| GoTo w |

DataDirect Developer’s Toolkit
Programmer’s Guice

Table of Contens

(LISt OF TADIES ..o ix |
[Using this Manualc.coovouvevevereeerereeerenennnn, Xi |
Conventions Used in This Manualccccccoiiiiiiiiiiiiee i Xii
TEIMINOIOGY ...ttt Xiii
Environment-Specific INformationccccccvviiiiiiiiiiiiiiees Xiii
Part 1. Using DTK

(1 Getting Starte..........cccuueeveeeeeeeeeieeeeeeeeeeeeaaaann. 1]
About the DataDirect Developer’'s TOOIKItcoouiiiiiiiiiiiiiiiieeees 1
Distributing INTERSOLV's Database DIiVerscccccccoiiiniiivinieennenenn. 2
INSTAIING DTK oo 3
Building @ DTK APPHCALIONveviiiiiiiiiiiiiie e 4
What Can You Do With DTK? ... 4

What Is a DTK Application?cccvviiiiiiiiieie e 6

SaAMPIE ProgramS......ccoii ittt 9

Solving Problems and Getting Technical SUPPOrt...........ooocvvvvveeeeennnn. 15
Product DOCUMENTALIONceviiieeiiiiiiiiiiiee et 15
Technical Support for Registered USErs...........oovvvvvvvvieinennininennnnn. 15

Before You Callccceeiiiiieeieieee e 16

Calling for Technical SUPPOIT.......ccovveiiiiiiiiiiiieeee e 17

DataDirect Developer’s Toolkit Programmer’s Guide

| GoTo w | Table of Contents
2 Connecting to Databases..........ccccccciiinn. 19
Connecting to a Databasecccvvvevi 20
Initializing and Terminating DTK ...t 22
Getting Setup and Version Information............ccccccevevveeiiiiiiiieieeeeen. 23
|3 Executing SQL Statements.............ccccoeveverrnnnen., 25|
Executing SQL State€mMENtS.......ccvvvieiiiiiiiiiiiieeeeeee e 25
Using Statement Parameters..........coouviiiiiiiiiiieiieeeee e 28
UsSIiNg Stored ProCEAUIES..........uuiiiiieieieiieiiie et 33

Join Behavior iN DTKeiiiiiiiiiii e 35
|4 Retrieving and Converting Data............................ 37|
Fetching RECOIAS........ccoiiiiiee e 37
Binding Data to COIUMNS........ccooiiiiiiiee e 411

UsiNg geVal FUNCLIONS.........ouiiiiiiiiiiiieec e 43
Comparing geBindCol and geVal Techniques.........ccccccevvvevevernnne. 46

Getting Column INfOrmMatioNueeeiiiiieiiiiiiee e 47
Converting Data TYPES ...coeeeiiiiiiiiiieee et 50

Data TYPES iN DTK ...oiiiiiiiiiiieeeet et 53
Fixed and Variable Character Strings........ccccccvvvviiiiiiiiiiieeeinns 54
Date-Time ValUESc.c.eviiiiiiiiieeeeee et 54

Decimal Number FOrmat ... 55

Binary and Date-Time CONSIANTSuvveeieiieeeiiiiiiiieieeeee e e 56

BIODS and MEMOS........cuiiiiiiiiiiieecee e 57
NUITVAIUES ..o 58

LogiCal VAlUBS ... 59

FOrMAL SIHNGS «oeeeeeieeeeee e 59
NUMETIC FOrmMat StriNgSevvviieieiiiiiiieeee e 60

DataDirect Developer’s Toolkit Programmer’s Guide

iv

|GoTo v|

Table of Contents %

5 Modifying Data.......cccoeuuvuiiniiiiiiiiiiii e 71
Current-Record FUNCHIONSccuviiiiiiiiiieeeee e 71
Column FUNCLIONS ..ot 74

RECOrd FUNCHIONS ...ttt 75

UNIQUE KBYS .ttt ettt e e 78

|6 Using Transaction FUNCHIONS............c..ccoevevennee.., 81
Transaction FUNCLONS.........ouiiiiiiiiieee e 81
Transactions, Locking, and LOGQiNgc.ceeuvririiiimmiieiiieeeee s 84
TPANSACHIONS ...ttt et e e e 84

LOCKING ..ttt 85

(oo o 1T FO PR PP P PP PP PUPPPPPPIN 89
Emulated TranSacCtioNS........c.coviiiiiiiiiiiiiiiiieee e 92
Controlling Statement PersiStencCecccvvveeeieeeeeiiiiiiiieeeeeeeen 92

7 Error Handling and Debugging.........ccccuuviinnnenee. 117
Handling Errors and WarningsS..........cooouviiriiieiiieieeeeee e 119
Debugging Your AppliCatiONS.........ccuveeiiiiiiiiiiieeeeeeee e 120
Tracing Statement and Connection EIMOrsccccveeecieneenenennn. 122

8 QBE and Query Builder Functions..........c........... 127
Using Query By Example and Finding Recordsccccvvvvveenennnn. 127
UsSiNg QBE FUNCHIONSccooiiiiiiiiiieiie ettt 130
Using Query Builder FUNCHONScooooiiiiiiiiiiiieeeeeeeee e 132

The Query Builder Interface..........ccccvviiiiiiieiee e 136
Query BUIAer ICONS.........uiiiiiiiiiieieie e 138

Query Builder Parameters.........coooviiiiiiiiiiiiiieeee e 140

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Table of Contents

19 Utility FUNCTIONS ..o, 143
Using Data Dictionary FUNCLIONScoooiiiiiiiiiiiiiieeeeeeeeeeeeee 143
Parsing SQL Statementscuvviiiiiiiieeeeieie e 147
ODBC Handle CONVEISIONcociiiiiiiiiiieee et 149

Part 2: Function Referene@

[10 DTK FUNCLIONS......vcooeieeeeieeeeeeeeeeeeeeeeeeeeeeeenas 151
Parameter CONVENLIONSooiiiiiiiiice e 151
Parameter Data TYPESuuuueuiieieiiei et 151
Functions That Return POINTErSooviiiiiiiiiiiiieeeeee e 152
Functions that Vary by Data Type or Column Typecccvvvveerenenn. 153

0eBINdCOl fUNCLIONS ... 154
0ECOI FUNCHIONS....ceie ittt 154
QEPUL FUNCHIONS....cciiiiiiiie e 155
geRecSetCondition fUNCHONSooviiiiiiiiiieiieeee e 155
0eVal TUNCHIONScoeiiiiiiiieeee e 156
FUNCHIONS ... 156
Part 3: Appendixes

|[A Data Conversion FUNCLIONS......cccoueivieiieiieiiienns,s 493|
Converting Hexadecimal Values to Binary............cccccceovcivveeiiieneenns 493
Converting to Character Stringsccccceeereiiiiiiiiiiieee e 495
Converting Character Strings to Date Values...........cccccceveeiiiiiiinnnnen. 498
Converting to Decimal NUMDErsccccoeiiiiiiiiiiiiiieeee e 499
Converting to Double-Precision Floating-Point Numbers 502
Converting to Floating-Point NUMDErs...........ccccciiiiiieeiiie 503

DataDirect Developer’s Toolkit Programmer’s Guide

Vi

| GoTo w | Table of Contents

Converting Binary Values to Hexadecimal.............cccccceeveeeiiiniinnnnee, 505
ConVverting tO INTEOEIScoovv ittt 506
Converting to LONG INTEJETSoooeiiiiiiiiiiieee e 507

|B_ For Microsoft Visual Basic Users........................ 509
Using DTK with Visual BaSICccceeeiiiiiiiiiiiiiiiiieeeeeee e 509

A VB EXAMPIC...oiiiiiiiiiii e 510
DTK Functions for Visual BasiC USErS.........cccccvveiieeiiiiiiiiiiiieeeeeeeen 512
Standard DTK FUNCLONSc.ooiiiiiiiiiiiiiieeee e 513
VB-SPeCific FUNCLIONS.........viiiiiiiiieiiiiiie e 513
JEVBFEICANEXL. ...ttt 513
JEVBFEICNPIEV......eiiiiiiiiiee e 516
geVBFetChRANUOMooiiiiiiiiiii e 518
JEVBPULRECOI ...ttt 521
“BUF" FUNCLIONS ...t 524
Allocating BUFfErSuviiiiiiieiiie e 526

DAl TYPES. .. eieeeeeeeeeiere et s 527

C Coding for Single Staement Database

SYSTEIMS .ot 529
WHhY IS ThiS &N ISSUE?eiiiiiiiiiiieeie i 529
Locking CoNSIAerationseeeeieiieeeiiiiiiiiiieieeee e 531
Performance Considerationscccccovviiiiiiiiiiiiieiee e 532
Controlling Read-ahead ACHVILYcevieiiiiiiiiiiiiiieeeee e 534
Preventing Statement ConflictSooovviiiiiiiiii e 536

DataDirect Developer’s Toolkit Programmer’s Guide

vii

| Go To

i I Table of Contents
ID Result and Error Message Codes........................ 537
RESUIL COURS ...t 537
Error Codes and MESSAQJESuuviiiiieeeieiiiiiiiiiiee e 538
Compatibility ISSUES......coooiiiiiiiiii e 553
QELIB 1.0 Compatibility.........oocuveiiiiiiiiiieeiiiiieee e 553
Native Column TYPe SUPPOItc.coviiciiriiiieiieee e 554
Column Width SUPPOIteeveeeiieeiiiiiii e 554
Error CReCKINGccceeiiiiiieiieeee e 555
SQL CompatiDility........oooiiiiiiiiieiee e 555
Issuing Multiple SQL Statementsccvveeeriiiiniiiiiiiieieeeeeeeee 555
SQL Server Character StringS.........coovvviririieiieieee e 556
Obsolete QELIB FUNCHONS ...coooeiiie e 556
geFetchGetOPLIONS. ... 557
geFetchSetOPtIONS ... 557
ODBC CompPatiDilityccoeeeiiiiiiiiiieieeee e 560
Required FUNCHONS.........oooiiiiiieeeeeee e 560
OptioNal FUNCHONS ... 561
IF The QELIB.NIFil. ..o 565|
[QELIBY ..ttt ettt ettt et 565
[PrOGIAMY] .ceieiieeee et 566

DataDirect Developer’s Toolkit Programmer’s Guide

viii

| GoTo w |

List of Tables

Table 2-1.

Table 2-2.
Table 2-3.

Table 3-1.
Table 3-2.

Table 3-3.

Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 5-1.

Functions that Establish or Close Database
CONNECHIONS ..ceeiee et e e e e eens 21

Functions that Initialize and Terminate DTK Programs.. 22

Functions that Retrieve Setup Information and Version

L0701 01T £ 23
Functions that Execute SQL Statements....................... 27
Functions to Use with SQL-Statement Input

Parameters ... 30
Functions that Support Stored-Procedure 1/0

Parameters ... 34
Functions that Fetch Data.........cccccoeeviiiiiiiiieieeeeeeeeeeee, 40
Functions that Bind Data to Columnsccceoeeee. 42

Functions that Return Values from the Current Record. 45
Functions that Return Select-Statement Column Info. .. 49
Functions that Convert Data TYPesSccccvvvveeereeennnnns 50

Functions that Change Column Values in the Current
RECOM ... e 74

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Table 5-2.
Table 6-1.
Table 7-1.
Table 7-2.

Table 8-1.
Table 8-2.
Table 9-1.
Table 9-2.
Table 9-3.

List of Tables

Functions that Operate on the Current Record.............. 75
Functions that Support Transactions...............ccccccooe... 83
Error Handling FUNCLIONSoevvviiiiiiiiiiiiieeeeeen 119

Functions that Log Calls to Database-Connection
and SQL-Execution Functions..............ccoevvevvveiiiinnnnns 122

Functions that Change Query Conditions at Runtime . 130

Functions that Support the Query Builder Tool............ 134
Data Dictionary FUNCLIONS...........cevviieeeiiiiiiiiiiiieeeeeeen 146
Functions that Parse the Active SQL Statement 149
Functions that Access SQLGetInfo...........cceeeeeeeenenn. 150

DataDirect Developer’s Toolkit Programmer’s Guide

X

| GoTo

v |

Using this Manud

This manual is organized to make DTK easy to learn and to provide a
convenient reference guide. You don’t have to read the entire manual to
begin using the product.

Part | contains guidelines and specific information about using DTK to create
applications. Each chapter in Part | describes a specific set of tasks and
related concepts, gives sample applications to illustrate their usage, and lists
the related DTK functions. Chapter 1 describes a sample DTK application
that you can run to better familiarize yourself with DTK’s capabilities.

Part Il is a complete, alphabetical reference to the DTK functions. It begins by
describing some of the parameter conventions employed in the functions.

The appendixes in Part Il contain information tailored to specific tasks and
users. Appendix A describes the data conversion functions that DTK
provides. Appendix B contains information specific to using DTK with
Microsoft Visual Basic®. Appendix C describes considerations and
techniques for coding DTK applications for connection to database systems
that support only one statement per connection. Appendix D lists DTK error
message codes and their corresponding text. Appendix E describes
compatibility issues of interest to users of version QELIB 1.0. Appendix F
describes the contents and format of the QELIB.INI file.

Information on the database drivers supplied with DTK and the SQL
language is provided in the INTERSOLYV driver reference manual that
accompanies this product.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Using this Manual
Conventions Used in This Manual Xii

Conventions Used in This Manual

This manual uses various conventions to aid in its usability. The typography,
terminology, and callouts to environment-specific information used are
intended to make this manual easy to use, regardless of the operating
environment you are using. The following sections describe these

conventions.

Typography

This manual uses various typefaces, fonts, and characters to indicate certain
types of information, as follows:

Convention

italics

bold

bold italics

nonospac e

UPPERCASE

Explanation

Used to identify parameters to DTK functions, to
introduce new terms that you may not be familiar with,
and occasionally for emphasis.

Used to emphasize important information.

Used to identify parameters in syntax descriptions of
DTK function calls. Each such parameter is preceded in
the description by its declared data type.

Code examples or results that you receive.

Indicates the name of a file. For operating environments
that use case-sensitive filenames, the correct
capitalization is used in information specific to those
environments.

DataDirect Developer’s Toolkit Programmer’s Guide

Using this Manual

I Go To hd I Conventions Used in This Manual Xiil

Terminology

This manual uses the following terminology:

® The term ODBC.INI refers to the ODBC.INI file format as defined by the
Microsoft ODBC specification.

® The suffix .DLL refers to a dynamic link library file. Your operating system
may use shared object or shared library files instead.

Environment-Specific Informatio

This manual shows dialog boxes that are specific to Windows. If you are
using DTK on Windows 95, Windows NT, OS/2, Macintosh, or UNIX, the
dialog boxes you see may differ slightly from the Windows version.

DataDirect Developer’s Toolkit Programmer’s Guide

Using this Manual

I Go To hd I Conventions Used in This Manual Xiv

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Part 1: Using DK
1 Getting Startad

This chapter contains the following information to help you get started using
the DataDirect Developer’s Toolkit:

“About the DataDirect Developer’s Toolkit,”"next

“Installing DTK” on page 3

“Building a DTK Application” on page 4

“Solving Problems and Getting Technical Support” on page 15

About the DataDirect Developer’s Toolkit

Whether you are working with spreadsheets, word processors, graphics
packages, or development tools, it is often important to incorporate
information from a database into your application. Unfortunately, most
products provide little or no support for direct access to databases. The
DataDirect Developer’s Toolkit provides a powerful, flexible way for you to
add database access to your applications. DTK contains functions that allow
you to read, insert, update, and delete records from databases.

Many Microsoft® Windows™ or IBM® OS/2® products include a macro or
script language that lets you customize the product or build your own
applications. These macro languages usually provide a way for you to call
functions in Dynamic Link Libraries (DLLs). DTK is packaged as a set of
DLLs, so you can call DTK functions from the macro and script languages of
any application that supports DLLs. Or, you can call DTK functions from
programming languages such as C.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 1 Getting Started
Distributing INTERSOLV'’s Database Drivers 2

Using DTK, you can
® Use a graphics product to build a pie chart from data stored in Oracle.
® Use a spreadsheet product to analyze data stored in SQL Server.

® Use a word processor to write a memo containing last month’s sales
figures stored in DB2.

® Use a development tool to build a data entry screen that stores data in
Paradox.

For a complete list of the databases supported by DTK, refer to the release
notes that accompany the product.

All database operations are performed by sending Structured Query
Language (SQL) statements to the API. SQL is a standard database
language supported by many database systems. For database systems that
do not support SQL, DTK operates directly on the database files to execute
the SQL statements.

The advantage of supporting SQL for all database systems is that you can
build one application that can access data from any database DTK supports.
You don’t have to rewrite your application for each database system. You can
test your application on a local database system and later run it on a different,
server-based database system.

Distributing INTERSOLV’s Database Drivers

With your DTK applications, you are allowed to distribute, royalty free, the
files your application needs to run. These are the DTK’s:

® API library (for example, QELIB.DLL in Windows)

® Graphical Interface library (for example, QEGUInn.DLL in Windows)

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 1 Getting Started
Installing DTK 3

® SQL-support library (for example, QESQLnN.DLL in Windows)
® Utilities library (for example, QEUTLNN.DLL in Windows)

For Windows, Windows 95, and Windows NT, you can also distribute, royalty
free, the Query Builder library (for example, QEQRYnn.DLL in Windows) and
a context-sensitive help file that is called by the Query Builder
(QRYBLDR.HLP)

Please see the README file for your platform for a specific list of the files you
can distribute royalty-free.

You cannot distribute INTERSOLV ODBC drivers included with the
DataDirect Developer's Toolkit. ODBC Drivers are included only for
development and testing purposes. For distributing your application and
ODBC drivers, you can follow either of the following procedures:

® Purchase DataDirect ODBC Drivers from INTERSOLYV for distribution with
your developed application

® Distribute your application without drivers royalty free and require your
customers to purchase the drivers

Either you or your customer can purchase a single driver or multiple copies of
a single driver, as well as the entire DataDirect ODBC Pack from
INTERSOLYV. If would like to obtain a distribution license, please call 1-800-
876-3101 for more information.

Installing DTK

Refer to the installation instructions that accompany this version of DTK for
information on:

® System requirements
® Running the Setup program
® Setting installation options

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 1 Getting Started

I GoTo W I Building a DTK Application 4

Building a DTK Application

This section describes the workings of a DTK application and the various
functions it calls. It contains the following:

® “What Can You Do with DTK?,” next, lists the features that DTK provides
for use in your database applications.

®* “What Is a DTK Application?” on page 6 shows a sample written in C to
illustrate the major parts of a DTK application.

® “Sample Programs” on page 9 describes the SAMPLE.EXE program
provided with DTK and the sample routines it includes, which are reprinted
throughout the chapters of Part I.

What Can You Do with DTK?

DTK provides a multi-database API that works with any database driver that
complies with Microsoft's Open Database Connectivity (ODBC) standard.
With DTK, you can write applications that are usable with any database
system. Porting your application to another database system can be as easy
as changing a single line of code.

DTK also manages all data-type conversion for you. DTK’s data-retrieval
functions automatically convert the native data type for a column into one of
DTK’s eight standard data types, removing any data conversion
considerations that might affect portability. For situations where you need to
use the native data types, DTK provides that capability.

DTK makes it easy to implement powerful features in your applications. With
DTK, your applications can

® Be written using any development tool that can call a DLL, so you can
continue to use your development tools. DTK lets you expand your
capabilities while protecting your investment—don’t worry about having to
write new code or spend time learning new products.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 1 Getting Started
Building a DTK Application 5

Query the system with DTK’s data dictionary functions to determine what
data sources, databases, tables, and stored procedures are available.

Execute SQL statements on all database systems, even non-SQL
database systems.

Retrieve names, data types, and other information about the columns
returned by Select statements.

Scroll backward and forward through the records returned by a Select
statement, even in databases that do not support backward scrolling. You
can also position to a specific record by using its number.

Update and delete records without issuing the SQL statements normally
required to do so. DTK’s current-record functions generate the appropriate
statement for you. You can also insert a record that contains null values
for columns that can be filled in later.

Use transactions to group database operations so that they can be
executed or canceled as a unit. The database drivers included with DTK
let you use transactions even when connected to databases that do not
support them.

Provide your users with a Query By Example (QBE) option that lets them
define retrieval conditions in the fields where those records are displayed.

Use parameters for creating multipurpose SQL queries. DTK’s parameter
functions let you create queries containing parameters in their Where
clauses. With these functions, you can create queries that use the results
of previous queries and that can be modified by end users at runtime.

Search the Select statement’s result set to find records matching certain
conditions using a single function.

Include the Query Builder tool, which lets your users point and click to
create Select statements—even if they don’t know SQL.

Parse the Where, Having, Group By, Order By, and Compute By clause,
or other database-specific condition clauses from a Select statement.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 1 Getting Started
| GoTo w | Building a DTK Application 6

®* Rely on DTK’s enhanced error handling functions when checking for
errors and warning messages from the database system.

® Optimize the application’s performance to suit the types of tasks it
performs and database systems it uses.

® Call stored procedures and handle their results with functions designed
specifically for that purpose.

® Take advantage of Microsoft's ODBC standard for portability among client/
server database systems. All DTK applications are ODBC-compliant. Your
DTK application can function with any ODBC-compliant database driver,
regardless of the vendor that supplies it.

What Is a DTK Applicatior?

A DTK application is any application that calls the DTK API to interact with a
database. Such an application can be written in any programming language
or environment that operates under Windows or OS/2.

The following C program shows part of a typical DTK application.
geSTATUS bindfetch () {

/* This routine denonstrates how to use the bind functions to fetch data * /
/* from Sel ect statenents directly into programvariables. * /

geHANDLE hdbc = 0; /* Handl e to dat abase connection * /
qeHANDLE hstnt = 0; /* Handle to SQ statenent execution * /
eSTATUS res_code; /* Result code from DIK functions * /
char | ast _name [11]

| ong last_name_len = 11

fl oat sal ary

| ong sal ary_l en = sizeof (sal ary)

/* Call geLiblnit to initialize DIK, check for errors. * /
res_code = geLiblnit ()
if (res_code != gqeSUCCESS) return (res_code)

/* Call geConnect to connect to a data source. Check to see * /
/* if hdbc == 0, which indicates that the connection failed. * /

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 1 Getting Started

GoTo w | Building a DTK Application

/*
/*

/*

/*

/*

/*

/*

/*

}

hdbc = geConnect ("DSN=QEDBF") ;
if (hdbc == 0) return (err_handler (hdbc, hstnt))

Call geExecSQ@ to execute the select statement. Check if hstnt == 0, * /
whi ch indicates that the statenent did not execute successfully. * /
hstnmt = geExecSQ (hdbc, "Select |ast_nane, salary fromenp") ;
if (hstnmt == 0) return (err_handler (hdbc, hstnt)) ;

Bind the result colums to programvariables. * /
res_code = geBi ndCol Char (hstnt, 1, last_nane, & ast_nane_len, "")
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

res_code = geBi ndCol Fl oat (hstnt, 2, &salary, &salary_|en)
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

Fetch the records fromthe select statenent. * /
whi | e (geFet chNext (hstnt) == geSUCCESS)
MessageBox (hwid, |ast_nanme, "Bind Fetch", MB_(K)
}

Check for errors, EOF is ok. * /
res_code = qgeErr () ;
if ((res_code != gqeSUCCESS) && (res_code != qeECF))
return (err_handl er (hdbc, hstnt))
Cose the SQ statenent. * /
res_code = geEndSQ@ (hstnt)
hstm =0 ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

Call geD sconnect to disconnect froma data source. * /
res_code = geD sconnect (hdbc)
hdbc = 0 ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

Call qgeLibTermto free nenory allocated by DIK * /
res_code = geLibTerm () ;
MessageBox (hWid, "Sanpl e succeeded.", "Bind Fetch", M _(K)
return (res_code)

geSTATUS err_handl er (geHANDLE hdbc, qeHANDLE hstnt) {

/*
/*

This routine functions as an error handler for the denonstration * /
routines. It displays an error nessage in a nessage box, term nates * /

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 1 Getting Started
| GoTo w | Building a DTK Application 8
/* the active statenent, closes the connection, ends the DIK session, * /
/* and returns the result code fromthe nost recent DIK call. * /
(eSTATUS res_code; /* Result code from DIK functions * /
res_code = qgeErr (); /* Get the DIK error nunber * /
if (res_code > 0) /* Display an error nessage * /
MessageBox (hWid, qeErrMsg (), "Sanple Failed', M_CK) :
el se { /* Display error nunber for negative result codes * /
char buf [10] ;
MessageBox (hwid, itoa (res_code, buf, 10), "Sanple Failed", M_CK)
}
if (hstmt !'= 0) qeEndSQ@ (hstnt); /* End statenent if active * /
if (hdbc '= 0) geDi sconnect (hdbc); /* dose connection if open * /
geLi bTerm (); /* Last call to the DIK APl * /

return (res_code)

This sample illustrates the processes common to most DTK applications:

Initializing and terminating DTK tasks. This is discussed in Chapter 2,
“Connecting to Databases,” on page 19.

Connecting and disconnecting with the database system. This is also
discussed in Chapter 2, “Connecting to Databases,” on page 19.

Executing SQL statements. This is discussed in Chapter 3, “Executing SQL
Statements,” on page 25.

Fetching records and their values. This is discussed in Chapter 4, “Retrieving
and Converting Data,” on page 37.”

Other DTK capabilities and functions not covered in this sample are
discussed in the following chapters:

Chapter 3, “Executing SQL Statements,” on page 25 also describes the
parameter-binding functions that let you use dynamic and user-defined
conditions in the Where clause of SQL statements.

Chapter 4, “Retrieving and Converting Data,” on page 37 also describes the
functions that extract column values from the tables in the current SQL
statement.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 1 Getting Started
Building a DTK Application 9

Chapter 5, “Modifying Data,” on page 71 describes the current-record
functions that let you add, change, or delete records in the database without
issuing SQL statements.

Chapter 6, “Using Transaction Functions,” on page 81 describes the functions
that group database operations so that they can be executed or canceled as
a unit.

Chapter 7, “Error Handling and Debugging,” on page 117 describes the
functions that report errors and that trace the execution of DTK functions.

Chapter 8, “QBE and Query Builder Functions,” on page 127 describes the
functions that let you implement Query By Example and the Query Builder
tool in your application’s user interface.

Chapter 9, “Utility Functions,” on page 143 describes DTK’s data dictionary
functions, which return information on the sources to which you are
connected, as well as the functions for parsing SQL statements and
converting DTK’s connection handles in order to call ODBC functions directly.

Sample Prograns

The DTK disks include a number of sample DTK applications, including the
SAMPLE.EXE program described in the following section.

Running SAMPLE.EXE

The code samples in this book are taken from the program SAMPLE.EXE,
which is included on the DTK diskette. You can run SAMPLE.EXE to both
view and execute each example used in Part I. All of the samples are written
in C.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 1 Getting Started

I GoTo W= I Building a DTK Application 10

= DTK Example 1 h
Example List
Run Code
el
+
«[] -

Running this sample program is a good way to get started with DTK. It
provides a drop-down menu of DTK examples.

To load an example, select it from this menu.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

= DTK Example 1
Example List

Chapter 1 Getting Started
Building a DTK Application

Connecting to a Database
Executing SGL Update Statements
Using Parameters in Update Statements

Reading Records Using qeBindCol
Reading Records Using gqeVal
Getting Column Information

Using Query By Example

Using the Query Builder

Using Transactions

Getting Data Dictionary Information
Parsing SGL Statements

Tracing DTK Calls

Exit

[+

|
[« 1

When you've chosen an example, you can run it by clicking the Run Code

button.

DataDirect Developer’s Toolkit Programmer’s Guide

11

|GoTo v|

Chapter 1 Getting Started
Building a DTK Application

= DTK Example 1
Example List

Run Code

qeSTATUS recordop (){

= This routine demonstrates the use of the qeRec functions. These
= functions operate on the current record of an hstmt resulting from
Iz executing a Select statement. #f

qeHANDLE hdbc =0; = Handle to database connection #f
qeHANDLE hstmt=0; = Handle to SQL statement execution
qeSTATUS res_code; 1+ Result code from DTK functions #f

= Call geLibInit to initialize DTK, check for errors =
res_code = geLiblnit {J;

[+

«[] -

12

Note: You can copy text from this window to another Windows program that
handles text as follows:

1

2

3

4

If you are running Windows or Presentation Manager in a high-resolution

Drag the mouse to highlight the sample code.

Press CTRL + INSERT to copy the highlighted text to the clipboard.

Click in the application where you want to place the sample code.

Press SHIFT + INSERT to paste the copied sample.

mode, some lines of sample code displayed by SAMPLE.EXE will be longer
than the display window. If you find this annoying, and don’t want to change
your resolution, you can use this method to copy the samples to Notepad or
some other application for better viewing.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 1 Getting Started

I GoTo W= I Building a DTK Application 13

The Example List menu lets you choose among the following samples:

® Connecting to a Database
Initializes DTK, connects and disconnects from a database system, and
terminates DTK. This sample is listed in Chapter 2, “Connecting to
Databases,” on page 19.

® Executing SQL Update Statements
Issues a SQL Update statement directly via a DTK function call. This
sample is listed in Chapter 3, “Executing SQL Statements,” on page 25.

