).

WD_TRANSFER | *Cmd Pointer to commands to perform on
interrupt

DWORD dwCmds number of commands

WD_KERNEL_P | kpCall kernel plugin call

LUGIN CALL

DWORD fEnableOk 1" if WD_IntEnable() succeeded

DWORD dwCounter number of interrupts received

DWORD dwLost number of interrupts not yet dealt
with

DWORD fStopped was interrupt disabled during wait

120

WINDRIVER DEVELOPER?*S GUIDE

WD_VERSION

Describes version of WinDriver in use

Used by WD_Version().

Members:
TYPE NAME DESCRIPTION
DWORD dwVer version
CHAR cVer[100] string of version

121

WINDRIVER DEVELOPER?®S GUIDE

WD_CARD_REGISTER

Holds a handle to a registered card.

Used by WD _CardRegister(), WD_CardUnregister().

Members:
TYPE NAME DESCRIPTION
WD CARD Card card to register
DWORD fCheckLockOnly only check if card is lockable,
return hCard=1 if OK
DWORD hCard handle of card

122

WINDRIVER DEVELOPER?*S GUIDE

WD_CARD

Describes the card 3 resources.

Members:
TYPE NAME DESCRIPTION
DWORD dwltems Number of items in card
WD_ITEMS Item Array of items[0...dwltems-1]

[WD CARD ITEMS]

123

WINDRIVER DEVELOPER?®S GUIDE

WD _ITEMS

Defines each item (resource) in a card.

Members:
TYPE NAME DESCRIPTION
DWORD item ITEM TYPE

DWORD fNotSharable

If TRUE, item may not be shared.

union [Item specific information

struct I.Mem ITEM_MEMORY

DWORD I.Mem.dwPhysicalAddr Physical address on card

DWORD I.Mem.dwBytes Address range

DWORD I.Mem. Returns the address to pass on to
dwTransAddr transfer commands

DWORD I.Mem. dwUserDirectAddr Returns the address for direct user

read/write

DWORD dwCpuPhysicalAddr

returns the CPU physical address of
card

struct 110 ITEM 10
DWORD 1.10.dwAddr Beginning of 10 address
DWORD 1.10.dwBytes 10 range
struct l.Int ITEM INTERRUPT
DWORD L.Int. Number of interrupt to install
dwlinterrupt
DWORD I.Int.dwOptions interrupt options:
INTERRUPT _LEVEL_SENSITIVE
DWORD L.Int.hinterrupt Returns the handle of the interrupt

installed

124

WINDRIVER DEVELOPER?*S GUIDE

WD_SLEEP

Defines a sleep command.

Used by WD _Sleep().

Members:
TYPE NAME DESCRIPTION
DWORD dwMicroSeconds Sleep time in micro seconds -
1/1,000,000 of a second.
DWORD dwOptions should be zero

125

WINDRIVER DEVELOPER?®S GUIDE

WD _PCI_SLOT

Defines a physical location of a PCI card.

Members:
TYPE | NAME DESCRIPTION
DWORD | dwBus PCI physical bus number of card
DWORD | dwsSlot PCI physical slot number of card
DWORD | dwFunction PCI function on card

126

WINDRIVER DEVELOPER?’S

WD_PCI_ID

Defines the identity of a PCI card.

Members:

GUIDE

TYPE NAME

DESCRIPTION

DWORD dwVendorld

The PCI Vendor ID of the card.

DWORD dwDeviceld

The PCI Device ID of the card.

127

WINDRIVER DEVELOPER?®S GUIDE

WD_PCI_SCAN_CARDS

Receives information on cards detected on the PCI bus.

Used by WD _PciScanCards().

Members:

TYPE NAME DESCRIPTION

WD_PCI_ID searchld If searchld.dwVendorld==0, scan all
vendor IDs.
If searchld.dwDeviceld==0, scan all
device IDs.

DWORD dwCards Number of cards found

WD_PCI_ID cardld VendorID & DevicelD of cards found

[WD_PCI_CARDS]
WD_PCI_SLOT | cardSlot PCI slot info of cards found

[WD PCI CARDS]

128

WINDRIVER DEVELOPER?*S GUIDE

WD_PCI_CARD_INFO

Describes a PCI card 3 resources detected.

Used by WD_PciGetCardInfo().

Members:

TYPE NAME DESCRIPTION
WD_PCI_SLOT pciSlot PCI slot

WD CARD Card get card parameters for PCI slot

129

WINDRIVER DEVELOPER?®S GUIDE

WD_PCI_CONFIG_DUMP

Defines a read / write command to the PCI configuration registers of a PCI

card.

Used by WD_PciConfigDump().

Members:

TYPE NAME | DESCRIPTION

WD PCI SLOT | pciSlot PCI bus, slot and function humber

PVOID pBuffer buffer for read/write

DWORD dwOffset offset in PCI configuration space to read/write
from

DWORD dwBytes bytes to read/write from/to buffer
returns the number of bytes read/written

DWORD flsRead FALSE - write PCI config
TRUE - read PCI config

DWORD dwResult OPCI_ACCESS_OK - read/write ok

1PCI_ACCESS_ERRROR - error

2PCI_BAD_BUS - bus does not exist (read only)
3PCI_BAD_SLOT - slot or function does not
exist (read only)

130

WINDRIVER DEVELOPER?*S GUIDE

WD _|SAPNP_CARD ID

Identifies a specific ISA Plug and Play card on the ISA bus.

Members:
TYPE NAME DESCRIPTION
CHAR cVendor Vendor ID
[8]
DWORD dwsSerial Serial number of card

131

WINDRIVER DEVELOPER?®S GUIDE

WD_|SAPNP_CARD

Information on an ISA Plug and Play card.

Members:
TYPE NAME DESCRIPTION
WD _ISAPNP | cardld Vendor ID and serial number of card found
CARD _ID
DWORD dwLogicalDeices | Number of logical devices on the card
BYTE bPnPVersionMajo | ISA PnP version major
r
BYTE bPnPVersionMino | ISA PnP version minor
r
BYTE bVendorVersionM | Vendor version major
ajor
BYTE bVendorVersionM | Vendor version minor
inor
WD _ISAPNP | cldent Device identifier
ANSI

132

WINDRIVER DEVELOPER?*S GUIDE

WD_|SAPNP_SCAN_CARDS

Used to receive information on cards detected on the ISA PnP bus.

Used by WD _IsapnpScanCards().

Members:

TYPE NAME DESCRIPTION

WD_ISAPNP_ | searchid If searchld.cVendorld[0]==0, scan

CARD_ID all vendor IDs.
If searchld.dwSerial==0, scan all
serial numbers.

DWORD dwCards Number of cards found

WD _ISAPNP_ | Card cards found

CARD [WD ISAPNP CARDS]

133

WINDRIVER DEVELOPER?®S GUIDE

WD _ISAPNP_CARD_INFO

Describes an ISA PnP card device 3 resources detected.

Used by WD _IsapnpGetCardInfo().

Members:

TYPE NAME DESCRIPTION

WD _ISAPNP | cardld Vendor ID and serial number of card to
CARD ID get information on

DWORD dwLogicalDeice Number of logical device to get

information on

WD_ISAPNP | clogicalDeviceld[8] ascii of logical device id found
COMP_ID

DWORD dwCompatibleDevices | Number of compatible devices found

WD_ISAPNP | CompatibleDevice[WD | Compatible device IDs
_COMP_ID | _ISAPNP_COMPATIBL

E IDS]
WD _ISAPNP | cldent Identity of device
ANSI
WD CARD Card The card resource information

134

WINDRIVER DEVELOPER?*S GUIDE

WD_ISAPNP_CONFIG_DUMP

Defines a read / write command to the ISA PnP configuration registers of an
ISA PnP card.

Used by WD _IsapnpConfigDump ().

Members:

TYPE NAME DESCRIPTION

WD_ISAPNP_C | cardld VendorID and serial number of card

ARD _ID

DWORD dwOffset offset in ISA PnP configuration space to
read/write from

DWORD flsRead if 1 then read ISA PnP config, O write ISA
PnP config

BYTE bData result data of byte read/write

DWORD dwResult ISAPNP ACCESS RESULT

135

WINDRIVER DEVELOPER?®S GUIDE

WD_PCMCIA_SLOT

Defines a physical location of a PCMCIA card.

Members:
TYPE NAME DESCRIPTION
BYTE uSocket Specifies the socket number (first socket is 0)
BYTE uFunction Specifies the function number (first function is 0)

136

WINDRIVER DEVELOPER?*S GUIDE

WD_PCMCIA_ID

Defines the identity of a PCMCIA card.

Members:
TYPE NAME DESCRIPTION
CHAR cVersion[4] The Card3 PCMCIA version
CHAR cManufacturer | Manufacturer name
[16]
CHAR cProductNam | Product name
e[12]
USHORT cCheckSum Card 3 checksum value

137

WINDRIVER DEVELOPER?®S GUIDE

WD_PCMCIA_SCAN_CARDS

Receives information on cards detected on the PCMCIA bus.

Used by WD_PcmciaScanCards().

Members:
TYPE NAME DESCRIPTION
WD_PCMCIA_ID searchld if
strlen(searchld.cManufacturer)
==0, scan all Manufacturers.
if
strlen(searchld.cProductName)
==0, scan all product names.
DWORD dwCards Number of cards found
WD_PCMCIA_ID cardld Manufacturer Name, Product

[WD_PCMCIA_CARDS]

Name, Version and CRC Info of
card found

WD_PCMCIA_SLOT

cardSlot
[WD PCMCIA CARDS]

PCMCIA slot/function info of
cards found

138

WINDRIVER DEVELOPER?*S GUIDE

WD_PCMCIA_CARD_INFO
Describes a PCMCIA card 3 resources detected.

Used by WD_PcmciaGetCardInfo().

Members:
TYPE NAME DESCRIPTION
WD_PCMCIA_SLOT | pcmciaSlot PCMCIA slot information
WD_CARD Card get card parameters for PCMCIA
slot

139

WINDRIVER DEVELOPER?®S GUIDE

WD_PCMCIA_CONFIG_DUMP

Defines a read / write command to the PCMCIA configuration registers of a
PCMCIA card.

Used by WD_PcmciaConfigDump ().

Members:

TYPE NAME DESCRIPTION

WD_PCMCI | pcmiaSlot Slot descriptor of PCMCIA card

A SLOT

PVOID pBuffer buffer for read/write

DWORD dwOffset offset in pcmcia PnP configuration space to
read/write from

DWORD dwBytes bytes to read/write from/to buffer
returns the number of bytes read/wrote

DWORD flsRead if 1 then read pci config, 0 write pci config

DWORD dwResult PCMCIA ACCESS RESULT

140

WINDRIVER DEVELOPER?*S GUIDE

WD _USB_ID

Defines the identity of the USB device

Members:
TYPE NAME DESCRIPTION
DWORD DwVendorld vendor ID of the USB device
DWORD DwProductld product ID of the USB device

141

WINDRIVER DEVELOPER?®S GUIDE

WD_USB_PIPE_INFO

Information about a pipe

Members

TYPE NAME DESCRIPTION

DWORD dwNumber the number of the pipe (Pipe 0 is the default
pipe)

DWORD dwMaximumP | the maximum packet size of internals transfers on

acketSize the pipe

DWORD type Control, Isochronous, Bulk or Interrupt

DWORD direction In=1, out=2 or in&out=3

DWORD dwinterval Intervals of data transfer in ms (relevant to
Interrupt pipes)

142

WINDRIVER DEVELOPER?*S GUIDE

WD_USB_CONFIG_DESC

Describe a configuration

Members
TYPE NAME DESCRIPTION
DWORD dwNuminterfaces the configuration number
DWORD dwValue the device value
DWORD dwAttributes the device attributes
DWORD MaxPower the device MaxPower

143

WINDRIVER DEVELOPER?®S GUIDE

WD_USB_INTERFACE_DESC

Describe a interface

Members:

TYPE NAME

DESCRIPTION

DWORD DwNumber

the interface number

DWORD DwAlternateSetting

the interface alternate value

DWORD DwNumEndpoints

the number of endpoints in the interface

DWORD DwClass

the interface class

DWORD DwSubClass

the interface sub class

DWORD DwProtocol

the interface protocol

DWORD Dwindex

the index of the interface

144

WINDRIVER DEVELOPER?*S GUIDE

WD_USB_ENDPOINT_DESC

Describes an endpoint

Members:
TYPE NAME DESCRIPTION
DWORD dwEndpointAddress endpoint address
DWORD dwAttributes endpoints Attributes
DWORD dwMaxPacketSize maximum packet size
DWORD dwinterval interval in mili-seconds

145

WINDRIVER DEVELOPER?®S GUIDE

WD_USB_INTERFACE

Holds interface data

Members:
TYPE NAME | DESCRIPTION
WD_USB_INTERFACE | Interface the interface description
DESC
WD_USB_ENDPOINT_ | Endpoints[] list of the interface endpoints
DESC

146

WINDRIVER DEVELOPER?*S GUIDE

WD_USB_CONFIGURATION

Holds configuration data

Members:

TYPE NAME DESCRIPTION
DWORD unigueld the unigue ID of the device
DWORD dwConfigurationlndex the Configuration Index
WD_USB_CONFIG_D | configuration the configuration description
ESC

DWORD dwinterfaceAlternatives | number of interfaces and

their alternates

WD_USB_INTERFAC | Interface[] list of the configuration

E interfaces

147

WINDRIVER DEVELOPER?®S GUIDE

WD_USB_HUB_GENERAL_INFO

Holds hub information (if the selected device is hub)

Members:
TYPE NAME DESCRIPTION
DWORD fBusPowered is bus powered or self powered
DWORD dwPorts number of ports on this hub
DWORD dwCharacteristics hub Charateristics
DWORD dwPowerOnToPowerGood port power on till power good in

ms

DWORD dwHubControlCurrent max current in mA

148

WINDRIVER DEVELOPER?*S GUIDE

WD_USB_DEVICE_GENERAL_INFO

Device general information

Members:

TYPE NAME DESCRIPTION

WD USB ID deviceld the device vendor ID and product 1D

DWORD dwHubNum the number of the hub the device
attached to

DWORD dwPortNum the number of port on the hub that the
device is attached to

DWORD fHub is the device itself a hub

DWORD fFullSpeed full speed or low speed

DWORD dwConfiguratio how many configurations does this device

nsNum have

DWORD deviceAddress the device's phisical address

WD_USB_HUB_ | hublnfo contains information on the device if the

GENERAL INFO device is a hub

149

WINDRIVER DEVELOPER?®S GUIDE

WD_USB_DEVICE_INFO

Holds device pipes information

Members:
TYPE NAME DESCRIPTION
DWORD dwPipes number of pipes
WD USB PIPE INFO | Pipe[] list of pipes information

150

WINDRIVER DEVELOPER?*S GUIDE

WD_USB_SCAN_DEVICES

Defines a scan command

Members:

TYPE NAME DESCRIPTION

WD_USB_ID searchld if dwVendorld==0 - scan all vendor IDs,
if dwProductld==0 - scan all product 1Ds

DWORD dwDevices how many devices were found

DWORD uniqueld[] a list of the unique IDs to identify the
devices

WD_USB_DEVICE_ | deviceGeneral | list of general information about the

GENERAL INFO Info[] found devices

151

WINDRIVER DEVELOPER?®S GUIDE

WD_USB_TRANSFER

Defines transfer command

Members:

TYPE NAME

DESCRIPTION

DWORD hDevice

handle of USB device to read from or
write to

DWORD | dwPipe

pipe number on device

DWORD fRead

read or write

DWORD dwOptions

can be USB_TRANSFER_HALT to halt the
pervious transfer on the same pipe.

PVOID pBuffer

pointer to buffer to read/write

DWORD | dwBytes

the size of the buffer

DWORD dwTimeout

timeout for the transfer in milli-seconds.
0==>no0 timeout.

DWORD dwBytesTransfered

returns the number of bytes actually
read/written

BYTE SetupPacket[8]

setup packet for control pipe transfer

DWORD fOK

return TRUE if the transfer was successful

152

WINDRIVER DEVELOPER?*S GUIDE

WD_USB_DEVICE_REGISTER

Define device registration command

Members:

TYPE NAME DESCRIPTION

DWORD unigueld the device unique ID

DWORD dwConfigurationindex | the index of the configuration to
register

DWORD dwlnterfaceNum interface to register

DWORD dwinterfaceAlternate alternate number of the interface to
register

DWORD hDevice handle of device

WD_USB_D | Device description of the device

EVICE_INFO

DWORD dwOptions should be zero

CHAR cName[32 name of card

CHAR cDescription[100 description

153

WINDRIVER DEVELOPER?®S GUIDE

WD _USB_RESET PIPE

defines reset pipe command

Members:
TYPE NAME DESCRIPTION
DWORD hDevice handle of device
DWORD dwPipe number of pipe to reset

154

WINDRIVER DEVELOPER?*S GUIDE

Chapter

WinDriver Enhanced Support for
Specific PCI Chip Sets.

This chapter is relevant for you if you are using one of the PCI chip-sets for which WinDrriver
offers Enhanced support. This currently includes PLXX9050, 9054, 9060, 9080, Galilo
ot64, V3 PBC and AMCC 5933. WinDriver supports all other PCI chip-sts are via
DriverWizard and the regular WinDriver API.

Overview

In addition to the regular WinDriver API, described in former chapters,
WinDriver also offers a custom API for specific PCI chip-sets —Currently
including PLX, Galileo, V3, Altera, PLDA, QuickLogic and AMCC chip-sets.

The following is an overview of the development process when using
WinDriver specific PCI API.

1. Run the custom diagnostics program to diagnose your card.

2. Locate your specific card diagnostic program. Seg
\WinDriver\chip_vendor\chip_name\xxxdiag\xxxdiag.c

155

WINDRIVER DEVELOPER?®S GUIDE

3. Use this source code as a skeleton for your device driver.

4. Modify the code to suit your application. Use your PCI chip specific
function reference to add your own code. More help and details can be
found on the WinDriver electronic reference manual.

5. If the User Mode driver you have created in the above steps contains some
parts which in the performance must be enhanced (an interrupt handler for
example), see the WinDriver Kernel Plugin "chapter. There you will learn
how to move parts of your source code to WinDriver 3 Kernel Plugln,
thereby eliminate any calling overhead, and achieving maximal performance.

What is The PCI Diagnostics program?

The diagnostics program is a ready-to-run sample diagnostics application for
specific PCI chip-sets. The diagnostics program accesses the hardware via
WinDriver 3 specific PCI API (xxxLIB.C). It is written as a console mode
application, and not as a GUI application, to simplify the understanding of the
source code of the diagnostics program. This will help you learn how to
properly use the your specific API.

This application can be used as a skeleton for your device driver. If your driver
is not a console mode application, just remove the printf() calls from the code
(you may replace them with MessageBox() if you wish).

You may also find that the xxx_DIAG.C is both an example of using your
specific API as well as a useful diagnostics utility.

Using Your PCI chip-set Diagnostics program
Introduction

The custom diagnostics program (xxx_DIAG.EXE) accesses the hardware
using WinDriver. Therefore WinDriver must be installed before being able to

156

WINDRIVER DEVELOPER?*S GUIDE

run xxx_DIAG. If WinDriver is installed correctly, at boot time a message will
appear on screen displaying the WinDriver version installed.

Once WinDriver is running, you may run xxx_DIAG. Click Start | Programs |
WinDriver | Samples | Chip_name Diagnostics.

The application will first try to locate the card, with the default VendorID and
DevicelD assigned by your PCI chip vendor (for example — PLX 9054 -
VendorID = 0x10b5, DevicelD = 0x9054). If such a card is found you will get
a message "your PCI card found" (“PLX 9054 card found™). If you have
programmed your EEPROM to load a different VendorIlD/DevicelD, then at
the main menu you will have to choose your card (option 'Locate/Choose your
board' in main menu).

IMain Menu Options;

Scan PCI bus:

Displays all the cards present on the PCI bus and their resources. (1O ranges,
Memory ranges, Interrupts, VendorlD/DevicelD). This information may be
used to choose the card you need to access.

Locate/Choose your board:

Chooses the active card that the diagnostics application will use. You are asked
to enter the VendorID/DevicelD of the card you want to access. In case there
are several cards with the same VendorID/DevicelD, you will be asked to
choose one of them.

PCI configuration registers:

This option is available only after choosing an active card. A list of the PCI
configuration registers and their READ value are displayed. These are general
registers, common to all PCI cards. In order to WRITE to a register, enter its
number, and then the value to write to it.

Your_PCI local registers:

This option is available only after choosing an active card. A list of your PCI
registers and their READ value are displayed. In order to WRITE to a register,
enter the register number, and then enter the value to write to it.

157

WINDRIVER DEVELOPER?®S GUIDE

Access memory ranges on the board:

This option is available only after choosing an active card. Use this option
carefully. Accessing memory ranges, accesses the local bus on your card -- If
you access an invalid local address, or if you have any problem with your card
(such as a problem with the IRDY signal), the CPU may hang.

To access a local region, first toggle active mode between
BYTE/WORD/DWORD, to fit the hardware you are accessing.

To READ from a local address, choose 'Read from board'. You
will be asked for local address to read from.

To WRITE from a local address, choose "Write from board'. You
will be asked for local address to write to, and the data to write.

Both in board READ and WRITE, the address you give will also be used to set
the base address register. For More detail see the electronic reference manual.

Enable / Disable interrupts:

This option will appear only if the card was set to open with interrupts.
Choosing this item toggles the interrupt status (Enable / Disable). When
interrupts are disabled, interrupts that the card generates are not intercepted by
the application. If interrupts will be generated by the hardware while the
interrupts are disabled by the application, the computer may 'hang'.

Access EEPROM device (Where available):

This option provides basic read/write access to the serial configuration
EEPROM.

is available only after choosing an active card. This option assumes that the
configuration EEPROM has initialised the Configuration Register, Aperture
zero and one space to valid local

To read an EEPROM location, choose Read a byte from serial
EEPROM ? You will be asked for the address of the location to
read from.

158

WINDRIVER DEVELOPER?*S GUIDE

To write an EEPROM location, choose Write a byte to serial

EEPROM ? You will be asked for the address and the data to
write.

Pulse Local Reset (where available):
This option provides a way to reset the local processor, from the host.

To RESET the local host processor, choose Enter reset duration
in milliseconds 7 You will be asked for the time in milliseconds.

Note: Resolution of delay time is based on PC timer tick, or
approximately 55 milliseconds.

159

WINDRIVER DEVELOPER?®S GUIDE

Creating your driver without using the
PCI diagnostic code as a skeleton.

Add xxxLIB.C to your project or your make file.

Include “%xxlib.h”in your driver source code.

NOTE: Inyour \windriver\chip_vedor\chip_name\xxx_diag folder,
you will find the source code for xxx_DIAG.EXE. Double click
the Mdp *file (which contains the project environment used to
compile this code) in this directory to start your MSDEV with the
proper settings for a project. You may use this as a skeleton for
your code.

Call Pxxx_Open() at beginning of your code to get a handle *to
your card.

After locating your card, you may read / write to memory, enable /
disable interrupts, access your EEPROM and more, using the
following functions (Some of these functions are not available to all PCI
chip-sets or have different grammar. 1t is highly recommended to review your
specific PCI API on the electronic reference manual):

xxx_IsAddrSpaceActive()
xxx_GetRevision()
xxx_ReadReg ()
xxx_WriteReg ()
xxx_ReadSpaceBlock()
xxx_WriteSpaceBlock()

xxx_ReadSpaceByte()

160

WINDRIVER DEVELOPER?*S GUIDE

xxX_ReadSpaceWord()
xxx_ReadSpaceDWord()
xxx_WriteSpaceByte()
xxx_WriteSpaceWord()
xxX_WriteSpaceDWord()
xxX_ReadBlock()
xxX_WriteBlock()
xxX_ReadByte()
xxx_ReadWord()
xxx_ReadDWord()
xxX_WriteByte()
xxX_WriteWord()
xxx_WriteDWord()
xxx_IntIsEnabled()
xxx_IntEnable()
xxx_IntDisable()
xxx_DMAOpen()
xxX_DMACIose()
xxx_DMAStart()

xxx_DMAIsDone()

161

WINDRIVER DEVELOPER?®S GUIDE

xxx_EEPROMRead()
xxx_EEPROMWrite()
xxx_ReadPCIReg()

xxx_WritePCIReg()

Call xxx_Close() before end of code.

NOTES:

1. Using one of the sample drivers included with WinDriver as a
skeleton for your code may shorten the development process. (see
Sample Code *topic)

2. APIs may slightly vary between PCI chips. See the electronic
manual (Start Menu | Programs | WinDriver | WinDriver
Manual) for details.

Sample Code

Sample uses of WinDriver for all PCI chip sets are supplied with the
WinDriver toolkit.

You may find the WinDriver samples under \windriver\samples, and the
WinDriver for PLX/Galileo/\VV3/AMCC samples under
\windriver\chip_vendor. Each directory contains files.txt, which describes the
various samples included.

Each sample is located in its own directory. For your convenience, we have
supplied an tdp *file alongside each 7 *file, so that users of Microsoft 3
Developers Studio may double-click the mdp file and have the whole
environment ready for compilation. (Users of different win32 compilers need
to include the *.c files in their standalone console project, and include the
xxX_lib.c in their project)

162

WINDRIVER DEVELOPER?*S GUIDE

You may use the source of the diagnostic program described earlier to learn
your PCI 3 specific API usage.

WinDriver 3 specific PCI chip-set APl Function
Reference

Use this section as a Guick reference ”to the WinDriver § specific PCI API
functions. A more detailed reference (per chip) may be found in the
WinDriver Help files.

Advanced users may find more functionality in the WinDriver§ API.

Allof the functions outlined in FunctionReference “are implemented in the
\windriver\chip_vendor\chip_nameNlio\xxx_lib. fike.

For more detailed information on specific PCI chip set APIs s the electronic reference manual.

The definition of the structures used in the following functions may be found
in the Structure reference”

163

WINDRIVER DEVELOPER?®S GUIDE

xxX_CountCards ()

Returns the number of cards on the PCI bus that have the given VendorID
and DevicelD. This value can then be used when calling xxx_Open, to choose
which board to open. Normally, only one board is in the bus and this function
will return 1.

Prototype and Parameters —See electronic reference manual for your PCI
chip specific details.

Return Value

Returns the number of matching PCI cards found.

Example

nCards = P9054_CountCards(0x10b5, 0x9054);

164

WINDRIVER DEVELOPER?*S GUIDE

xxX_Open()

Used to open a handle to your card. If several cards with identical PCI chips
are installed, the specific card to open may be specified by using
%xx_CountCards *before using %xx_Open 7 and calling dpen *with a specific
card number (See prototype "below)

If open is successful, function returns TRUE, and a handle to the card.

Prototype and Parameters —See electronic reference manual for your PCI
chip specific details.

Return Value

TRUE if OK.

Example

if (IP9054_Open(&hPIx, 0x10b5, 0x9054, 0, P9054_OPEN_USE_INT))

printf(“‘Error opening device\n’};

}

165

WINDRIVER DEVELOPER?®S GUIDE

xxX_Closg()
Closes WinDriver device. Must be called after finished using the driver.

Prototype and Parameters —See electronic reference manual for your PCI
chip specific details.

Return Value

none
Example

P9054 _Close(hPLX);

166

WINDRIVER DEVELOPER?*S GUIDE

XXX_| sSAddr SpaceActive()
Checks if the specified address space is enabled. The enabled address spaces

are determined by the EEPROM, which at boot time sets the memaory ranges
requests.

Use this function after calling xxx_Open() to make sure that the address
space(s) that

your driver is going to use are enabled.

Prototype and Parameters —See electronic reference manual for your PCI
chip specific details.

Return Value

TRUE if address space is enabled

Example

if (1P9054_IsAddrSpaceActive(hPlx, P9054 ADDR_SPACE2))
{

}

printf (“Address space2 is not active'\n");

167

WINDRIVER DEVELOPER?®S GUIDE

xxxX_GetRevision()
Returns your PCI chip-set silicon revision.

Prototype and Parameters —See electronic reference manual for your PCI
chip specific details.

Return value

Returns the silicon revision.

168

WINDRIVER DEVELOPER?*S GUIDE

xxX_ReadReg ()
xxx_WriteReg ()

Reads or writes to or from a specified register on the board.

Prototype and Parameters —See electronic reference manual for your PCI
chip specific details.

Return Value

data read from register (for P9054_ReadReg() only).

169

WINDRIVER DEVELOPER?®S GUIDE

xXX_ReadSpaceByte()
xxX_ReadSpaceWord()
xxX_ReadSpaceDWord()
xxX_WriteSpaceByte()
xxx_WriteSpaceWord()
xxX_WriteSpaceDWord()

Reads or writes a byte / word / dword from address space on board.

Prototype and Parameters —See electronic reference manual for your PCI
chip specific details.

Return Value

For READ - Data read from board.
For WRITE - none.

170

WINDRIVER DEVELOPER?*S GUIDE

xxX_ReadSpaceBlock()
xxX_WriteSpaceBlock()

Reads or writes a block to or from an address space on the board.

Prototype and Parameters —See electronic reference manual for your PCI
chip specific details.

Return Value

none

171

WINDRIVER DEVELOPER?®S GUIDE

xXX_ReadByte()
xxxX_ReadWord()
xxxX_ReadDWord()
xxXX_WriteByte()
xxxX_WriteWord()
xxX_WriteDWord()

Reads or writes a byte / word / dword from memory on board.

Prototype and Parameters —See electronic reference manual for your PCI
chip specific details.

Return Value

For READ - Data read from board.
For WRITE - None.

172

WINDRIVER DEVELOPER?*S GUIDE

xxx_ReadBlock()
xxxX_WriteBlock()

Reads or writes a block of memory to or from the board.