® Using Parameters in Update Statements
Uses the parameter binding functions that let you create dynamic SQL
statements to which your users can supply values. This sample is listed in
Chapter 3, “Executing SQL Statements,” on page 25.

® Reading Records Using geBindCol
Fetches and reads record values from the database using DTK’s column
binding functions. This sample is listed in Chapter 4, “Retrieving and
Converting Data,” on page 37.

® Reading Records Using geVal
Fetches and reads record values from the database using DTK’s value
extracting functions. This sample is listed in Chapter 4, “Retrieving and
Converting Data,” on page 37.

® Getting Column Information
Uses one of DTK’s column information functions to get data types for each
column returned by a Select statement. This sample is listed in Chapter 4,
“Retrieving and Converting Data,” on page 37.

® Using Current Record Operations
Changes values in the database using DTK'’s current record functions.
This sample is listed in Chapter 5, “Modifying Data,” on page 71.

® Using Query By Example
Uses the QBE functions to retrieve a record with a first name value
beginning with “T.” This sample is listed in Chapter 8, “QBE and Query
Builder Functions,” on page 127.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 1 Getting Started

I GoTo W= I Building a DTK Application 14

® Using the Query Builder
Calls the Query Builder, an interface that lets users point and click to
create SQL statements. This sample is listed in Chapter 8, “QBE and
Query Builder Functions,” on page 127.

® Using Transactions
Uses DTK functions to group database modifications into transactions.
This sample is listed in Chapter 6, “Using Transaction Functions,” on page
81.

® Getting Data Dictionary Information
Uses one of DTK'’s data dictionary functions to return all of the ODBC-
defined data sources available to the application. This sample is listed in
Chapter 9, “Utility Functions,” on page 143.

® Parsing SQL Statements
Retrieves the Where clause of a SQL statement. This sample is listed in
Chapter 9, “Utility Functions,” on page 143.

® Tracing DTK Calls
Uses the functions that let you trace DTK and ODBC calls. This sample is
listed in Chapter 7, “Error Handling and Debugging,” on page 117.

Running Other Sample Programs

In addition to the SAMPLE.EXE program, several other sample programs are
included on the DTK disks. These sample programs were installed with DTK
if you selected the option to do so when running the Setup program.

To see a list of these programs, open the README.HLP file that was installed
in your DTK directory. You can double-click on this file from the File Manager
to view it. The help window that appears includes short descriptions of each

sample program.

If you did not install the sample programs when installing DTK, you can rerun
the Setup program from the first DTK disk to install them without reinstalling
DTK.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 1 Getting Started
Solving Problems and Getting Technical Support 15

Solving Problems and Getting Technical Support

INTERSOLYV gives you a variety of options for choosing the kind of technical
support that fits your needs.

Product Documentatian

This product provides both printed manuals and online Help files. Take time
to explore these information sources; they are designed to help you learn
how to use the product and also serve as reference material for daily use.

This manual describes DTK'’s functionality and provides reference
information. The INTERSOLYV database driver reference that accompanies it
covers the database drivers included with the product; see this book for
driver-specific information about system requirements, connection string
options, and the particular implementation of SQL.

Technical Support for Registered Uses

Please register your product immediately by sending in the registration card
enclosed in your product box. Upon registration, you are automatically
entitled to the following services:

® FaxPLUS can send you the latest marketing and technical information on
INTERSOLYV products, 24 hours a day, seven days a week. Call FaxPLUS
from any touch-tone phone, and have your fax number ready. When
calling FaxPLUS, you can learn how the system works, order individual
documents, or order a catalog of documents. The FaxPLUS number is 1-
800-432-3984.

® INTERSOLV’s CompuServe forum offers 24-hour access to information.
You can download files for review or installation, and share information
with other users. To use this forum, type GO INTERSOLV. If you do not
know your local access number for CompuServe, call 1-800-848-8990.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 1 Getting Started

| GoTo = | Solving Problems and Getting Technical Support 16

ServiceDirect is our solution for ensuring ongoing success with your
INTERSOLYV product. With ServiceDirect coverage, you are entitled to:

For more ® Answerline Services. Technical experts are available through the toll-free
information about Answerline number to share their experience in using INTERSOLV
these services, call products.

INTERSOLV’s

ServiceDirect ¢ Product Maintenance Releases. Maintenance releases provide periodic
Department at enhancements to current products with more frequent updates.

(800) 443-1601. ®* New Product Releases. You can leverage your investment by updating

your current technology with new product releases, which provide
enhanced functionality.

® Technical Bulletins. These bulletins provide product-specific tips,
techniques, and technical routines to keep you proficient in current
products.

® The INTERLINK Customer Newsletter. INTERLINK keeps you informed
about current products, support and services, courses, user groups, and
conferences.

Our Implementation Services Group offers a wide range of services that
include customized training, installation and tuning, mentoring, ODBC-
compliant application testing, and consulting. Contact the Implementation
Services Group by phone at (800) 443-1601 or by fax at (301) 230-3314.

Our Educational Services Department offers a wide range of prescheduled
classes. Call 1-800-443-1601 to obtain more information on these classes.

Before You Cal

Before you call for technical support, please try to learn as much as you can
about the problems you are experiencing. Our Technical Support
representatives can address your problems much faster if you have all the
information they need when you call.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 1 Getting Started

| GoTo w | Solving Problems and Getting Technical Support 17

To streamline the problem-solving process, follow these steps before calling
INTERSOLV Answerline:

® Gather basic information about your system to help us understand the
environment in which you are working.

® Identify the category of your product usage so that you can effectively
prepare for telephone support.

® Troubleshoot to learn more about the nature of the problem.

Calling for Technical Suppot

If you live in North America, call INTERSOLV Answerline at (800) 443-1601.
Technical support representatives can take your call from 8:30 a.m. to 8 p.m.
EST.

If you live in another location, call the international distributor nearest you. Be
sure to read the online Help for support information and requirements that are
specific to your geographic location.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 1 Getting Started

| GoTo = | Solving Problems and Getting Technical Support 18

DataDirect Developer’s Toolkit Programmer’s Guide

| GoTo

v |

2 Connecting to Databasas

This chapter discusses the database connection functions and the DTK
initialization and termination functions.

The following sample code shows how to initialize DTK, connect and
disconnect from a database system, and terminate DTK. To load this sample
in the SAMPLE.EXE program, choose Connecting to a Databa® from the
Example List.

geSTATUS connect () {

/* This routine connects to the dBASE driver, and then di sconnects. * /
geHANDLE hdbc = 0; /* Handl e to dat abase connection * /
qeHANDLE hstnt = 0; /* Handle to SQ statenent execution * /
eSTATUS res_code; /* Result code from DIK functions * /

/* Call geLiblnit to initialize DIK, check for errors. * /

/*
/*

/*

/*

/*

res_code

geLiblnit ()

if (res_code != gqeSUCCESS) return (res_code)

Call geConnect to connect to a data source. Check to see * /
if hdbc == 0, which indicates that the connection failed. * /
hdbc = geConnect (" DSN=CQEDBF")

it (hdbc

0) return (err_handler (hdbc, hstnt))

Insert code here to execute SQ statenents, fetch records, etc. * /

Cal | geD sconnect to disconnect froma data source. * /

res_code =
hdbc = 0 ;

geDi sconnect (hdbc)

if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))
Call qeLibTermto free nenory allocated by DIK * /

res_code

geLi bTerm ()

MessageBox (hwid, " Sanpl e’ succeeded. ", "Connect", MB_(K)
return (res_code)

}
geSTATUS err_handl er (geHANDLE hdbc, qeHANDLE hstnt) {

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 2 Connecting to Databases
| GoTo w |

Connecting to a Database 20

/* This routine functions as an error handl er for the denonstration * /
/* routines. It displays an error nessage in a nmessage box, terminates * /
/* the active statenent, closes the connection, ends the DIK session, * /
/* and returns the result code fromthe nost recent DIK call. * /
(eSTATUS res_code; /* Result code from DIK functions * /
res_code = qgekErr (); /* Get the DIK error nunber * /
if (res_code > 0) /* Display an error nessage * /
MessageBox (hwid, geErrMsg (), "Sanple Failed", MB (X) ;
el se { /* Display error nunber for negative result codes *
char buf [10]
MessageBox (hwid, itoa (res_code, buf, 10), "Sanple Failed", M_CK)
}
if (hstmt !'= 0) qeEndSQ@ (hstnt); /* End statenent if active * /
if (hdbc '= 0) geDi sconnect (hdbc); /* dose connection if open * /
gelLi bTerm (); /* Last call to the DIK APl * /
return (res_code)
}

The geConnect, geDisconnect, geLiblnit, and geLibTerm functions used in
this example are described in the following sections.

Connecting to a Database

Before you can send SQL statements to a database system to be executed,
you must open a connection to the database system.

Table 2-1 lists the functions DTK provides for establishing and closing a
database connection:

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 2 Connecting to Databases
Connecting to a Database 21

Table 2-1. Functions that Establish or Close Database Connectien

Function Result

geConnect Opens a database system connection
geGetLoginTimeout Returns the current login timeout value
geSetLoginTimeout Sets the login timeout. The default is 15 seconds
geSetDB Sets the default database for the application

The geConnect function connects your application to a database system. The
parameters to geConnect identify the database system. geConnect returns a
handle to a database connection, or hdbc. The hdbc identifies the connection
and is a parameter to other functions.

When using a database system that lets you store tables in separate
databases, you can set the default database for your application with a call to
geSetDB. Once geSetDB sets the default database, all subsequent SQL
statements will be sent to that database.

The geDisconnect function closes a connection. The parameter to
geDisconnect is the hdbc returned by geConnect. Once you have called
geDisconnect, you cannot perform any other functions on this connection.

You can have several connections open simultaneously. For example, to
copy records from a Paradox file to an Oracle database, you would use one
connection to Paradox and a second one to Oracle.

Note: You connect to a database system (such as dBASE, Paradox, Oracle,
SQL Server), not to a specific file or table. The SQL statements identify the
files or tables that are to be accessed.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 2 Connecting to Databases

I GoTo W= I Initializing and Terminating DTK 22

Initializing and Terminating DTK

Two DTK functions, geLiblnit and geLibTerm, specify the beginning and end
of a DTK program. If you write a multi-threaded application, you should call
these functions to initialize and terminate each thread of execution. Table 2-2
lists the functions.

Table 2-2. Functions that Initialize and Terminate DTK Program

Function Result
geLiblnit Initializes DTK.
geLibTerm Terminates DTK.

geLiblnit should be the first DTK function that your application calls. Calling
geLiblnit ensures that DTK will allocate the memory resources that it needs.
Calling geLibTerm ensures that those memory resources are freed as soon
as they are no longer needed.

DataDirect Developer’s Toolkit Programmer’s Guide

o T Chapter 2 Connecting to Databases
| GoTo w | Getting Setup and Version Information 23

Getting Setup and Version Information

Table 2-3 lists the functions DTK provides for retrieving setup information and
version numbers:

Table 2-3. Functions that Retrieve Setup Information and Version

Numbers

Function Result

geSetupinfo and The information entered when DTK was installed
geSetuplinfoBuf

geVerNum and The number of the DTK version you are using
geVerNumBuf

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 2 Connecting to Databases

I GoTo W= I Getting Setup and Version Information 24

DataDirect Developer’s Toolkit Programmer’s Guide

| GoTo w |

3 Executing SQL Statemens

This chapter describes the use of DTK’s SQL execution and statement
parameter functions in the following sections:

* *“Executing SQL Statements,” next, describes DTK’s SQL statement
preparation and execution functions.

® *“Using Statement Parameters” on page 28 describes the functions that let
you use parameters within the Where clause of SQL statements.

® *“Using Stored Procedures” on page 33 describes the functions that let you
use input and input/output parameters in stored procedures.

® *“Join Behavior in DTK” on page 35 describes how DTK behaves when
working with records from joined tables.

Executing SQL Statements

The following sample code shows one way to execute a SQL statement from
DTK.

To load this sample in the SAMPLE.EXE program, choose Executing SQL
Update Statemens from the Example List.

geSTATUS dm () {

/* This routine denonstrates how to execute an SQL Update statenent. * /
geHANDLE hdbc = 0; /* Handl e to dat abase connection * /
qeHANDLE hstnt = 0; /* Handle to SQ statenent execution * /
eSTATUS res_code; /* Result code from DIK functions * /
| ong nodr ecs

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 3 Executing SQL Statements

GoTo w | Executing SQL Statements

/*

/*
/*

/*

/*

/*

/*

/*

/*

/*

Call geLiblnit to initialize DIK check for errors. * /
res_code = geLiblnit ()
if (res_code != gqeSUCCESS) return (res_code)

Call geConnect to connect to a data source. Check to see * /
if hdbc == 0, which indicates that the connection failed. * /
hdbc = geConnect ("DSN=CEDBF") ;
if (hdbc == 0) return (err_handl er (hdbc, hstnt))

Call geExecSQL to execute the update statement. Check if hstnmt == 0, * /
whi ch indicates that the statenent did not execute successfully. * /
hstmt = geExecSQ (hdbc, "Update enp set first_name = 'Joe' where first_nane

"Richard ") ;
if (hstnmt == 0) return (err_handler (hdbc, hstnt))
Fi nd out how many records were affected by the statenent. * /
nodrecs = geNunbvbdRecs (hstnt)
if (qeErr () !'= qeSUCCESS) return (err_handl er (hdbc, hstnt))
dose the statenent. * /

res_code = geEndSQ@ (hstnt)
hstm =0 ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

Call geD sconnect to disconnect froma data source. * /
res_code = geD sconnect (hdbc)
hdbc = 0 ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

Call qeLibTermto free nenory allocated by DIK * /
res_code = geLibTerm () ;
MessageBox (hwid, "Sanpl e succeeded.”, "SQ Update Statenent”, M _CK)
return (res_code)

err_handl er routine goes here. * /

26

This sample on page 25 shows how to use the geExecSQL, geEndSQL and

geNumModRecs functions.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 3 Executing SQL Statements

Executing SQL Statements 27

Table 3-1 shows the entire set of DTK SQL statement execution functions.

Table 3-1. Functions that Execute SQL Statemerst

Function
geExecSQL
geSQLPrepare
geSQLExecute

geSetSQL
geAppendSQL
geMoreResults

geNumModRecs

geEndSQL

geSetQueryTimeout

geGetQueryTimeout

geSetOneHstmtPerHdbcOp
tions

geGetOneHstmtPerHdbcOp
tions

Action
Prepares and executes a SQL statement
Prepares a SQL statement for execution

Executes a statement that was prepared with
geSQLPrepare.

Places a partial statement in the SQL buffer.
Appends text to the SQL buffer.

Begins a new result set from stored procedures or
multiple SQL statements.

Returns the number of records modified by a SQL
statement.

Ends the execution of a SQL statement. It is important
to call qeEndSQL to free system resources.

Sets the time to wait for a SQL statement to execute
before returning to the application

Returns the time to wait for a SQL statement to
execute before returning to the application

Provides control over DTK behavior when connected
to databases that support only one statement per
connection.

Returns the flag settings that determine DTK behavior
when connected to databases that support only one
statement per connection.

Once you have opened a connection, you can send SQL statements to the
underlying database system. The geExecSQL function prepares and
executes a SQL statement. The parameters to geExecSQL are the hdbc of

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 3 Executing SQL Statements

| GoTo = | Using Statement Parameters 28

the connection to use and the SQL statement. geExecSQL returns a handle
for the statement (hstmt). The hstmt identifies the statement and is a
parameter to other functions that operate on the statement.

When the SQL statement is a Select statement, qeExecSQL does not return
the resulting records. The records are read using the data fetching functions
described in Chapter 5, “Modifying Data,” on page 71.

The qeSQLPrepare and geSQLExecute functions are provided for when you
want your application to process a SQL statement. For example, to issue a
SQL statement containing parameters, you first call geSQLPrepare to
prepare the statement—place it in the statement buffer and return a handle to
it (hstmt). You use geSQLEXxecute to execute the statement once the
parameters are bound or set by the parameter functions discussed in the next
section.

The qeEndSQL function terminates a statement and frees the system
resources allocated to it. The parameter you supply to geEndSQL is the
hstmt returned by qeExecSQL or geSQLPrepare. Once you have called
geEndSQL, you cannot perform any other functions on this statement.

Some macro languages (like Excel) limit the length of character strings,
which makes it impossible to send a complete SQL statement to geExecSQL.
For these languages, use the geSetSQL and geAppendSQL functions to
send the SQL statement in parts.

Using Statement Parameters

DTK provides functions that allow you to use parameters in SQL statements.
By using parameters instead of values in a SQL statement, you can improve
the performance of your applications.

The sample on page 29 shows a SQL statement that uses parameters. To
load this sample in the SAMPLE.EXE program, choose Using Parameters in
Update Statemens from the Example List.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 3 Executing SQL Statements

| GoTo = | Using Statement Parameters 29

geSTATUS parans () {

/* This routine denonstrates the use of bound paraneters in SQ Update * /
/* statenents. * /

geHANDLE hdbc = 0; /* Handl e to dat abase connection * /
qeHANDLE hstnt = 0; /* Handle to SQ statenent execution * /
eSTATUS res_code; /* Result code from DIK functions * /
char new_narre[31], ol d_nane[31] ;

| ong new name_|l en = 30, old_nane_len = 30 ;

/* Call qgeLiblnit to initialize DIK, check for errors. * /
res_code = geLiblnit () ;
if (res_code != gqeSUCCESS) return (res_code) ;

/* Call geConnect to connect to a data source. Check to see * /
/* if hdbc == 0, which indicates that the connection failed. * /
hdbc = geConnect ("DSN=QEDBF") ;
if (hdbc == 0) return (err_handler (hdbc, hstnt)) ;

/* Call geSQ.Prepare to prepare the update statenent. The Update statenent * /
/* will change the first_name of an enployee. Check if hstm == 0, * /
/* which indicates that the function did not succeed. * /

hstmt = qeSQ.Prepare (hdbc, "Update enp set first_name = ? where first_nane
= ?") ;

if (hstmt == 0) return (err_handl er (hdbc, hstnt)) ;

/* Bind the paraneters to |ocal variables that contain the paraneter val ues. * /
res_code = geBi ndParantChar (hstnt, 1, new_nane, &iew nane_| en) ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt)) ;

res_code = geBi ndParantChar (hstnt, 2, old_nane, &old_nane_l|en) ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt)) ;

/* Set the paraneters. * /
I strcpy (new_nane, "Joe") ;

new narme_len = |strlen (new_nane) ;
Istrcpy (old_nane, "Tint) ;
old_nane_len = Istrlen (ol d_name) ;

/* Execute the statenent. * /
res_code = geSQ.Execute (hstnt) ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt)) ;

DataDirect Developer’s Toolkit Programmer’s Guide

GoTo W |

Chapter 3 Executing SQL Statements
Using Statement Parameters 30

/*
/*
/*

/*

/*

/*

Not e: To make repeated updates, you sinply change the new nanme and * /
ol d_nane variabl es and call geSQExecute. */
dose the statenent. * /

res_code = geEndSQ@ (hstnt)
hstmt =0 ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

geD sconnect to disconnect froma data source. * /
res_code = geD sconnect (hdbc)

hdbc = 0 ;

if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

geLi bTermto free nenory allocated by DIK * /

res_code = geLi bTerm ()

MessageBox (hwid, "Sanpl e succeeded."”, "Binding Paraneters”, M _(OK)
return (res_code)

err_handl er routine goes here. * /

This sample shows how to use the qeSQLPrepare, geBindParamChar, and
geSQLExecute functions. Table 3-2 lists the entire set of DTK SQL statement
parameter functions.

Table 3-2. Functions to Use with SQL-Statement Input Parameter

Function Results
geBindParamBinary Binds a parameter to a binary variable.
geBindParamChar Binds a parameter to a character variable.
geBindParamDate Binds a parameter to a date variable.
geBindParamDateTime Binds a parameter to a date-time variable.
geBindParamDecimal Binds a parameter to a decimal variable.
geBindParamDouble Binds a parameter to a double-precision floating-
point variable.
geBindParamFloat Binds a parameter to a floating-point variable.
geBindParamint Binds a parameter to a 2-byte integer variable.
geBindParamLong Binds a parameter to a 4-byte integer variable.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 3 Executing SQL Statements
Using Statement Parameters 31

Table 3-2. Functions to Use with SQL-Statement Input Parametsi(cont.)

Function
geBindParamTime
geClearParam
geNumParams

geParamNum

geSetParamBinary
geSetParamChar
geSetParambDate
geSetParamDateTime
geSetParamDecimal
geSetParamDouble

geSetParamFloat
geSetParamint
geSetParamIOType
geSetParamlLong
geSetParamTime
geSetParamNull

Results
Binds a parameter to a time variable.
Clears the value of a parameter.

Returns the number of parameters that
appeared in the statement.

Returns the number of the parameter
corresponding to a specified name.

Sets the value of a binary parameter.
Sets the value of a character parameter.
Sets the value of a date parameter.
Sets the value of a date-time parameter.
Sets the value of a decimal parameter.

Sets the value of a double-precision floating-
point parameter.

Sets the value of a floating-point parameter.
Sets the value of a 2-byte integer parameter.
Sets a parameter’s input/output (10) type.
Sets the value of a 4-byte integer parameter.
Sets the value of a time parameter.

Sets the value of a parameter.

These functions let you create parameterized queries—queries in which
certain criteria are supplied by the user or by other processes within the

program.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 3 Executing SQL Statements
Using Statement Parameters 32

To use parameters in a SQL statement, first call the geSQLPrepare function,
which takes as an argument a SQL statement string that contains question
marks (?) to identify the position of the parameters in the statement.
geSQLPrepare returns the handle to the statement (hstmt) that you use in
other DTK calls. The question marks in the statement may be followed by a
name for the parameter. You can refer to the parameters either by name or by
their order in the SQL statement. To use named parameters, you must call
geParamNum to convert parameter names to numbers.

A parameter can be one of three types: input, output, or input/output. An input
parameter passes a value to the SQL statement, an output parameter stores
a result from an executed SQL statement, and an input/output parameter
does both. Input/output and output parameters are used only with stored
procedures (see “Using Stored Procedures” on page 33). DTK needs to know
whether a parameter is an input, output, or input/output parameter. To set the
parameter input/output (I/O) type for each parameter, use the function
geSetParamlOType, which should be called for every parameter in new code.

Note: If geSetParamlOType is not called, DTK assumes the parameter is an
input parameter. Thus, existing code that works with input parameters will
continue to run without any changes.

Two sets of functions are provided for setting parameter values. The
geSetParam functions assign a value directly to a parameter. The
geBindParam functions bind the parameter to a buffer that holds the value. In
both sets of functions, the second argument is a number representing the
position of the parameter. The geClearParam function removes assigned
values from the parameters. The geNumParams function returns the number
of parameters in the statement.

After you have assigned values to all parameters in the statement, call
geSQLExecute to execute the statement.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 3 Executing SQL Statements

| GoTo = | Using Stored Procedures 33

Using Stored Procedures

As discussed in “Using Statement Parameters” on page 28, DTK provides
functions that let you use parameters in SQL statementsthat are written in
your code, and values must be provided for statement parameters before the
SQL statements are processed. Because the parameters in source-code
SQL statements always provide input values, they are considered input
parameters.

Some database systems let you store compiled sequences of SQL
statements directly in the database; these SQL statements are called stored
procedures. As with the SQL statements in your source code, stored
procedures frequently use input parameters.

Many, though not all, of the database systems that support stored procedures
let you use output parameters with the procedure. An output parameter is a
parameter that stores a result of the SQL statement execution. In some
situations, the same parameter might provide an input value, and then be
used to return a result. In that case, the parameter is considered an input/
output parameter.

To reference a stored procedure in DTK, use a qeSQLPrepare function’s
second argument to pass a call to the stored procedure, then use the
geSQLExecute function to execute the stored procedure. For example,

hdbc = geConnect (“ DSN=CQEDBF") ;
hstm = geSQPrepare (hdbc, “{call DeptNanme(?)}”) ;

res_code = geSQExecute(hstnt) ;
calls a stored procedure named DeptName.

In a stored procedure, DTK needs to know whether a parameter is an input,
output, or input/output parameter. To set the parameter input/output (1/0O)
type, use geSetParamlOType, which you must call for each parameter.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 3 Executing SQL Statements

| GoTo = | Using Stored Procedures 34

The geBindParam functions set the data type of input, output, or input/output
parameters. You must call a geBindParam function for each parameter. For
input parameters, the value in the buffer is used for execution of the SQL
statement or stored procedures. For output parameters, the value generated
for the parameter from the stored procedure is placed into the buffer.

When an application is not binding parameters, the DTK has a set of
geGetParam functions to retrieve parameter values of output parameters
after the qeSQLExecute is complete. These functions are similar to the geVal
functions.

The geBindParam and geSetParam functions tell DTK the data type of each
parameter; however, when the geBindParam functions are not being used,
the geSetParam functions are called to set input and input/output parameters
but not output parameters. To set the data type and size of output
parameters, use geSetParamDataType.

Table 3-3 lists the set of DTK functions that support output and input/output
parameters in stored procedures.

Table 3-3. Functions that Support Stored-Procedure 1/O Parameter

Function Results

geSetParamIOType Sets a parameter’s 1/O type.

geSetParamDataType Sets the data type of a stored procedure’s output
parameters.

geGetParamBinary and Return an output or input/output parameter’s

geGetParamBinaryBuf value as a binary value.

geGetParamBit Returns an output or input/output parameter’s
value as a bit in a 2-byte integer.

geGetParamChar and Return a character string containing the value

geGetParamCharBuf from an output or input/output parameter.

geGetParamDate and Return an output or input/output parameter’s

geGetParamDateBuf value as a date value.

geGetParamDateTime and Return an output or input/output parameter’s

geGetParamDateTimeBuf value as a date-time value.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 3 Executing SQL Statements
Join Behavior in DTK 35

Table 3-3. Functions that Support Stored-Procedure 1/O Parameter

Function Results

geGetParamDecimal and Return an output or input/output parameter’s

geGetParamDecimalBuf value as a decimal value.

geGetParamDouble Returns an output or input/output parameter’s
value as a double-precision floating point number.

geGetParamFloat Returns an output or input/output parameter’s
value as a single-precision floating point number.

geGetParamint Returns an output or input/output parameter’s
value as a 2-byte integer.

geGetParamLong Returns an output or input/output parameter’s
value as a 4-byte integer.

geGetParamTime and Return an output or input/output parameter’s

geGetParamTimeBuf value as a time value.

Join Behavior in DTK

A join combines two or more database tables in one SQL Select statement.
The joined tables must share a common column having values that can be
compared to join the records in each table. For example, the following Select
statement creates a join of the tables EMP and DEPT:

SELECT first_nane, |ast_nane, dept, dept_name
FROM enp, dept WHERE enp. dept = dept . dept _i d

The EMP and DEPT tables can be joined because the DEPT and DEPT_ID
columns contain department ID values that join the records for each
employee with those for each department.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 3 Executing SQL Statements

I Go To hd I Join Behavior in DTK 36

DTK allows you to issue SQL statements that join multiple tables in the same
database system. The joins are performed by the database system, not by
DTK, so you cannot join tables from different database systems. For systems
that separate tables into multiple databases, DTK can join tables in separate
databases if the database system supports such joins.

DTK allows you to update records returned from joined tables, but you cannot
insert or delete them.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

4 Retrieving and Converting Daa

This chapter describes the DTK functions that retrieve record and column
information, as well as the functions that convert the data types of database
values. It contains the following sections:

® “Fetching Records” on page 37 describes the geFetch functions, which
retrieve records from a Select statement’s result set, the geBindCol
functions, which bind column values to variable buffers, and the geVal
functions, which retrieve individual column values.

® *“Getting Column Information” on page 47 describes the geCol functions,
which retrieve information describing the columns returned by a Select
statement.

® *“Converting Data Types” on page 50 lists the data conversion functions
that DTK provides.

* “Data Types in DTK” on page 53 discusses data type usage and
conventions in DTK, as well as specific considerations for handling some
data types.

® “Format Strings” on page 59 lists the format strings available for formatting
your data when using the data-type conversion functions.

Fetching Records

DTK lets you use two different techniques to read records from databases.

The preferred technique uses the geBindCol functions to bind variables to
each of the columns in the Select statement prior to calling a geFetch
function. Each time a record is fetched, the variables are automatically filled
with the column values and their lengths.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 4 Retrieving and Converting Data

| GoTo = | Fetching Records 38

Another technique is to use the geVal functions to read each column value
separately after calling a geFetch function. Using this method, you must call
the same set of geVal functions after fetching each record. Using the geVal
functions is slower than using the geBindCol functions. However, some
macro and script languages do not permit you to use functions like geBindCol
that pass pointers to integer variables.