Prototype and Parameters —See electronic reference manual for your PCI
chip specific details.

Return Value

none

173

WINDRIVER DEVELOPER?®S GUIDE

xxX_IntlsEnabled()

Checks whether interrupts are enabled or not.

Prototype and Parameters —See electronic reference manual for your PCI
chip specific details.

Return Value

TRUE if interrupts are already enabled (e.g. if P9054_IntEnable() was called).

174

WINDRIVER DEVELOPER?*S GUIDE

xXX_IntEnable()

Enable interrupt processing.

IMPORTANT NOTE: All PCI chip-sets use level sensitive interrupts,
therefore you must edit the implementation of this function (found in your
\windriver\chip_vendor\chip_name\lib\xxx_lib.c) to fit your specific hardware.
The comments in the function wiill instruct you where your changes must be
inserted. See more about this in the in the section regarding PCI interrupts

implementation.

Prototype and Parameters —See electronic reference manual for your PCI
chip specific details.

Return Value

TRUE if successful.

175

WINDRIVER DEVELOPER?®S GUIDE

xxXX_IntDisable()

Disable interrupt processing.

Prototype and Parameters —See electronic reference manual for your PCI
chip specific details.

Return Value

none

176

WINDRIVER DEVELOPER?*S GUIDE

xxx_DMAOpen()

Initialises the WD_DMA structure (see windrvr.h) and allocates a contiguous
buffer

Prototype and Parameters —See electronic reference manual for your PCI
chip specific details.

return value

Returns TRUE if DMA buffer allocation succeeds

177

WINDRIVER DEVELOPER?®S GUIDE

xxX_DMACIlosg()
Frees the DMA handle, and frees the allocated contiguous buffer.

Prototype and Parameters —See electronic reference manual for your PCI
chip specific details.

178

WINDRIVER DEVELOPER?*S GUIDE

xxx_DMAStart()
Start DMA to/from card.

Prototype and Parameters —See electronic reference manual for your PCI
chip specific details.

Return value

Returns TRUE if DMA transfer succeeds.

179

WINDRIVER DEVELOPER?®S GUIDE

xxx_DMAIsDong()

Used to test if DMA is done. (Use when V3PBC_DMAStart was called with
fBlocking == FALSE)

Prototype and Parameters —See electronic reference manual for your PCI
chip specific details.

Return value

Returns TRUE if DMA transfer is completed.

180

WINDRIVER DEVELOPER?*S GUIDE

xxX_Pulsel.ocal Reset()
Sends a reset signal to the card, for a period of ‘wDelay' milliseconds.

Prototype and Parameters —See electronic reference manual for your PCI
chip specific details.

181

WINDRIVER DEVELOPER?®S GUIDE

xxX_EEPROMRead()
xxX_EEPROMWrite()

Reads or writes one to the EEPROM. —Syntax and functionality may vary
between different chip-sets. See the electronic reference manuals for your chip-
set 3 exact syntax and usage.

Prototype and Parameters —See electronic reference manual for your PCI
chip specific details.

Return value

Returns TRUE if EEPROM write succeeds.

182

WINDRIVER DEVELOPER?*S GUIDE

xxX_ReadPCIReg ()
xxx_WritePCl Reg()

Read from or write to the PCI configuration registers.

Prototype and Parameters —See electronic reference manual for your PCI
chip specific details.

Return Value

data read from configuration register (for xxx_ReadPCIReg only).

183

WINDRIVER DEVELOPER?®S GUIDE

Structure Reference for WinDriver's specific
PCI APIs

Structure reference for the PLX, Galileo, Altera, V3, PLDA, Galileo and
AMCC specific APIs can be found in the electronic version of this manual.

184

WINDRIVER DEVELOPER?*S GUIDE

Chapter

10

WinDriver Implementation Issues

This chapter contains instructions for performing operations that Driver\VVizard cannot
automate.

If you are using a PCI chip set from PLX, Galileo, AMCC, or V3 —You do
not have to read this chapter. WinDriver includes custom APIs built
especially for these PCI chip-set vendors. These APIs save you the need to
learn both the PCI internals and the chip-set's data sheets. Using these
specific APIs —a DMA function is as simple as calling a function (i.e.
P9054 DMAOpen(), P9054_DMAStart() and so on...).

Performing DMA.

If you are not using a PCI chip which is supported by WinDriver (currently -
PLX, Galileo, V3 or AMCC) —these few pages will guide you through the steps
of performing all kinds of DMA via WinDriver 3 API.

There are basically two methods to perform DMA - Contiguous Buffer DMA
and Scatter/Gather DMA. Scatter/Gather DMA is much more efficient than
contiguous DMA. This feature allows the PCI device to copy memory blocks
from different addresses. This means that the transfer can be done directly
to/from the user's buffer - that is contiguous in Virtual memory, but
fragmented in the Physical memory. If your PCI device does not support

185

WINDRIVER DEVELOPER?®S GUIDE

Scatter/Gather, you will need to allocate a Physically contiguous memory
block, perform the DMA transfer to there, and then copy the data to your own
buffer.

The programming of the DMA is specific for different PCI devices. Normally,
you need to program your PCI device with the Local address (on your PCI
device), the Host address (the Physical memory address on your PC), the
transfer count (size of block to transfer), and then set the register that initiates
the transfer.

Scatter/Gather DMA
Following is an outline of a DMA transfer routine for PCI devices that support
Scatter/Gather DMA. More detailed examples can be found at:

1. \windriver\pIx\9054\lib\p9054 lib.c
2. \windriver\pIx\9080\ lib\p9080_lib.c
3. \windriver\galileo\gt64\ lib\gt64 lib.c

Note for Linux developers: Due to Linux's own limitations WinDriver
does not yet support Scatter Gather DMA on this OS. This feature will be
added to the Linux version of WinDriver as soon as the Linux kernel includes
support for Scatter Gather DMA operations.

Sample DMA implementation:

BOOL DMA_routine(void *startAddress, DWORD transferCount,
BOOL fDirection)

{
WD_DMA dma;
int i;

BZERO (dma);

dma.pUserAddr = startAddress;
dma.dwBytes = transferCount;
dma.dwOptions = 0;

// lock region in memory
WD_DMALock(hWD,&dma);
if (dma.hDma==0)

186

WINDRIVER DEVELOPER?*S GUIDE

return FALSE;
for(i=0;i'=dma.dwPages;i++)

// Program the registers for each page of the transfer
My_DMA_Program_Page(dma.Page[i].pPhysicalAddr,
dma.Pagel[i].dwBytes, fDir);

}
// write to the register that initiates the DMA transfer

My_DMA_ Initiate();
// read regqister that tells when the DMA is done
while('My_DMA_Done());

WD_DMAUnNlock(hWD,&dma);
return TRUE;

}

You should implement:

My _DMA_Program_Page() - Set the registers on your device that are part of
the chained list of transfer addresses.

My _DMA Initiate() - Set the start bit on your PCI device to initiate the DMA

My _DMA_Done() - Read the Transfer Ended' bit on your PCI device

Scatter/Gather DMA for buffers larger than 1MB

The WD_DMA structure holds a list of 256 pages. The x86 CPU uses 4K page
size, s0 256 pages can hold 256*4K = 1MB. Since the first and last page might
not start (or end) on a 4096 byte boundary, 256 pages can hold 1MB - 8K.

If you need to lock down a buffer larger than 1MB, that needs more than 256
pages, you will need the DMA_LARGE_BUFFER option.

BOOL DMA_Large_routine(void *startAddress, DWORD transferCount, BOOL fDirection)
{
DWORD dwPagesNeeded = transferCount / 4096 + 2;
WD_DMA *dma = calloc(
sizeof(WD_DMA)+sizeof(WD_DMA_PAGE)*dwPagesNeeded,1);

187

WINDRIVER DEVELOPER?®S GUIDE

dma->pUserAddr = startAddress;
dma->dwBytes = transferCount;
dma->dwOptions = DMA_LARGE_BUFFER;
dma->dwPages = dwPagesNeeded;

// lock region in memory
WD_DMALock(hWD,&dma);

// the rest is the same as in the DMA_routine()

// free the WD_DMA structure allocated
free (dma);

}

Contiguous Buffer DMA
More detailed examples can be found at:

1. windriver\v3\lib\pbclib.c
2. windriver\amcc\lib\amcclib.c

A read sequence (from the card to the mother-board's memory):

WD_DMA dma;

BZERO (dma);
// allocate the DMA buffer (100000 bytes)
dma.pUserAddr = NULL;
dma.dwBytes = 10000;
dma.dwOptions = DMA_KERNEL_BUFFER_ALLOC;
WD_DMALock(hWD, &dma);
if (dma.hDma==0)
return FALSE;

// transfer data from the card to the buffer

My_Program_DMA_Transfer(dma.Page[0].pPhysicalAddr,
dwLocalAddr);

/1 Wait for transfer to end

while(!My_Dma_Done());

// now the data is the buffer, and can be used

188

WINDRIVER DEVELOPER?*S GUIDE

UseDataReadFromCard(dma.pUserAddr);

// release the buffer
WD_DMAUnNlock(hWD,&dma);

}

A Write Sequence (from the mother-board's memory to the card):

WD_DMA dma;

BZERO (dma);
// allocate the DMA buffer (100000 bytes)
dma.pUserAddr = NULL;
dma.dwBytes = 10000;
dma.dwOptions = DMA_KERNEL_BUFFER_ALLOC;
WD_DMALock(hwWD, &dma);
if (dma.hDma==0)
return FALSE;

// prepare data into buffer
PrepareDatalnBuffer(dma.pUserAddr);

// transfer data from the buffer to the card

My_Program_DMA_Transfer(dma.Page[0].pPhysicalAddr,
dwLocalAddr);

// Wait for transfer to end

while(My_Dma_Done());

// release the buffer
WD_DMAUnNlock(hWD,&dma);

189

WINDRIVER DEVELOPER?®S GUIDE

Handling Interrupts

Interrupts can easily be handled via DriverWizard. It is recommended that you
use the DriverWizard to generate the interrupt code for you, by defining (or
auto-detecting) your hardware's interrupt, and generating code. Use this section
to understand the code DriverWizard generates for you or to write your own
Interrupt handler.

General - Handling an interrupt
1. A thread that will handle incoming interrupts needs to be created.

2. The interrupt handler thread will run an infinite loop that will wait for an
interrupt to occur.

3. When interrupt occurs, the driver's interrupt handler code is called.

4. When interrupt handler code returns, the wait loop continues.

The WD_IntWait() function, puts the thread to sleep until an interrupt occurs.
There is no CPU consumption while waiting on an interrupt. Once an interrupt
occurs, it is first handled by the WinDriver kernel, then the WD_IntWait()
wakes up the interrupt handler thread and returns.

Since your interrupt thread runs in user-mode, you may call any Windows API
function, including File handling and GDI functions.

Simple interrupt handler routine, for edge-triggered
interrupts (normally ISA/EISA cards):

// interrupt structure
WD_INTERRUPT Intrp;

DWORD WINAPI wait_interrupt (PVOID pData)

{
printf ("Waiting for interrupt");
for (3)
{

190

WINDRIVER DEVELOPER?*S GUIDE

WD_IntWait (hWD, &Intrp);
if (Intrp.fStopped)

break; // WD_IntDisable called by parent
// call your interrupt routine here
printf ("Got interrupt %d\n", Intrp.dwCounter);

return O;

}

void Install_interrupt()

{
BZERO(Intrp);

// put interrupt handle returned by WD_CardRegister
Intrp.hinterrupt = cardReg.Card.ltem[0].1.Int.hInterrupt;
// no kernel transfer commands to do upon interrupt
Intrp.Cmd = NULL;

Intrp.dwCmds = O;

// no special interrupt options

Intrp.dwOptions = O;

WD_IntEnable(hWD, &Intrp);

if (!Intrp.fEnableOk)

printf (‘Failed enabling interrupt\n’};
return;

}

printf (“starting interrupt thread\n");
thread_handle = CreateThread (0, 0x1000,
wait_interrupt, NULL, 0, &thread_id);

// call your driver code here

WD_IntDisable (hWD, &lIntrp);
WaitForSingleObject(thread_handle, INFINITE);

}

ISA/EISA and PCI interrupts

Generally, ISAZ/EISA interrupts are edge triggered, as opposed to PCI
interrupts that are level sensitive. This difference has many implications on
writing the interrupt handler routine.

Edge triggered interrupts are generated once, when the physical interrupt
signal goes from low to high. Therefore, exactly one interrupt is generated. This
makes the Windows OS to call the WinDriver kernel interrupt handler, that

191

WINDRIVER DEVELOPER?®S GUIDE

released the thread waiting on the WD _IntWait() function. There is no special
action that needs to take place in order to acknowledge this interrupt.

Level sensitive interrupts are generated as long as the physical interrupt signal
is high. If the interrupt signal is not lowered by the end of the interrupt
handling by the kernel, The Windows OS will call the WinDriver kernel
interrupt handler again - This will cause the PC to hang!

To prevent this situation from happening, the interrupt must be acknowledged
by the WinDriver kernel interrupt handler. Explanation on acknowledging
level-sensitive interrupts may be found in Chapter 8 - ‘Computer hangs on
interrupt'.

Transfer commands at kernel-level (acknowledging the
interrupt)

Usually, interrupt handlers for PCI cards (level sensitive interrupt handlers)
need to perform transfer commands at the kernel to lower the interrupt level
(acknowledge the interrupt).

To pass transfer commands to be performed in the WinDriver kernel interrupt
handler, before WD _IntWait() returns, you must prepare an array of
commands (WD_TRANSFER structure), and pass it to the WD _IntEnable()
function.

WD_TRANSFER trans[2];
BZERO(trans);
trans[0].cmdTrans = RP_DWORD; // Read Port Dword
// address of 10 port to write to
trans[0].dwPort = dwAddr;
trans[1].cmdTrans = WP_DWORD; // Write Port Dword
// address of 10 port to write to
trans[1].dwPort = dwAddr;
// the data to write to the 10 port
trans[1].Data.Dword = 0;
Intrp.dwCmds = 2;
Intrp.Cmd = trans;
Intrp.dwOptions =
INTERRUPT_LEVEL_SENSITIVE | INTERRUPT_COPY_CMD;
WD_IntEnable(hWD, &Intrp);

192

WINDRIVER DEVELOPER?*S GUIDE

This sample performs a DWORD read command from the 10 address
dwAddr, then it writes to the same 10 port a value of '0".

The INTERRUPT_COPY_CMD option is used to retrieve the value read by
the first transfer command, before the write command is issued. This is useful
when you need to read the value of a register, and then write to it to lower the
interrupt level. If you will try to read this register after WD _IntWait() returns, it
will already be '0' because the write transfer command was issued at kernel
level.