The following sample uses the column binding method. To load this sample in
the SAMPLE.EXE program, choose Reading Records Using geBindCb
from the Example List.

geSTATUS bindfetch () {

/* This routine denonstrates how to use the bind functions to fetch data * /
/* from Sel ect statenents directly into programvariables. * /

geHANDLE hdbc = 0; /* Handl e to dat abase connection * /
qeHANDLE hstnt = 0; /* Handle to SQ statenent execution * /
eSTATUS res_code; /* Result code from DIK functions * /
char | ast _name [11]

| ong last_name_len = 11

fl oat sal ary

| ong sal ary_l en = sizeof (sal ary)

/* Call qgeLiblnit to initialize DIK, check for errors. * /
res_code = geLiblnit () ;
if (res_code != gqeSUCCESS) return (res_code)
/* Call geConnect to connect to a data source. Check to see * /
/* if hdbc == 0, which indicates that the connection failed. * /
hdbc = geConnect ("DSN=QEDBF") ;
if (hdbc == 0) return (err_handl er (hdbc, hstnt))

/* Call geExecSQL to execute the select statement. Check if hstnt == 0, * /
/* which indicates that the statenent did not execute successfully. * /
hstmt = geExecSQ (hdbc, "Select |ast_nane, salary fromenp") ;
if (hstnmt == 0) return (err_handler (hdbc, hstnt)) ;

/* Bind the result colums to programvariables. * /
res_code = geBi ndCol Char (hstnt, 1, last_nane, & ast_nane_len, "")
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))
res_code = geBindCol Fl oat (hstnt, 2, &salary, &salary_|en)
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

DataDirect Developer’s Toolkit Programmer’s Guide

GoTo W |

Chapter 4 Retrieving and Converting Data
Fetching Records 39

/*

/*

/*

/*

/*

Fetch the records fromthe select statenent. * /

whi | e (geFet chNext (hstnt) == geSUCCESS)
MessageBox (hwid, |ast_nanme, "Bind Fetch", MB_(K)
}

Check for errors, ECFis ok. * /

res_code = geErr ()
if ((res_code != gqeSUCCESS) && (res_code != qeECF))
return (err_handl er (hdbc, hstnt)) ;

Cose the SQ statenent. * /

res_code = geEndSQ@ (hstnt)
hstmt =0 ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

geD sconnect to disconnect froma data source. * /
res_code = geD sconnect (hdbc)

hdbc = 0 ;

if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

geLi bTermto free nenory allocated by DIK * /

res_code = geLi bTerm ()

MessageBox (hwWid, "Sanpl e succeeded.", "Bind Fetch", M _(K)
return (res_code)

err_handl er routine goes here. * /

This example uses the geFetchNext function to retrieve each record from the
result set, and uses the column binding function geBindColChar to get the
values from each record.

The column binding functions are described in “Binding Data to Columns” on
page 41.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 4 Retrieving and Converting Data
Fetching Records

Table 4-1 lists the set of DTK data fetching functions.

40

Table 4-1. Functions that Fetch Daa

Function
geFetchNext
geFetchPrev
geFetchRandom
geFetchNumRecs

geSetSelectOptions

geGetSelectOptions

geFetchLogClose

geSetMaxRows

geGetMaxRows

Result

Retrieves the next record returned by the hstmt
Retrieves the previous record returned by the hstmt
Retrieves a specified record returned by the hstmt

Returns the number of records chosen by the Select
statement.

Specifies the following options:

Whether your application only reads forward through
the records resulting from a Select statement, or also
needs to position to records that have already been

read.

Whether DTK will write records in the result set to log
files when connected to databases for which it is not
necessary to do so.

The level of fetching that is possible after a
transaction ends.

Returns whether previous and random fetching is
enabled for the current database connection,
whether DTK will use log files when connected to
databases for which it is not necessary to do so, and
the level of fetching that is possible after a
transaction ends.

Closes the log file used with DTK’s fetching
functions.

Sets the maximum number of rows that a statement
will return.

Returns the maximum number of rows that a
statement will return.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 4 Retrieving and Converting Data
Fetching Records 41

The geFetchNext, geFetchPrev, and geFetchRandom functions retrieve a
record from the database and make it the current record in DTK.

DTK lets you use two different techniques to read column values from
databases.

® The first technique uses the geBindCol functions to bind column values to
variable buffers (see “Binding Data to Columns,” next).

® The second technique uses the geVal functions to retrieve individual
column values following each call to geFetchNext (see “Using geVal
Functions” on page 43).

Because some database systems do not support the previous and random
record fetching provided by geFetchPrev and geFetchRandom, DTK provides
this capability when connected to such databases by saving the results of a
Select statement in a log file. The geSetSelectOptions function lets you set
the level of fetching and log file usage that DTK provides to a specified
connection. When DTK uses a log file, you can close the log file by calling
geFetchLogClose.

When the SQL statement is a Select statement or stored procedure,
geFetchNumRecs returns the number of records in the result set. You can
use the geFetchNumRecs function only when previous and random fetching
is enabled. You can set a maximum number of records that a Select
statement can return by calling geSetMaxRows.

Binding Data to Columrs

Use the geBindCol functions to obtain maximum performance. Call the
geBindCol functions to bind variables in your program to each of the columns
returned by the Select statement. Each subsequent call to a geFetch function
fills your variables with the column values. The maximum data size bound by
geBindCol functions is 64K.

Many macro and script languages, including Visual Basic, do not support the
geBindCol functions.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 4 Retrieving and Converting Data
Fetching Records

Table 4-2 lists the functions that bind data to columns.

42

Table 4-2. Functions that Bind Data to Columa

Function

geBindCol

geBindColChar

geBindColDecimal

geBindColDouble

geBindColFloat

geBindColint

geBindColLong

Result

Specifies value and length variables that receive a
column’s value and length each time a record is
fetched.

Similar to geBindCol. Data is converted to a
character string, using a format string if supplied

Similar to geBindCol. Data is converted to a decimal
value with the specified precision and scale

Similar to geBindCol. Data is converted to a double-
precision floating-point value.

Similar to geBindCol. Data is converted to a single-
precision floating-point value.

Similar to geBindCol. Data is converted to a 2-byte
integer.

Similar to geBindCol. Data is converted to a 4-byte
integer.

The geBindCol function performs no data type conversion. Before calling

geBindCol, you can call geColType to determine the data type of a column’s

values. The values put in your variables by geFetchNext, geFetchPrev, or

geFetchRandom will be of this type.

Use the other six geBindCol functions as needed to convert the data type of

the column.

You can also call geColWidth before calling a qeBindCol function in order to
determine the maximum size (in bytes) of a column’s values. You can use this
width to allocate variables large enough to hold the largest values.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 4 Retrieving and Converting Data
Fetching Records 43

When character or date-time values are retrieved by a geFetch function, a
zero terminator byte is added to the end of the values. This is the C-language
convention supported by most macro languages.

For the character data types, the maximum size may be very large. The
variable you bind to a column can be smaller than the maximum size.
However, the length variable (pointed to by len_ptr) must contain the actual
length of the variable you are binding. For example, you need to allocate a
21-byte variable to retrieve values from a column defined as VARCHAR (20).

Each time you call a geFetch function, DTK compares the length of the
column’s value to the length of the variable you bound to the column. If the
value is longer than the variable you bound, the value is truncated to the size
of your variable and your length variable is set to qeTRUNCATION (-1). It is
not necessary to set the length variable before calling a geFetch function.

When a geFetch function is called and a column’s value is null, its length
variable is set to qeNULL_DATA (-2).

Make all calls to geBindCol functions before the first call to geFetchNext,
geFetchPrev, or geFetchRandom. Each time you call a geFetch function,
another record will be read and its values placed in the buffers specified by
the calls to geBindCol.

Important When you use the geBindCol functions, you must call a
geBindCol function for every column in the Select statement, in the order they
occur in the statement. If you omit any columns, an error will be returned by
your first call to a geFetch function.

Using geVal Functiors

The geVal functions retrieve column values following each call to
geFetchNext. The following example uses this method. To load this sample in
the SAMPLE.EXE program, choose Reading Records Using geVA from
the Example List.

The example on page 44 also shows how to call DTK functions in a loop to
read all records in a database.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 4 Retrieving and Converting Data

| GoTo w | Fetching Records 44

geSTATUS val fetch () {

/* This routine denonstrates how to fetch data from SELECT statenents using * /
/* the geVal functions. * /

geHANDLE hdbc = 0; /* Handl e to dat abase connection * /
qeHANDLE hstnt = 0; /* Handle to SQ statenent execution * /
eSTATUS res_code; /* Result code from DIK functions * /
geLPSTR | ast _name ;

geLPSTR namept r

fl oat sal ary

/* Call geLiblnit to initialize DIK, check for errors. * /
res_code = geLiblnit () ;
if (res_code != gqeSUCCESS) return (res_code)

/* Call geConnect to connect to a data source. Check to see * /
/* if hdbc == 0, which indicates that the connection failed. * /
hdbc = geConnect ("DSN=QEDBF") ;
if (hdbc == 0) return (err_handl er (hdbc, hstnt))

/* Call geExecSQ to execute the select statenment. If hstnt == 0, * /
/* then the statenent did not execute successfully. * /

hstnmt = geExecSQ (hdbc, "Select |ast_nane, salary fromenp")

if (hstnmt == 0) return (err_handler (hdbc, hstnt)) ;

/* Fetch the records fromthe sel ect statenent, and get the individual * /
/* colum values. * /
whi | e (geFet chNext (hstnt) == geSUCCESS) {

naneptr = geVal Char (hstnt, 1, "", 0) ;
if (qeErr () !'= qeSUCCESS && geErr () != geNULL_DATA) break
MessageBox (hwid, naneptr, "Val Fetch", MB_(K) ;

salary = geVal Fl oat (hstnt, 2) ;
if (qeErr () !'= qeSUCCESS && geErr () != geNULL_DATA) break
}

/* Check for errors, EOF is ok. * /
res_code = geErr () ;
if ((res_code != gqeSUCCESS) && (res_code != qeECF))
return (err_handl er (hdbc, hstnt)) ;
/* dose the SQL statenent. * /
res_code = geEndSQ@ (hstnt)

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v

/*

/*

}

Cal |

Cal |

hstnmt =

if (res_code != qeSUCCESS) return (err_handl er (hdbc,

0;

Chapter 4 Retrieving and Converting Data

geD sconnect to disconnect froma data source. *

res_code = geD sconnect (hdbc)
hdbc = 0 ;
if (res_code != qeSUCCESS) return (err_handl er (hdbc,

1

1

geLi bTermto free nenory allocated by DIK * /

res_code

MessageBox (hwid,

geLi bTerm () ;
"Sanpl e succeeded. ",

return (res_code) ;

/* err_handl er routine goes here. *

The geVal functions that return values from the current record are listed in

Table 4-3.

"Val Fetch",

/

VB_CX)

Fetching Records

hstnt)) ;

hstnt)) ;

45

Table 4-3. Functions that Return Values from the Current Recdr

Function
geDatalLen

geValChar and
geValCharBuf

geValMultiChar and
geValMultiCharBuf

geValDecimal and
geValDecimalBuf

geValint
geValLong
geValFloat
geValDouble

Result

Reports the length of a value retrieved by ageVal

function.

Return a column’s value as a character string

Return the values of multiple columns as a single

character string.

Return a column’s value as a decimal number (BCD

Returns a column’s value as a 2-byte integer.

Returns a column’s value as a 4-byte integer.

Returns a column’s value as a floating-point number

Returns a column’s value as a double-precision

floating-point number.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 4 Retrieving and Converting Data

| GoTo = | Fetching Records 46

After calling a geVal function, you can call geDatalLen to obtain the length in
bytes (or characters) of the value.

Performance can be improved by retrieving more than one column at a time.
You can call geValMultiChar and geValMultiCharBuf to simultaneously
retrieve multiple column values.

The tradeoffs of using the geBindCol functions versus the geVal functions are
discussed in “Comparing geBindCol and geVal Techniques” on page 46.

Comparing geBindCol and geVal Technique

You cannot mix the two techniques for reading records. If you use geBindCol
functions, you cannot call any of the geVal functions.

The advantages of using the qeBindCol functions are as follows:
® Records can be read faster.

® You need to call a geBindCol function only one time for each column you
are retrieving, as opposed to calling a geVal function for each column
every time you fetch another record. This greatly decreases the
processing overhead so performance is improved.

® They allow the use of the gePutUsingBindColumns function.
The advantages of using the geVal functions are as follows:

® They are easier to use from most macro and script languages. Some
languages will not allow you to send a pointer to a 4-byte long integer
variable as a parameter to a function as is required by the geBindCol
functions.

® The geValChar and geValCharBuf functions can return large values in
pieces. If the maximum size of a column is very large, 60,000 characters
for example, the geValChar function lets you retrieve the value in smaller
pieces—up to 1000 characters at a time. If you use geBindCol functions,
you must declare a variable of the maximum size you want to receive. If

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 4 Retrieving and Converting Data

I GoTo W= I Getting Column Information 47

you declare a variable smaller than the maximum size, you will not get the
entire value.

Getting Column Information

The column definition functions allow you to get information about the
columns returned by a Select statement. For example, if your Select
statement is

SELECT * FROM em p

then you may not know the names, data types, or number of columns
returned. The column definition functions allow you to get this information.

The following sample shows how to use the geCol functions to get
information about the columns returned by a Select statement. To load this
sample in the SAMPLE.EXE program, choose Getting Column Informatia
from the Example List.

geSTATUS colinfo () {

/* This routine denonstrates how to use the geCol functions functions to * /

/* get information about the colums returned by a Sel ect statenent. * /
geHANDLE hdbc = 0; /* Handl e to dat abase connection * /
qeHANDLE hstnt = 0; /* Handle to SQ statenent execution * /
eSTATUS res_code; /* Result code from DIK functions * /
short col _count, col
geLPSTR col _name_ptr

/* Call geLiblnit to initialize DIK, check for errors. * /
res_code = geLiblnit () ;
if (res_code != gqeSUCCESS) return (res_code)

/* Call geConnect to connect to a data source. Check to see * /
/* if hdbc == 0, which indicates that the connection failed. * /
hdbc = geConnect (" DSN=QEDBF') ;
if (hdbc == 0) return (err_handler (hdbc, hstnt))

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 4 Retrieving and Converting Data

| GoTo w | Getting Column Information

/* Call geExecSQL to execute the select statenment. Check if hstnt == 0, * /
/* which indicates that the statenment did not execute successfully. * /

hstmt = geExecSQ (hdbc, "Select * fromenp") ;

if (hstnmt == 0) return (err_handler (hdbc, hstnt)
/* Get the colum nanes returned by the Sel ect statenent * /

for (col _count = geNunCols (hstnt), col = 1; col _count--; col ++) {

if (geErr () !'= geSUCCESS
return (err_handl er (hdbc, hstnt))

col _nane_ptr = qgeCol Nane (hstnt, col)
if (geErr () !'= geSUCCESS
return (err_handl er (hdbc, hstnt))
MessageBox (hwid, col _nane_ptr, "Colum Nane", MB_(X)
}

/* dose the SQL statenent. * /
res_code = geEndSQ@ (hstnt)
hstm =0 ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

/* Call geD sconnect to disconnect froma data source. * /
res_code = geD sconnect (hdbc)
hdbc = 0 ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

/* Call geLibTermto free nmenory allocated by DIK * /
res_code = geLibTerm () ;
MessageBox (hwWid, "Sanpl e succeeded.", "Bind Fetch", M _(K)
return (res_code)

}

/* err_handl er routine goes here. * /

DataDirect Developer’s Toolkit Programmer’s Guide

48

Chapter 4 Retrieving and Converting Data

I Go To Getting Column Information 49

v i

Table 4-4 lists the geCol functions that return information about the columns
in the Select statement.

Table 4-4. Functions that Return Select-Statement Column Info

Function
geNumcCols

geColName and
geColNameBuf

geColAlias and
geColAliasBuf

geColExpr and
geColExprBuf

geColType
geColDBType

geColDBTypeName
and
geColDBTypeNameBuf

geColWidth
geColPrecision
geColScale
geColTypeAttr

geColDateStart
geColDateEnd

Returns

The number of columns in the statementThe number
of columns in the statement

A column’s name.

A column’s alias.

A column’s expression.

A column’s data type.
The database’s native type for the requested column

The database’s native type name for the requested
column.

A column’s maximum width in bytes.
A decimal column’s precision.
A decimal column’s scale.

Whether a column is updatable, nullable, searchable,
unsigned, autoincremented, or type Money,
depending on the attribute you specify.

A date-time column’s starting offset
A date-time column’s ending offset

Each function has an hstmt parameter to identify the SQL statement. All
functions except geNumCols also have a column number as a parameter
identifying the column whose information is to be returned.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 4 Retrieving and Converting Data

| GoTo = | Converting Data Types 50

geColName returns the column name, unless the column is an expression. If
the column is an expression, geColName returns null.

geColAlias returns an alias if one exists, otherwise it returns null.

geColExpr returns an expression if there is one, otherwise it will return the
same value for the column as would geColName.

Converting Data Types

Each column in a table has a data type. The data type determines the type of
information that can be stored in the column: character strings, integer
numbers, floating-point numbers, dates, etc. See “Data Types in DTK” on
page 53 for more information on data types.

DTK provides a number of data type conversion functions. These functions,

discussed in detail in Appendix A, “Data Conversion Functions,” on page 493,
allow you to convert values from any of the eight standard data types to any
other data type.

In addition to converting data types, the functions listed in Table 4-5 can be
used to format numbers and date-time values into character strings, and
convert character string values to numbers or dates.

Table 4-5. Functions that Convert Data Typse

Function Converts

geBinToHex Binary value to hexadecimal value.
geBinToHexBuf

geCharToDate Character string to date.
geCharToDateBuf

geCharToDecimal Character string to decimal numbers.
geCharToDecimalBuf

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 4 Retrieving and Converting Data
Converting Data Types

51

Table 4-5. Functions that Convert Data Typs (cont.)

Function
geCharToDouble

geCharToFloat
geCharTolnt
geCharToLong

geDateToChar
geDateToCharBuf

geDateToDouble
geDateToLong

geDecimalToChar
geDecimalToCharBuf

geDecimalToDouble

geDecimalToFloat
geDecimalTolnt
geDecimalToLong

geDoubleToChar
geDoubleToCharBuf

geDoubleToDecimal
geDoubleToDecimalBuf

geDoubleToFloat

geDoubleTolnt
geDoubleToLong

geFloatToChar
geFloatToCharBuf

geFloatToDecimal
geFloatToDecimalBuf

Converts

Character string to double-precision floating-point
number.

Character string to floating-point number.
Character string to 2-byte integer.
Character string to 4-byte integer.

Date to character string.

Date to double-precision Julian value
Date to 4-byte integer Julian value.

Decimal number to character string

Decimal number to double-precision floating-point
number.

Decimal number to floating-point number.
Decimal number to 2-byte integer.
Decimal number to 4-byte integer.

Double-precision floating-point number to character
string.

Double-precision floating-point number to decimal
number.

Double-precision floating-point number to floating-point

number.

Double-precision floating-point number to 2-byte integer

Double-precision floating-point number to 4-byte integer

Floating-point number to character string

Floating-point number to decimal number.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 4 Retrieving and Converting Data
Converting Data Types 52

Table 4-5. Functions that Convert Data Typs (cont.)

Function
geFloatToDouble

geFloatTolnt
geFloatTolLong

geHextoBin
geHexToBinBuf

gelntToChar
gelntToCharBuf

gelntToDecimal
gelntToDecimalBuf

gelntToDouble
gelntToFloat
gelntToLong

geLongToChar
geLongToCharBuf

geLongToDecimal

geLongToDecimalBuf

geLongToDouble
geLongToFloat
geLongTolnt

Converts

Floating-point number to double-precision floating-point
number.

Floating-point number to 2-byte integer.
Floating-point number to 4-byte integer.

Hexadecimal value to binary value.
Integer to character string.
Integer to decimal number.

Integer to double-precision floating-point number.
Integer to floating-point number.

2-byte integer to 4-byte integer.

4-byte integer to character string.

4-byte integer to decimal number.

4-byte integer to double-precision floating-point numbet
4-byte integer to floating-point number.
4-byte integer to 2-byte integer.

Those functions that convert to or from character strings include a format
string parameter to control formatting. See “Format Strings” on page 59 for

more information.

The following section describes how DTK handles data types.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 4 Retrieving and Converting Data
Data Types in DTK 53

Data Types in DTK

Different database systems support different data types for their columns.
DTK maps the various data types into one of eight standard data types:

Identifier Data Type

1 Fixed-length character string*

2 character string*

3 Decimal number (BCD)

4 Long integer (4-byte)

5 Integer (2-byte)

6 Single-precision floating-point numbers (4-byte)
7 Double-precision floating-point numbers (8-byte)
8 Date-time (26-byte character string)

* These data types can also be used for binary data. See “Blobs and Memos”
on page 57 for more information.

DTK returns all values as one of these eight data types.
If you call geExecSQL to execute a Select statement such as
SELECT | ast _name, salary, hire_date FROM em p

you can use the gqeColType function to get the data type of each of the
columns being returned. LAST_NAME's data type will be 1 or 2 since it is a
character string, SALARY may be any type from 3 to 7 depending on how it is
stored, and HIRE_DATE will be type 8.

You sometimes need to know the exact data type used in the underlying
database system. Database systems support data types that are variations of
one of the eight standard data types. Some database systems include logical

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 4 Retrieving and Converting Data
Data Types in DTK 54

data types, binary strings, money, etc. In each case, DTK automatically
converts the data to one of the eight data types. To determine the database’s
data type for a column, use geColDBType, geColDBTypeName, or
geColDBTypeNameBuf. These functions return the native data type for one
column in a SQL Select statement. The DataDirect ODBC Drivers Reference
lists the native data types of each system.

Fixed and Variable Character String

The difference between fixed (type 1) and variable (type 2) character string
data types is whether trailing blanks are added to values. For example,
suppose a LAST_NAME column is declared with a limit of 12 characters
(bytes) and the name Smith is stored. If the column is fixed length, the value
is returned as ' Sm th " (Smith followed by 7 blanks). If the column is
variable length, the value is returned as 'Sm t h* with no trailing blanks. Both
types of character string are terminated with a zero-terminator character (a C
language convention).

Date-Time Values

Date-time values are 26-byte character strings having the following format:
YYYY-MA DD Ht MM SS, SSSSS S

Hour values are expressed in terms of a 24-hour clock. See “Binary and
Date-Time Constants” on page 56 for information on handling date-time
values with DTK.

For date-time columns, the geColDateStart and geColDateEnd functions
return offsets identifying the relevant part of the date-time value. For
example, if the column contains date values with no time, geColDateStart
returns 0 and geColDateEnd returns 9, indicating that only the first 10
characters in the date-time value are relevant. The only combinations of
values returned by these functions are as follows.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 4 Retrieving and Converting Data

I GoTo W I Data Types in DTK 55

See Appendix A, “Data Conversion Functions,” on page 493 for complete
descriptions of these functions.

Value geColDateStat geColDateEnd
Date-Time 0 15, 18, 22, 0r 25
Date 0 9

Time 11 18, 22, or 25

Decimal Number Forma

Many database systems store numbers using a proprietary decimal format.
DTK retrieves these numbers and converts them, if necessary, into a
standard decimal format. DTK uses a Binary-Coded Decimal (BCD) format.

The BCD format stores two digits per byte. In each byte, the first digit is in the
top 4 bits of the byte, and the second digit in the lower 4 bits. The sign of the
number is stored in the lower 4 bits of the last byte. The hexadecimal value
0xC is the sign for positive numbers, and 0xD is the sign for negative
numbers.

Decimal numbers are defined by their precision and scale. Precision is the
number of digits that can be stored in the number. You can determine the
length in bytes of a decimal number by its precision. The formula is

bytes = (precision+2)/ 2

If a decimal number has an even precision, the upper 4 bits of the first byte
are not used, and the first digit is in the lower 4 bits of the first byte. In all
cases, the last byte contains the last digit in the upper 4 bits and the sign in
the lower 4 bits.

The scale specifies the actual position of the decimal point in the number.
The scale is the number of digits to move the decimal point to the left of the
sign. You can also think of scale as the number of digits right of the decimal
point.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 4 Retrieving and Converting Data
Data Types in DTK 56

For example, if the precision=4, scale=2, value=12.34, then the bytes contain
the following hexadecimal values:

01 234C

The geColPrecision and geColScale functions return the precision and scale
of decimal columns.

Binary and Date-Time Constans

Database systems vary as to how you specify date-time constants and binary
constants in SQL statements. For example, to compare date values in a
Where clause, dBASE uses

hire date > {01/27/95 }
and Oracle uses
hire_date > to_date(' 01/27/95 ,' MM DI YY')

If your applications need to access more than one database system, these
differences can cause problems.

DTK supports database-independent syntax for date-time and binary
constants so you don’t have to modify your programs for the different
database systems.

The database-independent syntax for the date example is

hire_date > [d' 1995-01-27 00: 00: 00. 000000]

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 4 Retrieving and Converting Data
Data Types in DTK 57

The constant is enclosed in square brackets. The letter code, which is case-
sensitive, indicates the data type. The letter code is followed by a character
string enclosed in single quotes. The following table lists the codes:

Code Data Type

d Date

t Time

dt Date and time
b Binary

For date-time codes, the character string must be in the full 26-character
standard date format described earlier in “Date-Time Values” on page 54. All
26 characters must be present whether the code is d, t, or dt.

For the binary code, the character string must be the binary value
represented as a hexadecimal string. For example,

UPDATE tab SET bi nvar=[b' OF4A512A8C]
WHERE prikey = 11 1

Blobs and Memas

Many databases support a binary data type designed for storing large
amounts of text or image data. These data types are frequently called memos
or blobs. Although DTK does not provide functions specifically designed for
retrieving and writing such data, you can do so using repeated calls to DTK
functions.

There are two methods you can use to read binary data:

® Use geValChar or geValCharBuf. These functions read data in chunks of
up to 64K (actually, 65280 bytes). Whenever these functions fail to read all
of the available data in a column, geDatalLen returns geTRUNCATION (-
1). Another call to the geVal function will return the next piece of data. By
using a loop that checks for truncation after each call to one of these
functions, you can easily read very large values.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 4 Retrieving and Converting Data
Data Types in DTK 58

® Use geBindColChar. Because you cannot call this function more than
once for a single value, you are limited to 64K as the maximum size of the
value returned. However, this function enables you to fetch multiple binary
values under the 64K limit without repeated calls to the geBindCol
functions.

The reason that there are no equivalent functions for binary data types is that
the only difference would be the absence of the zero byte that terminates the
data being read.

For writing binary data, two methods are available:

® Use SQL parameters. For example, if you had a long, free-form text
column called INTERESTS stored as binary data, you could issue the
following statement with geExecSQL:

UPDATE enp SET interests = ?
WHERE enp_id = D10 1

You could then write the value with the geBindParamBinary or
geSetParamBinary function. You cannot write values larger than 64K.

® Use current record functions. When you have an open Select statement,
you can change the column value using the gePutBinary and
geRecUpdate functions. Again, you cannot write values larger than 64K.

Because all of these methods use functions that handle a maximum value
length of 64K (65280 bytes), that is the maximum value size you can handle
except when reading values with repeated calls to geValChar or
geValCharBuf, in which case there is no limit.

Null Values

Many database systems have the concept of a null value. A null value for a
database column means that the record contains no value for this column.
When you retrieve a value, you cannot determine if the value is null. For
example, geValint always returns a valid integer value, since every possible
value is valid.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 4 Retrieving and Converting Data

| GoTo W | Format Strings 59

To determine if a geVal function returned a null value, you must call
geDatalen or geWarning. geDatalLen returns the length of the value returned
by the geVal function in bytes (or characters). If geDatalLen or geWarning
return geNULL_DATA (-2), then the value returned by the geVal function was
null.

Logical Values

Some database systems support logical (true/false) data types. DTK returns
values of this type as numbers: 0 for False, and 1 for True.

Format Strings

When you use geValChar or geValCharBuf to get column values as character
strings, or when you use the data conversion functions to convert values to
character strings (like geDoubleToChar, geLongToChar), DTK allows you to
specify a format string that is used to format the value.

Also, when you use the data conversion functions to convert a character
string to a numeric value, DTK allows you to specify a format string to show
how the character string is formatted.

The following table shows some examples of format strings that are
described in the following sections.

Format String Value Formatted Valwe
$#,##0.00 100.5 $100.50

0 $0.00

2500.25 $2,500.25

-145.10337 -$145.10
$#,##0.00;($#,##0.00) 100.50365 $100.50

-145.10 ($145.10)

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

DataDirect Developer’s Toolkit Programmer’s Guide

Format String

$#,##0.00"CR";$#,##0.00"DB"

0[S/1000]

GN

mm/dd/yy
mm/dd/yyyy

m/dlyy

dd.mm.yy

Mmm d, yyyy
dd-MMM-yy

Mmmm d, yyyy
hh:mm:ss
hh:mm:ss AM/PM
mm/dd/yy hh:mm:ss

Chapter 4 Retrieving and Converting Data

Value
11259
-2500

12375

199

147

1.875

Jan 15, 1996
Jan 9, 1996
Jan 9, 1996
Jan 9, 1996
Jan 9, 1996
Jan 9, 1996
Jan 9, 1996
4:53:10 PM
4:53:10 PM
Jan 9, 1996 9:43

Numeric Format String

Format Strings

Formatted Valwe
$1,125.90CR
$2,500.00DB

12

0

147

1.875

01/15/96
01/09/1996

1/9/96

09.01.96

Jan 9, 1996
09-JAN-96
January 9, 1996
16:53:10
04:53:10 PM
01/09/96 09:43:00

60

Format strings allow you to format numeric values with dollar signs, thousand
separators, scientific notation, percents, etc. You can format positive
numbers and negative numbers differently.

Numeric format strings can have one or two sections, separated by a

semicolon. If the format string has one section, then positive and negative
values use the same format. A negative sign is automatically inserted for
negative numbers. If there are two sections, the first section is for positive
numbers and the second for negative numbers.

Chapter 4 Retrieving and Converting Data

| GoTo w | Format Strings 61

The symbols in the format strings determine the way the values are to be
formatted. Some of the symbols refer to strings specified in the International
section of the Control Panel. You can change these strings by running the
Control Panel program provided with Windows or OS/2. In the Control Panel,
click on the International icon to see and change these strings.

Format String Value Formatted Valwe
0.00 100.5 100.50

-145.1 -145.10
0.00;(0.00) 100.5 100.50

-145.1 (145.10)

The following table describes the symbols allowed in a numeric format string.

Symbol Description

$ Output the currency string. The currency string is specified in
the International section of the Control Panel.

Output the decimal point character. The decimal point
character is specified in the International section of the
Control Panel.

, Output the thousand’s separator character. The thousand’s
separator character is specified in the International section
of the Control Panel.

Output a digit. If there is no digit to output in the position,
output nothing. For example, if the format string is "###. ##",
12.3 is formatted as "12. 3", 125.22475 is formatted as
"125.22", 0 is formatted as ". ", and 1500 is formatted as
"1500. ".

Note: If the value has more digits to the left of the decimal
than there are symbols in the format string, the format string
is automatically extended to the left. However, if the value
has more digits to the right of the decimal point than appear
in the format string, the value is rounded into the last digit.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Symbol

%

et e-

Chapter 4 Retrieving and Converting Data
Format Strings

Description

Output a digit. If there is no digit to output in the position,
output a zero. For example, if the format string is "000. 00",
12.3 is formatted as "012. 30", 125.22475 is formatted as
"125. 22", 0 is formatted as "000. 00", and 1500 is formatted
as "1500.00".

Note: See note for “#” symbol.

Output a digit. If there is no digit to output in the position,
output a space character. For example, if the format string is
"?272?2.?27?", 12.3 is formatted as " 12.3 ", 125.22457 is
formatted as "125. 22", 0 is formatted as™ . ", and 1500
is formatted as "1500. "

Note: See note for “#” symbol.

Output the value as a percent. The value is multiplied by 100
and the percent character (%) is output. For example, if the
format string is "#0%, 0.15 is formatted as "15%.

Output using scientific notation. e+ outputs the sign of the
exponent only if it is negative, e- always outputs the sign of
the exponent. For example, if the format string is

"0. 00e+# 0", the value 12500 is formatted as "1. 25e0 4", and
.005 is formatted as "5. 00e- 0 3". If the format string is

"0. 00e- # 0", the value 12500 is formatted as "1. 25e+0 4",
and the value .005 is formatted as "5. Oe- 0 3".

Note: You can also use E+ or E- in the format string. This
causes the “E” to be uppercase in the formatted value.

DataDirect Developer’s Toolkit Programmer’s Guide

62

| Go To

v i

Symbol
—+()

space

"string"

'string’

GN

GF

Chapter 4 Retrieving and Converting Data
Format Strings

Description

Output plus or minus signs, parentheses, or blank spaces.
These characters are often used to distinguish positive and
negative values. For example, if the format string is

"+0. 00; -0. 0 0", 12.3 is formatted as "+12. 30", and —-1.1 is
formatted as "-1. 10". Blank spaces are output in the
position you specify.

Note: These are the only characters that can be included in
numeric format strings to be output directly. To output other
characters or strings, use the “\” symbol or enclose the
characters in quotation marks.

Output the character following the backslash. For example, if
the format string is "0. 00 \t\o\n\ s", the value 1.25 is
formatted as "1. 25 tons".

Output the string. The quotation marks are not output. For
example, if the format string is "0. 00 "t ons"", the value 1.25
is formatted as "1. 25 tons".

Output the string. The quotation marks are not output. For
example, if the format string is "0. 00 'tons ' ", the value
1.25 is formatted as "1. 25 tons".

General format for numbers. This is the format used if no
format string is given. For example, if the format string is
"GN", 12.3 is formatted as "12. 3", 125.22475 is formatted as
"125. 2247 5", 0 is formatted as "0", and -1500 is formatted as
"-1500".

Note: If you use GN, the only other symbols you can use in
the format string are those enclosed in brackets; for
example, [US].

General fixed format for numbers. The “Number Format” in
the International section of the Control Panel is used.

Note: If you use GF, the only other symbols you can use in
the format string are those enclosed in brackets; for
example, [US].

DataDirect Developer’s Toolkit Programmer’s Guide

63

|GoTo v|

Symbol
GC

[S/n]
[S*n]

[US]

Chapter 4 Retrieving and Converting Data
Format Strings

Description

General currency format for numbers. The "Currency
Format" in the International section of the Control Panel is
used.

Note: If you use GC, the only other symbols you can use in
the format string are those enclosed in brackets; for
example, [US].

Scale the number before it is output. "[S/ n] " divides the
number by ‘n’ before it is formatted. "[S*n] " multiplies the
number by ‘n’ before it is formatted. ‘n” must be a power of
10 (10, 100, 1000, etc.). For example, if the format string is
"#0. 00[S/ 1000] ", 12340 is formatted as "12. 34",

The information specified in the International section of the
Control Panel is ignored. Instead, the United States defaults
are substituted (periods for decimal points, commas for
thousand separators, and $ for the currency symbol). For
example, if the format string is "$#, ##0. 00[US] ", 1234.56 is
formatted as "$1, 234. 5 6", regardless of the International
settings in the Control Panel.

64

Date-time formats allow you to control which parts of the date or time are to
be output, their order, and whether to spell out months and days.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 4 Retrieving and Converting Data
Format Strings

The following table describes the symbols allowed in a date-time format

string.:

Symbol

m mm

mmm

mmmm

ddd

Description

Output the month’s number (1-12). If the
month’s number is less than 10, “m” does not
output the leading 0, and “mm” outputs the
leading O.

Output the month’s three-letter abbreviation.
Whether the M’s are upper or lowercase
determines whether the abbreviation is upper
or lowercase:

mmm jan
Mmm Jan
MMM JAN

Output the month’s full name. Whether the M’s
are upper or lowercase determines whether the
name is upper or lowercase:

mmmm january
Mmmm January
MMMM JANUARY

Output the day of the month’s number (1-31). If
the day’s number is less than 10, “d” does not
output the leading 0, and “dd” outputs the
leading O.

DataDirect Developer’s Toolkit Programmer’s Guide

65

|GoTo v|

Symbol
ddd

dddd

YY yyyy

h hh

Chapter 4 Retrieving and Converting Data
Format Strings

Description

Output the day of the week’s three-letter
abbreviation. Whether the D’s are upper or
lowercase determines whether the abbreviation
is upper or lowercase:

ddd sun
Ddd Sun
DDD SUN

Output the day of the week’s full name.
Whether the D’s are upper or lowercase
determines whether the name is upper or
lowercase:

dddd sunday
Dddd Sunday
DDDD SUNDAY

Output the year’s number. For “yy,” only the last
two digits of the year are output. For “yyyy,” the
four-digit year is output.

Output the hour of the day (0-23). If the hour’s
number is less than 10, “h” does not output the
leading 0, and “hh” outputs the leading O.

Note: Whether a 12-hour or 24-hour clock is
used depends on whether the “AM/PM” symbol
is used.

DataDirect Developer’s Toolkit Programmer’s Guide

66

| Go To

v i

Symbol

m mm i i

SS.SSSSSS

am/pm a/p

Chapter 4 Retrieving and Converting Data
Format Strings

Description

Output the minute of the hour (0-59). You can
use “m” or “i” for minute. If you use “m,” the
previous date-time component must be an hour
symbol to avoid confusion with the month
symbol. If the minute’s number is less than 10,
m” or “i” do not output the leading zero, and
“mm” or “ii” outputs the leading 0.

Output the second of the hour (0-59). You can
use one or two “s” symbols to the left of the
decimal point. If one “s” is used, a leading zero
is not output for seconds less than 10. The
decimal point and the “s” symbols to the right of
the decimal point are optional. They are used
to output fractions of seconds. You can use up
to 6 “s” symbols to the right of the decimal.

Output the “am” or “pm” string. These strings
are specified in the International section of the
Control Panel. Whether the symbol is upper or
lowercase determines whether the string is
upper or lowercase:

am/pm “am” or “pm” is output

AM/PM “AM” or “PM” is output

You can also use the symbol “a/p.” This causes
the first letter of the strings to be output. If you
use a/p, “a” or “p” is output. With A/P, “A” or “P”
output.

Note: If this symbol is used, a 12-hour clock is
assumed. The hour symbols output hour
numbers between 1 and 12.

DataDirect Developer’s Toolkit Programmer’s Guide

67

|GoTo v|

Symbol

/-.:, space

"string"

'string’

GD

Chapter 4 Retrieving and Converting Data
Format Strings

Description

Output the Julian value for the date-time. The
Julian value is a numeric value giving the date
as the number of days since 4712 BC, and the
time as a fraction of a day.

Output the character. These characters are
used to separate the parts of a date or time.

Note: These are the only characters that can
be included in date format strings to be output
directly. To output other characters or strings,
use the “\" symbol or enclose the characters in
guotation marks

Output the character following the backslash.
For example, if the format string is "hh: nm ss
\G M T, the value 10:05:12 AM is formatted as
"10: 05: 12 GVIT".

Output the string. The quotation marks are not
output. For example, if the format string is

"hh: mm ss "GV, the value 10:05:12 AM is
formatted as "10: 05: 12 GMT".

Output the string. The quotation marks are not
output. For example, if the format string is

"hh: mMm ss ' GV ' ", the value 10:05:12 AM is
formatted as "10: 05: 12 GMT".

General format for dates. This is the format
used if no format string is given. The “Short
Date Format” in the International section of the
Control Panel is used.

Note: The only other symbols you can use with
GD are those enclosed in brackets; for
example, [US].

DataDirect Developer’s Toolkit Programmer’s Guide

68

|GoTo v|

Symbol
GDT

GL

GLT

GT

[US]

Chapter 4 Retrieving and Converting Data
Format Strings

Description

General format for dates with times. The “Time
Format” in the International section of the
Control Panel is appended to the “Short Date
Format.”

Note: The only other symbols you can use with
GDT are those enclosed in brackets; for
example, [US].

General long format for dates. The “Long Date
Format” in the International section of the
Control Panel is used.

Note: The only other symbols you can use with
GL are those enclosed in brackets; for
example, [US].

General long format for dates with times. The
“Time Format” in the International section of the
Control Panel is appended to the “Long Date
Format.”

Note: The only other symbols you can use with
GLT are those enclosed in brackets; for
example, [US].

General format for time. The “Time Format” in
the International section of the Control Panel is
used.

Note: Do not combine any other formatting
symbols with GT.

The information specified in the International
section of the Control Panel is not used.
Instead, the United States defaults are
substituted. You should use this symbol only
with GD, GDT, GL, or GLT. For example, if the
format string is "GD[US]", July 15, 1995, is
formatted as "07/15/95".

DataDirect Developer’s Toolkit Programmer’s Guide

69

Chapter 4 Retrieving and Converting Data

| GoTo W | Format Strings 70

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

5 Modifying Dat

Once you have executed a SQL Select statement, DTK lets you position to
individual records and update or delete the current record, or insert new
records. This method of modifying the current record is often more
convenient than having to generate the appropriate SQL Insert, Update, or
Delete statement. This chapter describes the column (qePut) and record
(qeRec) functions that perform current-record operations in DTK, and
discusses DTK’s use of unique keys in performing these operations.

Current-Record Functions

After you execute a SQL Select statement, you can use the geFetch
functions to position to specific records. The record you are positioned on is
called the current record.

Two sets of functions affect the current record. The gePut functions assign
new values to the individual columns of the current record. The geRec
functions modify or get information about the current record.

The sample on page 72 shows the use of the gePut and geRec functions,
which operate on the current record of an hstmt resulting from executing a
Select statement. The sample uses these functions to insert, update, and
delete records. The base Select statement for this example is

SELECT first_nane, |ast_nane FROMem p

In the example, the first record is read and its first name value is changed to
“Gerald,” the second record is deleted, and a new record employee record is
inserted before the first record.

To load this sample in the SAMPLE.EXE program, choose Using Current
Record Operatiors from the Example List.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

geSTATUS recordop () {

/*
/*
/*

/*

/*

/*
/*

/*

/*

/*

/*
/*

This routine denonstrates the use of the geRec functions.

executing a Select statenent. * |/

geHANDLE hdbc = 0; /* Handl e to dat abase connection *
qeHANDLE hstnt = 0; /* Handle to SQ statenent execution *
qeSTATUS res_code; /* Result code from DIK functions *
Call geLiblnit to initialize DIK check for errors * /
res_code = geLiblnit () ;
if (res_code != gqeSUCCESS) return (res_code) ;
Cal |l geConnect to connect to a data source. Check to see * /
if hdbc == 0, which indicates that the connection failed. * /
hdbc = geConnect ("DSN=QEDBF") ;
if (hdbc == 0) return (err_handl er (hdbc, hstnt)) ;
Call geExecSQL to execute the select statement. Check if hstnmt == 0, *
whi ch indicates that the statenent did not execute successfully.

hstmt = geExecSQ (hdbc, "Select first_nane, |ast_nane fromenp")

if (hstnt == 0) return (err_handl er (hdbc, hstnt))

Position to the first record. * /

res_code = geFetchNext (hstnt) ;
if (res_code != qeSUCCESS) return (err_handl er

Update the enpl oyee's first nanme to CGerald. * /

res_code = gePut Char (hstnt, 1, "", "Cerald")
if (res_code != qeSUCCESS) return (err_handl er
res_code = geRecUpdate (hstnt) ;

if (res_code != qeSUCCESS) return (err_handl er

Position on second record and delete it. * /

Create a newrecord, nake it record nunber 2 in the result set.

res_code = geFetchNext (hstnt) ;
if (res_code != qeSUCCESS) return (err_handl er
res_code = geRecDelete (hstnt) ;
if (res_code != qeSUCCESS) return (err_handl er

Set the new enpl oyee's nane to Ed Allen. The call

Wil

insert the record into the database table. *
res_code = geRecNew (hstnt, 2) ;
if (res_code != qeSUCCESS) return (err_handl er

DataDirect Developer’s Toolkit Programmer’s Guide

(hdbc,

(hdbc,

(hdbc,

(hdbc,

(hdbc,

/

(hdbc,

Chapter 5 Modifying Data
Current-Record Functions

These *
functions operate on the current record of an hstm resulting from*

1

hstnt))

hstnt))

hstnt))

hstnt))

hstnt))

to geRecUpdate *

hstnt))

*

1

72

Chapter 5 Modifying Data
| GoTo w | Current-Record Functions

res_code = gePut Char (hstnt, 1, "", "Ed") ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

res_code = gePut Char (hstnt, 2, "", "Allen") ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

res_code = geRecUpdate (hstnt) ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

/* Cose the statement. * /
res_code = geEndSQ@ (hstnt)
hstmt =0 ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

/* Call qgeDi sconnect to disconnect froma data source. * /
res_code = geD sconnect (hdbc)
hdbc = 0 ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

/* Call geLibTermto free nmenory allocated by DIK * /
res_code = geLi bTerm ()
MessageBox (hwid, "Sanpl e succeeded."”, "Qurrent Record", M3 _(K)
return (res_code)

}
/* err_handl er routine goes here. * /

This sample also shows how to use the gePutChar, geRecNew,
geRecUpdate, and geRecDelete functions to modify the database.

73

The following sections provide information on these and other current-record

functions.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 5 Modifying Data
Current-Record Functions 74

Column Functionrs

Once your application has positioned to a record using the geFetch functions,
you can change the values of the columns of the current record using the
gePut functions. Table 5-1 lists the gePut functions.

Table 5-1. Functions that Change Column Values in the Current Recdr

Function Result

gePutBinary Updates a column with a binary value.

gePutChar Updates a column with a character value

gePutDecimal Updates a column with a decimal value

gePutDouble Updates a column with a double-precision floating-
point value.

gePutFloat Updates a column with a floating-point value

gePutint Updates a column with a 2-byte integer.

gePutLong Updates a column with a 4-byte integer.

gePutNull Updates a column to have the value null

gePutUsingBindColumns Updates columns with the values placed in bind
buffers by the geBindCol functions.

gePut functions take as arguments the hstmt of the active SQL Select
statement, the number of the column being updated, and the new value.
gePut functions change the values in the current record buffer but not the
values in the database. In order to modify the database, you must first modify
the values with gePut functions and then call geRecUpdate. To insert a new
record, first call geRecNew to clear the field values for the new record, use
the gePut functions to assign values to the new record’s columns, then call
geRecUpdate to add the new record to the database.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 5 Modifying Data
Current-Record Functions 75

Whenever you move off of the current record, the auto-updating options that
are set via the geSetAutoUpdate function affect what happens to values you
have changed using the gePut functions. See the following section for more

information.

Record Functiors

Once your application has positioned to a record using the geFetch functions,
you can perform operations on the current record using the geRec
functions.Table 5-2 shows the set of geRec functions.

Table 5-2. Functions that Operate on the Current Recar

Function
geRecNew

geRecUpdate

geRecDelete
geRecUndo

geRecState
geRecLock
geSetLockOptions
geGetLockOptions

geRecNum
geRecSetKey

geRecGetKey
geSetAutoUpdate

Result

Creates a new record that can be inserted by a call to
geRecUpdate.

Updates or inserts a record with the new values set
using gePut functions.

Deletes the current record.

Discards all changes to a record that have not been
sent to the database.

Returns the state of the current record
Locks the current record during a transaction
Controls the locking behavior for a statement

Returns the locking behavior in effect for a
statement.

Returns the current record number.

Declares whether the specified column is part of a
unique key for a record.

Reports whether a column is part of the unique key.

Determines what happens when the hstmt is moved
to a new record before changed values have been
updated or inserted.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 5 Modifying Data

| GoTo W | Current-Record Functions 76

Table 5-2. Functions that Operate on the Current Recar(cont.)

Function Result

geGetAutoUpdate Returns the auto update setting specified in the last
call to geSetAutoUpdate.

geApplyAll Updates all records that have not been explicitly
updated by calls to geRecUpdate.

geUndoAll Discards changes to all records that have not been
explicitly updated by calls to gqeRecUpdate.

The geRec functions require an active SQL Select statement and therefore
have an hstmt as a parameter. You can activate a Select statement by calling
geExecSQL or by calling geSQLPrepare followed by geSQLExecute. The
geRec functions operate on the current record. The current record is
determined by the most recent call to a geFetch function, geRecNew, or
geRecFind.

To insert a new record, call geRecNew to clear the field values and make the
new record the current record, call the gePut functions to set the values in the
new record, and then call geRecUpdate to insert the record into the
database.

To update a record, call the gePut functions to change the value of one or
more columns, and then call geRecUpdate to update the record in the
database.

To delete a record, call geRecDelete to delete the current record from the
database.

When inserting or updating a record, if you call geRecUndo before the call to
geRecUpdate, all of the changes to the column values made by the gePut
functions will be undone. If geRecNew has been called to create a new
record, the new record will be discarded.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 5 Modifying Data
Current-Record Functions 77

geRecState returns the state of the current record. The state indicates
whether the current record is a record read from the database or a new
record, and whether one or more column values have been changed by calls
to the gePut functions.

geRecState also indicates whether DTK is currently positioned on a record or
between records. geRecState returns a state of geSTATE_NOREC whenever
the current position is between records. This state occurs following calls to
geRollback and after encountering EOF conditions. When in this state,
record-oriented operations (gePut, geRecUpdate, etc.) fail until you call a
geFetch function to reposition DTK on a valid record. geRecNum returns a
valid record number during this state, so you should always call geRecState
before calling geRecNum to ensure proper record positioning.

geRecLock obtains a shared lock on the current record. This function can
only be used if a transaction has been started by a previous call to
geBeginTran. The shared lock is held until the transaction ends by a call to
geCommit or geRollback.

geRecNum returns the current record number. Each record retrieved from a
Select statement is assigned a record number starting with 1. You can
position to a record by calling geFetchRandom and specifying the desired
record number.

geRecSetKey and geRecGetKey specify which columns of the Select
statement are to be used to identify the current record in the database. If you
call geRecLock, geRecUpdate, or geRecDelete, first call geRecSetKey on
the columns of your Select statement that together uniquely identify each
record. See “Unique Keys” on page 78 for more information.

Use geSetAutoUpdate to specify what DTK does when you move off of the
current record before its values are updated in the database; that is, when the
current record—which was create via geRecNew or changed using the gePut
functions—is not updated via geRecUpdate before the user changes the
current record. If geSetAutoUpdate is set to qeAUTOUPD_UPDATE (3), then
DTK automatically performs the geRecUpdate function when the current
record changes. If geSetAutoUpdate is set to qeAUTOUPD_DEFER (2), then
DTK saves the changes to the current record—not the database—before
moving to another record. If geSetAutoUpdate is set to

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 5 Modifying Data

| GoTo w | Unique Keys 78

geAUTOUPD_DISCARD (1), DTK discards all changes made when you
move off of a record that has not been updated. The qeGetAutoUpdate
function returns which option is set.

If geSetAutoUpdate is set to geAUTOUPD_DEFER, you can use the DTK
hstmt as a temporary record storage. For example, you can create several
records by calling geRecNew and set their column values by calling gePut
functions. Or, you can modify a number of records by positioning to them
using the geFetch functions and changing them by calling gePut functions.
You can position to any record by calling the qeFetch functions, and the new
records and the changed records will be maintained by DTK, but the changes
are not sent to the database until you call geRecUpdate. When you position
to a record, you can use the geRecState function to determine whether it is
new or has been changed. You can call geApplyAll to apply all of the changed
records to the database. You can call geUndoAll to discard all of the changes
made to all records.

Unique Keys

The geRecSetKey and geRecGetKey functions identify the columns of the
Select statement that are used to uniquely identify the current record in the
database.

For some database systems, DTK generates SQL Update and Delete
statements to perform the geRecUpdate and geRecDelete functions. SQL
statements may also be generated to perform the geRecLock function. In
these cases, DTK must generate a Where clause that uniquely identifies the
record in the database corresponding to the current record.

To generate these Where clauses, DTK adds a condition for each column that
you designate as a key by calling geRecSetKey.

For example, in an employee table containing a unique employee ID field
(EMP_ID), you can designate the employee ID field as the key field by calling
geRecSetKey. Then when DTK needs to generate a Where clause to identify
a record, it generates a Where clause of the form “Where EMP_ID=xxxxx",

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 5 Modifying Data
Unique Keys 79

where xxxxx is the employee ID value for the current record. If there is no
employee ID field in the employee table, you could specify both the
LAST_NAME and FIRST_NAME columns as key columns. In this case DTK
uses both values in the Where clause to identify the current record.

If you do not call geRecSetKey and DTK needs to generate a Where clause
to find the current record, it will create a default key that includes all of the
columns in the Select statement that can be used. Depending on the columns
in the Select statement, the generated Where clause may or may not
uniquely identify the current record. For example, if the Select statement is

SELECT | ast_name FROM em p

then the only field available to include in the Where clause is LAST_NAME.
Since last names are typically not unique, the Where clauses will not uniquely
identify records. Depending on the database system, some data types may
not be allowed in Where clauses. DTK will not generate Where clauses
containing columns that are not allowed in Where clauses.

DTK does not generate a default key until you call geRecDelete,
geRecUpdate, geRecLock, or geUniqueWhereClause, function for the
current hstmt. Until you call one of these functions (or geRecSetKey), there
will be no key for the hstmt—every column will return O (False) on calls to
geRecGetKey. If you call geRecSetKey to set the key before calling one of
the other “default key” functions listed above, the default key is never
generated; instead, the key you specified is used.

Because DTK cannot guarantee that the Where clauses generated for
geRecUpdate or geRecDelete uniquely identify one record, these calls may
in fact affect more than one record, or no records. Your application should call
geNumModRecs to determine the number of records affected.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 5 Modifying Data

| GoTo = | Unique Keys 80

DataDirect Developer’s Toolkit Programmer’s Guide

| GoTo w |

6 Using Transaction Functiors

This chapter describes functions that let you group database operations into
transactions. It also describes the functions that set the fetching, logging, and
locking options that DTK provides. It contains the following sections:

® “Transaction Functions,” next, describes the DTK functions used to
implement transactions.

® “Transactions, Locking, and Logging” on page 84 describes the concept of
transactions and many important concepts related to locking and logging
within transactions. If you are not familiar with these concepts, you should
read this section first.

Transaction Functions

DTK provides functions that let you group sets of database changes into
transactions. A transaction is a set of database operations that can be
committed or rolled back (undone) as a single unit.

The sample program on page 81 shows the use of transactions to roll back
changes made by an SQL Update statement. To load this sample in the
SAMPLE.EXE program, choose Using Transactiors from the Example List.

geSTATUS trans () {

/* This routine denonstrates the use of transactions to rollback changes * /
/* made by an SQL Update statenent. * /

geHANDLE hdbc = 0; /* Handl e to dat abase connection * /
qeHANDLE hstnt = 0; /* Handle to SQ statenent execution * /
eSTATUS res_code; /* Result code from DIK functions * /

/* Call geLiblnit to initialize DIK, check for errors. * /
res_code = geLiblnit ()

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 6 Using Transaction Functions

I GoTo W I Transaction Functions

if (res_code != gqeSUCCESS) return (res_code)

/* Call geConnect to connect to a data source. Check to see * /
/* if hdbc == 0, which indicates that the connection failed. * /
hdbc = geConnect ("DSN=CEDBF") ;
if (hdbc == 0) return (err_handl er (hdbc, hstnt))

/* Start a transaction. * /
res_code = geBegi nTran (hdbc) ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

/* Call geExecSQ to execute the update statenment. Check if hstnt == 0, * /
/* which indicates that the statenment did not execute successfully. * /
hstmt = geExecSQ (hdbc, "Update enp set first_name = 'R chard where
first_name = 'Joe'") ;
if (hstnt == 0) return (err_handler (hdbc, hstnt))

/* Rollback the transaction. * /
res_code = geRol | back (hdbc)
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

/* Cose the statement. * /
res_code = geEndSQ@ (hstnt)
hstmt =0 ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

/* Call qgeDi sconnect to disconnect froma data source. * /
res_code = geD sconnect (hdbc)
hdbc = 0 ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))
/* Call geLibTermto free nmenory allocated by DIK * /
res_code = geLi bTerm ()
MessageBox (hwid, "Sanpl e succeeded."”, "Transactions", M_CK)
return (res_code)

/* err_handl er routine goes here. * /

DataDirect Developer’s Toolkit Programmer’s Guide

82

|GoTo v|

Chapter 6 Using Transaction Functions
Transaction Functions 83

The functions listed in Table 6-1 let you use transactions in your applications:

Table 6-1. Functions that Support Transactios

Function
geBeginTran
geCommit

geRollback
geGetSupportedisolati
onLevels
geSetlsolationLevel

geGetlsolationLevel

geSetSelectOptions

geGetSelectOptions

Result
Begins a SQL transaction.

Ends a transaction by committing all changes to the
database.

Ends a transaction by rolling back all changes to the
database.

Returns the set of isolation levels supported by the
database system.

Sets the isolation level to any of the ones supported by the
database system.

Returns the default isolation level provided by the database
system.

Specifies the following options:

The level of fetching that is possible after a transaction
ends.

Whether your application only reads forward through the
records resulting from a Select statement, or also needs to
position to records that have already been read

Whether DTK will write records in the result set to log files
when connected to databases for which it is not necessary
to do so.

Returns whether previous and random fetching is enabled
for the current database connection, whether DTK will use
log files when connected to databases for which it is not
necessary to do so, and the level of fetching that is possible
after a transaction ends.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 6 Using Transaction Functions

I GoTo W= I Transactions, Locking, and Logging 84

The geGetSupportedlisolationLevels, geSetlsolationLevel, and
geGetlsolationLevel functions let you control the isolation level that the
database system provides to your transactions. For information on isolation
levels and using them, see “Isolation Levels” on page 85.

The geSetSelectOptions and geGetSelectOptions functions provide control
over DTK behavior relative to fetching and the use of log files during and after
transactions see “Logging” on page 89 and “Controlling Statement
Persistence” on page 92 for information on using these functions.

Transactions, Locking, and Logging

This section explains the concept of database transactions. It also explains
the concepts of locking and logging as they apply to DTK.

Transactions

A transaction is a set of database operations that are grouped into a single
unit. In a transaction, multiple database operations are combined so that if a
problem occurs at some point during the process, the entire transaction can
be canceled and the individual operations that were completed can be
undone. Such cancellation marks the end of the transaction, and is called a
rollback. The way to end a successful transaction is with a commit, which
accepts the changes made during the transaction and makes them
permanent in the database.

The geBeginTran function starts a transaction. The geRollback function ends
the transaction and discards all database changes made during the
transaction. The geCommit function ends the transaction and makes all
changes permanent in the database.

Whenever you are not within a transaction—that is, have not called
geBeginTran to begin a transaction, or have just called geCommit or
geRollback to end one, you are in auto-commit mode. In auto-commit mode,

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 6 Using Transaction Functions
Transactions, Locking, and Logging 85

each database operation you perform is immediately processed by the
database system and the changes are immediately committed. You cannot
rollback or undo the changes.