DWORD WINAPI wait_interrupt (PVOID pData)

{
printf ("Waiting for interrupt");
for (3})

WD_TRANSFER trans[2];
Intrp.dwCmds = 2;
Intrp.Cmd = trans;
WD_IntWait (hWD, &Intrp);
if (Intrp.fStopped)

break; // WD_IntDisable called by parent
// call your interrupt routine here
printf (
"Got interrupt %d. Value of register read %ox\n",
Intrp.dwCounter, trans[0].Data.Dword);

}

return O;

}

Interrupts in Windows CE

Windows CE uses a logical interrupt scheme rather than the physical interrupt
number. It maintains an internal kernel table that maps the physical IRQ
number to the logical IRQ number. Device drivers are generally expected to
get the logical interrupt number after having ascertained the physical interrupt.
This is handled internally by WinDriver so programmers using WinDriver need
not worry about this issue. However, the X86 CEPC builds provided with the
ETK do not provide interrupt mappings for certain reserved interrupts
including the following:

193

WINDRIVER DEVELOPER?®S GUIDE

IRQO: Timer Interrupt

IRQ2: Cascade interrupt for the second PIC

IRQ6: The floppy controller.

IRQ7: LPT1 because the PPSH does not use interrupts
IRQ9

IRQ13: The numeric coprocessor

An attempt to initialise and use any of these interrupts will fail. In case you wish
to use any of these interrupts - (e.g.. you do not want to use the PPSH and you
want to reclaim the parallel port for the some other purpose) - you should
modify the file CFWPC.C that is found in the directory

% TARGETPLATROOT%\KERNEL\HAL to include code as shown
below that sets up a value for the interrupt 7 in the interrupt mapping table.
You will then need to rebuild the Windows CE image NK.BIN and download
the new executable onto your target platform.

SETUP_INTERRUPT_MAP(SYSINTR_FIRMWARE+7, 7);

For non-X86 machines like the handheld PCs from HP and Sharp, the
developer should use the logical interrupt id which can be got from the
platform specific header file NKINTR.H

A complete discussion of this procedure is outside the scope of this manual.
Please refer to the ETK documentation for more details.

PCMCIA interrupts in Windows CE

Windows CE handles PCMCIA interrupts differently than PCI and ISA/EISA
interrupts. WinDriver handles the setting up of the PCMCIA interrupt
internally by calling the Card Services API so this process is transparent to the
developer. The WD_PcmciaGetCardInfo() function automatically sets up the
interrupt items and registers the interrupt.

194

WINDRIVER DEVELOPER?*S GUIDE

Chapter

Improving performance

Improving the performance of your device
driver - overview

Once your User Mode driver has been written and debugged, you might find
that certain modules in your code do not operate fast enough (for example - an
interrupt handler or accessing 10 mapped regions). If this is the case, try to
improve the performance by one of the two ways suggested in this chapter.

1. Improve the performance of your User Mode driver.

2. Move the performance critical parts of your code in to the WinDriver 3
“Kernel Plugin™

Note that the Kernel Plugin is not implemented under Windows CE since in
this OS there is no separation between kernel mode and user mode, thus top
performance can be achieved without using the Kernel Plugin. Use the
checklist below to determine how the performance should be improved in your
driver.

195

WINDRIVER DEVELOPER?®S GUIDE

Performance improvement checklist

The following “Checklist”*will help you determine how to improve the
performance of your driver:

1. Create your driver in the User Mode as explained in the previous chapters of
this manual.

2. Compile and debug your driver in the User Mode.

3. When working in the User Mode, performance may take a hit. Check if you
have performance problems. If you do not have any performance problems,
you have finished your driver development.

If you do have performance problems:

4. Identify which part of the code the performance problem is at. Classify and
solve the problem according to the table below:

196

WINDRIVER DEVELOPER?*S GUIDE

1O mapped range on
the card.

Problem Solution
#1 | ISA Card - Accessingan | - Try to convert multiple calls to
10 mapped range on WD_Transfer() to one call to
the card. WD_MultiTransfer()
(See the "Improving performance - Accessing
10 mapped regions' section later in this
chapter).

- If this does not solve the problem,
handle the 10 at Kernel Mode, by
writing a kernel Plugln.

(See the Kernel Plugin *hapter for details)
#2 | PCI Card - Accessing an

- First, try to change the card from 10
mapped to memory mapped by
changing bit O of the address space
PCI configuration register to 0, and
then try the solutions for problem #3.
You will probably need to re-program
the EEPROM to initialise
BAR0/1/2/3/4/5 registers with
different values.

- If this is not possible, try the solutions
suggested for problem #1.

- If this does not solve the problem,
handle the 10 at Kernel Mode, by
writing a kernel Plugln.

(See the Kernel Plugin *hapter for details)

197

WINDRIVER DEVELOPER?®S GUIDE

Problem Solution

#3 | Accessing a memory - Try to access memory without using
mapped range on the WD _Transfer(), by using direct access
card. to memory mapped regions

(See the "Improving Performance - using direct
access to memory mapped regions “section later
in this chapter).

- If this does not solve the problem,
then there is a hardware design
problem. You will not be able to
increase performance by using any
software design method, or by writing
a Kernel Plugln, or even by writing a
full kernel driver.

#4 | Interrupt latency. You need to handle the interrupts at
(Missing interrupts, Kernel Mode, by writing a kernel Plugln.
Receiving interrupts too | (See the Kernel Plugln “chapter for details)
late)

#5 | USB devices: Slow To increase the transfer rate try to increase
transfer rate the packet size by choosing a different

device configuration.

If there is need to do many small
transfers, the Kernel-Plugin can be used.

Improving the performance of your User Mode
driver

As a general rule, transfers to memory mapped regions are faster than transfers
to 10 mapped regions. The reason is that WinDriver enables the user to

198

WINDRIVER DEVELOPER?*S GUIDE

directly access the memory mapped regions, without calling the WD_ Transfer()
function.

Using Direct access to memory mapped regions

After registering a memory mapped region, via WD_CardRegister(), two results
are returned: dwTransAddr and dwUserDirectAddr. dwTransAddr should be
used as a base address when calling WD _Transfer() to read or write to the
memory region. A more efficient way to perform memory transfers would be
to use dwUserDirectAddr directly as a pointer, and access with it the memory
mapped range. This method enables you to read/write data to your memory-
mapped region without any function calls overhead (i.e. Zero performance
degradation).

Accessing 10 mapped regions

They only way to transfer data on 10 mapped regions is by calling

WD _Transfer() function. If a large buffer needs to be transferred, the String
(Block) Transfer commands can be used. For example: RP_SBYTE - Read
Port String Byte command will transfer a buffer of Bytes to the 10 port. In
such a case the function calling overhead is negligible compared to the block
transfer time.

In a case where many short transfers are called, the function calling overhead
may increase to an extent of overall performance degradation. This may
happen if you need to call WD_Transfer() more than 20,000 calls per second.

An example for such a case could be: A block of 1MB of data needs to be
transferred Word by Word, where in each word that is transferred, first the
LOW byte is transferred to 10 port 0x300, then the HIGH byte is transferred
to 10 port 0x301.

Normally this would mean calling WD _Transfer() 1 million times - Byte 0 to
port 0x300, Byte 1 to port 0x301, Byte 2 to port 0x300 Byte 4 to port 0x301 etc
(WP_BYTE - Write Port Byte).

A quick way to save 50% of the function call overhead would be to call
WD _Transfer() with a WP_SBYTE (Write Port String Byte), with two bytes at
a time. First call would transfer Byte0 and Bytel to ports 0x300 and 0x301,

199

WINDRIVER DEVELOPER?®S GUIDE

Second call would transfer Byte2 and Byte3 to ports 0x300 and 0x301 etc. This
way, WD_Transfer() will only be called 500,000 times to transfer the block.

The third method would be by preparing an array of 1000 WD_TRANSFER
commands. Each command in the array will have a WP_SBYTE command
that transfers two bytes at a time. Then you call WD_MultiTransfer() with a
pointer to the array of WD_TRANSFER commands. In one call to
WD_MultiTransfer() - 2000 bytes of data will be transferred. To transfer the
1MB of data you will need only 500 calls to WD_Transfer(). This is 0.5% of the
original calls to WD_Transfer(). The trade off in this case is the memory that is
used to set-up the 1000 WD_TRANSFER commands.

200

WINDRIVER DEVELOPER?*S GUIDE

Chapter

12

WinDriver Kernel Pluglin
Overview

This chapter will provick you with a brief description of the “Kemel Plugin®”Feature of
WinDriwr.

Background

Creating your driver in the User Mode has some distinct advantages:
1. No kernel knowledge necessary.
2. No need to learn the MS DDK or Kernel debuggers.

3. Easy development / debugging using standard development / debugging
tools.

However, this architecture imposes some function call overhead from the
kernel to the User Mode. In most cases, this is not a problem. In other cases,
this performance hit may cause the driver not to function as needed.

When performance is a problem, WinDriver 3 Kernel Plugln feature allows you
to move only the performance critical section of your code to the kernel, while

201

WINDRIVER DEVELOPER?®S GUIDE

keeping most of the code intact as it is. The advantages of writing a Kernel
Plugln driver over a Kernel Mode driver are:

1. All of the driver code is written and debugged in the User Mode.

2. The code segments that are moved to the Kernel Mode remain essentially
the same, therefore no kernel debugging is needed.

3. The parts of your code that will run in the kernel through the Kernel Plugin
are platform independent, and therefore will run on all platforms supported
by WinDriver. A standard Kernel Mode driver will run only on the
platform it was written for.

Using the WinDriver 3 Kernel Plugln feature, your driver will operate without
any performance degradation.

Do | need to write a Kernel Plugin?

Not every performance problem requires you to write a Kernel Plugin. Some
performance problems may be overcome in the User Mode driver, by better
utilisation of the features WinDriver provides.

To determine how to solve your performance issues, please see the chapter
titled “Improving Performance”’ This chapter contains a table which will help
you determine how to solve your performance problem. In some cases a quick
User Mode solution is provided, and in other cases, it determines that a Kernel
PluglIn driver must be written.

If you need to write a Kernel Plugln, continue reading the following chapter.

What kind of performance can | expect?

Since you can write your own interrupt handler in the kernel with WinDriver
Kernel Plugln, you can expect to handle more than 10,000 interrupts without
missing any of them.

202

WINDRIVER DEVELOPER?*S GUIDE

Overview of the development process

Using the WinDriver Kernel Plugln, the developer first develops and debugs
the driver in the User Mode with the standard WinDriver tools. After
identifying the performance critical parts of the code (such as the interrupt
handler, access to 1/0 mapped memory ranges, or slow data transfer rate
through the USB pipes, etc.), the developer can tirop *these parts of code into
the WinDriver 3 Kernel Plugln (which runs in the Kernel Mode), thereby
eliminating the calling overhead. This unique feature allows the developer to
start with quick and easy development in the User Mode, and progress to
performance oriented code only where needed. This unique architecture saves
time, and allows for absolutely zero performance degradation.

203

WINDRIVER DEVELOPER?®S GUIDE

204

WINDRIVER DEVELOPER?*S GUIDE

Chapter

13

WinDriver Kernel Pluglin
Architecture

Your application
Your Driver code

[T [T 1
WinDriver UserMode
Library
(Windrvr.h)

[User Mode |
Kernel Plugin Kernel Mode

VvV VvV VvVYy
Interrupt
Your functions | WinDriver Handling|)) Interrupt
. K ["I WinDriver [° " Your
KP_Init() erne
KP_Cpen() Plugln | Kernel . | Hardware
g_: ”tﬁtt 'E;OQE; Message | 10 T—
nt C .
kP Cal 1 () Passing
KP_d ose()

205

WINDRIVER DEVELOPER?®S GUIDE

A driver written in User Mode, uses WinDriver 3 functions (WD _xxx”
functions) for the device access. If a certain function in the User Mode needs
to achieve kernel performance (the interrupt handler for example), that
function is moved to the WinDriver Kernel Plugin. The code will still work
“As Is”; since WinDriver exposes its WD_xxx interface to the Kernel Plugin as
well.

There are two types of interaction between the WinDriver Kernel and the
WinDriver Kernel Plugln which will be discussed in detail in the next chapter.
They are:

1. Interrupt handling: When WinDriver receives an interrupt, it will activate
the interrupt handler in the User Mode driver by default. However, if the
interrupt was set to be handled by the WinDriver Kernel Plugln, then once
the WinDriver receives the interrupt, it will be processed by your interrupt
function in the Kernel. This is the same code that you wrote and debugged
in the User Mode interrupt handler before.

2. Message passing: To execute functions in the Kernel Mode (such as 1/0
processing functions), the user mode driver simply passes a “message”’to
the WinDriver Kernel Plugin. This message is mapped to a specific
function, which is then executed in the kernel. This function contains the
same code as it did when it was written and debugged in the User Mode.

At the end of your Kernel Plugln development cycle, you will have the
following elements to your driver:

1. Your User Mode driver - written with the WD _xxx functions.

2. The WinDriver Kernel - Windrvr.sys or Windrvr.vxd and wdusb.sys for
USB drivers

3. Your Kernel Plugin - <Your Driver Name>.sys or <Your Driver
Name>.vxd - this is the driver that contains the functionality which you
have chosen to bring down to the Kernel level.

206

WINDRIVER DEVELOPER?*S GUIDE

Typical event sequence when using a Kernel
Plugin

The following is a typical event sequence, which covers all of the functions that
you can implement in your Kernel Plugln (KP):

Event / Callback Remarks

Event: Windows loads your Kernel At boot time or by dynamic

Plugln driver loading, or as instructed by the
registry.

KP Call-back: Your KP_Init() Kernel KP_Init() informs WinDriver

Plugln function is called what the name of your

KP_Open() routine is.
WinDriver will call this routine
when the application wishes to
open your driver (when it calls
WD_KernelPluginOpen())

Event: Your app (User Mode driver)
calls WD_KernelPluginOpen()

KP Call-back: Your KP_Open() routine | Inyour KP_Open() function,
is called. you inform WinDriver of the
name of all of the call-back
functions that you have
implemented in your KP
driver, and initiate the KP
driver if needed.

207

WINDRIVER DEVELOPER?®S GUIDE

Event: Your app calls
WD_KernelPluginCall()

Your app calls
WD_KernelPluginCall() to
run code in the Kernel Mode
(in the KP driver). The app
passes a message to the KP
driver. The KP driver will
select which function to
execute according to the
message sent.

KP Call-back: Your KP_Call() routine is
called

Executes code according to
the message passed to it from
the User Mode.

Event: Your hardware creates an
interrupt

KP Call-back: Your KP_IntAtlrgl()
routine is called. (If the KP interrupts are
enabled)

KP_IntAtlrgl() runs at high
priority, and therefore should
only do the basic interrupt
handling (such as lowering the
HW interrupt signal). If more
interrupt processing is needed,
it is deferred to the
KP_IntAtDpc() function. If
your KP_IntAtlrgl() function
returns a value greater than 0,
your KP_IntAtDpc() function
is called.

Event: KP_IntAtlrgl() function returns a
value greater than 0

Needs interrupt code to be
processed as a Deferred
procedure call in the Kernel.

208

WINDRIVER DEVELOPER?*S GUIDE

KP Call-back: KP_IntAtDpc() is called.

Processes the rest of the
interrupt code, but at a lower
priority than KP_IntAtlrq|.

Event: KP_IntAtDpc() returns a value
greater than 0.

Needs interrupt code to be
processed in the User Mode as
well.

KP Call-back: WD _IntWait() returns.

Execution resumes at your
User Mode interrupt handler.

209

WINDRIVER DEVELOPER?®S GUIDE

210

WINDRIVER DEVELOPER?*S GUIDE

Chapter

14

Kemel Plugln - How it works

This chapter takes you through the development cycle of a Kermel Plugin. It assumes that you
have already written andl debugged your entire driver cock in the User IMode, and have
enoountered a performance problem.

Minimal requirements for creating a Kernel
Pluglin

To compilethe Kernd Mode driver you need the VC compiler (cl.exe,
rc.exe and link.exe and nmake.exe).

To create aWin95 driver (VXD) you do not need the Win95 DDK.

To createaWinNT driver (SYS) you need the WinNT DDK, for the
following file: ntoskrnl.lib.

NT DDK can be downloaded (Free) at
http://www.microsoft.com/hwdev/ddk/ddk40.htm.

211

WINDRIVER DEVELOPER?®S GUIDE

Directory structure for the WinDriver Kernel

Plugin

\windriver\kerplug

\windriver\kerplug\lib - includes the files needed to link your Kernel Plugin
\windriver\kerplug\kptest - contains a sample minimal Kernel Plugln driver.
KPTest_com.h contains common definitions such as messages, between the
Kernel Plugln and the User-mode.

\windriver\kerplug\kptest\usermode - User-mode part of the driver

\windriver\kerplug\kptest\kermode - Kernel Plugin driver

Kernel Plugln implementation

1. BEFORE YOU BEGIN

The following functions are call-back functions which you will implement in
your Kernel Plugln driver, and which will be called when their €alling "event
occurs. For example, KP_Init() is the call-back function which is called when
the driver is loaded. Any code that you want to execute upon loading should
be in this function.

In KP_Init(), the name of your driver is given. From then on, all of the call-
backs which you implement in the kernel will contain your driver 3 name. For
example, if your driver 3 name is MyDriver, then your ©Open “call-back will be
called MyDriver_Open(). It is the convention of this reference guide to mark
these functions as KP__ functions - i.e. the Open *function will be written here
as KP_Open(), where the KP replaces your driver 3 name.

212

WINDRIVER DEVELOPER?*S GUIDE

2. WRITE YOUR KP_INIT() FUNCTION

In your kernel driver you should implement the following function:

BOOL __cdecl KP_Init(KP_INIT *kplnit);

where KP_INIT is the following structure:

typedef struct {
DWORD dwVerWD; // Version of WinDriver library WD_KP.LIB
CHAR cDriverName[9]; // The device driver name, up to 8 chars.
KP_FUNC_OPEN funcOpen; // The KP_Open function

} KP_INIT;

This function is called once, when the driver is loaded. The kplnit structure
should be filled out with the KP_Open function and the name of your kernel
plug in. (see example in KPTest.c). Note that the name that you choose for
your KP driver (by setting it in the kplInit structure), should be the same name
as the driver you are creating. For example, if you are creating a driver called
ABC.VXD or ABC.SYS, then you should pass the name ABC in the kplnit
structure.

From the KPTest Sample:

BOOL __cdecl KP_Init(KP_INIT *kplnit)
{
// check if the version of WD_KP.LIB is the same version
//as WINDRVR.H and WD_KP.H
if (kplnit->dwVerWD!=WD_VER)
{
// you need to re-compile your kernel plugin with
// the compatible version of WD_KP.LIB, WINDRVR.H
// and WD_KP.H!
return FALSE;

}

kpInit->funcOpen = KPTest_Open;
strepy (kplnit->cDriverName, "KPTest");

return TRUE;

213

WINDRIVER DEVELOPER?®S GUIDE

3. WRITE YOUR KP_OPEN() FUNCTION

In your Kernel Plugln file, implement the KP_Open() function, where KP is
the name of your KP driver (copied to kplnit->cDriverName in the KP_Init()
function.

BOOL __cdecl KP_Open(KP_OPEN_CALL *kpOpenCall, HANDLE hwD, PVOID pOpenData,
PVOID *ppDrvContext);

This call-back is called when the User Mode application calls the
WD_KernelPluginOpen() function.

In the KP_Open() function, define the call-backs that you wish to implement
in the Kernel Pluglin.

Following is a list of the call-backs which can be implemented:

Call-back name | Functionality

KP_Close() Called when the User Mode application calls the
WD _KernelPlugInClose() function.

KP_Call() Called when the User Mode application calls the
WD _KernelPlugInCall() function. This function is a
message handler for your utility functions.

KP_IntEnable() | Called when the User Mode application calls the
WD _ IntEnable() function. This function should
contain any initialization needed for your Kernel
Plugln interrupt handling.

KP_IntDisable() | Called when the User Mode application calls the

WD _ IntDisable() function. This function should free
any memory which was allocated in the
KP_IntEnable() callback.

214

WINDRIVER DEVELOPER?*S GUIDE

KP_IntAtlrgl() Called when WinDriver receives an interrupt. This is
the function that will handle your interrupt in the
Kernel Mode.

KP_IntAtDpc() | Called if the KP_IntAtlrgl() callback has requested
deffered handling of the interrupt (by returning with a
value of TRUE).

These handlers will later be called when the user-mode program opens a KP
driver (WD_KernelPluginOpen(), WD_KernelPlugInClose()), sends a message
(WD_KernelPlugInCall()), or installs an interrupt where hKernelPlugin passed
to WD_IntEnable() is of a Kernel Plugln driver opened with
WD_KernelPlugInOpen().

From the KPTest Sample:

BOOL __cdecl KPTest_Open(KP_OPEN_CALL *kpOpencCall, PYOID
pOpenData, PVOID *ppDrvContext)

{
kpOpenCall->funcClose = KPTest_Close;
kpOpenCall->funcCall = KPTest_Call;
kpOpenCall->funcintEnable = KPTest_IntEnable;
kpOpenCall->funcintDisable = KPTest_IntDisable;
kpOpenCall->funcintAtlrgl = KPTest_IntAtlrql;
kpOpenCall->funcintAtDpc = KPTest_IntAtDpc;

*ppDrvContext = NULL; // you can allocate memory here

return TRUE;

4. WRITE THE REST OF THE KERNEL PLUGIN
CALL-BACKS

Add your specific code inside the call backs routines.

215

WINDRIVER DEVELOPER?®S GUIDE

KPTest - A sample Kernel Plugin Driver

The KPTest directory (\windriver\kerplug\K PTest) contains a sample
minimal Kernel Plugln driver which you can compile and execute. Usethis
sample as a skeleton for your Kernel Plugln driver.

Thissample builds KPTest. VXD and KPTest.SY'S, and KPTest.EXE. The
sample demonstrates communi cation between your application
(KPTest.EXE) and your Kernd Plugin (KPTest.VXD or KPTest.SYS).

The KPTest sample in this directory, is a Kernel Plugln which implements a
“Get Version”’function, to demonstrate passing data (messages) to/from the
Kernel Plugln. It also implements an interrupt handler in the kernel. This
Kernel Plugln is called by the User Mode driver called KPTest. EXE.

To check that you are ready to build a Kernel
Plugln driver, it is recommended to build and
run this project first, before continuing to write
your own Kernel Pluglin.

Interrupt handling in the Kernel Plugin

Interrupts will be handled by the Kernd Plugin, if aKernel Plugin handle
was passed to WD _IntEnable() by the User Mode application when it
enabled the interrupt. When WinDriver receives a hardware interrupt, it calls
the KP_IntAtlrgl() (if Kernd Plugin interrupts are enabled). In the KPTest
sample, the interrupt handler running in the Kernd Plugin counts 5
interrupts, and notifies the user-mode only of one out of each 5 incoming
interrupts. This meansthat WD _IntWait() (in the user-mode) will return
only on one out of 5 incoming interrupts.

Interrupt handling in the User Mode (Without Kernel Plugin)
If the Kernel Plugln interrupt handleis NOT enabled, then each incoming
interrupt will cause WD _IntWait() to return. See drawing below:

216

WINDRIVER DEVELOPER?*S GUIDE

Your Driver code
WD_IntWait()
WD IntwWait) .
A
User Mode
| Kernel Mode | v
Interrupt
WinDI‘ivel’ Sinnalp Your
Kernel Hardware
L]

Interrupt handling in the Kernel (With the Kernel Plugin)
Toingtruct theinterrupts to be handled by the Kernel Plugin, the Kerndl

Plugin handle must be given as a parameter to the WD _IntEnable() function.
This enablesthe Kernd Plugin interrupt handler.

If the Kernd Plugln interrupt handler is enabled, then KP_IntAtlrgl() will be
called on each incoming interrupt. The codein the KP_IntAtlrgl() function
isexecuted at IRQL. Whilethiscodeisrunning, the syssemishalted (i.e.
therewill be no context switch and no lower priority interruptswill be
handled). The codeinthe KP_IntAtirgl() function islimited to the following

restrictions:

1. You may only access non pageable memory.

2. You may only call the following functions: WD_Transfer(), specific
DDK functions which are allowed to be called from an IRQL.

217

WINDRIVER DEVELOPER?®S GUIDE

3. You may not call malloc(), fre(), or any WD_xxx command (other than
WD_Transfer()).

Therefore, the code in KP_IntAtlrgl() should be kept to a minimum, while
therest of the code that you want to run in the interrupt handler should be
written in the KP _IntAtDpc(), whichiscalled after IRQL finishes. The
codein KP_IntAtDpc() is not limited by the above restrictions.

Your Driver code
WD_IntEnable()
Kernel Mode
WinDriver Kernel Plugin !
Interrupt Your
WinDriver | _Signal
?P_IntAtDpco l— ?P_IntAtIrqI() - Kernel - Hardware
' : L
Lower High
priority code priority code
y y

218

WINDRIVER DEVELOPER?*S GUIDE

Message passing

The WinDriver architecture enables calling aKernel Mode function from the
User Mode by passing a message through the WD_Kerne PluginCall()
function. The messages are defined by the developer in KP_comm.h. Upon
receiving the message, WinDriver Kernel Plugln executesthe KP_Call
function which maps a function to this message.

In the KPTest sample, the GetVersion function isasimple function which
returns an arbitrary integer and string (which smulates your KPTest's
version). Thisfunction will be called by the Kernd Plugin, whenever the
Kernd Plugin recaeives a'GetVerson' message from the KPTest.EXE.

The KPTest.EXE sends the message using the WD_Kerne PluginCall()
function.

219

WINDRIVER DEVELOPER?®S GUIDE

220

WINDRIVER DEVELOPER?*S GUIDE

Chapter

15

Writing a Kermel Plugin - Step by
step Instructions

The Kernel Plugln directory (\windriver\kerplug) contains a sample Kernel
Plugln driver called KP_Test. The sample demonstrates communication
between your application (KPTest.EXE) and your Kernd Plugin
(KPTest.VXD or KPTest.SYS).

The easiest way to write a Kernel Plugln driver is to use this example as the
skeleton code for your driver.

The following is a step by step guide to creating your kernel driver. The
KPTest sample code will be used to demonstrate the different stages:

Determining whether a Kernel Plugin is
needed

1. The Kernel Plugln should be used only after your driver code has been
written and debugged in the User Mode. This way, all of the logical
problems of creating a device driver are solved in the User Mode, where
development and debugging are much easier.

221

WINDRIVER DEVELOPER?®S GUIDE

2. Determine whether a Kernel Plugin should be written by consulting the
“Improving Performance”’chapter.

Preparing the User Mode source code:

3. Isolate the function or functions that you need to move into the Kernel
Plugin.

4. Remove any platform specific code from the function. Use only the
WinDriver functions which may be used from the kernel as well (See details
later on in this chapter).

5. Compile and debug your driver in the User Mode again, to see that your
code still works after these changes are made.

Creating a new Kernel Plugin Project
(Modifying the KP_Test sample for your needs)

6. Make acopy the KPTest directory. For example, to createa new project
caled MyDrv, copy \windriver\kerplug\KPTest to
\windriver\kerplug\MyDrv.

7. Changeall instances of KPTest in theall filesin your new directory to
MyDrv. (You may usethe'find infiles option in MSDEV for this).

8. Changedl KPTest in file namesto MyDrv.

Creating a handle to the WinDriver Kernel
Plugln in your User Mode driver

10. In your origina User Mode source code, call WD_Kerne PluginOpen()
at the beginning of your code, and WD_Kernd PluginClose() before
terminating.

222

WINDRIVER DEVELOPER?*S GUIDE

Interrupt Handling in the Kernel Plugin

11. When calling WD _IntEnabl&(), give the handle to the Kerne Plugin that
you received from opening the Kernd Plugin

12. Movethe source code in the User Mode interrupt handler to the Kernedl
Plugin, by moving someof it to KP_IntAtirgl() and someof it to
KP_IntAtDpc() (See previous ‘ Interrupt handling in the kernd’ section).

10 handling in the Kernel Plugin

13. Moveyour 1O handling code from the User Modeto KP_Call(). Tocal
this codein the kernd from the User Mode, use WD_Kerne PluginCall(),
with the Kerndl Plugin handle, and a message for each of the different
functionalities you need. For each functionality, create a different
message. Define these messages in thefile KPTest_Com.H, whichisa
common header file, between the kerndl-mode and the user-mode. This
file should have the message definitions (IDs) and data structures used to
communicate between the kernel-mode and user-mode.

Compiling your Kernel Pluglin Driver

14. Run compile.bat to compile and link your KP driver. In thisexample,
run \windriver\kerplug\MyDn/\kermode\compile.bat. Thiswill create
two files: MyDrv.SY Sand MyDrv.VXD

15. Copy therdevant file (MyDrv.SY S or MyDrv.V XD) to your drivers
directory (For Win95, copy it to the c:\windows\system\vmm32 directory.
For WinNT copy it to the c\winNT\system32\drivers directory).

16. For Windows NT ONLY': Run ‘“WDReg -name mydrv -file mydrv
install’ (seeinstructions later) to register your driver, so that WinNT will
load your driver.

223

WINDRIVER DEVELOPER?®S GUIDE

The Kerne Plugin driver isdynamically loadable, therefore you will not
need to re-boot in order to run your driver.

224

WINDRIVER DEVELOPER?*S GUIDE

Chapter

Kernel Plugin Function reference

User Mode functions

The following functions are the User Mode functions which initiate the Kernel
Plugin 3 operation, and activate its call-backs.

225

WINDRIVER DEVELOPER?®S GUIDE

WD_KernelPlugl nOpen()
Thisfunction isused to obtain avaid handle for the Kernel Plugin.