Transactions are closely linked to the concepts of locking and isolation levels,
which are described in the following sections.

Locking

Locking is a vital activity in multi-user databases, where different users can
try to access or modify the same records concurrently. While such concurrent
database activity is desirable, it can create problems. Without locking, for
example, if two users try to modify the same record at the same time, they
might encounter problems ranging from retrieving bad data to deleting data
that the other user needs. However, if the first user to access a record is able
to lock that record—temporarily prevent other users from modifying it—such
problems can be avoided. Locking provides a way to manage concurrent
database access while minimizing the various problems it can cause.

Some locks are automatically acquired by the database system as it
processes SQL statements. DTK users can explicitly lock records by calling
geRecLock.

Isolation Levels

An isolation level represents a particular locking strategy employed in the
database system to improve data consistency. The higher the isolation level,
the more complex the locking strategy behind it.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 6 Using Transaction Functions
Transactions, Locking, and Logging

The isolation level provided by the database determines whether a
transaction will encounter the following behaviors in data consistency:

Dirty reads

Non-repeatable
reads

Phantom reads

User 1 modifies a row. User 2 reads the same row
before User 1 commits. User 1 performs a rollback.
User 2 has read a row that has never really existed
in the database. User 2 may base decisions on
false data.

User 1 reads a row but does not commit. User 2
modifies or deletes the same row and then
commits. User 1 rereads the row and finds it has
changed (or has been deleted).

User 1 uses a search condition to read a set of
rows, but does not commit. User 2 inserts one or
more rows that satisfy this search condition, then
commits. User 1 rereads the rows using the search
condition, and discovers rows that were not
present before.

Isolation levels represent the database system’s ability to prevent these
behaviors. There are four isolation levels defined by ANSI: read uncommitted
(0), read committed (1), repeatable read (2), and serializable (3). In
ascending order (0-3), these isolation levels provide an increasing amount of

data consistency to the transaction. At the lowest level, all three behaviors

86

can occur. At the highest level, none of them can occur. The success of each
level in preventing these behaviors is due to the locking strategies that they
employ, which are as follows:

Read uncommitted (0) Locks are obtained on modifications to the
database and held until end of transaction (EOT).
Reading from the database does not involve any

Read committed (1)

locking.

Locks are acquired for reading and modifying the

database. Locks are released after reading but

locks on maodified objects are held until EOT.

DataDirect Developer’s Toolkit Programmer’s Guide

o T Chapter 6 Using Transaction Functions
I cfo W I Transactions, Locking, and Logging 87

Repeatable read (2) Locks are obtained for reading and modifying the
database. Locks on all modified objects are held
until EOT. Locks obtained for reading data are
held until EOT. Locks on non-modified access
structures (indexes, hashing structures, etc.) are
released after reading.

Serializable (3) All data read or modified is locked until EOT. All
access structures that are modified are locked
until EOT. Access structures used by the query
are locked until EOT.

Some databases provide an additional isolation
level, Versioning (4). This isolation level is
actually a different implementation of isolation
level 3, serializable, but provides greater
concurrency through the use of non-locking
“record versioning” protocols.

The following table shows what data consistency behaviors can occur at
each isolation level:

Non-

Level Dirty reads repeatable Phantom
reads reads

0, Read uncommitted Yes Yes Yes

1, Read committed No Yes Yes

2, Repeatable read No No Yes

3, Serializable No No No

Support for each isolation level depends on the database system. Many
databases do not support all four levels. Refer to the DataDirect ODBC
Drivers Reference for the isolation levels supported by each database. Your
applications can find out what isolation levels the current database system
supports by calling geGetSupportedisolationLevels. DTK uses the default

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 6 Using Transaction Functions
Transactions, Locking, and Logging 88

isolation level provided by the database unless you specifically request one
with the geSetlsolationLevel function. A call to geGetlsolationLevel returns
the current isolation level.

While higher isolation levels provide better data consistency, this consistency
can be costly in terms of the concurrency provided to individual users.
Concurrency is the ability of multiple users to access and modify data
simultaneously. As isolation levels increase, so does the chance that the
locking strategy used will create problems in concurrency. Put another way:
the higher the isolation level, the more locking involved, and the more time
users may spend waiting for data to be freed by another user. Because of this
inverse relationship between isolation levels and concurrency, you must
carefully consider how people use the database before choosing an isolation
level. You must weigh the trade-offs between data consistency and
concurrency and decide which is more important to your users.

Isolation levels are also a consideration when DTK uses a log file to enable
backward and random record fetching. See “Logging and Isolation Levels”
on page 90 for more information.

Locking Modes and Granularity

Different database systems employ various locking modes, but they have two
basic ones in common: shared and exclusive. Shared locks can be held on a
single object by multiple users. If one user has a shared lock on a record,
then a second user can also get a shared lock on that same record. However,
the second user cannot get an exclusive lock on that record. Exclusive locks
are exclusive to the user that obtains them. If one user has an exclusive lock
on a record, then a second user cannot get either type of lock on the same
record.

Performance and concurrency can also be affected by the locking granularity
used in the database system. The locking granularity determines the size of
an object that is locked in a database. For example, many database systems
let you lock an entire table, as well as individual records. An intermediate

level of locking, page-level locking, is also common. A page contains one or
more records and is typically the amount of data read from the disk in a single

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 6 Using Transaction Functions
Transactions, Locking, and Logging 89

disk access. The major disadvantage of page-level locking is that if one user
locks a record, a second user may not be able to lock other records because
they are stored on the same page as the locked record.

Using geReclLock

The geRecLock function explicitly locks the current record. geRecLock works
only if called within a transaction; otherwise, it returns an error. All locks are
freed by a call to geCommit or geRollback.

geRecLock enables you to control the locking strategies rather than
depending on the database system. For example, by calling geRecLock after
fetching a record, you lock that record until the end of the transaction. This
eliminates the possibility of a non-repeatable read, which is the same as if
your transaction had operated at isolation level 2 (repeatable read).

See “Logging and geRecLock” on page 91 for information on using
geRecLock with a log file.

Logging

Most SQL database systems provide only a fetch next function; neither
previous nor random fetches are permitted. The geSetSelectOptions function
lets you specify random and previous fetching, as well as forward fetching.
For database systems that do not support random or previous fetching, DTK
provides the capability by saving each record read in a temporary log file that
is stored in your TEMP directory (specified by the “SET TEMP=" line in your
DOS AUTOEXEC.BAT or OS/2 CONFIG.SYS file). DTK allows your
application to randomly fetch records by reading them back from the log file.

Because many database systems don't provide a function that returns the
number of records selected, DTK provides the geFetchNumRecs function for
this purpose. To call this function you must have enabled random and
previous fetching using the geSetSelectOptions function. Since DTK may
need to read and count the records in order to return this information, log files
may be required to save the records. These log files are deleted when
geEndSQL is called.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 6 Using Transaction Functions

| GoTo = | Transactions, Locking, and Logging 90

Some database systems automatically terminate Select statements when a
transaction ends, preventing you from reading records following a commit or
rollback unless you re-execute the statement. DTK lets you avoid this
limitation. The geSetSelectOptions function lets you specify what happens to
active Select statements when a transaction ends. If you enable the option to
continue reading records after a transaction ends, and the underlying
database system does not support it, DTK saves the records in log files.

Since an application can have only a limited number of files open at any time
(20 is the DOS/Windows default), you may exceed the limit if your application
has other files open or if you have several Select statements active at the
same time. You can call geFetchLogClose to close the temporary log file
used by a statement. DTK automatically reopens the file when you call a
geFetch function.

DTK creates and maintains log files containing saved records whenever you
use geSetSelectOptions to enable capabilities that aren’t provided directly by
the underlying database system. When log files are used to save records
retrieved by a Select statement, DTK reads records from the log file as much
as possible instead of re-reading them from the database system. This use of
log files creates important considerations regarding locking and isolation
levels. The following sections describe these considerations.

Logging and Isolation Levels

Because DTK reads record values from the log file whenever possible, the
isolation level provided by the database system affects the accuracy of the
data in the log file. Some isolation levels allow records that are saved in the
log file to be changed in the database by another user, causing the values in
the log file to be different from those in the database. The lower the isolation

DataDirect Developer’s Toolkit Programmer’s Guide

o T Chapter 6 Using Transaction Functions
I olo W I Transactions, Locking, and Logging 91

level, the greater the possibility of this kind of behavior. The level of
consistency provided by each isolation level during a transaction is as
follows:

0,1 Records in the log file may not match records in the database.

2 Records in the log file will match those in the database, but there
may be new records that have been inserted in the database that
aren’t present in the log file.

3 The log file will always match the database.

Isolation level 3 provides the best degree of consistency when log files are
used. If it is not possible or desirable to use isolation level 3 (or level 4,
Versioning), you can call geRecLock after fetching each record to ensure
consistency between the log file and the database. The next section
describes how this method prevents consistency problems.

Logging and geRecLock

Because DTK reads record values from the log file whenever possible, you
may want call geRecLock on each fetch to ensure consistency between the
log file and the database, especially if the isolation level is O or 1.

geRecLock always acquires a lock on the current record. Optionally, this
function will either warn you when the locked record has changed or
automatically refresh the copy in the log file with the corresponding values
from the database so that the values you see are always current. The
geSetLockOptions function lets you choose one of the following options:

Constant Value Description

geLOCK_NO_OPTIONS 0 Default; DTK neither compares nor
refreshes the record in the log file.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 6 Using Transaction Functions
Transactions, Locking, and Logging 92

Constant Value Description

geLOCK_COMPARE 1 When locking, DTK compares the
record in the log file to the
corresponding record in the database,
and raises a warning if they are
different.

geLOCK_REFRESH 2 When locking, DTK automatically
refreshes the record in the log file with
new column values.

Emulated Transactiors

Some database systems do not support transactions. When using the
DataDirect ODBC Drivers Reference drivers for these database systems,
DTK transparently emulates transactions so that your application can call
geBeginTran, geCommit, and geRollback for these database systems. This
emulation is not supported when using third-party database drivers.

Controlling Statement Persistene

Sometimes database systems do not maintain the Select statement’s result
set beyond the end of a transaction. In such databases, after you issue a
commit or rollback you can no longer fetch records using the current hstmt
because the database can no longer provide a point of reference for the
fetch. However, if you are using DTK’s logging to enable random and
previous record fetching, you don’t experience this problem. The log file
tracks the current record, so DTK always knows where it is in the database.
Because of this ability, you may want to force the use of log files, even if the
database you are using doesn’t require their use for random and previous
record fetching. You can do this by calling geSetSelectOptions with the
geLOG_ALWAYS option (0x0010).

The geSetSelectOptions function provides additional control over logging and
statement persistence by letting you specify the level of statement
persistence that DTK provides at the end of transactions. By default
(qeSELECT_PERSIST, 0x0060), DTK will read all of the records that you

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 6 Using Transaction Functions
Transactions, Locking, and Logging 93

have not yet fetched into the log file, allowing you to continue updating the
entire result set. If you do not need DTK to read all the records but want to
continue working with the records you’ve already fetched, set the
geSELECT_TRUNCATE flag (0x0040). If you don’t want DTK to save any
records in the log file when a transaction ends, set the
geSELECT_INVALIDATE flag (0x0020). Because these settings affect what
happens when changes are committed, they also affect statement
persistence when in auto-commit mode. Because auto-commit mode
represents an implicit commit of each change you make, whatever you
choose to have happen at the end of a transaction will also happen whenever
a change is made in auto-commit mode. Therefore, if you intend to use auto-
commit mode and change multiple records returned by a statement, you
should use the default setting of geSELECT_PERSIST.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 6 Using Transaction Functions

I GoTo W= I Transactions, Locking, and Logging 94

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

/ Error Handling and Debuggig

This chapter describes DTK’s error-handling and debugging functions. The
last two sections describe problems that do not return errors.

The following example shows tracing enabled in a DTK program, as well as
the error handling routine used for all samples in SAMPLE.EXE. The trace
files it creates are listed in the section “Debugging Your Applications.” To load
this sample in the SAMPLE.EXE program, choose Tracing DTK Cals from
the Example List.

geSTATUS trace () {

/* This routine denmonstrates the use of the tracing facilities. * /
geHANDLE hdbc = 0; /* Handl e to dat abase connection * /
qeHANDLE hstnt = 0; /* Handle to SQ statenent execution * /
eSTATUS res_code; /* Result code from DIK functions * /

nodr ecs

/* Call geLiblnit to initialize DIK, check for errors. * /
res_code = geLiblnit () ;
if (res_code != gqeSUCCESS) return (res_code)

/* Turn tracing on, set options to trace everything. * /

/*
/*

/*

Cal |

res_code = geTraceOn ("c:\qgelib\trace.txt") ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

res_code = geSet TraceQpti ons (geTRACE NON VAL CALLS + qeTRACE USER +

geTRACE VAL _CALLS + geTRACE_(CDBC)

if (res_code !'= qeSUCCESS) return (err_handl er (hdbc, hstnt))
geConnect to connect to a data source. Check if hdbc == 0, which * /

indicates that the connection failed. * /[

Set

= geConnect (" DSN=QEDBF")

if (hdbc == 0) return (err_ hand! er (hdbc, hstnt))

the CDBC tracefile. * /
res_code = geSetDriverTracefile (hdbc, "c:\qelib\odbc.txt")
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 7 Error Handling and Debuggin
| GoTo w | P 9 gging 118

/* Call geExecSQL to execute the update statenment. Check if hstnt == 0, * /

/* which indicates that the statenent did not execute successfully. * /
hstmt = geExecSQ (hdbc, "Update enp set first_name = 'Joe' where first_nane
= 'Richard") ;

if (hstnmt == 0) return (err_handl er (hdbc, hstnt))

/* Find out how many records were affected by the statenment. * /
nodrecs = geNunbWbdRecs (hstnt)
if (qeErr () !'= qeSUCCESS) return (err_handl er (hdbc, hstnt))

/* Cose the statement. * /
res_code = geEndSQ@ (hstnt)
hstmt =0 ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

/* Call geDi sconnect to disconnect froma data source. * /
res_code = geD sconnect (hdbc)
hdbc = 0 ;
if (res_code != qeSUCCESS) return (err_handler (hdbc, hstnt))

/* dose the tracefiles. * /
res_code = geTraceCf () ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))
/* Call geLibTermto free nmenory allocated by DIK * /
res_code = geLibTerm () ;
MessageBox (hwWid, "Sanpl e succeeded.", "Trace Functions", M3 (K
return (res_code)

/* err_handl er routine goes here. * /

The following sections describe the use of DTK’s error-handling and
debugging functions.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 7 Error Handling and Debugging
I GoTo W= I Handling Errors and Warnings 119

Handling Errors and Warnings

DTK provides the error handling functions listed in Table 7-1.

Table 7-1. Error Handling Functiors

Function Returns

geErr The result code of the last DTK function you called
geDBErr The database error resulting from the last DTK function
geErrMsg and The error message generated by the last DTK function you
geErrMsgBuf called.

geWarning The DTK or database warning generated by the last DTK

function you called.

DTK allows various methods of error checking, because every DTK function
can detect errors in its execution. Many DTK functions return an error status
result code as the value returned by their execution. Similarly, functions that
return a handle to the database connection (hdbc) or SQL statement (hstmt)
return a value of zero if they do not execute successfully. Also, the geErr
function is available to report the result code of the last function that
executed. geErr reports the status of all DTK functions.

All DTK functions that return result codes, including geErr, report the same
set of status constants. A result code of zero from these functions indicates
that they succeeded (qeSUCCESS). A non-zero result indicates that an error
or warning occurred. When checking the result code value, you can use
either the constant name (such as qeSUCCESS) or explicit value (like 0).

A result code of geSUCCESS_WITH_INFO (1) means that the function was
successful, but returned warning information. When this occurs, call
geWarning to get the warning information. You should also call geWarning
whenever geErr returns geNO_DATA_WITH_INFO (2).

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 7 Error Handling and Debugging
Debugging Your Applications 120

geWarning returns warnings, including the geTRUNCATION and
geNULL_DATA warnings. If a function results in both an error and a warning,
geErr will report only the error, so you should call geWarning in your error-
handling routines to see if any warnings were issued.

You can call geErrMsg or geErrMsgBuf to get the error message associated
with the result code. DTK error messages contain up to 512 characters.
When you call either of these functions, your programs must be able to
handle these messages. When you call geErrMsgBuf, the variable you pass
as the parameter must be large enough to hold 512 characters.

If the error is detected by the underlying database system, the database
system’s error code can be retrieved with geDBErr. For example, if you are
using Oracle and Oracle detects an error, geErr returns geDBSYS_ERROR
(4), geDBErr returns the Oracle error code, and qeErrMsg returns the text of
the message. The Oracle error codes are described in the Oracle
documentation set.

Note: It is very important that you check for errors following every call to a
DTK function. Ignoring errors in your programs may result in your program or
a DTK function causing a General Protection Fault (GPF).

Debugging Your Applications

DTK provides tracing functions that let you log calls to the functions for
database connection and SQL execution.

When tracing is on, all parameters sent to DTK functions, as well as all values
they return, are written to an ASCII file. You can look at this file to see where
errors in your program exist.

This sample application at the beginning of this chapter returns the trace file
shown on page 121, named TRACE.TXT.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 7 Error Handling and Debugging

I GoTo W= I Debugging Your Applications 121

geTraceO (c:\qgelib\trace.txt)

geTraceO returns (0)

geSet Traceptions (23)

geSet Traceptions returns (0)

geConnect (DSN=QEDBF)

geConnect returns (1)

geSetDriverTracefile (1, c:\qelib\odbc.txt)
geSetDriverTracefile returns (0)

geExecSQ (1, Update enp set first_name = 'Joe' where
first_pame = 'R chard)

geExecSQL returns (2)

geNumMbdRecs (2)

geNumMbdRecs returns (0)

geEndSQ (2)

geEndSQ returns (0)

geD sconnect (1)

geD sconnect returns (0)

geTraceCf ()

The sample also returns an ODBC trace file named ODBC.TXT.

SQAI | ocSt nt (hdbc116F0000, phst nt 08DF0000) ;

SQ_Pr epar e(hst nt 08DF0000, "Update enp set

first_name = 'Joe' where first_nane = 'R chard ", 62) ;
SQ@ Execut e(hst nt 08DFO000)

SQ@ NunResul t Col s(hst nt 08DFO000, pccol) ;

SQ@ RowCount (hst nt 08DF0000, pcrow) ;

SQ Mor eResul t s(hst nit 08DFO000)

SQFr eeSt nt (hst nt 08DFO000, 1) ;

SQ@.D sconnect (hdbc116F0000) ;

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 7 Error Handling and Debugging
Debugging Your Applications 122

DTK provides the trace functions listed inTable 7-2; these functions let you
log calls to the database connection functions and SQL execution functions:

Table 7-2. Functions that Log Calls to Database-Connection and
SQL-Execution Functiors

Function Result

geTraceOn Starts tracing calls to the DTK API by writing
debugging information to a trace file

geTraceOff Closes the trace file opened by qeTraceOn and
discontinues the tracing of calls to the DTK APl

geSetDriverTracefile Specifies a file as the driver trace file.

geSetTraceOptions Sets the type of information that is sent to the trace
file.

geGetTraceOptions Returns the type of information that is sent to the trace
file.

geTraceUser Sends a string to the trace file.

When tracing is on, all parameters sent to DTK functions, as well as all values
they return, are written to an ASCII file. You can look at this file to see where
errors in your program exist. DTK continues to write to the trace file until you
call geTraceOff.

Tracing Statement and Connection Erros

The trace file created by the geTrace functions provides the best method for
discovering errors in the following:

® Connection strings passed to the database via geConnect

® SQL statements passed via geExecSQL and geSQLExecute

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 7 Error Handling and Debugging

| GoTo w | Debugging Your Applications 123

The two sections that follow show how such errors affect the contents of the
DTK trace file.

Trace files resulting from each type of error are compared to the following
trace file text, which was created by the DTK tracing example at the
beginning of the chapter:

geTraceO (c:\qgelib\trace.txt)

geTraceO returns (0)

geSet Traceptions (23)

geSet Traceptions returns (0)

geConnect (DSN=QEDBF)

geConnect returns (1)

geSetDriverTracefile (1, c:\qelib\odbc.txt)
geSetDriverTracefile returns (0)

geExecSQ (1, Update enp set first_name = 'Joe' where
first_pame = 'Rchard)

geExecSQL returns (2)

geNumMbdRecs (2)

geNumMbdRecs returns (0)

geEndSQ (2)

geEndSQ returns (0)

geD sconnect (1)

geD sconnect returns (0)

geTraceCf ()

Calling qeExecSQL with an Invalid SQL Statemernt

Suppose that the program that created the preceding trace file contained a
geExecSQL call like this:

hstm = geExecSQ (hdbc, "Updte enp set first_name =
"Joe' where first_nane = 'R chard ") ;

Note that the Update keyword in the statement parameter is misspelled. This
error results in the trace file shown on page 124.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 7 Error Handling and Debugging
Debugging Your Applications 124

geTraceO ("c:\qgelib\trace.txt")

geTraceO returns (0)

geSet Traceptions (23)

geSet Traceptions returns (0)

geConnect (" DSN=QEDBF")

geConnect returns (1)

geSet DriverTracefile (1, "c:\qgelib\odbc.txt")
geSetDriverTracefile returns (0)

geExecSQL (1, "Updte enp set first_name = 'Joe' where
first_name = 'Richard ")

geExecSQ returns (0)

geExecSQ DBErr is (3800)

geErr returns (4)

geErr DBErr is (3800)

geErrMsg returns ("[1 NTERSCLV] [CDBC dBase
driver][dBase] Only SELECT, | NSERT, UPDATE, DELETE,
CREATE, and DRCP statenents are supported.”)
geD sconnect (1)

geD sconnect returns (0)

This trace file shows that qeExecSQL returned a zero (0), which indicates an
error. geErr returns 4 (geDBSYS_ERR), which indicates that the error was
reported by the database. The 3800 code returned by qeDBErr was reported
by the ODBC dBASE driver DLL. geErrMsg reports the corresponding text of
this message.

Note: Since the geExecSQL statement results in an error, none of the
subsequent DTK function calls appear in the trace file.

Calling geConnect with an Invalid Connection String

For this example, suppose that the geConnect call contains an invalid
connection string (a typographical error is made when entering the data
source name attribute; it should be DSN rather than DSM).

hdbc = geConnect (" DSM-CQEDBF") ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 7 Error Handling and Debugging

| GoTo = | Debugging Your Applications 125

The trace file reads as follows:

geTraceO ("c:\qgelib\trace.txt")

geTraceO returns (0)

geSet Traceptions (23)

geSet Traceptions returns (0)

geConnect (" DSM=QEDBF*)

geConnect returns (0)

geErr returns (2106)

geErrMsg returns ("Connection string nust contain a
DSN=<dri ver _nanme>: DSMFQEDBF')

The invalid call to geConnect returned a zero (0), which indicates a
connection could not be made.

Note: Since the geConnect statement results in an error, none of the
subsequent DTK function calls appear in the trace file.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 7 Error Handling and Debugging

| GoTo w | Debugging Your Applications 126

DataDirect Developer’s Toolkit Programmer’s Guide

| GoTo w |

8 QBE and Query Builder
Functions

This chapter describes the DTK functions that allow you to add flexible
guerying features to your applications. With these functions you can design
applications that let your users dynamically control which records will be
retrieved, find records based on values in their fields, or even specify
complete SQL Select statements to determine the data to be retrieved. DTK
has two sets of functions that allow you to add a Query By Example (QBE)
interface or a Query Builder interface to your application.

This chapter contains the following sections:

® *“Using Query By Example and Finding Records” on page 127 describes
the concepts and techniques related to the QBE interface.

® *“Using QBE Functions” on page 130 describes the QBE functions and
their usage.

® *“Using Query Builder Functions” on page 132 describes the functions that
use the Query Builder interface and the query file (QEF) format.

® “The Query Builder Interface” on page 136 explains the query builder
interface and some of the features it provides.

Using Query By Example and Finding Records

Query By Example (QBE) is a way to let users of your application dynamically
change the Where clause of SQL Select statements.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 8 QBE and Query Builder Functions

I GoTo W= I Using Query By Example and Finding Records 128

For example, assume your base Select statement is

SELECT | ast_nanme, first_nane, salary, hire date
FROM enp CRDER BY | ast_nam e

and you want to enable users of your application to limit the employee
records that will be returned. To implement a QBE interface, you could
display a window containing an edit box for each of the four fields, and let the
user enter values in each edit box. When the user clicks the OK button, you
could use the values in each edit box to generate the Where clause in the
Select statement.

For example, if the user entered “S” in the LAST_NAME edit box, you could
add

WHERE | ast_nane LIKE ' S% '

to the base Select statement. Similarly, you could add additional conditions to
the Where clause as the user enters values in the other edit boxes.

The QBE functions serve as tools that make it easier for your program to
modify the Where clause of Select statements.

DTK also enables your program to specify conditions on the column values.
For example, assume your program's base Select statement is

SELECT | ast _nane, first_nane FROM enp
CRDER BY | ast_nam e

This may return a large number of records. You may want to let users position
to the first record having a last name that starts with an “S” without changing
the Select statement. DTK provides functions that allow you to position to
records based on field values.

The following code gives you a framework for using the QBE functions in your
application. The base Select statement in this example is

SELECT first_nane, |ast_nane FROMem p

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 8 QBE and Query Builder Functions

I GoTo W= I Using Query By Example and Finding Records 129

The example uses DTK’s QBE functions to add a condition that returns only
those employees whose first name begins with a T, then reads the records
and displays the first name values in message boxes. To load this sample in
the SAMPLE.EXE program, choose Using Query By Exampé¢ from the
Example List.

geSTATUS gbe () {

/* This routine denonstrates the use of Query By Exanple (@BE). * /

geHANDLE hdbc = 0; /* Handl e to dat abase connection * /
qeHANDLE hstnt = 0; /* Handle to SQ statenent execution * /
eSTATUS res_code; /* Result code from DIK functions * /
geLPSTR first_nane

/* Call geLiblnit toinitialize DTK: check for errors. * /
res_code = geLiblnit () ;
if (res_code != gqeSUCCESS) return (res_code)

/* Call geConnect to connect to a data source. Check to see * /
/* if hdbc == 0, which indicates that the connection failed. * /
hdbc = geConnect ("DSN=CEDBF") ;
if (hdbc == 0) return (err_handler (hdbc, hstnt))

/* Select first & last nanes fromenp. */
hstmt = geExecSQ (hdbc, "select first_nane, |ast_nane fromenp")
if (hstnmt == 0) return (err_handler (hdbc, hstnt))

/* Set a condition to search for all first names starting with 'T . * /
res_code = geRecSet ConditionChar (hstnt, 1, geFIND_LIKE "T%, "" FALSE)
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt)) ;

/* Re-Execute the Select statenent incorporating the QBE conditions. * /
res_code = geSQxecute (hstnt) ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))
/* Fetch and display the first names of the records found. */
whi | e (geFet chNext (hstnt) == geSUCCESS) {
first_nanme = geVal Char (hstnt, 1, "", 0) ;
if (qeErr () != qeSUCCESS && qurr () !'= qel\U_L DATA) br eak
MessageBox (hwid, first_name, "Query By Exanple", MB_(K)

}
if ((qeErr () '=qeSUCCESS) && (geErr () !'= quO:))
return (err_handl er (hdbc, hstnt)) ;
/* dose the statement. * /
res_code = geEndSQ@ (hstnt)

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 8 QBE and Query Builder Functions

| GoTo = | Using QBE Functions 130

hstm =0 ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

/* Call geDi sconnect to disconnect froma data source. * /
res_code = geD sconnect (hdbc)
hdbc = 0 ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

/* Call geLibTermto free nmenory allocated by DIK * /
res_code = geLibTerm () ;
MessageBox (hwid, "Sanpl e succeeded."”, "QBE Conditions", M3 _(K)
return (res_code)

}

/* err_handl er routine goes here. * /

Using QBE Functions

The Query By Example (QBE) and Find functions make it easier for you to
write a program that enables users to change query conditions at runtime and
position to records using field values.

Table 8-1 lists the DTK functions that provide these capabilities.

Table 8-1. Functions that Change Query Conditions at Runtime

Function Results

geQBEPrepare Prepares a statement containing QBE search
conditions.

geRecClearConditions Clears a statement’s search conditions

geRecSetConditionBinary Adds a search condition to the statement having a
binary value to compare.

geRecSetConditionChar Adds a search condition to the statement having a
character value to compare.

geRecSetConditionDecimal Adds a search condition to the statement having a
decimal value to compare.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 8 QBE and Query Builder Functions
Using QBE Functions 131

Table 8-1. Functions that Change Query Conditions at Runtimécont.)

Function Results

geRecSetConditionDouble Adds a search condition to the statement having a
double-precision floating-point value to compare

geRecSetConditionFloat Adds a search condition to the statement having a
floating-point value to compare.

geRecSetConditionInt Adds a search condition to the statement having a
2-byte integer value to compare.

geRecSetConditionLong Adds a search condition to the statement having a
4-byte integer value to compare.

geRecSetConditionNull Adds a search condition to the statement having a
value to compare of null.

geRecFind Locates the row matching the geRecSetCondition
search criteria.