Prototype

void WD_KernelPluginOpen(HANDLE hwD, WD_KERNEL_PLUGIN *pKernelPlugin);

Parameters (WD_KERNEL_PLUGIN elements)

hKernelPluglin - returns the handle of the Kernel Plugln.

pcDriverName - name of Kernel Plugln to load, up to 8 chars

pcDriverPath - file name of Kernel Plugln to load. If NULL the driver will be searched in the
windows system directory.

with the name in pcDriverName.

pOpenData - pointer to data that will be passed to KP_Open() callback in the Kernel Plugin.

Return Value
none
Example

// Handle to the KernelPlugln
WD_KERNEL_PLUGIN kernelPlugln;

BZERO (kernelPlugin);

// Tells WinDriver which driver to open
kernelPlugin.pcDriverName = "KPTEST";

// Opens KPTEST.SYS or KPTEST.VXD
WD_KernelPluginOpen(hWD, &kernelPlugin);

if (!kernelPlugin.hKernelPluglin)
printf (“There was an error loading driver””
“%%s\n", kernelPlugln.pcDriverName);

return ;

printf("Kernel Plugln opened\n™);

226

WINDRIVER DEVELOPER?*S GUIDE

WD _KernelPlugl nClose()

Closesthe WinDriver Kernd Plugin handle obtained from
WD_KernePluginOpen().

Prototype

void WD_KernelPlugInClose(HANDLE hWD, WD_KERNEL_PLUGIN *pKernelPlugin);

Parameters (WD_KERNEL_PLUGIN elements)

hKernelPlugln - handle of the Kernel Plugin to close.

Return Value
none
Example

WD_KernelPluginClose(hWD, &kernelPluglin);

227

WINDRIVER DEVELOPER?®S GUIDE

WD_KernelPluglnCall()

Callsaroutinein the Kernd Plugln to be executed.

Caling theWD_Kerne PluginCall() function in the User Mode, calls your
KP_Cdl() calback function in the Kernel Mode. Y our KP_Call() function
in the Kernd Plugin will decide what routine to execute according to the
message passed to it inthe WD_KERNEL_PLUGIN_CALL structure.

Prototype

void WD_KernelPlugInCall(HANDLE hwD, WD_KERNEL_PLUGIN_CALL *pKernelPluginCall);

Parameters (WD_KERNEL_PLUGIN_CALL elements)

hKernelPlugln - handle of the Kernel Plugin.
dwMessage - message ID to pass to KP_Call() callback.
pData - pointer to data to pass to KP_Call() callback.
dwResult - value set by KP_Call() callback.

Return Value
none

Example

WD_KERNEL_PLUGIN_CALL kpCall;

BZERO (kpCall); // Prepare the kpCall structure
// from WD_KernelPlugInOpen()

kpCall.hKernelPlugin = hKernelPluglin;

// The message to pass to KP_Call(). This will determine

// the action performed in the kernel.

kpCall.dwMessage = MY_DRV_MSG_VERSION;

kpCall.pData = &mydrvVer; // The data to pass to the call.
WD_KernelPluginCall(hWD, &kpCall);

228

WINDRIVER DEVELOPER?*S GUIDE

WD _IntEnable()

If the handle passed to thisfunction is of a Kernd Plugin, then that Kernel
Pluglin will handle theinterrupts.

In this case, upon recaiving the interrupt, your Kernel Mode KP_IntAtlirgl()
function will execute. If thisfunction returns avalue greater than 0, then
your deferred procedure call, KP_IntAtDpc() , will be called.

Prototype

void WD_IntEnable(HANDLE hwD, WD_INTERRUPT *pinterrupt);

Parameters (WD _INTERRUPT elements)

kpCall - information on Kernel Plugln to install as interrupt handler.

kpCall.hKernelPlugln - handle of Kernel Plugln. if zero, then no Kernel Plugin interrupt handler
is installed.

kpCall.dwMessage - message ID to pass to KP_IntEnable() callback.

kpCall.pData - pointer to data to pass to KP_IntEnable() callback.

kpCall.dwResult - value set by KP_IntEnable() callback.

For information about all other parameters of WD_IntEnable(), see the documentation of
WD_IntEnable() in WinDriver Function Referance chapter.

Return Value

none
Example

WD_INTERRUPT Intrp;

BZERO(Intrp);

Intrp.hinterrupt = hinterrupt; // from WD_CardRegister()
Intrp.Cmd = NULL;

Intrp.dwCmds = O;

Intrp.dwOptions = O;

// from WD_KernelPlugInOpen()
Intrp.kpCall.nKernelPlugin = hKernelPlugin;
WD_IntEnable(hWD, &Intrp);

if (!Intrp.fEnableOk)

229

WINDRIVER DEVELOPER?®S GUIDE

printf (“failed enabling interrupt\n’};

230

WINDRIVER DEVELOPER?*S GUIDE

Kernel functions

The following functions are call-back functions which you will implement in
your Kernel Plugin driver, and which will be called when their talling "event
occurs. For example, KP_Init() is the call-back function which is called when
the driver is loaded. Any code that you want to execute upon loading should
be in this function.

In KP_Init(), the name of your driver is given, and its call-backs. From then
on, all of the call-backs which you implement in the kernel will contain your
driver 3 name. For example, if your driver 3 name is MyDriver, then your
KP_Open call-back may be called MyDriver_Open(). It is the convention of
this reference guide to mark these functions as KP_ functions - i.e. the Open~
function will be written here as KP_Open(), where the KP replaces your
driver 3 name.

231

WINDRIVER DEVELOPER?®S GUIDE

KP_Init()

Y ou must define the KP_Init() function in your codein order to link the
Kernel Plugln driver to the WinDriver.

KP_Init() is caled when the driver isloaded. Any code that you want to
execute upon loading should be in this function.

Prototype
BOOL __cdecl KP_Init(KP_INIT *kplnit);

Parameters

kplnit - structure to fill in the address of the KP_Open() callback function.

Return Value

TRUE if successful. If FALSE, then the Kernel Plugin driver will be unloaded.

Example

BOOL __cdecl KP_Init(KP_INIT *kplnit)

{
/1 check if the version of WD_KP.LIB is the same
// version as WINDRVR.H and WD_KP.H
if (kplnit->dwVerWD!=WD_VER)

// you need to re-compile your kernel plugin
// with the compatible version of WD_KP.LIB,
// WINDRVR.H and WD_KP.H!

return FALSE;

}

kpInit->funcOpen = KP_Open;
strepy (kplnit->cDriverName, "KPTEST"); // until 8 chars

return TRUE;

232

WINDRIVER DEVELOPER?*S GUIDE

KP_Open()

Called when WD_KerndPluginOpen() is called from the User Mode. The
pDrvContext returned will be passed to rest of the functions

Prototype

BOOL __cdecl KP_Open(KP_OPEN_CALL *kpOpencCall, HANDLE hwD, PVOID pOpenData,
PVOID *ppDrvContext);

Parameters

kpOpenCall - structure to fill in the addresses of the KP_xxxx() callback functions.

hWD - handle of WinDriver that WD_KernelPluginOpen() was called with.

pOpenData - pointer to data, passed from user-mode.

ppDrvContext - pointer to driver context data that KP_Close(), KP_Call() and KP_IntEnable()
functions will be called with. Use this to keep driver specific information.

Return Value

TRUE if successful. If FALSE, then WD_KernelPluginOpen() call from user-
mode will fail.

Example

BOOL __cdecl KP_Open(KP_OPEN_CALL *kpOpenCall, HANDLE hwD,
PVOID pOpenData, PVOID *ppDrvContext)
{

kpOpencCall->funcClose = KP_Close;
kpOpencCall->funcCall = KP_Call;
kpOpencCall->funcintEnable = KP_IntEnable;
kpOpenCall->funcintDisable = KP_IntDisable;
kpOpenCall->funcintAtirgl = KP_IntAtlrql;
kpOpenCall->funcintAtDpc = KP_IntAtDpc;

*ppDrvContext = NULL; // you can allocate here memory

return TRUE;

233

WINDRIVER DEVELOPER?®S GUIDE

KP_Close()
Called when WD_KerndPluginCloss() is called from the User Mode.
Prototype

void __cdecl KP_Close(PVOID pDrvContext);

Parameters

pDrvContext - driver context data that was set by KP_Open().

Return Value

none

Example

void __cdecl KP_Close(PVOID pDrvContext)

// you can free here the memory allocated pDrvContext

}

234

WINDRIVER DEVELOPER?*S GUIDE

KP_Call()

Called when the User Mode application calls the WD_KernelPluginCall()
function. This function is a message handler for your utility functions.

Prototype

void __cdecl KP_Call(PVOID pDrvContext, WD_KERNEL_PLUGIN_CALL *kpCall);
Parameters

pDrvContext - driver context data that was set by KP_Open().

kpCall - structure with information from WD_KernelPlugInCall().
kpCall.dwMessage - message ID passed from WD_KernelPlugInCall().
kpCall.pData - pointer to data passed from WD_KernelPlugInCall().
kpCall.dwResult - value to return to WD_KernelPlugInCall().

Return Value
none

Example

void __cdecl KP_Call(PVOID pDrvContext,
WD_KERNEL_PLUGIN_CALL *kpCall)

{
kpCall->dwResult = MY_DRV_OK;

switch (kpCall->dwMessage)
{
// in this sample we implement a GetVersion message
case MY_DRV_MSG_VERSION:
{
MY_DRV_VERSION *ver = (MY_DRV_VERSION *)
kpCall->pData;
ver->dwVer = 100;
strcpy(ver->cVer,"My Driver V1.00");
kpCall->dwResult = MY_DRV_OK;
}
break;
// you can implement other messages here
default:
kpCall->dwResult = MY_DRV_NO_IMPL_MESSAGE;
}
}

235

WINDRIVER DEVELOPER?®S GUIDE

KP_IntEnable()

Called when WD _IntEnable() is called from the User Mode, with aKernd
Plugin handler specified the pintContext will be passed to the rest of the
functions handling interrupts.

This function should contain any initialization needed for your Kernel Plugin
interrupt handling.

Prototype

BOOL __cdecl KP_IntEnable(PVOID pDrvContext, WD_KERNEL_PLUGIN_CALL *kpCall,
PVOID *pplntContext);

Parameters

pDrvContext - driver context data that was set by KP_Open().

kpCall - structure with information from WD_IntEnable().

kpCall.dwMessage - message ID passed from WD_IntEnable().

kpCall.pData - pointer to data passed from WD_IntEnable().

kpCall.dwResult - value to return to WD_IntEnable().

pplntContext - pointer to interrupt context data that KP_IntDisable(), KP_IntAtlrgl() and
KP_IntAtDpc() functions will be called with. Use this to keep interrupt specific
information.

Return Value
Returns TRUE if enableis succesful.

Example

BOOL __cdecl KP_IntEnable(PVOID pDrvContext,
WD_KERNEL_PLUGIN_CALL *kpCall, PVOID *ppIntContext)
{
// you can allocate memory specific for each interrupt
/1 in *ppIntContext
*ppintContext = NULL,;

return TRUE;

236

WINDRIVER DEVELOPER?*S GUIDE

KP_IntDisable()

Called when the User Mode application calls the WD _ IntDisable() function.
This function should free any memory which was allocated in the
KP_IntEnable().

Prototype

void __cdecl KP_IntDisable(PVOID pIntContext);

Parameters

pintContext - interrupt context data that was set by KP_Enable().

Return Value

none

Example

void __cdecl KP_IntDisable(PVOID pIntContext)

// you can free the interrupt specific
// memory in plntContext here

}

237

WINDRIVER DEVELOPER?®S GUIDE

KP_IntAtlrgl()

Thisisthe function which will run at IRQL if the Kernd Plugin handleis
passed when enabling interrupts.

Code running at IRQL will only beinterrupted by higher priority interrupts.
Code running at IRQL islimited by the following restrictions:
1. Y ou may only access non-pageable memory.

2. You may only cal thefollowing functions: WD_Transfer(), specific
DDK functionswhich are alowed to be called from an IRQL.

3. You may not call malloc(), fre(), or any WD_xxx command (other than
WD_Transfer()).

The code performed at IRQL should be minimal (e.g. only the code which
acknowledges the interrupt), Sinceit is operating at ahigh priority. Therest
of your code should be written at KP_AtDpc(), in which the above
restrictions do not apply.

Prototype

BOOL __cdecl KP_IntAtlrgl(PVOID plIntContext, BOOL *pflsMylinterrupt);
Parameters

pIntContext - interrupt context data that was set by KP_IntEnable().
pflsMylnterrupt - set this to TRUE, if the interrupt belongs to this driver, or FALSE if not. If
you are not sure, it is safest to return FALSE.

Return Value

Returns TRUE if needs DPC function to execute.

238

WINDRIVER DEVELOPER?*S GUIDE

Example

static DIWVORD G_dwinterruptCount = 0;

BOOL __cdecl KP_IntAtlrgl(PVOID plIntContext,
BOOL *pflsMyInterrupt)

{

// you should check your hardware here to see if
// the interrupt belongs to you.

//'if in doubt, return FALSE (this is the safest)
*pflsMylnterrupt = TRUE;

// in this example we will schedule a DPC once
// in every 5 interrupts
G_dwiInterruptCount ++;
if ((G_dwInterruptCount % 5) ==0)
return TRUE;

return FALSE;

239

WINDRIVER DEVELOPER?®S GUIDE

KP_IntAtDpc()

Thisisthe Deferred Procedure Call which is executed only if the
KP_IntAtlrgl() function returned true.

Most of your interrupt handler should be written at DPC.

If KP_IntAtDpc() returns with a value of 1 or more, WD_IntWait() returns.
l.e., if you do not want the User Mode interrupt handler to execute, the
KP_IntAtDpc() function should return O.

If KP_IntAtDpc() returns with a value which is larger than 1, this means that
some interrupts have been fost *(i.e. were not processed by the User Mode). In
this case, dwLost will contain the number of interrupts that were lost.

Prototype

DWORD __cdecl KP_IntAtDpc(PVOID pIntContext, DWORD dwCount);
Parameters

pIntContext - interrupt context data that was set by KP_Enable().

dwCount - the number of times KP_IntAtlrqgl() returned TRUE. If dwCount is 1, then only
KP_IntAtirgl() only requested once a DPC. If the value is greater, then KP_IntAtlrgl()
has already requested a DPC a few times, but the interval was too short, therefore
KP_IntAtDpc() was not called for each one of them.

Return Value

Returns the number of timesto notify user-mode (i.e. return from
WD_IntWait()).

Example

DWORD __cdecl KP_IntAtDpc(PVOID pintContext, DWORD dwCount)

// return WD_IntWait as many times as
// KP_IntAtlrgl scheduled KP_IntAtDpc()
return dwCount;

}

240

WINDRIVER DEVELOPER?*S GUIDE

Chapter

Kemel Plugln structure reference

User Mode structures

241

WINDRIVER DEVELOPER?®S GUIDE

WD_KERNEL_PLUGIN

Defines a Kernel Plugin open command.

Used by WD_KernelPluginOpen() and WD_KernelPlugInClose().

Members:

TYPE NAME DESCRIPTION

DWORD hKernelPlugin handle to Kernel Plugin

PCHAR pcDriverName Name of Kernel Plugln driver. Should be no
longer than 8 letters. Should not include the
VXD or SYS extension.

PCHAR pcDriverPath The directory and file name
in which to look for the KP driver. If NULL,
then the driver will be searched for in the
default windows system
directory, under the name supplied in
pcDriverName, with VXD added for Windows-
95, or SYS added for Windows-NT.

PVOID pOpenData data to pass to KP_Open() callback in the

Kernel Plugln.

242

WINDRIVER DEVELOPER?*S GUIDE

WD_INTERRUPT

Used to describe an interrupt.

Used by the following functions: WD _IntEnable(), WD _IntDisable(),
WD _IntWait(), WD_ IntCount().

Members:
TYPE NAME | DESCRIPTION
WD_KERNEL_PLUGIN_CALL kpCall The kpCall structure contains the handle

to the Kernel Plugln, and other
information which should be passed to
the Kernel mode interrupt handler when
installing it.

If the handle is zero, then interrupt is
installed without a Kernel Plugin
interrupt handler.

For information about all other members of WD_INTERRUPT, see the documentation of
this structure in the WinDriver structure reference chapter.

243

WINDRIVER DEVELOPER?®S GUIDE

WD_KERNEL_PLUGIN_CALL

Contains information about the Kernel Plugin, which will be used when calling
a utility Kernel Plugln function or installing an interrupt.

Used by WD_KernelPlugInCall() and WD _IntEnable().

Members:

TYPE NAME DESCRIPTION

DWORD hKernelPlugin handle to Kernel Plugln.

DWORD dwMessage message ID to pass to Kernel Plugln callback.

PVOID pData pointer to data to pass to Kernel Plugin
callback.

DWORD dwResult value set by Kernel Plugln callback, to return
back to User Mode.

244

WINDRIVER DEVELOPER?*S GUIDE

Kernel Mode structures

KP_INIT

The KP_INIT structure is used by your KP_Init() function in the Kernel
Plugin. Its primary use is for notifying WinDriver what the name of the driver
will be, and which Kernel Mode function to call when the application calls
WD_KernelPlugInOpen().

Members:

TYPE NAME DESCRIPTION

DWORD dwVerwD Version of WinDriver library
WD_KP.LIB.

CHAR cDriverName[9] The device driver name, upto 8
chars.

KP_FUNC_OPEN funcOpen The KP_Open() Kernel Mode
function which WinDriver should call
when the application calls
WD _KernelPlugInOpen().

245

WINDRIVER DEVELOPER?®S GUIDE

KP_OPEN_CALL

This is the structure through which the Kernel Plugin defines the names of the
call-backs which it implements. Itis used in the KP_Open() Kernel Plugin
function.

A kernel Plugin may implement 6 different call-back functions:
funcClose - Called when application is done with this instance of the driver.

FuncCall - Called when application calls the WD _KernelPlugInCall() function.

This function is the §eneral purpose *function. In it, implement any functions

which should run in the Kernel Mode, (besides the Interrupt handler which is a
special case). The funcCall will determine which function to execute according
to the message passed to it.

funcintEnable - Called when application calls the
WD_KernelPluginintEnable(). This call-back function should initiate any
activity which needs to be done when enabling an interrupt.

funcintDisable - The cleanup function which is called when the application
calls WD_KernelPluginintDisable().

funcintAtirgl - Thisisthe Kernd Modeinterrupt handler. This call-back
function is called when the WinDriver processes the interrupt which is
assigned to thisKerne Plugin. If thisfunction returns avalue greater than O,
then funcintAtDpc is called as a Deferred procedure call.

funcintAtDpc - Mot of your interrupt handler code should be written in this
call-back. Itiscalled asaDeferred procedure call, if the funcintAtlrg|
returns avaue greater than 0.

246

WINDRIVER DEVELOPER?*S GUIDE

M embers;
TYPE NAME DESCRIPTION
KP_FUNC_CLOSE funcClose Name of your KP_Close()
function in the kernel.
KP_FUNC_CALL funcCall Name of your KP_Call()

function in the kernel.

KP_FUNC_INT_ENABLE funcintEnable Name of your KP_IntEnable()
function in the kernel.

KP_FUNC_INT_DISABLE funcintDisable Name of your KP_|ntDisab|e()
function in the kernel.

KP_FUNC_INT_AT_IRQL funcintAtlrgl Name of your KP_|ntAt|rq|()
function in the kernel.

KP_FUNC_INT_AT_DPC FuncintAtDpc Name of your KP_IntAtDpc()
function in the kernel.

247

WINDRIVER DEVELOPER?®S GUIDE

248

WINDRIVER DEVELOPER?*S GUIDE

Chapter

18

Developing in Visual Basic and
Delphi

The entire WinDriver API can be used when developing driversin Visual
Basic and in Delphi.

Using DriverWizard

DriverWizard can be used to diagnose your hardware and verify it is working
properly before you start writing code. The DriverWizard's automatic source
code generation generates code in C and Delphi only. Automatic generation of
Visual Basic will be supported in later versions of WinDriver.

To create your driver code in C or in Delphi, refer to the 'DriverWizard'
chapter.

Samples
Samples for drivers written using the WinDriver API in Delphi or Visual Basic
can be found in:

1. \windriver\delphi\samples

2. \windriver\vb\samples

249

WINDRIVER DEVELOPER?®S GUIDE

Use these samples as a starting point for your own driver.

Kernel Plugin

Delphi and Visual Basic cannot be used to create a Kernel Plugin. Developers
using WinDriver with Delphi or VB in the user mode, must use C when
writing their Kernel Plugln.

Creating your Driver
Development method in Visual Basic is the same as for developing under C
except for the automatic code generation feature of DriverWizard.

Your work process should be as follows:

Use DriverWizard to easily diagnose your hardware and verify it is
working properly.

Write your driver code in user mode using the WinDriver API. See
details and explanations in the “Writing the device driver without the
wizard’section in chapter 5.
The files to be included when developing in VB are:

windrvr.cls

windrvr_usb.cls

The files to be included when developing in Delphi are:
windrvr.pas
windrvr_usb.pas

You may find it useful to use the WinDriver samples to get to know
the WinDriver APIs and as a skeleton for your driver code.

250

WINDRIVER DEVELOPER?*S GUIDE

Chapter

Trouble-shooting

To determine and verify the cause of your driver problems —Open the
DebugMonitor (described in chapter 6) and set your desired trace level. This
will help narrow down your debugging process and lead you in the right
direction.

WD_Open() (or xxx_Open()) fails.

The following may cause WD_Open() to fail:
1. Cause: WinDriver's kernel is not loaded.

Action: Run WDREG.EXE install *(in the \windriver\util directory). This
will let Windows know how to add WinDriver to the list of device drivers
loaded on boot. Also, copy WINDRVR.SYS (for WInNT) or
WINDRVR.VXD (for Win95) to the device drivers directory. A detailed
explanation may be found in chapter 21 - 'Distributing your driver'.

2. Cause: The 30 day evaluation license is over.

251

WINDRIVER DEVELOPER?®S GUIDE

Action: In this case, the WinDriver will inform you your evaluation license is
over, in a message box. Please contact sales@krftech.com to purchase
WinDriver.

3. Cause (for PnP cards only): The VendorID / DevicelD requested in
xxx_Open() do not match that of the board. (In licensed versions).

Action: Run Your_card_name_DIAG.EXE, (generated by the DriverWizard
or from the PLX /Galileo /VV3 /AMCC directories), and choose scan-pci bus
to check the correct VendorID / DevicelD of your hardware.

4, Cause: The device is not installed or configured correctly.

Action: Run Your_Card_Name_DIAG.EXE and choose PCI scan. Check
that your device returns all the resources needed.

5. Cause: Your device is in use by another application.

Action: Close all other applications that might be using your device.

WD _CardRegister() fails

WD _CardRegister fails if one of the resources defined in the card cannot be
locked.

First, check out what resource (out of all the card's resources) cannot be locked:
Activate the KernelTracer and set the trace mode to trace.

This will output all warning and error debug messages. Now, run your
application and you will get a printout of the resource that failed.

After finding out the resource that cannot be locked, check out the following:

Is the resource in use by another application? In order for several resource lock
requests to the same 10, Memory or interrupt to succeed, both applications

252

WINDRIVER DEVELOPER?*S GUIDE

must enable sharing of the resource. This is done by setting fNonSharable =
FALSE for every item that can be shared.

Can't open USB device using the Wizard. Or
WD_UsbDeviceRegister fails.

When a driver already exists in Windows for your device, you must create
an .INF file (Driver Wizard automates this process) and install it. For exact
instructions, see the sections explaining how to create and install .INF file
in chapters 4 and 21.

Can't get interfaces for USB devices.

In some operating systems (such as Windows 98), when there is no driver
installed for your USB device (Symptom - In the Wizard's "Card
information" screen, the device's physical address is 0x0.) you must create
an .inf file (Driver Wizard automates this process) and install it. For exact
instructions, see the sections explaining how to create and install .INF file
in chapters 4 and 21 .

PCI Card has no resources when using the
Wizard

In some operating systems (such as Windows 98), when there is no device
driver for a new device the operating system does not allocate resources to
the device. The symptom — When trying to open the card in the Wizard's
"Card information™ screen, a message pop-up notifying no resources found
on card. In addition, card configuration registers, such as memory BAR~
are zeroed. When this happens, you need to create and install an INF file
for the new card. For exact instructions, see the sections explaining how to
create and install .INF file in chapters 4 and 21. .

253

WINDRIVER DEVELOPER?®S GUIDE

Computer hangs on interrupt

This can occur with level-sensitive interrupt handlers. PCI cards interrupts are
usually level sensitive.

Level sensitive interrupts are generated as long as the physical interrupt signal is
high. If the interrupt signal is not lowered by the end of the interrupt handling
by the kernel, The Windows OS will call the WinDriver kernel interrupt
handler again - This will cause the PC to hang!

Acknowledging a level sensitive interrupt is hardware specific. Acknowledging
an interrupt means lowering the interrupt level generated by the card.
Normally, writing to a register on the PCI card can terminate the interrupt, and
lower the interrupt level.

When calling WD _IntEnable() it is possible to give the WinDriver kernel
interrupt handler a list of transfer commands (10 and memory read/write
commands) to perform upon interrupt, at the kernel level - before

WD _ IntWait() returns.

These commands can be used to write to the needed register to lower the
interrupt level, thereby fe-setting *the interrupt.

Before calling WD _IntEnable(), prepare two transfer command structures (to
read the interrupt status and then write the status to lower the level).

WD_TRANSFER trans[1];

BZERO (trans);

trans[0].cmdTrans = WP_DWORD; // Write Port Dword
// address of 10 port to write to

trans[0].dwPort = dwAddr;

// the data to write to the 10 port
trans[0].Data.Dword = 0;

Intrp.dwCmds = 1;

Intrp.Cmd = trans;

Intrp.dwOptions = INTERRUPT_LEVEL_SENSITIVE;
WD_IntEnable(hWD, &Intrp);

254

WINDRIVER DEVELOPER?*S GUIDE

This will tell WinDriver's kernel to Write to the register at dwAddr a value of
‘0, upon an interrupt.

The user-mode interrupt handler (The thread waiting on WD _IntWait() - this is
your code).

Here you only do your normal stuff to handle the interrupt. You do not need
to clear the interrupt level since this was already done by the kernel of
WinDriver, with the transfer command you gave WD _IntEnable().

WD _DMALock() fails to allocate buffer

The efficient method for memory transfer is scatter/gather DMA. If your
hardware does not support scatter/gather, you will need to allocate a DMA
buffer using WD_DMALock().

WD_DMALock() fails when the Windows OS has run out of contiguous
physical memory.

When calling WD_DMALock() with dwOptions =
DMA_KERNEL _BUFFER_ALLOC, WinDriver requests the Windows OS
for a physical contiguous memory block.

On WInNT you can allocate a few hundred kilobytes by default. If you want to
allocate a few megabytes, you will have to reserve memory for it, by setting the
following value in the registry:

On Windows NT:

run REGEDIT.EXE, and access the following key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Co
ntrol\

Session Manager\Memory Management

Increment the value of NonPagesPoolSize.

This change will take place only after re-boot.

255

WINDRIVER DEVELOPER?®S GUIDE

On Windows 95;

Win95 does not support contiguous buffer reservation, therefore, the earlier
you allocate the buffer, the larger the block you can allocate.

256

WINDRIVER DEVELOPER?*S GUIDE

Chapter

Dynamically loading your driver

Windows NT/2000 and 9x

Dynamic loading - background

When adding a new driver to the Windows operating system, you must re-boot
the system, for the Windows to load your new driver into the system.

Dynamic loading enables you to install a new driver to your operating system,
without needing to re-boot.

WinDriver is a dynamically loadable driver, and provides you with the utility
needed to dynamically load the driver you create.

You may dynamically load your driver whether you have created a User Mode
or a Kernel Mode driver.

257

WINDRIVER DEVELOPER?®S GUIDE

Why do you need a dynamically loadable
driver?

A dynamically loadable driver enables your customers to start your application
immediately after installing it, without the need to re-boot.

Dynamically loading and unloading your driver

The utility you use to dynamically load and unload your driver is called
WDREG.EXE, and may be found in the \windriver\uti\WDREG.EXE.

USAGE: WDREG [-name] [-file] [[CREATE] [START] [STOP] [DELETE]
[INSTALL] [REMOVE]]

WDREG.EXE has 4 basic operations:

1. CREATE - Instructs the Windows to load your driver next time it boots, by
adding your driver to registry.

2. START - Dynamically loads your driver into memory for use. On
Windows NT/2000, you must first TREATE *your driver before
START Tng it.

3. STOP - Dynamically unloads your driver from memory.

4. DELETE - Removes your driver from the registry , so that it does not load
on next boot.

For example, To reload WinDriver use:

WDREG STOP START

WDREG.EXE has 2 Shortcut *operations for your convenience:

258

WINDRIVER DEVELOPER?*S GUIDE

1. INSTALL - Creates and starts your driver (same as using WDREG
CREATE START).

2. REMOVE - Unloads your driver from memory, and removes it from
registry so that it does not load on next boot (same as using WDREG
STOP DELETE).

You may dynamically load your driver via command line or from within your
application as follows:

1. Dynamically loading your driver via command line:

- From the command line, type WDREG INSTALL. This loads the
driver into memory, and instructs Windows to load your driver on
the next boot.

2. Dynamically loading your driver in your installation application:
- Add the WDREG source code to your installation application.

- The full source code for WDREG may be found at
\windriver\samples\wdreg\

Dynamically loading your Kernel Plugin

If you have used WinDriver to develop a Kernel Plugln, you must dynamically
load your Kernel Plugln as well as the WinDriver.

To Dynamically load / unload your Kernel Plugln driver ([Your driver
name].VXD / [Your driver name].SYS):

Use the WDREG command as described above, with the addition of the “*
name””flag, after which you must add the name of your Kernel Plugln driver.