All QBE functions require an active SQL Select statement and therefore
require an hstmt as a parameter. You can activate a Select statement by
calling either geExecSQL, qeSQLPrepare, or geQBEPrepare.

The geRecSetCondition functions specify the conditions to be added to the
Where clause. These functions have a parameter that identifies the column of
the Select statement that receives the condition, an operator parameter that
specifies the SQL relational operator to be used, and the value that is to be
compared against.

geRecClearConditions removes all conditions that have been specified.

After the conditions have been set, a call to qeQBEPrepare adds to the
Select statement’'s Where clause and prepares the resulting statement. You
must then call geSQLEXxecute to execute this statement. Subsequent calls to
the geFetch functions retrieve the records that result from the modified Select
statement.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 8 QBE and Query Builder Functions
Using Query Builder Functions 132

To find records using their field values, you execute Select statements and
set conditions just as you do for QBE. However, instead of calling
geQBEPrepare, you call geRecFind. geRecFind does not change the Where
clause or re-execute the Select statement. Instead, it locates a record in the
result set that matches the specified conditions and makes it the current
record. When using geRecFind, you can specify whether you want to position
to the first or last record that matches the conditions, or whether you want to
search for the next or previous record that matches the conditions.

Using Query

Builder Functions

DTK'’s Query Builder functions provide a simple way for users to create SQL
Select statements. Calling geQryBuilder in your application (available only in
Windows, Windows 95, and Windows NT) displays a window that allows your
users to create or modify Select statements by pointing and clicking. Your
users can manipulate Select statements even if they have no knowledge of
SQL.

The following sample code allows the user to enter a Select statement with
the Query Builder, executes the resulting statement, and then reads and
displays the values in the first column returned by the statement. To load this
sample in the SAMPLE.EXE program, choose Using the Query Builde
from the Example List.

geSTATUS querybuilder () {

/* This routine denmonstrates the execution of the Query Builder fromwthin * /

/* a DTK program *

gqeHANDLE
geHANDLE
qeSTATUS
gqeHANDLE

/

hdbc = 0; /* Handl e to dat abase connection * /
hstnt = 0; /* Handle to SQ statenent execution * /
res_code; /* Result code from DIK functions * /
hgry = 0; /* Handl e to query object * /

/* Call geLiblnit to initialize DIK, check for errors. * /
res_code = geLiblnit ()
if (res_code != gqeSUCCESS) return (res_code)

DataDirect Developer’s Toolkit Programmer’s Guide

GoTo W |

/*
/*

/*

/*

/*

/*

/*

/*

/*

Chapter 8 QBE and Query Builder Functions
Using Query Builder Functions

Call geConnect to connect to a data source. Check to see * /
if hdbc == 0, which indicates that the connection failed. * /
hdbc = geConnect ("DSN=QEDBF") ;
if (hdbc == 0) return (err_handl er (hdbc, hstnt))

Allocate a query structure to be used for Query Builder calls. * /
hgry = geQyA locate (hdbc, "") ;
if (hgry == 0) return (err_handl er (hdbc, hstnt))
Run the query builder. The resulting statenent will be stored in hgry. * /

res_code = geQyBuilder (hgry, hwd ,
geQRY_BI G | CONS + ge@RY_TABLES + qeQRY_VI EW5, qeQRY_DEFAULT)
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt)) ;

Prepare & execute the

statenent created in the query builder. * /

hstmt = geQyPrepare (hgry) ;
if (hstnmt == 0) return (err_handler (hdbc, hstnt))

res_code = geSQ.Execute (hstnt) ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

Free query structure.

*

res_code = geQyFree (hqary) ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

Call geD sconnect to disconnect froma data source. * /
res_code = geD sconnect (hdbc)

hdbc = 0 ;

if (res_cbde 1= qeSUCCESS) return (err_handl er (hdbc, hstnt))

Call qeLibTermto free nenory allocated by DIK * /
res_code = geLi bTerm ()

MessageBox (hwid,
return (res_code)

" Sanpl e’ succeeded. ", "Query Builder", M_CK)

err_handl er routine goes here. * /

DataDirect Developer’s Toolkit Programmer’s Guide

133

Chapter 8 QBE and Query Builder Functions

| _GoTo Using Query Builder Functions 134

v i

Table 8-2 lists the functions DTK provides for using the Query Builder tool.

Table 8-2. Functions that Support the Query Builder Tolo

Function
geQryAllocate

geQryFree

geQryGetFileName and
geQryGetFileNameBuf

geQryGetFileOffset

geQryGetHdbc

geQryGetNumParams

geQryGetParamDefault and
geQryGetParamDefaultBuf

geQryGetParamFormat and
geQryGetParamFormatBuf

geQryGetParamName and
geQryGetParamNameBuf

geQryGetParamPrompt and
geQryGetParamPromptBuf

geQryGetParamType

geQryGetStmt and
geQryGetStmtBuf

geQryOpenQueryFile

DataDirect Developer’s Toolkit Programmer’s Guide

Result

Builds a query based on a string containing a
SQL statement.

Frees the memory associated with anhqry.

Returns the file name associated with the
query represented in hqry.

Returns the offset of the extra information
within the query file that is associated with
the query.

Returns the hdbc associated with the query
represented by hqry.

Returns the number of parameters
associated with the query represented by
hqry.

Returns the default value of a parameter
associated with the specified query.

Returns the format string to be applied to the
value of a parameter associated with the
specified query.

Returns the name of a parameter associated
with the specified query.

Returns the prompt for a parameter
associated with the specified query.
Returns the type of a parameter associated
with the specified query.

Returns the statement associated with the
query represented in hqry.

Builds a handle to a query based on the
contents of the query file.

| Go To

v i

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 8 QBE and Query Builder Functions

Using Query Builder Functions

135

Table 8-2. Functions that Support the Query Builder Todgcont.)

Function
geQryGetSource and

geQryGetSourceBuf
geQrySetSource
geQrySetHdbc

geQrySaveQueryFile
geQrySetFileName
geQrySetNumParams

geQrySetParamDefault

geQrySetParamFormat

geQrySetParamName

geQrySetParamPrompt

geQrySetParamType

geQrySetStmt

geQryBuilder
geQryPrepare

Result

Returns the data source name used in a
query (.QEF) file.

Sets the data source name used in a query
file.

Resets the hdbc from a query file with the
current hdbc.

Writes a query to a query file.
Sets the file name for a query file.

Sets the number of parameters associated
with the query represented by hqry.

Sets the default value of a parameter
associated with the specified query.

Sets the format string for a parameter
associated with the specified query.

Sets the name of a parameter associated
with the specified query.

Sets the prompt for a parameter associated
with the specified query.

Sets the type of a parameter associated with
the specified query.

Sets the statement associated with the
specified query.

Runs the Query Builder.
Prepares a SQL statement for execution

The Query Builder functions operate on query objects. A query object is
created by a call to either geQryAllocate or qeQryOpenQueryFile and is freed

by a call to geQryFree. geQryAllocate and geQryOpenQueryFile return a

handle to the query object (hqry) that identifies the query object in other

Chapter 8 QBE and Query Builder Functions

| GoTo W I The Query Builder Interface 136

Query Builder functions. geQryAllocate allows you to specify an optional
Select statement for the new query object. geQryOpenQueryFile reads a
Select statement from a query file (.QEF extension) that has been previously
created by DTK, INTERSOLYV DataDirect Explorer, or another INTERSOLV
product.

Once you have a query object, calling geQryBuilder creates a window that
displays the query object’s current Select statement, if any. After the user
changes the Select statement, clicking OK closes the window and updates
the query object with the modified Select statement.

The attributes of the query object can be read or changed by calling the
geQryGet and gqeQrySet functions. A query file can be generated from the
guery object by calling geQrySaveQueryFile.

You can execute the Select statement contained in a query object by calling
geQryPrepare followed by geSQLExecute.

The Query Builder window also allows users to define parameters for the
Select statement. If parameters have been defined, calling geSQLExecute
causes DTK to display a dialog box requesting the values to be substituted
for the parameters. You can determine the number of parameters that have
been defined by calling geQryGetNumParams. You can read or change
parameter definitions by calling the geQryGetParam and geQrySetParam
functions.

The Query Builder Interface

When your program calls geQryBuilder, DTK creates windows that let your
users create or modify Select statements. These windows don't display the
actual text of the Select statement; instead, they split the Select statement
into various parts and display the parts in separate list boxes. Presenting the
Select statement this way enables users to modify Select statements using
the Query Builder’'s point and click interface—without having to learn the SQL
language.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 8 QBE and Query Builder Functions

I GoTo W I The Query Builder Interface 137

When geQryBuilder is called, the first window displayed depends on whether
a Select statement is already defined for the query object. If there is no Select
statement, the first window displayed allows the user to choose one or more
tables that are to be included in the Select statement.

ile: Directories
. dbi] c:\ddexplisamples Selected Files
— =5
. = ddtk
Source: Drives_
dBASEFile 2] [=cdiske
Expression: I Replal:e

Once the user chooses a table and clicks the OK button, the main Query
Builder window appears. This is the first window displayed if the query object
contains a Select statement when gqeQryBuilder is called. It has menu and
icon bars across the top, and a status bar across the bottom.

DataDirect Query Builder

Menu_ File Query Preferences Help

Icon Bar—gmﬂgﬂﬂ

Tables Fields
C:\DDEXP1\SAMPLES\CUST.DBF CUST_ID
FIRST_NAME
AoDrEss =
Sort Order CITY
T LAST_NAME g;lp—:ATE
PHONE
ZONE
Conditions
ZONE = 6

StatUS Bar —| Ready

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

@E{i

Chapter 8 QBE and Query Builder Functions
The Query Builder Interface 138

In this window, the separate parts of the Select statement appear in the
following list boxes:

Tables Lists the database tables from which records will be
retrieved (From clause).

Fields Lists the fields of the database table to be displayed (the
column expressions).

Sort order Lists sort orders for the records (Order By clause).

Conditions Lists conditions used to specify which records are to be
displayed (Where clause).

To modify the information in one of these boxes, the user can either click on
the box, use the corresponding command in the Query menu, or click the
corresponding icon on the icon bar. The Query Builder then displays a dialog
box which lets the user change the information in the list box. A Help button in
each of these dialog boxes displays detailed information on how to use them.

Once all changes have been made, clicking the OK button changes the
Select statement in the query object to reflect the changes. Clicking Cancel
discards all changes leaving the query object unchanged.

Query Builder Icors

The following icons are available when you are using the Query Builder:

Three additional boxes may be displayed—a Table Joins box, a Group By
box, and a Having box. The Table Joins box appears when the user defines a
join among database tables. The other two boxes appear when a Group By
clause is defined.

The Table icon allows you to define the database tables from which fields will
be selected.

The Joins icon allows you to specify how to relate tables. This is valid only if
you have specified more than one database table for the query.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 8 QBE and Query Builder Functions

| GoTo = | The Query Builder Interface 139

] The Field icon allows you to specify which fields of the table you want

| M retrieved.
% The Sort icon allows you to specify the fields by which you want the records
sorted.
<> The Conditions icon allows you to specify conditions (for example, display all
== employees who have an annual salary greater than $30,000).
The Groupings icon allows you to group sets of records and to define
- aggregate functions to compute (for example, average the salaries in each
department).
Fig The Having icon allows you to specify additional conditions for groups of
& :
records (for example, retrieve only the departments that have an average
salary of more than $20,000). You can have a Having clause only if you have
already defined a Group By clause.

& The Edit Query Text icon displays the SQL Select statement that corresponds
Sl to the current query definition. You can edit the statement from this screen.
. The Validity Check icon checks the syntax of a SQL Select statement that

you have modified and reports any errors.

Edit Query Text Icons

The next six icons are available only when you are in the Edit Query Text
screen.

The Cut icon removes a highlighted section of text from the screen and
places it onto the clipboard.

e

The Copy icon copies a highlighted section of text from the screen to the
clipboard.

o

The Paste icon pastes clipboard contents onto the screen in front of the
cursor or replaces the highlighted section with the contents of the clipboard.

!

a5 The Find icon searches and moves the cursor to the text that you specify.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

5

Chapter 8 QBE and Query Builder Functions
The Query Builder Interface 140

The Find Next icon finds the next occurrence of the specified text.

The Replace icon searches for the specified text and replaces it with different
text that you have specified.

The Preferences menu contains options you can set. The three options are:

Use Database to Validate If set, the Query Builder uses the database
system to validate the query conditions as
you build them. If not set, the Query Builder
does not use the database system to check
for errors, so you may construct conditions
that have errors when you execute the
qguery. The default is to validate.

Large/Small Icons This option determines whether large or
small icons are displayed on the icon bar.
Large icons are the default.

Sample Values from Database This option determines whether database
values are displayed when you are defining
field conditions. The default is to display
values.

Query Builder Parametes

The Query Builder supports parameters in Select statements. For example,
you can use the Query Builder to generate the following Select statement:

Select * fromenp where salary > ?sa |

A subsequent call to geSQLExecute will display the following dialog box:

= Query Parameters
Minimum salary: Il OK I

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 8 QBE and Query Builder Functions
The Query Builder Interface 141

The user is prompted for a salary value to substitute for the ?sal parameter.
This value is used when qeSQLExecute is called to execute the statement.

To build a Select statement with a parameter, you modify the Where clause
by clicking the Conditions list box in the Query Builder's main window.

This causes the Conditions dialog box to appear:

Conditions

|

Conditions
Add() |

Connector Field Expression Operator Yalue Expression

[M | [- |

‘ Add Function I | Add P | |Edit.r‘

The easiest way to specify a condition is to choose a field from the drop-down
Field Expression list, choose an operator from the drop-down Operator list,
and choose or type a value for the Value Expression box. Once the condition
is complete, click the Insert button to insert it in the list box labeled

Conditions.

For example, to create the condition “salary > ?sal,” you could do the
following:

1 Choose SALARY from the drop-down Field Expression list.
2 Choose > from the drop-down Operator list.

3 Click in the Value Expression box.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 8 QBE and Query Builder Functions

I GoTo W I The Query Builder Interface 142

4 Click the Add Parameter button.

The following dialog box appears, allowing you to define the parameter:

= Query Parameters
|
Data Type:
@ Character
) Number
Label: I
O Date
@hnime Default Value: I
O Date-Time Format String: I
O Laogical

5 Enter the name of the parameter, sal in our example, in the Name box.
Optionally, supply the following information:

® A Label for the parameter value
® A Default Value for the parameter

®* A Format String used to describe how date, time, or numeric values
will be entered by the user.

The geQryPrepare function uses this information when displaying the dialog
box in which the user enters the parameter value.

These steps can be repeated to add additional parameters to the condition.

If a query object’s Select statement contains parameters, the attributes of the
parameters can be read or modified using the geQryGetParam and
geQrySetParam functions. The number of parameter can be read or modified
using the geQryGetNumParams and qeQrySetNumParams functions.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

9 Utility Functiors

® This chapter describes the following DTK functions:

® *“Using Data Dictionary Functions,” next, describes the functions that
guery the system to determine what data sources, databases, table, and
stored procedures are available.

® *“Parsing SQL Statements” on page 147 describes the functions that parse
the Where, Having, Group By, Order By, and Compute By clause, or other
database-specific condition clauses from a SQL Select statement.

® “ODBC Handle Conversion” on page 149 describes the functions that
convert DTK handles to ODBC handles for direct addressing of the ODBC
API.

Using Data Dictionary Functions

Many database systems have information available about the data that is
stored in them. This data can include information about the databases,
tables, columns, indexes, keys, and privileges associated with the data. DTK
returns this information as if it were a result set from a query, returning
records that have a fixed format for each type of information requested.

The sample program on page 143 shows how to call the data dictionary
functions. To load this sample in the SAMPLE.EXE program, choose Getting
Data Dictionary Informatia from the Example List.

geSTATUS datadict () {
/* This routine denonstrates calls to geSources, a data dictionary routine * /

/* that returns an hstnt whose result set contains a |list of the available * /
/* dat abase system sources. * |/

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 9 Utility Functions

| GoTo w | Using Data Dictionary Functions 144

geHANDLE hdbc = 0; /* Handl e to dat abase connection * /
qeHANDLE hstnt = 0; /* Handle to SQ statenent execution * /
eSTATUS res_code; /* Result code from DIK functions * /
char source [qeSRC_MAX_LEN+1] ;

| ong source_| en = geSRC_MAX LEN+1

char extensi on [geSRC_NAX LEN+1] ;

| ong ext ensi on_| en = geSRC_VAX_LEN+1

short sour ce_hdbc

| ong source_hdbc_| en = si zeof (source_hdbc)

char remar k [geSRC_REMARK_VAX_LEN+1]

| ong remark_| en = qeSRC_REMARK_VAX_LEN+1

/* Call geLiblnit to initialize DIK check for errors * /
res_code = geLiblnit ()
if (res_code != gqeSUCCESS) return (res_code)

/* Note: you do not have to be connected to get the list of Sources * /

/* Get an hstnmt whose result set contains records that describe each Source. * /
hstnt = geSources (1) ;
if (hstnmt == 0) return (err_handler (hdbc, hstnt))

/* Bind local variables to the colums returned for each record * /
res_code = geBi ndCol Char (hstnt, 1, source, &source_len, "")
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

res_code = geBi ndCol Char (hstnt, 2, extension, &extension_len, "")
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

res_code = geBindCol Int (hstn, 3, &source_hdbc, &source_hdbc_|l en)
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt)) ;

res_code = geBi ndCol Char (hstnt, 4, remark, &enmark_len, "")
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))
/* Fetch rows and display each source nane in a nessage box. * /
whi | e (geFet chNext (hstnt) == geSUCCESS) {
MessageBox (hwid, source, "Data Dictionary: geSources", M_(K)

}
if ((qeErr () != geSUCCESS) && (qeErr () != qeECF))
return (err_handl er (hdbc, hstnt)) ;

/* Cose the data dictionary statement. * /
res_code = geEndSQ@ (hstnt)
hstmt =0 ;
if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 9 Utility Functions

| GoTo = | Using Data Dictionary Functions 145

/* Call geLibTermto free nmenory allocated by DIK * /
res_code = geLibTerm () ;
MessageBox (hwid, "Sanpl e succeeded.", "Data Dictionary", M_CK)
return (res_code)

}
/* err_handl er routine goes here. * /

This example shows how to get ODBC data source information using the
geSources function.

For database systems that support indexing, the gelndexes function returns
information on the set of indexes for a table. An index is a storage structure
that provides quick access to a table’s rows based on the values of one or
more columns in the row. It is analogous to the index in a book: it stores data
values in ascending or descending order, and each index value contains a
pointer to the value’s location within the table. Thus, if the database system
needs to search for a value on a column that has been indexed, the database
system does not search the table itself, whose rows are in random order;
rather, it quickly searches the ordered index, locates the value, and then
follows the index pointers to locate the row or rows that contain a value that
meets the search criteria. (If the column has not been indexed, the database
system must sequentially scan each row in the table and evaluate the
column’s value; to ensure it finds all values that meet the search criteria, it
needs to scan the entire table, which could be time-consuming.)

For database systems that support primary keys, the gePrimaryKeys function
returns information on the set of columns that compose a table’s primary
keys. A primary key is a column or combination of columns whose values
uniquely identify each row in the table. For example, an EMP_ID column
might uniquely identify each row in an EMP table and could be defined as the
table’s primary key. If a single column cannot uniquely identify each row, a
combination of columns can be defined as the primary key. For example, a
PARTS table might contain PART_NO and MFR columns. In this case, the
part number might not uniquely identify rows since two manufacturers might
use the same part number, but the combination of PART_NO and MFR might
be better for the table’s primary key.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 9 Utility Functions

|_GoTo Using Data Dictionary Functions 146

v i

For database systems that support foreign keys, the geForeignKeys function
returns information on the set of columns that compose a table’s foreign keys.
A foreign key is a column in one table whose values are derived from the
primary key in another table. For example, a SALESREP table might include
a column for SALES_TERR, which contains values identifying sales
territories. These territory values might match the values in a TERRITORY
field, which has been defined as the primary key in a TERRITORIES table.

Table 9-1 lists the entire set of data dictionary functions.

Table 9-1. Data Dictionary Functiors

Function Returns

geColumns Information on the set of column definitions for a
table.

geDatabases Information on the set of databases that can be
accessed.

geForeignKeys Information on the set of columns that compose a
table’s foreign keys.

gelndexes Information on the set of indexes for a table

gePrimaryKeys Information on the set of columns that compose a

geProcedureColumns

table’s primary keys.

Information that describes the parameters to a stored
procedure and the result columns for that procedure.
The rows may be retrieved subject to the same
restrictions as geTables (and other DTK procedures
which return result sets).

geSources Information on the database Sources (systems) that
can be accessed.

geTables Information on the available database tables

geTypelnfo Information about the types supported on a particular

geGetTableCaching

database.

Returns the caching setting specified in the last call to
geSetTableCaching.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 9 Utility Functions
I GoTo W I Parsing SQL Statements 147

Table 9-1. Data Dictionary Functiors (cont.)

Function Returns

geSetTableCaching Controls whether table information is cached after
calls to geTables.

geSetCacheFileName Sets the file name to be used when caching table
names.

Except for geGetTableCaching, qeSetTableCaching, and
geSetCacheFileName, these functions return an hstmt. The records for the
hstmt can be read using geFetchNext, and column values can be retrieved
using the geVal or geBindCol functions. After all processing is completed on
the returned hstmt, qeEndSQL must be called to terminate the hstmt.

Parsing SQL Statements

DTK’s parsing functions allow you to return useful information from the active
SQL statement.

The following sample shows how to use the parsing functions. To load this
sample in the SAMPLE.EXE program, choose Parsing SQL Statemens
from the Example List.

geSTATUS parse () {

/* This routine denonstrates the functions which return individual clauses * /
/* froma SELECT statenent. * /

geHANDLE hdbc = 0; /* Handl e to dat abase connection * /
qeHANDLE hstnt = 0; /* Handle to SQ statenent execution * /
eSTATUS res_code; /* Result code from DIK functions * /
geLPSTR cl ause

DataDirect Developer’s Toolkit Programmer’s Guide

GoTo W |

/*

/*
/*

/*
/*

/*

/*

/*

/*

/*

/*

/*

Call geLiblnit to initialize DIK check for errors
res_code = geLiblnit ()
if (res_code != gqeSUCCESS) return (res_code)

Chapter 9 Utility Functions
Parsing SQL Statements

*

Call geConnect to connect to a data source. Check to see * /
if hdbc == 0, which indicates that the connection failed.

hdbc = geConnect (" DSN=QEDBF")

if (hdbc == 0) return (err_handl ér (hdbc, hstnt))

Call geExecSQL to execute the update statement. Check if hstnmt == 0,

* /

whi ch indicates that the statenent did not execute successfully.

hstm = geSQPrepare (hdbc, "select * fromenp where first_name

if (hstnmt == 0) return (err_handler (hdbc, hstnt))

Set the statenent paraneters. * |/

res_code = geSet ParantChar (hstnt, 1, "Joe", 20)

(hdbe,

if (res_code != qeSUCCESS) return (err_handl er hstnt))
Execute the statenent. * /

res_code = geSQ.Execute (hstnt) ;

if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))
Get the Were clause. * /

clause = ged auseCGet (hstnt, qeCLAUSE WHERE) ;

if (qeErr () !'= qeSUCCESS) return (err_handl er (hdbc, hstnt))

MessageBox (hwid, clause, "Parsing", MB_CK) ;
dose the statenent. * /

res_code = geEndSQ@ (hstnt)

hstmt =0 ;

if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))
Call geD sconnect to disconnect froma data source. *

res_code = geD sconnect (hdbc)

hdbc = 0 ;

if (res_code !'= qeSUCCESS) return (err_handler (hdbc, hstnt))
Call qeLibTermto free nenory allocated by DIK * /

res_code = geLibTerm () ;

MessageBox (hwWid, "Sanpl e succeeded.", "Parse Functions",

return (res_code)

err_handl er routine goes here. * |/

DataDirect Developer’s Toolkit Programmer’s Guide

MB_CX)

| Go To

v i

Chapter 9 Utility Functions
ODBC Handle Conversion 149

DTK'’s parsing functions allow you to return useful information from the active
SQL statement. These functions take the hstmt as a parameter and return the
information listed in Table 9-2.

Table 9-2. Functions that Parse the Active SQL Statemen

Function Returns

geClauseGet and A clause from a Select statement
geClauseGetBuf

geNativeSQL and The SQL string as translated by the driver.
geNativeSQLBuUf

geUniqueWhereClause and A Where clause that uniquely identifies the
geUniqueWhereClauseBuf current record in an active Select statement.

geUniqueWhereClause and geUniqueWhereClauseBuf use the columns
specified by geRecSetKey if that function is called, otherwise they generate
the list of columns on their own.

ODBC Handle Conversion

These functions convert between DTK handles and ODBC handles, allowing
you to call the ODBC driver directly.

ODBC makes available a routine called SQLGetInfo. The DTK functions
geGetODBCInfoChar, geGetODBCInfoCharBuf, and geGetODBClInfoLong
make it easier to access SQLGetInfo. See the sections on these functions in

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 9 Utility Functions

I GoTo W I ODBC Handle Conversion 150

Part Il for lists of the SQLGetInfo constants they support. There is no
guarantee that every database driver will support all of the SQLGetInfo
options available.

Table 9-3. Functions that Access SQLGetlmf

Function Result

geGetODBCInfoChar and Returns information about an ODBC connection

geGetODBCInfoCharBuf

geGetODBCInfoLong Returns information about an ODBC connection

geGetODBCHenv Returns the ODBC environment handle
associated with the instance of DTK

geGetODBCHstmt Returns the ODBC hstmt that corresponds to the
DTK hstmt.

geGetODBCHdbc Returns the ODBC hdbc that corresponds to the
DTK hdbc.

geSetODBCHdbc Sets the ODBC hdbc that corresponds to the DTK
hdbc.

Important The ODBC handle conversion routines are potentially dangerous.
Using the ODBC hdbc to change the state of the ODBC connection may
create situations that trap. In particular, there is no guarantee of proper
behavior when the qeSetODBCHdbc function is called, because DTK cannot
know any information about the hstmt or hdbc involved. Use at your own risk.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Part 2: Function Referene
10 DTK Functions

This chapter provides a complete, alphabetical reference to the DTK
functions. It begins by describing parameter conventions employed in the
functions.

Parameter Conventions

Each DTK function has parameters that must be included when you call the
functions. The values you send as parameters determine the function’s
behavior.

Parameter Data Types

DTK'’s parameter conventions have been designed to work with every
Windows and OS/2 product that has a macro or script language with the
ability to call functions in DLLs. Only a limited number of types are used for
parameters. Also, the DTK functions do not change the values of the
parameters. Each function has one result, its return value.

The types used as parameters and return types are as follows:

Type Description C data type
INT16 2-byte integer short
INT32 4-byte integer long
FLOAT32 floating-point number float

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I Functions That Return Pointers 152

Type Description C data type
FLOAT64 double-precision floating-point number double
PTRSTR pointer to a string variable char far *
PTRINT16 pointer to a 2-byte integer variable short far *
PTRINT32 pointer to a 4-byte integer variabke long far *
PTRFLT32 pointer to a floating-point variablke float far *
PTRFLT64 pointer to a double-precision floating- double far *

point variable

The pointer data types are used in cases where you must pass a pointer to
the value. In general, this is handled automatically by the macro or script
language.

Some DTK functions return a pointer to a value (such as geValChar). Some
macro and script languages do not allow functions to return pointers. These
functions, and considerations for using them, are described in the following
section.

Functions That Return Pointers

For DTK functions that return a character string or a decimal number, two
forms of the functions are provided (like geValChar and geValCharBuf). The
first form returns a pointer to the resulting value. The second form (the
function name ending in Buf) has an additional parameter which is a pointer
to a buffer in which DTK is to put the value.

When a DTK function returns a pointer (as does geValChar), the pointer
refers to a buffer allocated by DTK. DTK allocates global memory and locks it
to obtain the pointer value, and returns that pointer. Your program should then
copy the value to its own variables.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Chapter 10 DTK Functions
Functions that Vary by Data Type or Column Type 153

DTK maintains one buffer per process. Each time a DTK function is called,
the contents of the buffer may change, or the buffer memory may be freed.
Therefore, be sure to copy character string or decimal values before you call
another DTK function from the same process.

If you are running two different programs, such as ToolBook and Excel, and
both programs are calling DTK functions, they are separate processes and
do not share the same buffers.

If you use the second form of the functions (like geValCharBuf), then your
program must allocate a buffer and pass a pointer to the buffer as a
parameter to the DTK function. In this case make sure that the size of the
buffer you allocate is large enough to hold the value returned by the function.

If you get an error on a call to a “Buf” function, the information written to the
buffer by the call may not to be trusted. You may want to include a routine in
your error-handling procedure to flush the buffer of such data.

Functions that Vary by Data Type or Column Type

This manual sometimes collectively refers to a set of functions whose names
vary by data type or by column type, but it does not specifically identify the
name of functions in the set. For example, it might refer to the geVal
functions; however, there is no function named geVal, although there is a
geValChar, a geValint, a geValLong, and so on.

To give you a better idea of the specific functions that might be referenced
this way, the following sections list some but not all of the functions that are
sometimes referenced by a collective term.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | Functions that Vary by Data Type or Column Type 154

geBindCol functiors

A set of functions referred to as the geBindCol functions specify value and
length variables that receive a column’s value and length each time a record
is fetched. The geBindCol function performs no data type conversion on the
value being bound; other functions in the set convert the data to the data type
suggested by the function name.

The geBindCol functions are:

geBindCol
geBindColChar
geBindColDecimal
geBindColDouble
geBindColFloat
geBindColint
geBindColLong

geCol functions

A set of functions referred to as the geCol functions return information about
a specified column.

The geCol functions are:

geColAlias and geColAliasBuf
geColDateEnd

geColDateStart

geColDBType
geColDBTypeName and qeColDBTypeNameBuf
geColExpr and geColExprBuf
geColName and geColNameBuf
geColPrecision

geColScale

geColType

geColTypeAttr

geColumns

geColWidth

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | Functions that Vary by Data Type or Column Type 155

gePut functions

A set of functions referred to as the gePut functions update columns with
values that match the column’s data type.

The gePut functions are:

gePutBinary

gePutChar
gePutDecimal
gePutDouble

gePutFloat

gePutint

gePutLong

gePutNull
gePutUsingBindColumns

geRecSetCondition functiors

A set of functions referred to as the geRecSetCondition functions add a
search condition to a statement; the comparison value’s data type matches
the data type of the column being compared against the condition.

The geRecSetCondition functions are:

geRecSetConditionBinary
geRecSetConditionChar
geRecSetConditionDecimal
geRecSetConditionDouble
geRecSetConditionFloat
geRecSetConditionint
geRecSetConditionLong
geRecSetConditionNull

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I Functions 156

geVal functions

A set of functions referred to as the geVal functions return column values
whose data types match the data type suggested by the function names.

The geVal functions are:

geValChar and geValCharBuf
geValDecimal and geValDecimalBuf
geValDouble

geValFloat

geValint

geVallLong

geValMultiChar and geValMultiCharBuf

Functions

The following sections describe the syntax, parameters, and usage of each
DTK database function.

DTK version 2.x includes functions that will be obsolete in future versions.
These functions are listed in Appendix E, “Compatibility Issues,” on page
553.

DTK also provides a set of data conversion functions that are described
separately in Appendix A, “Data Conversion Functions,” on page 493.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geAppendSQL 157

geAppendSQL

Syntax

Description

Parameters

geAppendSQL appends text to the SQL buffer.

intle res_code geAppendSQL (intl6 hdbc, ptrstr
partial _stnt)

Some macro languages cannot send an entire SQL statement to geExecSQL
due to limits in the lengths of strings they support. For example, Excel strings
are limited to 255 characters. Since many Select statements are longer than
255 characters, Excel cannot send long Select statements to geExecSQL.

Internally, DTK maintains one SQL buffer per hdbc.

SQL replaces the contents of the SQL buffer with the partial statement sent
as a parameter. Each subsequent call to geAppendSQL appends text to the
SQL buffer. Once the complete SQL statement has been sent to the DTK
API, you can call geSQLPrepare (with “” as the sql_stmt value) or
geExecSQL to use the SQL statement saved in the SQL buffer.

hdbc is the handle to the database connection returned by geConnect.

partial_stmt is the character string to append to the contents of the SQL
buffer. It must contain part of a SQL statement.

res_code is the result code returned by geAppendSQL, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions
I GoTo W I geAppendSQL 158

Example To send a SQL Server database a Select statement in sections and execute
it:

hdbc = geConnect (" DSN=CESS; U D=sa; SRVR=PI ONL") ;

res_code = geSet SQL (hdbc, "SELECT *") ;
res_code = geAppendSQ (hdbc, " FRCM enp") ;
res_code = geAppendSQ (hdbc, " CRDER BY | ast _nane")

hstnt = gqeExecSQ@ (hdbc, "") ;

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;
See Also geExecSQL, geSetSQL.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I geApplyAll 159

geApplyAll
geApplyAll updates the database with all deferred record changes.

Syntax intlée res_code qeApplyAl | (intl6 hstnt)

Description When geSetAutoUpdate is set to qeAUTOUPD_DEFER (2) to enable record
changes to be deferred—saved but not updated in the database, geApplyAll
updates the database with all changes that have been performed on the
statement.

You can call geNumModRecs to determine the number of records affected.

Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

res_code is the result code returned by geApplyAll, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;
res_code = geSet Aut oUpdat e (hdbc, geAUTOUPD DEFER) ;
hstm = geExecSQ (hdbc, "SELECT * FRCM enp") ;

res_code = geFet chNext (hstnt) ;

res_code = gePutChar (hstnt, 1, "", "Rachel™) ;
res_code = geFet chNext (hstnt) ;

res_code = gePutChar (hstnt, 1, "", "Eddie") ;
res_code = geFet chNext (hstnt) ;

res_code = geAppl yAIl (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

See Also geSetAutoUpdate, geUndoAll.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geBeginTran 160

geBeginTran

Syntax

Description

Parameters

Example

Notes

geBeginTran begins a database transaction.
intl6 res_code geBeginTra n (intl16 hdbc)

geBeginTran starts a transaction on a database connection. Once a
transaction begins, the SQL Insert, Update, and Delete statements that are
executed using geExecSQL are not committed to the database until
geCommit is called.

geCommit saves the changes that have been made since geBeginTran was
called and frees all database locks.

Alternatively, geRollback discards the changes that have been made since
geBeginTran was called and frees all database locks.

hdbc is the handle to the database connection returned by geConnect.

res_code is the result code returned by geBeginTran, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

To commit changes made to a SQL Server database:
hdbc = geConnect (" DSN=CESS; U D=sa; SRVR=PI ONL") ;

res_code = geBegi nTran (hdbc) ;
hstm = geExecSQ (hdbc
"UPDATE enp SET salary = salary * 1.1") ;
res_code = qeEndSQ (hstnt) ;
res_code = geCommit (hdbc) ;
res_code = geD sconnect (hdbc) ;

If you execute an Insert, Update, or Delete statement without first calling
geBeginTran, the database changes are automatically committed and no
database locks are held.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geBeginTran 161

You cannot have more than one simultaneous transaction active on a
database connection. Once you call geBeginTran, you must call either
geCommit or geRollback before you call geBeginTran again on the same
database connection.

Once you call geBeginTran, you must call either geCommit or geRollback
before you call geDisconnect. Calling geDisconnect with an active
transaction results in an error.

See Also geCommit, geRollback.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geBindCol 162

geBindCol

Syntax

Description

Parameters

geBindCol specifies value and length variables that receive a column’s value
and length each time a record is fetched.

intl6e res_code geBindCo | (
int16 hstnt,
int16 col _num
ptrstr val ue_ptr,
ptrint32 |l en_ptr)

geBindCol specifies the value and length variables in your program that are
to receive a column’s value and length each time a record is fetched.

geBindCol performs no data type conversion on the value being bound, so it
is most useful for binding where no conversion is necessary.

You must bind all columns in the statement in the order they occur.

hstmt is the handle to the statement returned by qeExecSQL, geSQLPrepare,
or data dictionary function calls.

col_num is the column number whose variables are specified. The first
column number is 1.

value_ptr points to the variable that is to receive the column’s value when a
record is fetched.

len_ptr points to the variable that is to receive the column value’s length when
a record is fetched. You can use this variable to determine whether a fetch
retrieves truncated or null data (qeNULL_DATA (-2) and geTRUNCATION (-
1) may be returned). Also, when geBindCol is called, this variable must
contain the size of the value_ptr variable in bytes.

res_code is the result code returned by geBindCol, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | geBindCol 163

Example To get the first and last names of each employee in the dBASE employee file:
char | ast _nane[11] ;
| ong In_length ;
char first_name[9] ;

| ong fn_length ;
hdbc = geConnect (" DSN=CEDBF") ;

hstm = geExecSQ (hdbc, "SELECT first_name, |ast_nane
FROM enp”) ;

fn_length = 9 ;

geBi ndCol (hstm, 1, first_nane, &f n_|ength) ;

In_length = 11 ;

geBi ndCol (hstnt, 2, last_nane, & n_|length) ;

whi |l e (geFetchNext (hstnt) == 0) {
/* qgeFetchNext has automatically filled * /
/* first_name and | ast_nane with the * /
/* values fromthe record, and fn_length * /
/* and I n_length with the lengths of the * /
/* two values. * /

}
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;
See Also geFetchNext, geFetchPrev, geFetchRandom, geVal functions.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geBindColChar 164

geBindColChar

Syntax

Description

Parameters

geBindColChar specifies value and length variables that receive a column’s
value and length each time a record is fetched.

intl6 res_code geBi ndCol Cha r (
i nt 16 hstnt,
i nt 16 col _num
ptrstr val ue_ptr,
ptrint32 |l en_ptr,
ptrstr fnt_string)

geBindColChar specifies the value and length variables in your program that
are to receive a column’s value and length each time a record is fetched.
Data is converted to a character string, using a format string if supplied.

You must bind all columns in the statement in the order they occur.

hstmt is the handle to the statement returned by qeExecSQL, geSQLPrepare,
or data dictionary function calls.

col_num is the column number whose variables are specified. The first
column number is 1.

value_ptr points to the variable that is to receive the null-terminated character
string value for the column when a record is fetched.

len_ptr points to the variable that is to receive the column value’s length when
a record is fetched. You can use this variable to determine whether a fetch
retrieves truncated or null data (qeNULL_DATA (-2) and geTRUNCATION (-
1) may be returned). Also, when geBindColChar is called, this variable must
contain the size of the value_ptr variable in bytes.

fmt_string is a string used to control formatting of dates and numbers into a
character string.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions
| GoTo = | geBindColChar 165

res_code is the result code returned by geBindColChar, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example char fnane[31], |name[31] ;
hdbc = geConnect (" DSN=CEDBF') ;

hstm = geExecSQ (hdbc, "SELECT first_name ,
| ast _nane FROM enp") ;

fnanel en = 30 ;

| narrel en = 30 ;

res_code = geBi ndCol Char (hstnt, 1, fname, &f nanelen,
")

res_code = geBi ndCol Char (hstnt, 2, |name, & narelen,
")

whi | e (geFet chNext (hstnt) == geSUCCESS) {

strcpy (name, fname) ;
strcat (name, |name) ;

}
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geBindColDecimal 166

geBindColDecimal

Syntax

Description

Parameters

geBindColDecimal specifies value and length variables that receive a
column’s value and length each time a record is fetched.

int1l6 res_code geBi ndCol Decima | (
i nt 16 hstnt,
i nt 16 col _num
ptrstr val ue_ptr,
ptrint32 |l en_ptr,
i nt 16 preci si on,
intl6 scal e)

geBindColDecimal specifies value and length variables that receive a
column’s value and length each time a record is fetched. Data is converted to
a decimal value with the specified precision and scale.

You must bind all columns in the statement in the order they occur.

hstmt is the handle to the statement returned by geExecSQL, geSQLPrepare,
or data dictionary function calls.

col_num is the column number whose variables are specified. The first
column number is 1.

value_ptr points to the variable that is to receive the column’s value when a
record is fetched.

len_ptr points to the variable that is to receive the column value’s length when
a record is fetched. You can use this variable to determine whether a fetch
retrieves truncated or null data (qeNULL_DATA (-2) and geTRUNCATION (-
1) may be returned).

precision is the number of significant digits in the result.

scale specifies the location of the decimal point in the result.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

Chapter 10 DTK Functions
geBindColDecimal 167

res_code is the result code returned by geBindColDecimal, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

char sal ary[10] ;

hdbc = geConnect (" DSN=CEDBF") ;

hstm = geExecSQ (hdbc, "SELECT sal ary FROM enp") ;

salarylen = 10 ;

res_code = geBi ndCol Deci mal (hstnt, 1, salary,
&salarylen, 9, 2) ;

whi | e (geFet chNext (hstnt) == geSUCCESS) {

/* salary now holds the value of the SALARY * /

/* field of the current record. * /

}
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geBindColDouble 168

geBindColDouble

Syntax

Description

Parameters

geBindColDouble specifies value and length variables that receive a
column’s value and length each time a record is fetched.

int1l6 res_code geBi ndCol Doubl e (
i nt 16 hstnt,
i nt 16 col _num
ptrflt64 val ue_ptr,
ptrint32 |l en_ptr)

geBindColDouble specifies value and length variables that receive a
column’s value and length each time a record is fetched. Data is converted to
a double-precision floating-point value.

You must bind all columns in the statement in the order they occur.

hstmt is the handle to the statement returned by geExecSQL, geSQLPrepare,
or data dictionary function calls.

col_num is the column number whose variables are specified. The first
column number is 1.

value_ptr points to the variable that is to receive the column’s value when a
record is fetched.

len_ptr points to the variable that is to receive the column value’s length when
a record is fetched. You can use this variable to determine whether a fetch
retrieves truncated or null data (qeNULL_DATA (-2) and geTRUNCATION (-
1) may be returned).

res_code is the result code returned by geBindColDouble, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions
| GoTo = | geBindColDouble 169

Example double salary ;

hdbc = geConnect (" DSN=CEDBF") ;
hstmt = geExecSQ (hdbc, "SELECT sal ary FROM enp") ;
salarylen = 8 ;
res_code = geBi ndCol Doubl e (hstnt, 1, &salary ,
&sal aryl en) ;
whi |l e (geFetchNext (hstnt) == 0) {
/* salary now holds the value of the SALARY * /
/* field of the current record. * /

}
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geBindColFloat 170

geBindColFloat

Syntax

Description

Parameters

geBindColFloat specifies value and length variables that receive a column’s
value and length each time a record is fetched.

intl6 res_code geBindCol Floa t (
i nt 16 hstnt,
i nt 16 col _num
ptrflt32 val ue_ptr,
ptrint32 |l en_ptr)

geBindColFloat specifies value and length variables that receive a column’s
value and length each time a record is fetched. Data is converted to a single-
precision floating-point value.

You must bind all columns in the statement in the order they occur.

hstmt is the handle to the statement returned by geExecSQL, geSQLPrepare,
or data dictionary function calls.

col_num is the column number whose variables are specified. The first
column number is 1.

value_ptr points to the variable that is to receive the column’s value when a
record is fetched.

len_ptr points to the variable that is to receive the column value’s length when
a record is fetched. You can use this variable to determine whether a fetch
retrieves truncated or null data (qeNULL_DATA (-2) and geTRUNCATION (-
1) may be returned).

res_code is the result code returned by geBindColFloat, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Example float salary ;

hdbc = geConnect (" DSN=CQEDBF")

Chapter 10 DTK Functions
geBindColFloat

hstmt = geExecSQ (hdbc, "SELECT sal ary FROM enp") ;

salarylen = 8 ;

res_code = geBi ndCol Fl oat (hst
&sal aryl en) ;

whil e (geFetchNext (hstnt) ==
/* salary now hol ds the val ue

m, 1, &salary,

0) {
of the SALARY * /

/* field of the current record. * /

}
res_code = gqeEndSQ (hstnt)
res_code = geD sconnect (hdbc)

DataDirect Developer’s Toolkit Programmer’s Guide

171

|GoTo v|

Chapter 10 DTK Functions
geBindColint 172

geBindColint

Syntax

Description

Parameters

DataDirect Developer’s

geBindColint specifies value and length variables that receive a column’s
value and length each time a record is fetched.

intl6e res_code geBindColIn t (
i nt 16 hstnt,
i nt 16 col _num
ptrint16 val ue_ptr,
ptrint32 |l en_ptr)

geBindColint specifies value and length variables that receive a column’s
value and length each time a record is fetched. Data is converted to a 2-byte
integer.

You must bind all columns in the statement in the order they occur.

hstmt is the handle to the statement returned by geExecSQL, geSQLPrepare,
or data dictionary function calls.

col_num is the column number whose variables are specified. The first
column number is 1.

value_ptr points to the variable that is to receive the column’s value when a
record is fetched.

len_ptr points to the variable that is to receive the column value’s length when
a record is fetched. You can use this variable to determine whether a fetch
retrieves truncated or null data (qeNULL_DATA (-2) and geTRUNCATION (-
1) may be returned).

res_code is the result code returned by geBindColint, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Toolkit Programmer’s Guide

GoT Chapter 10 DTK Functions
I olo W I geBindColint 173

Example int salary ;

hdbc = geConnect (" DSN=CEDBF") ;

hstmt = geExecSQ (hdbc, "SELECT sal ary FROM enp") ;
salarylen = 2 ;

res_code = geBindCol Int (hstnt, 1, &salary, &salarylen) ;
whi |l e (geFetchNext (hstnt) == 0) {

/* salary now holds the value of the SALARY * /

/* field of the current record. * /

}
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geBindColLong 174

geBindColLong

Syntax

Description

Parameters

geBindColLong specifies value and length variables that receive a column’s
value and length each time a record is fetched.

intl6 res_code geBi ndCol Lon g (
int16 hstnt,
int16 col _num
ptrint32 val ue_ptr,
ptrint32 |l en_ptr)

geBindColLong specifies value and length variables that receive a column’s
value and length each time a record is fetched. Data is converted to a 4-byte
integer.

You must bind all columns in the statement in the order they occur.

hstmt is the handle to the statement returned by geExecSQL, geSQLPrepare,
or data dictionary function calls.

col_num is the column number whose variables are specified. The first
column number is 1.

value_ptr points to the variable that is to receive the column’s value when a
record is fetched.

len_ptr points to the variable that is to receive the column value’s length when
a record is fetched. You can use this variable to determine whether a fetch
retrieves truncated or null data (qeNULL_DATA (-2) and geTRUNCATION (-
1) may be returned).

res_code is the result code returned by geBindColLong, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

GoT Chapter 10 DTK Functions
I olo W I geBindColLong 175

Example long salary ;

hdbc = geConnect (" DSN=CEDBF") ;

hstm = geExecSQ (hdbc, "SELECT sal ary FROM enp") ;
salarylen = 4 ;

res_code = geBi ndCol Long (hstni, 1, &salary, &salarylen) ;

whi |l e (geFetchNext (hstnt) == 0) {
/* salary now holds the value of the SALARY * /
/* field of the current record. * /

}
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geBindParamBinary 176

geBindParamBinary

geBindParamBinary binds a parameter to a binary buffer.

Syntax intl6 res_code qeBindParanBinar y (
i nt 16 hst nt,
i nt 16 param num

ptrstr param val ,
ptrint32 param.|| en)

Description geBindParamBinary binds the value of a parameter in a SQL statement to a
buffer that holds a binary value. It also binds a variable that holds the length
of the param_val buffer at geSQLExecute time.

For input and input/output parameters, you must place the value of the
parameter into the buffer before executing the statement. The DTK uses this
parameter value in place of the parameter itself in execution of the SQL
statement or stored procedure. For stored procedure output and input/output
parameters, the value assigned to the parameter during the execution of the
stored procedure is placed in this buffer by the DTK.

Before calling geBindParamBinary, you must call geSQLPrepare to prepare
the SQL statement for which you are supplying parameters. You must give
values to all input and input/output parameters before calling geSQLEXxecute.

DTK saves the value and length pointer; they must be valid when you call
geSQLExecute. This parameter continues to point to this value until
geSetParamNull or a geSetParam or geBindParam function is called again
for this parameter. All parameters with the same name as the one identified
by param_num are affected.

Set param_len to the maximum size of the binary value before calling
geBindParamBinary.

Parameters hstmt is the handle to the statement returned by geSQLPrepare.

param_num is the position of the parameter to be set.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

Chapter 10 DTK Functions
geBindParamBinary 177

param_val points to the value of the parameter. For input parameters,
param_val points to the buffer that holds the value to be assigned to the
parameter. For output parameters, param_val points to the buffer that holds
the value assigned to the parameter by the stored procedure after
geSQLExecute is called. For an input/output parameter, param_val plays
both roles.

param_len points to a LONG variable that holds the length of param_val
when qeSQLExecute is called. For input parameters, if you set param_len to
geNULL_DATA, the parameter is set to null when you call geSQLExecute.
For output parameters, param_len holds the length of the parameter value
after geSQLExecute is called. Also for output parameters, param_len can be
used to determine whether the data is NULL or truncated (qeNULL_DATA (-
2) and geTRUNCATION (-1) may be returned).

res_code is the result code returned by the function, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;

hstm = geSQPrepare (hdbc, "INSERT | NTO em p
MEM) VALUES (?)")

bi n_l ength = 10000; /* Max | ength of bindata * /

res_code = geBi ndParanBi nary (hstnt, 1, bindata ,
&in_|l ength) ;

/* Set bindata to your binary data. * /

bin_length = 4323; /* # of bytes of binary data passed * /
res_code = geSQExecute (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geBindParamChar 178

geBindParamChar

Syntax

Description

geBindParamChar binds a parameter to a character buffer.

int1l6 res_code geBi ndParantha r (
i nt 16 hstnt,
i nt 16 param num
ptrstr param val ,
ptrint32 param.|| en)

geBindParamChar binds the value of a parameter in a SQL statement to a
buffer that holds a character value.

For input and input/output parameters, you must place the value of the
parameter into the buffer before executing the statement. The DTK uses this
parameter value in place of the parameter itself in execution of the SQL
statement or stored procedure. For stored procedure output and input/output
parameters, the value assigned to the parameter during the execution of the
stored procedure is placed in this buffer by the DTK.

Before calling geBindParamChar, you must call geSQLPrepare to prepare
the SQL statement for which you are supplying parameters. You must give
values to all input and input/output parameters before calling geSQLEXxecute.

DTK saves the value and length pointer; they must be valid when you call
geSQLExecute. This parameter continues to point to this value until
geSetParamNull or a geSetParam or geBindParam function is called again
for this parameter. All parameters with the same name as the one identified
by param_num are affected.

Set param_len to the maximum size of the character value (the length of the
associated column) before calling geBindParamChar. This setting determines
whether the buffer that holds the parameter is of varying character or long
varying character type. If param_len is less than or equal to the largest
character string allowed by the database, then the parameter is varying
character type. If greater, it is long varying character type.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Parameters

Chapter 10 DTK Functions
geBindParamChar 179

Important A mismatch between the parameter type and the database
column type (varying character versus long varying character) may cause
unusual problems for some database drivers, for which no errors are
returned.

Before calling geSQLExecute, you must reassign the value of param_len to
that of the length of param_val.

hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter to be set.

param_val points to the value of the parameter. For input parameters,
param_val points to a buffer that holds the character value to be assigned to
the parameter when geSQLExecute is called. For output parameters,
param_val points to the buffer that holds the character value assigned to the
parameter by the stored procedure after geSQLEXxecute is called. For an
input/output parameter, param_val plays both roles.

param_len points to a 4-byte long integer variable. When geBindParamChar
is called, param_len must hold the length of the column associated with the
parameter. However, before calling geSQLExecute, you must reassign the
value of param_len to that of the length of param_val. For input parameters, if
you set param_len to geNULL_DATA, the parameter is set to null when you
call geSQLExecute. For output parameters, param_len holds the length of
the parameter value after geSQLExecute is called. Also for output
parameters, param_len can be used to determine whether the data is NULL
or truncated (qeNULL_DATA (-2) and geTRUNCATION (-1) may be
returned).

res_code is the result code returned by the function, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions
I GoTo W I geBindParamChar 180

Example hdbc = geConnect (“DSN=QECRA; DLG=2") ;

/* 2?1 dToNanme i nputs the enployee’s id and out put’ S
the nanme of the enpl oyee’s dept. * /
hstnm = geSQPrepare (hdbc, “{CALL Get Enpl oyeeDep t
(?IdToNane)}”)

char _len = 10 ;
res_code = geBi ndParantChar (hstnt, 1, dept, &char_|en) ;
res_code = geSet Param Olype (hstnt, 1, gePARAM | NCUT) ;

strcpy (dept, “E10297") ;
res_code = geSQExecute (hstnt) ;

/* The name of the enployee’ s departnent (?1dToNane) i S
in the dept buffer* /

res_code = geEndSQ.(hstm) ;

res_code = geD sconnect (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geBindParamDate 181

geBindParamDate

geBindParamDate binds a parameter to a date buffer.

Syntax int1l6 res_code geBi ndParanDat e (
int16 hstnt,
i nt 16 param num

ptrstr param val ,
ptrint32 param.|| en)

Description geBindParamDate binds the value of a parameter in a SQL statement to a
buffer that holds a date value.

For input and input/output parameters, you must place the value of the
parameter into the buffer before executing the statement. The DTK uses this
parameter value in place of the parameter itself in execution of the SQL
statement or stored procedure. For stored procedure output and input/output
parameters, the value assigned to the parameter during the execution of the
stored procedure is placed in this buffer by the DTK.

Before calling geBindParamDate, you must call geSQLPrepare to prepare
the SQL statement for which you are supplying parameters. You must give
values to all input and input/output parameters before calling geSQLEXxecute.

DTK saves the value and length pointer; they must be valid when you call
geSQLExecute. This parameter continues to point to this value until
geSetParamNull or a geSetParam or geBindParam function is called again
for this parameter. All parameters with the same name as the one identified
by param_num are affected.

Parameters hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter to be set.

param_val points to the value of the parameter. For input parameters,
param_val points to a buffer that holds the 26-byte date value to be assigned
to the parameter when geSQLExecute is called. For output parameters,

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

Chapter 10 DTK Functions
geBindParamDate 182

param_val points to the buffer that holds the date value assigned to the
parameter by the stored procedure after geSQLEXxecute is called. For an
input/output parameter, param_val plays both roles.

param_len is the date precision of the value assigned to this parameter. Set it
to 10 before calling geBindParamDate. For input parameters, if you set
param_len to geNULL_DATA, the parameter is set to null when you call
geSQLExecute. For output parameters, param_len holds the length of the
parameter value after geSQLExecute is called. Also for output parameters,
param_len can be used to determine whether the data is NULL or truncated
(geNULL_DATA (-2) and geTRUNCATION (-1) may be returned).

res_code is the result code returned by the function, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;

hstnm = geSQPrepare (hdbc, "SELECT * FROM em p
WHERE hire_date = ?") ;

date len = 10 ;

res_code = geBi ndParanbDate (hstnt, 1, hire_date,

&late len) ;

strcpy (hire_date, "1983-06-01 00: 00: 00: 000000") ;

res_code = geSQExecute (hstnt) ;
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geBindParamDateTime 183

geBindParamDateTime

geBindParamDateTime binds a parameter to a date-time buffer.

Syntax int1l6 res_code geBi ndParanDateTim e (
int16 hstnt,
i nt 16 param num

ptrstr param val ,
ptrint32 param.|| en)

Description geBindParamDateTime binds the value of a parameter in a SQL statement to
a buffer that holds a date-time value.

For input and input/output parameters, you must place the value of the
parameter into the buffer before executing the statement. The DTK uses this
parameter value in place of the parameter itself in execution of the SQL
statement or stored procedure. For stored procedure output and input/output
parameters, the value assigned to the parameter during the execution of the
stored procedure is placed in this buffer by the DTK.

Before calling geBindParamDateTime, you must call geSQLPrepare to
prepare the SQL statement for which you are supplying parameters. You
must give values to all input and input/output parameters before calling
geSQLEXxecute.

DTK saves the value and length pointer; they must be valid when you call
geSQLExecute. This parameter continues to point to this value until
geSetParamNull or a geSetParam or geBindParam function is called again
for this parameter. All parameters with the same name as the one identified
by param_num are affected.

Parameters hstmt is the handle to the statement returned by geExecSQL.
param_num is the position of the parameter to be set.

param_val points to the value of the parameter. For input parameters,
param_val points to a buffer that will hold the 26-byte date-time value
assigned to the parameter when geSQLEXxecute is called. For output

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I geBindParamDateTime 184

parameters, param_val points to the buffer that holds the date-time value
assigned to the parameter by the stored procedure after geSQLEXxecute is
called. For an input/output parameter, param_val plays both roles.

param_len is the date-time precision of the value assigned to this parameter.
Setitto 16, 19, 23, or 26 before calling geBindParamDateTime. For input
parameters, if you set param_len to geNULL_DATA, the parameter is set to
null when you call geSQLExecute. For output parameters, param_len holds
the length of the parameter value after qeSQLExecute is called. Also for
output parameters, param_len can be used to determine whether the data is
NULL or truncated (qeNULL_DATA (-2) and geTRUNCATION (-1) may be
returned).

res_code is the result code returned by the function, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;

hstm = geSQPrepare (hdbc, "SELECT * FROM em p
WHERE hire_date = ?") ;

dt _len = 26 ;

res_code = qgeBi ndParanbDateTinme (hstnt, 1 ,
hire date, &Jt_|en) ;

strcpy (hire_date, "1983-06-01 12: 00: 00: 000000") ;

res_code = geSQExecute (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geBindParamDecimal 185

geBindParamDecimal

Syntax

Description

Parameters

geBindParamDecimal binds a parameter to a decimal buffer.

intl6 res_code geBi ndParanmbecima | (
i nt 16 hstnt,
i nt 16 param num
ptrstr param val ,
ptrint32 param.| en,
int16 scal e)

geBindParamDecimal binds the value of a parameter in a SQL statement to a
buffer that holds a decimal value. The value is formatted based on the values
of precision and scale.

For input and input/output parameters, you must place the value of the
parameter into the buffer before executing the statement. The DTK uses this
parameter value in place of the parameter itself in execution of the SQL
statement or stored procedure. For stored procedure output and input/output
parameters, the value assigned to the parameter during the execution of the
stored procedure is placed in this buffer by the DTK.