259

WINDRIVER DEVELOPER?®S GUIDE

For example, to load your Kernel Plugin driver called KPTest.VXD or
KPTest.SYS, use:

WDREG -name KPTest install
(You should not add the .V XD or .SYS extension to your driver name).

WDREG allows you to install your driver in the registry under a different name
than the physical file name.

USAGE: WDREG -name [Your new driver name] -file [Your original driver
name] install

For example, typing the following:
WDREG -name “Kernel Plugin Test™’-file KPTest install

Installs the KPTest. VXD or KPTest.SYS driver under a different name.

Linux

To dynamically load WinDriver on Linux, execute:
> /shin/insmod —f /lib/modules/misc/windrvr.o
To dynamically unload WinDriver, execute:

> /sbin/rmmod windrvr

260

WINDRIVER DEVELOPER?*S GUIDE

Chapter

Distributing your driver

Read this chapter in the final stages of your development. This chapter guides
you in creating the distributable package from your driver alongside of the
WinDriver.

Get a valid license for your WinDriver

To purchase your WinDriver license, fill in your order form
(\windriver\docs\order.txt), and fax or email it to KRFTech (you may find the

full details on the order form itself).

Alternatively, you may order WinDriver on-line. See http://www.krftech.com
for more details.

261

WINDRIVER DEVELOPER?®S GUIDE

Windows 9x and NT/2000

Copy VD or SYS files to target computer
In the driver installation script you create, you must copy the following files to
the target computer (the one you will install your driver on):

- For Windows NT: Copy WINDRVR.SYS file to
CAWINNT\SYSTEM32\DRIVERS

- For Windows 95: Copy WINDRVR.VXD file to
CAWIN9S\SYSTEM\VMM32

USB developers:

. Copy WINDRVR.SYS and WDUSB.SYS files to
C:\WINNT\SYSTEM32\DRIVERS (Windows 2000)
C:\WIN98\SYSTEM32\DRIVERS (Windows 98)

If you have created a WinDriver Kernel Plugin as well, copy your Kernel
Plugin driver ([Your driver name].VXD or [Your driver name].SYS) to the
relevant directory..

Add WinDriver to the list of Device Drivers

Windows loads on boot

This is done by calling WDREG.EXE install > You can add the WDREG
source code (found in \windriver\samples\wdreg\wdreg.cpp) to your own
installation code, in order to install WinDriver.

If you have created a WinDriver Kernel Plugin aswdll, call “ WDREG.EXE
-name[Your driver name] ingtal”. You can add the WWDREG “source code
(found in \windriver\samples\wdreg\wdreg.cpp) to your own installation
code, in order to install WinDriver.

Please see the chapter on Dynamically loading your driver *for more details on
WDREG.EXE

262

WINDRIVER DEVELOPER?*S GUIDE

Creating an .INF file

Device information (INF) files are text files, that provide information used by
the "Plug and Play" mechanism in Windows 95/98/2000 to install software
that supports a given hardware device. INF files are required for hardware that
identifies itself, such as USB and PCI. The INF file includes all necessary
information about the device(s) and the files to be installed. When hardware
manufactures introduce new products, they must create INF files to explicitly
define the resources and files required for each class of device.

In some cases, the .INF file of your specific device is included in the .INF files
supplied with the operating system. In other cases, you will need to create an
INF file for your device. The Driver wizard can generate an INF specific for
your Card/device. The INF is used to tell the OS that the selected device is
now handled by WinDriver.

Why should | create an INF file?
1. To stop the 'new hardware wizard' of the Windows operating system from
poping up after boot.

2. Insome cases the OS doesn't initilaze the PCI configuration registers in
Win98 without an INF file.

3. Insome cases the OS doesn't assign phyiscal address to USB devices
without an INF file.

4. To load the new driver created for the card\device. Creating an INF file is
required whenever developing a new driver for the hardware.

5. To replace the existing driver with a new one.

263

WINDRIVER DEVELOPER?®S GUIDE

How do | install an INF file when no driver exists?

When no driver exists for your hardware, use the DriverWizard to generate an
INF file for your card\device (the INF file includes your device VID/PID and
loads WDUSB.SY'S as your device driver).

Save the file under C:\temp\mydevice.INF (or any other name or location
you choose). For instructions on how to generate the INF file see the
'DriverWizard' chapter.

Go to: Start | Settings | Control Panel | System
Use the operating system Add new hardware *wizard to add and register the

INF file created with WinDriver. In the relevant screen enter the path of
the new .INF file created with WinDriver.

How do | replace an existing driver using the INF file?
Windows N'T 2000:
Use the DriverWizard to generate an INF file for your card\device (the
INF file includes your device VID/PID and loads WDUSB.SYS as your
device driver). Save the file under C:\temp\mydevice.INF (or any other
name or location you choose). For instructions on how to generate the INF
file, see the DriverWizard “chapter.
Go to: Start | Settings | Control Panel | System
Click Button: Device Manager in the "Hardware™ tab
Menu: View | Devices by connection
For PCI cards: In Tree: Standard PC | PCI bus | <your_card>

For USB devices: In Tree: Standard PC | PCI bus | PCI to USB Universal
Host Controller | USB Root Hub | <the current driver for the device>

Menu: Action | Properties

264

WINDRIVER DEVELOPER?*S GUIDE

Click Button: Update Driver in the "Driver" tab.

In DriverWizard: click button: Next

Radio selection: Search for a suitable driver for my device
Click "Next" Button

Check box selection: only Specify a location

Click "Next" Button

Enter the path: c:\temp\<your .INF file>

Click "OK" Button

Click "Next" Button

Click "Finish™ Button

Reboot

Windows 98:

Use the DriverWizard to generate an INF file for your card\device (the
INF file includes your device VID/PID and loads WDUSB.SYS as your
device driver). Save the file under C:\temp\mydevice.INF (or any other
name or location you choose). For instructions on how to generate the INF
file see the The DriverWizard "chapter.

Go to: Start | Settings | Control Panel | System

Click radio: View devices by connection in the "Device Manager" tab.

265

WINDRIVER DEVELOPER?®S GUIDE

For PCI cards: In Tree: Standard PC | PCI bus | <your_card>

For USB devices: In Tree: Computer | Plug and Play BIOS | PCI bus |
PCI to USB Universal Host Controller | USB Root Hub | <the current
driver for the device>

Button: Properties

Click Button: Update Driver in the "Driver" tab
Click "Next" Button

Check box selection: only Specify a location
Enter the path: c:\temp\<your .INF file>
Click Button: OK

Click "Next" Button

Click "Finish™ Button

Reboot

For Windows CE

Copy WinDriver Kernel DLL file to target

computer
In the driver installation script you create, you must copy the following files to
the target computer (the one you will install your driver on):

For Windows CE handheld computer installations:

266

WINDRIVER DEVELOPER?*S GUIDE

Copy WINDRVR.DLL file to \WINDOWS on your target Windows CE
computer

For Windows CE PC:

- Copy WINDRVR.DLL % FLATRELEASEDIR% and use
MAKEIMG.EXE to build a new Windows CE kernel NK.BIN. You
should modify PLATFORM.REG and PLATFORM.BIB appropriately
before doing this by appending the contents of the supplied files
PROJECT_WD.REG and PROJECT_WD.BIB respectively. This process
is similar to the process of installing WinDriver CE Beta on a CE PC /ETK
installation as described in Chapter 3 —INSTALLATION AND SETUP.

Add WinDriver to the list of Device Drivers
Windows CE loads on boot

For Windows CE handheld computer installations, please modify the registry
according to the entries documented in the file PROJECT_WD.REG. This
can be done using the Windows CE Pocket Registry Editor on the handheld
CE computer or by using the Remote CE Registry Editor Tool supplied with
the Windows CE Platform SDK. You will need to have Windows CE Services
installed on your Windows NT Host System to use the Remote CE Registry
Editor Tool.

For Windows CE PC/ETK, the required registry entries are made by
appending the contents of the file PROJECT_WD.REG to the Windows CE
ETK configuration file PROJECT.REG before building the Windows CE
image using MAKEIMG.EXE. If you wish to make the WinDriver kernel file
a permanent part of the Windows CE kernel NK.BIN, you should append the
contents of the file PROJECT_WD.BIB to the Windows CE ETK
configuration file PROJECT.BIB as well.

267

WINDRIVER DEVELOPER?®S GUIDE

268

WINDRIVER DEVELOPER?*S GUIDE

Appendix

Appendix

PC-Based Development Platform Parallel Port
Cable Specification (For Windows CE)

To use the parallel port shell utility (Ppsh) to transfer a Windows CE image
from your development workstation to a PC-based hardware development
platform, a custom parallel cable is required. This cable requires a DB-25 male
connector at both ends, with pins mapped as follows:

1

2

10

Same

Same

Same

Same

Same

269

WINDRIVER DEVELOPER?®S GUIDE

7 Same
8 Same
9 Same
10 1

11 14
12 16
13 17
14 11
15 Not Connected On Either End
16 12
17 13
18 Same
19 Same
20 Same
21 Same
22 Same
23 Same
24 Same
25 Same

270

WINDRIVER DEVELOPER?*S GUIDE

To order this cable, contact Redmond Cable:
Redmond Cable
15331 NE 90th Street

Redmond, WA 98052

Telephone: (425) 882-2009
Fax: (425) 883-1430

Part Number: 64355913

Limitations on demo versions

Windows 9x and NT/2000

A DEMO MESSAGE will appear at every first use of WinDriver
in each session.

WinDriver will function for only 30 days after the original
installation.

Windows CE

A DEMO MESSAGE will appear at every first use of WinDriver in
each session.

The WinDriver CE Kernel (windrvr.dll) will operate for no more then
10 minutes at a time.

WinDriver CE emulation on Windows NT will stop working after 30
days.

271

WINDRIVER DEVELOPER?®S GUIDE

Linux
The Linux Kernel will work for no more then 10 minutes at a time.

Version history list

NEW IN V2.02

Header files can now be compiled under Borland C/C++
compiler.

Anonymous unions were changed in structures WD_TRANSFER
and WD_CARD.

NEW IN V2.10

For memory mapped cards, changed item dwUserAddr to
dwTransAddr.

Use dwTransAddr when calling WD_Transfer(). added
dwUserDirectAddr for direct memory transfers without calling
WD _Transfer(). dwUserDirectAddr NOT YET
IMPLEMENTED.

NEW IN V2.11

For PCI cards: Structure used for calls to WD_PciScanCards() was
changed.

Use pciScan.searchld.dwVendorld and pciScan.searchld.VVendorld
and the same for dwDeviceld.

272

WINDRIVER DEVELOPER?*S GUIDE

NEW IN V2.12

For memory mapped cards: you can now directly access the
memory region, without calling WD _ Transfer(). the pointer to the
memory region is returned in dwUserDirectAddr returned by

WD _ CardRegister().

DMA transfers: DMA contiguous buffer allocation by WinDriver
is available by setting dwOptions =
DMA_KERNEL_BUFFER_ALLOC, when calling
WD_DMALock(). the linear address of the buffer allocated will be
returned in pUserAddr, and the physical address in Page[0]. the
buffer is available until calling WD_DMAUnlock().

NEW IN V3.0

Added DriverWizard to package. DriverWizardenables the
programmer to ftalk and fisten *to his card via a windows user-
interface. TheDriverWizardthen creates the source code for the
driver.

DMA option DMA_LARGE_BUFFER added for locking regions
larger then 1IMB.

Removed limitation of 20 concurrent DMA buffers in use.

NEW IN V3.01

Support for Win98 and Windows 2000

NEW IN V3.02

Minor improvements in DriverWizard

273

WINDRIVER DEVELOPER?®S GUIDE

Supports Windows NT checked build

NEW IN V3.03

Enhanced support for Multi-CPU Multi-PCI bus

Corrected the interrupt count value returned by WD_IntWait.
NEW IN V4.0

WinDriver Kernel Plugln - allows running parts of the driver code
from the Kernel Mode.

Sleep function - For accessing slow hardware.
ISA Plug and Play support.

Debugging monitor - Allows tracking of errors, warnings and trace
messages from the WinDriver 3 kernel module.

Dynamic driver loader - WinDriver enables the driver created to be
loaded and unloaded without rebooting the machine.

Enhanced source code generation for interrupts - DriverWizard
creates full interrupt source code.

PLX 9050 library enhancements - EEPROM read/write support
functions and Enhanced interrupt handling.

NEW IN VERSION 4.1
New support for Linux, Windows CE and Alpha NT.
Support for ISA PnP cards.

Support for PCMCIA cards in Windows CE.

274

WINDRIVER DEVELOPER?*S GUIDE

Graphical KernelTracer introduced.

Robust support for Delphi and VB (Visual Basic). More Delphi and
VB samples.

New support for the PLX 9054 and 9080 chipsets. Support includes
EEPROM access and bus master DMA implementation.

Support for Galileo GT64 chipsets.
V4.1 Includes The Enhanced WinDriver Wizard:
Automatic Vendor and Device detection.

Automatic handling and code generation for Level sensitive
interrupts.

Wizard allows multiple concurrent register and memory dialogs.

Improved GUI.

275

WINDRIVER DEVELOPER?®S GUIDE

Purchasing WinDriver

Choose the WinDriver product that suits your needs:
Choose WinDriver *for NT/2000 or 9x support.

Choose WinDriver Bundle *for Windows NT/2000 and 9x
support (no re-writing or re-compiling needed).

Choose WinDriver CE *for Windows CE support.
Choose WinDriver Linux *for Linux support.

Choose WinDriver Alpha NT *to run your driver on the Alpha
NT platform.

Choose WinDriver ToolBox ™to receive all the above operating
systems support in one package. The driver you develop will run
under all supported environments.

Fill in the order form found in Start/WinDriver/Order Form on your
Windows start menu, and send it back to KRFTech via email/fax/mail (see
details below).

Your WinDriver package will be sent to you via Fedex / Postal mail. The
WinDriver license string will be emailed to you immediately.

E-MAIL

Support: support@krftech.com
Sales: sales@krftech.com

Services: services@krftech.com

276

WINDRIVER DEVELOPER?*S GUIDE

PHONE / FAX

Phone:
USA (Toll-Free): 1-877-514-0537
Worldwide: +972-9-8859365
Fax:
USA (Toll-Free): 1-877-514-0538

Worldwide: +972-9-8859366

WEB

http.//www.krftech.com/

ADDRESS

KRFTech

7 Giborei Isarel St.
P.O.B. 8493
Netanya 42504
ISRAEL

277

WINDRIVER DEVELOPER?®S GUIDE

Distributing your driver - legal issues

WinDriver is licensed per-seat. The WinDriver license allows for one developer
to develop an unlimited number of device drivers, and to freely distribute the
created driver without royalties.

You may not distribute the windrvr.h file, or any source file that describes the
WinDriver 3 functions. Please see the \windriver\docs\license.txt file for the
full WinDriver license agreement.

278

WINDRIVER DEVELOPER?*S GUIDE

279