Before calling geBindParamDecimal, you must call geSQLPrepare to prepare
the SQL statement for which you are supplying parameters. You must give
values to all input and input/output parameters before calling geSQLEXxecute.

DTK saves the value and length pointer; they must be valid when you call
geSQLExecute. This parameter continues to point to this value until
geSetParamNull or a geSetParam or geBindParam function is called again
for this parameter. All parameters with the same name as the one identified
by param_num are affected.

hstmt is the handle to the statement returned by geSQLPrepare.

param_num is the position of the parameter to be set.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

Chapter 10 DTK Functions
geBindParamDecimal 186

param_val points to the value of the parameter. For input parameters,
param_val points to a buffer that holds the value to be assigned to the
parameter. For output parameters, param_val points to the buffer that holds
the value assigned to the parameter by the stored procedure after
geSQLExecute is called. For an input/output parameter, param_val plays
both roles.

param_len is the number of bytes in the decimal value. Set it before calling
geBindParamDecimal. For input parameters, if you set param_len to
geNULL_DATA, the parameter will be set to null when you call
geSQLExecute. For output parameters, param_len holds the length of the
parameter value after geSQLExecute is called. Also for output parameters,
param_len can be used to determine whether the data is NULL or truncated
(geNULL_DATA (-2) and geTRUNCATION (-1) may be returned).

scale specifies the location of the decimal point in the decimal value.

res_code is the result code returned by the function, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;

hstnm = geSQPrepare (hdbc, "SELECT * FROM em p
WHERE salary = ?") ;

numlength =7 ;

res_code = qgeBi ndParanbDeci mal (hstnt, 1 ,
numdata, &wumlength, 2) ;

geChar ToDeci mal Buf (numdata, 7, 2, "320000", "") ;

res_code = geSQExecute (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geBindParamDouble 187

geBindParamDouble

Syntax

Description

Parameters

geBindParamDouble binds a parameter to a double-precision floating-point
buffer.

int1l6 res_code geBi ndParanDoubl e (
i nt 16 hstnt,
i nt 16 param num
ptrflt64 paramval,
ptrint32 param.|| en)

geBindParamDouble binds the value of a parameter in a SQL statement to a
buffer that holds a double-precision floating-point value.

For input and input/output parameters, you must place the value of the
parameter into the buffer before executing the statement. The DTK uses this
parameter value in place of the parameter itself in execution of the SQL
statement or stored procedure. For stored procedure output and input/output
parameters, the value assigned to the parameter during the execution of the
stored procedure is placed in this buffer by the DTK.

Before you call geBindParamDouble, you must call geSQLPrepare to
prepare the SQL statement for which you are supplying parameters. You
must give values to all input and input/output parameters before calling
geSQLEXxecute.

DTK saves the value and length pointer; they must be valid when you call
geSQLExecute. This parameter continues to point to this value until
geSetParamNull or a geSetParam or geBindParam function is called again
for this parameter. All parameters with the same name as the one identified
by param_num are affected.

hstmt is the handle to the statement returned by geSQLPrepare.

param_num is the position of the parameter to be set.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

Chapter 10 DTK Functions
geBindParamDouble 188

param_val points to the value of the parameter. For input parameters,
param_val points to a buffer to hold the double-precision floating-point value
to be assigned to the parameter. For output parameters, param_val points to
the buffer that holds the double-precision floating-point value assigned to the
parameter by the stored procedure after geSQLEXxecute is called. For an
input/output parameter, param_val plays both roles.

param_len lets you set the double-precision floating-point parameter to null.
For assigning a double-precision floating-point parameter value, set
param_len to O before calling geBindParamDouble. For input parameters, if
you set param_len to geNULL_DATA, the parameter is set to null when you
call geSQLExecute. For output parameters, param_len holds the length of
the parameter value after geSQLExecute is called. Also for output
parameters, param_len can be used to determine whether the data is NULL
or truncated (geNULL_DATA (-2) and geTRUNCATION (-1) may be
returned).

res_code is the result code returned by the function, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;

hstm = geSQPrepare (hdbc, "SELECT * FROM em p
WHERE salary = ?") ;

numlength =0 ;

res_code = geBi ndParanbDoubl e (hstnt, 1, numdata,

&um | ength) ;
numdata = 32000. 00 ;
res_code = geSQExecute (hstnt) ;

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geBindParamFloat 189

geBindParamFloat

Syntax

Description

Parameters

geBindParamFloat binds a parameter to a single-precision floating-point
buffer.

int1l6 res_code geBi ndParantl oa t (
i nt 16 hst nt,
i nt 16 param num
ptrflt32 paramval,
ptrint32 param.|| en)

geBindParamFloat binds the value of a parameter in a SQL statement to a
buffer that will hold a single-precision floating-point value.

For input and input/output parameters, you must place the value of the
parameter into the buffer before executing the statement. The DTK uses this
parameter value in place of the parameter itself in execution of the SQL
statement or stored procedure. For stored procedure output and input/output
parameters, the value assigned to the parameter during the execution of the
stored procedure is placed in this buffer by the DTK.

Before calling geBindParamFloat, you must call geSQLPrepare to prepare
the SQL statement for which you are supplying parameters. You must give
values to all input and input/output parameters before calling geSQLEXxecute.

DTK saves the value and length pointer; they must be valid when you call
geSQLExecute. This parameter continues to point to this value until
geSetParamNull or a geSetParam or geBindParam function is called again
for this parameter. All parameters with the same name as the one identified
by param_num are affected.

hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter to be set.

param_val points to the value of the parameter. For input parameters,
param_val points to a buffer to hold the single-precision floating-point value to
be assigned to the parameter. For output parameters, param_val points to

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

Chapter 10 DTK Functions
geBindParamFloat 190

the buffer that holds the single-precision floating-point value assigned to the
parameter by the stored procedure after geSQLEXxecute is called. For an
input/output parameter, param_val plays both roles.

param_len lets you set the floating-point parameter to null. For assigning a
floating-point parameter value, set param_len to O before calling
geBindParamFloat. For input parameters, if you set param_len to
geNULL_DATA, the parameter is set to null when you call geSQLExecute.
For output parameters, param_len holds the length of the parameter value
after geSQLExecute is called. Also for output parameters, param_len can be
used to determine whether the data is NULL or truncated (qeNULL_DATA (-
2) and geTRUNCATION (-1) may be returned).

res_code is the result code returned by the function, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;

hstm = geSQPrepare (hdbc, "SELECT * FROM em p
WHERE salary = ?") ;

numlength =0 ;

res_code = geBi ndParantl oat (hstni, 1, numdata ,
&um | ength) ;

numdata = 32000. 00 ;

res_code = geSQExecute (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geBindParamint 191

geBindParamint

geBindParamint binds a parameter to a 2-byte integer buffer.

Syntax intl6 res_code geBindParamn t (
int16 hstnt,
i nt 16 param num

ptrintl1l6 paramval,
ptrint32 param.|| en)

Description geBindParamint binds the value of a parameter in a SQL statement to a
buffer that will hold a 2-byte integer value.

For input and input/output parameters, you must place the value of the
parameter into the buffer before executing the statement. The DTK uses this
parameter value in place of the parameter itself in execution of the SQL
statement or stored procedure. For stored procedure output and input/output
parameters, the value assigned to the parameter during the execution of the
stored procedure is placed in this buffer by the DTK.

Before calling geBindParamint, you must call geSQLPrepare to prepare the
SQL statement for which you are supplying parameters. You must give
values to all input and input/output parameters before calling geSQLEXxecute.

DTK saves the value and length pointer; they must be valid when you call
geSQLExecute. This parameter continues to point to this value until
geSetParamNull or a geSetParam or geBindParam function is called again
for this parameter. All parameters with the same name as the one identified
by param_num are affected.

Parameters hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter to be set.

param_val points to the value of the parameter. For input parameters,
param_val points to a buffer to hold the 2-byte integer value to be assigned to
the parameter. For output parameters, param_val points to the buffer that

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

Chapter 10 DTK Functions
geBindParamint 192

holds the 2-byte integer value assigned to the parameter by the stored
procedure after qeSQLEXxecute is called. For an input/output parameter,
param_val plays both roles.

param_len lets you set the 2-byte integer parameter to null. For assigning a
integer parameter value, set param_len to 0 before calling geBindParamint.
For input parameters, if you set param_len to geNULL_DATA, the parameter
is set to null when you call geSQLExecute. For output parameters,
param_len holds the length of the parameter value after geSQLEXxecute is
called. Also for output parameters, param_len can be used to determine
whether the data is NULL or truncated (geNULL_DATA (-2) and
geTRUNCATION (-1) may be returned).

res_code is the result code returned by the function, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;

hstm = geSQPrepare (hdbc, "SELECT * FROM em p
WHERE salary = ?") ;

numlength =0 ;

res_code = geBi ndParamint (hstnt, 1, numdata,

&um | ength) ;
numdata = 32000 ;
res_code = geSQExecute (hstnt) ;

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | geBindParamLong 193

geBindParamLong

geBindParamLong binds a parameter to a 4-byte integer buffer.

Syntax intl6 res_code qgeBi ndParanmion g (
i nt 16 hst nt,
i nt 16 param num

ptrint32 paramval,
ptrint32 param.|| en)

Description geBindParamLong binds the value of a parameter in a SQL statement to a
buffer that will hold the 4-byte integer value when the statement is executed.

For input and input/output parameters, you must place the value of the
parameter into the buffer before executing the statement. The DTK uses this
parameter value in place of the parameter itself in execution of the SQL
statement or stored procedure. For stored procedure output and input/output
parameters, the value assigned to the parameter during the execution of the
stored procedure is placed in this buffer by the DTK.

Before calling geBindParamLong, you must call geSQLPrepare to prepare
the SQL statement for which you are supplying parameters. You must give
values to all input and input/output parameters before calling geSQLEXxecute.

DTK saves the value and length pointer; they must be valid when you call
geSQLExecute. This parameter continues to point to this value until
geSetParamNull or a geSetParam or geBindParam function is called again
for this parameter. All parameters with the same name as the one identified
by param_num are affected.

Parameters hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter to be set.

param_val points to the value of the parameter. For input parameters,
param_val points to a buffer to hold the 4-byte integer value to be assigned to
the parameter. For output parameters, param_val points to the buffer that

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

Chapter 10 DTK Functions
geBindParamLong 194

holds the 4-byte integer value assigned to the parameter by the stored
procedure after qeSQLEXxecute is called. For an input/output parameter,
param_val plays both roles.

param_len lets you set the 4-byte integer parameter to null. For assigning a
4-byte integer parameter value, set param_len to 0 before calling
geBindParamLong. For input parameters, if you set param_len to
geNULL_DATA, the parameter is set to null when you call geSQLExecute.
For output parameters, param_len holds the length of the parameter value
after geSQLExecute is called. Also for output parameters, param_len can be
used to determine whether the data is NULL or truncated (qeNULL_DATA (-
2) and geTRUNCATION (-1) may be returned).

res_code is the result code returned by the function, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;

hstm = geSQPrepare (hdbc, "SELECT * FROM em p
WHERE salary = ?") ;

numlength =0 ;

res_code = geBi ndParaniong (hstnt, 1, numdata,

&um | ength) ;
numdata = 32000 ;
res_code = geSQExecute (hstnt) ;

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geBindParamTime 195

geBindParamTime

geBindParamTime binds a parameter to a time buffer.

Syntax intlé res_code qgeBindParanTim e (
int16 hstnt,
i nt 16 param num

ptrstr param val ,
ptrint32 param.|| en)

Description geBindParamTime binds the value of a parameter in a SQL statement to a
buffer that will hold the 26-byte time value when the statement is executed.

For input and input/output parameters, you must place the value of the
parameter into the buffer before executing the statement. The DTK uses this
parameter value in place of the parameter itself in execution of the SQL
statement or stored procedure. For stored procedure output and input/output
parameters, the value assigned to the parameter during the execution of the
stored procedure is placed in this buffer by the DTK.

Before calling geBindParamTime you must call geSQLPrepare to prepare the
SQL statement for which you are supplying parameters. You must give
values to all input and input/output parameters before calling geSQLEXxecute.

DTK saves the value and length pointer; they must be valid when you call
geSQLExecute. This parameter continues to point to this value until
geSetParamNull or a geSetParam or geBindParam function is called again
for this parameter. All parameters with the same name as the one identified
by param_num are affected.

Parameters hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter to be set.

param_val points to the value of the parameter. For input parameters,
param_val points to a buffer to hold the 26-byte time value to be assigned to
the parameter. For output parameters, param_val points to the buffer that

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

Chapter 10 DTK Functions
geBindParamTime 196

holds the time value assigned to the parameter by the stored procedure after
geSQLExecute is called. For an input/output parameter, param_val plays
both roles.

param_len is the date-time precision of the value assigned to this parameter.
Set it to 19 before calling geBindParamTime. For input parameters, if you set
param_len to geNULL_DATA, the parameter is set to null when you call
geSQLExecute. For output parameters, param_len holds the length of the
parameter value after geSQLExecute is called. Also for output parameters,
param_len can be used to determine whether the data is NULL or truncated
(geNULL_DATA (-2) and geTRUNCATION (-1) may be returned).

res_code is the result code returned by the function, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;

hstm = geSQPrepare (hdbc, "SELECT * FROM em p
WHERE hire_date = ?") ;

time_len = 19 ;

res_code = geBi ndParantinme (hstnt, 1, hire_date,

&inme_|en) ;

strcpy (hire_date, "0000-00-00 03: 14:12: 000000") ;

res_code = geSQExecute (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geClauseGet and geClauseGetBuf 197

geClauseGet and geClauseGetBuf

These functions return a clause from a Select statement.

Syntax ptrstr xxx_clause gedauseG t (
int16 hstnt,
int16 whi ch_cl ause)

intl6 res_code ged auseGetBu f (
int16 hstnt,
int16 whi ch_cl ause,
ptrstr cl ause_buf)

Description geClauseGet returns a pointer to the clause string. This string is stored in a
buffer maintained by DTK. You must copy the string out of this buffer before
you call another DTK function, because the next function may use the same
buffer.

With geClauseGetBuf, you pass in a pointer to a buffer you have allocated.
The clause string is put in the buffer. You must make sure that the buffer is
large enough to hold the returned string.

Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.
which_clause specifies which clause is to be returned, and is one of the
following:
Constant Value Description
geCLAUSE_WHERE 1 Return Where clause.

qeCLAUSE_HAVING
qeCLAUSE_GROUPBY
qeCLAUSE_ORDERBY
qeCLAUSE_COMPUTEBY

Return Having clause.
Return Group By clause.

Return Order By clause.

a b W N

Return Compute By clause.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geClauseGet and geClauseGetBuf 198

Constant Value Description

geCLAUSE_FROM 6 Return From clause.

geCLAUSE_OTHER 7 Return other, database-specific
clause.

xxx_clause is the clause returned by geClauseGet.

clause_buf is a pointer to a user-allocated buffer for the clause returned by
geClauseGetBuf.

res_code is the result code returned by geClauseGetBuf, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;
hstnm = geSQPrepare (hdbc, "SELECT * FROM em p
WHERE | ast_nanme = "Wl tman'") ;
where_cl ause = ged auseCGet (hstnt, geCLAUSE WHERE) ;

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geClearParam 199

geClearParam

geClearParam clears the value of a parameter in a SQL statement.

Syntax intlée res_code gedearPara m(int1l6 hstnt, intl6
par am num
Description geClearParam clears the value of a parameter that was set by a geSetParam

function, or unbinds a parameter that was bound by a geBindParam function.

Before calling geClearParam, you must call geSQLPrepare to prepare the
SQL statement for which you are supplying parameters. You must reassign
values to all cleared parameters before calling geSQLExecute or DTK returns
an error.

Parameters hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter to be cleared.

res_code is the result code returned by the function, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;
hstm = geSQPrepare (hdbc, "SELECT * FROM em p
WHERE | ast _nane = ?") ;
char _len = 10 ;
res_code = qgeBi ndParanChar (hstnt, 1, |name, &char_|en) ;
strcpy (lname, "Bennett") ;
res_code = ged earParam (hstnt, 1) ;
/* Must set param agai n before executing * /
char _len = 10 ;

res_code = qgeBi ndParanChar (hstnt, 1, |name, &char_|en) ;
res_code = geSQExecute (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geColAlias and qeColAliasBuf 200

geColAlias and geColAliasBuf

These functions return the alias for the requested column.

Syntax ptrstr col _alias geColAias (
int16 hstnt,
int16 col _num

intl6 res_code geCol AliasBu f (
i nt 16 hstnt,
ptrstr col _alias,
i nt 16 col _num

Description geColAlias returns a pointer to the column alias string. This string is stored in
a buffer maintained by DTK. You must copy the string out of this buffer before
you call another DTK function, because the next function may use the same
buffer.

With geColAliasBuf, you pass in a pointer to a buffer you have allocated. The
string is put in the buffer. You must make sure that the buffer is large enough
to hold the returned string.

Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_alias points to a buffer to hold the resulting column alias.

col_num is the column number for which an alias will be returned. The first
column number is 1.

res_code is the result code returned by geColAliasBuf, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geColAlias and geColAliasBuf 201

Example hdbc = geConnect ("DSN=CEDBF') ;
hstnmt = qeSQPrepare (hdbc, "SELECT * FROM enp") ;
col _alias = geCol Alias (hstm, 2) ;

geEndSQ. (hstnt)
geDi sconnect (hdbc)

res_code
res_code

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | geColDateEnd 202

geColDateEnd

geColDateEnd returns the offset of the end of a date-time value.

Syntax intl6 end of fset geCol DateEn d (intl6 hstnt, intl6
col _num
Description geColDateEnd returns the offset to the last significant character of the value

in a date-time column. Date-time values are 26-byte character strings
formatted as

YYYY-MA DD HH MM SS. SSSSS - S

This format is used for date, time, or date-time values. The end offset is the
(0-origin) offset to the last significant character in the value. For example, if
the column contains date values without the time, the end offset is 9, the
offset to the second D (see “Date-Time Values” on page 54).

Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the column number whose offset is to be returned. The first
column number is 1.

end_offset is the returned offset.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geColDateEnd 203

Example To get the ending offset of the HIRE_DATE column in the dBASE employee
file:

hdbc = geConnect (" DSN=CEDBF") ;

hstm = geExecSQ (hdbc, "SELECT hire_date FROM enp")
end_of fset = geCol DateEnd (hstnt, 1)

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;
See Also geColDateStart.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geColDateStart 204

geColDateStart

Syntax

Description

Parameters

geColDateStart returns the offset of the start of a date-time value.

intl6e start_offset geCol DateStar t (intl6 hstnt, intl6
col _num

geColDateStart returns the offset to the first significant character of the value
in a date-time column. Date-time values are 26-byte character strings
formatted as

YYYY-MA DD HH MM SS. SSSSS - S

This format is used for date, time, or date-time values. The starting offset is
the (0-origin) offset to the first significant character in the value. For example,
if the column contains date values without the time, the start offset is 0, the
offset to the first Y (see “Date-Time Values” on page 54).

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the column number whose offset is to be returned. The first
column number is 1.

start_offset is the returned offset (0-origin).

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geColDateStart 205

Example To get the starting offset of the HIRE_DATE column in the dBASE employee
file:

hdbc = geConnect (" DSN=CEDBF") ;

hstm = geExecSQ (hdbc, "SELECT hire_date FROM enp")
start_offset = geCol DateStart (hstni, 1)

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;
See Also geColDateEnd.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | qeColDBType 206

geColDBType

geColDBType returns the database system’s data type.
Syntax int1l6 col _type qgeCol DBTyp e (intl6 hstmt, intl6 col _num

Description geColDBType returns the underlying database system’s data type for a
column in a SQL Select statement.

DTK returns column values in one of eight standard data types. The column’s
DTK data type is returned by geColType.

Each database system supported by DTK uses different data types. DTK
maps the database system data types to one of the eight data types. In some
cases you may want the underlying database system’s data type in addition
to the DTK data type. geColDBType returns the database system’s data type.
These are listed in the database driver reference.

See Appendix E, “Compatibility Issues,” on page 553 for more information.

Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the column number whose name is to be returned. The first
column number is 1.

col_type is the returned data type.

Example To get the database system’s data type of the first column in the dBASE
employee file:

hdbc = geConnect (" DSN=CEDBF") ;

hstm = geExecSQ (hdbc, "SELECT * FRCM enp") ;
col _type = geCol DBType (hstnt, 1) ;

res_code
res_code

geEndSQ. (hstnt)
geDi sconnect (hdbc)

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geColDBTypeName and qeColDBTypeNameBuf 207

geColDBTypeName and geColDBTypeNameB uf

These functions fill in the buffer with the database’s native data type name for
the requested column.

Syntax ptrstr type_name geCol DBTypeNam e (
i nt 16 hst nt,
int16 col _num

int1l6 res_code geCol DBTypeNanmeBu f (
int16 hstnt,
ptrstr t ype_nane,
int16 col _num

Description geColDBTypeName returns a pointer to the data type string. This string is
stored in a buffer maintained by DTK. You must copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

With qeColDBTypeNameBuf, you pass in a pointer to a buffer you have
allocated. The string is put in the buffer. You must make sure that the buffer is
large enough to hold the returned string.

Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

type_name points to a buffer to hold the resulting type name.

col_num is the column number whose information is to be replaced. The first
column number is 1.

res_code is the result code returned by geColDBTypeNameBuf, which
returns the same set of result codes as geErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I geColDBTypeName and qeColDBTypeNameBuf 208

Example hdbc = geConnect ("DSN=CEDBF') ;
hstnmt = qeSQPrepare (hdbc, "SELECT * FROM enp") ;
type_nanme = geCol DBTypeNane (hstnt, 2) ;

geEndSQ. (hstnt)
geDi sconnect (hdbc)

res_code
res_code

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geColExpr and geColExprBuf 209

geColExpr and geColExprBuf

Syntax

Description

Parameters

These functions return the expression for the requested column.

ptrstr col _expr geCol Expr (
int16 hstnt,
int16 col _num

int1l6 res_code geCol ExprBu f (
int16 hstnt,
ptrstr col _expr,
int16 col _num

geColExpr returns a pointer to the expression string. This string is stored in a
buffer maintained by DTK. You must copy the string out of this buffer before

you call another DTK function, because the next function may use the same
buffer.

With geColExprBuf, you pass in a pointer to a buffer you have allocated. The
string is put in the buffer. You must make sure that the buffer is large enough
to hold the returned string.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_expr points to a buffer to hold the resulting column expression.

col_num is the column number for which an expression will be returned. The
first column number is 1.

res_code is the result code returned by geColExprBuf, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I geColExpr and geColExprBuf 210

Example hdbc = geConnect ("DSN=CEDBF') ;
hstnmt = qeSQPrepare (hdbc, "SELECT * FROM enp") ;
col _expr = geCol Expr (hstni, 2) ;

geEndSQ. (hstnt)
geDi sconnect (hdbc)

res_code
res_code

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geColName and geColINameBuf 211

geColName and geColNameBuf

Syntax

Description

Parameters

geColName and geColNameBuf return the name of a column.

ptrstr col _nane geCol Name (int1l6 hstnt, intl6 col _nunm

int1l6 res_code geCol NaneBu f (
i nt 16 hstnt,
ptrstr col _nane,
i nt 16 col _num

geColName and geColNameBuf return the name of one column in a SQL
Select statement.

geColName returns a pointer to the column name string. This string is stored
in a buffer maintained by DTK. You must copy the string out of this buffer
before you call another DTK function, because the next function may use the
same buffer.

With geColNameBuf, you pass in a pointer to a buffer you have allocated.
The string is put in the buffer. You must make sure that the buffer is large
enough to hold the returned string.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the column number whose name is to be returned. The first
column number is 1.

col_name is the returned column name. Column name is *’ for expressions in
the SQL Select statement. For example, the column name of the column in

the following Select statement is .
SELECT | ast_nanme + first_name FROMem p

res_code is the result code returned by geColNameBuf, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geColName and geColNameBuf 212

Example To get the column name of the first column in the dBASE employee file:
hdbc = geConnect (" DSN=CEDBF') ;

hstmt = geExecSQ (hdbc, "SELECT * FROM enp") ;
col _name = geCol Nane (hstnt, 1) ;

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I geColPrecision 213

geColPrecision

geColPrecision returns the number of digits in a decimal column.

Syntax int1l6 precision geColPrecisio n (intl6 hstnt, intl6
col _num
Description geColPrecision returns the number of digits in a decimal column.

Decimal columns (type 3) are defined by the total number of digits in their
values (precision), and the number of digits right of the decimal point (scale).

For example, precision=8, scale=2 means that the values have 8 digits total,
2 to the right of the decimal point and 6 to the left of the decimal point.

Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the number of the column for which you want a precision value
returned. The first column number is 1. If this column is not a decimal column,
the function returns an error.

precision is the returned number of digits for the column.
Example To get the precision of the SALARY column in the dBASE employee file:

hdbc = qeConnec t (" DSN=CEDBF") ;

hstm = geExecSQ (hdbc, "SELECT sal ary FROM enp") ;
preci sion = geCol Precision (hstnt, 1) ;

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

See Also geColScale.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geColScale 214

geColScale

Syntax

Description

Parameters

Example

See Also

geColScale returns the number of digits to the right of the decimal pointin a
decimal column.

intl6 scale geCol Scal e (intl6 hstmt, intl6 col _num

geColScale returns the number of digits to the right of the decimal pointin a
decimal column.

Decimal columns (type 3) are defined by the total number of digits in their
values (precision), and the number of digits right of the decimal point (scale).

For example, precision=8, scale=2 means that the values have 8 digits total,
2 to the right of the decimal point and 6 to the left of the decimal point.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the number of the column for which you want a scale value
returned. The first column number is 1. If this column is not a decimal column,
the function returns an error.

scale is the returned number of digits right of the decimal point for the
column.

To get the scale of the SALARY column in the dBASE employee file:
hdbc = geConnect (" DSN=CEDBF") ;

hst
scal e

geExecSQL (hdbc, "SELECT sal ary FROM enp") ;
geCol Scale (hstm, 1) ;

res_code
res_code

geEndSQ. (hstnt)
geDi sconnect (hdbc)

geColPrecision.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geColType 215

geColType

geColType returns the data type for a column in a SQL Select statement.
Syntax intl6 col _type geCol Type (intl6 hstmt, intl6 col _num
Parameters hstmt is the handle to the statement returned by geExecSQL or

geSQLPrepare.

col_num is the number of the column for which a data type is to be returned.
The first column number is 1.

col_type is the returned data type. This is the data type used in DTK for the
database values, as follows:

Constant Value Description

geCHAR 1 Fixed length character string
geVARCHAR 2 Variable length character string
geDECIMAL 3 Decimal number (BCD)
geINTEGER 4 Long integer (4-byte)
geSMALLINT 5 Integer (2-byte)

geFLOAT 6 Floating-point number (4-byte)
geDOUBLEPRECISION 7 Double-precision floating-point

number (8-byte)
geDATETIME 8 Date-time (26-byte character string)

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

Notes

See Also

Chapter 10 DTK Functions
geColType 216

To get the column type of the first column in the dBASE employee file:
hdbc = geConnect (" DSN=CEDBF") ;

hstm = geExecSQ (hdbc, "SELECT * FRCM enp") ;
col _type = geCol Type (hstnt, 1) ;

geEndSQ. (hstnt)
geDi sconnect (hdbc)

res_code
res_code

When you retrieve column values using the geVal functions, you do not have
to use the geVal function that matches the data type returned by geColType.
The geVal functions automatically convert the value to the desired data type.
For example, if geColType returns 3, meaning a decimal number, you can
retrieve the values using geValDouble to get the value as a double-precision
floating-point number, or geValChar to get the value as a character string.

See “Data Types in DTK” on page 53 for more information.

geVal functions.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geColTypeAttr

217

geColTypeAttr

geColTypeAttr returns whether a column has a specified attribute.

Syntax intle result geCol TypeAtt r (

int16 hstnt,
int16 col _num

int16 attribute)

Parameters hstmt is the handle to the statement returned by geExecSQL or

geSQLPrepare.

col_num is the number of the column for which a data type is to be returned.
The first column number is 1.

attribute is the specific attribute for which you are checking. You must specify
one of the following attributes:

Attribute Value
geATTRIBUTE_ 1
UPDATABLE

qeATTRIBUTE_ 4
UNSIGNED

DataDirect Developer’s Toolkit Programmer’s Guide

Description

Reports whether a column is updatable. Possible
result values are

qeCOL_READ_ONLY 0
The column cannot be updated.
qeCOL_WRITEABLE 1
The column can be updated.
qeCOL_UNKNOWN 100

The function cannot report whether the column is
searchable.

Returns whether the column is signed or
unsigned. Possible result values are

geCOL_SIGNED 0
The column is signed.
geCOL_UNSIGNED 1

The column is unsigned.

Chapter 10 DTK Functions

| GoTo = | geColTypeAttr 218
Attribute Value Description
geATTRIBUTE_ 5 Returns whether the column is of type Money.
MONEY Possible result values are
qeCOL_NOT_MONEY 0
The column is not of type Money.
geCOL_MONEY 1
The column is of type Money.
geATTRIBUTE_ 6 Returns whether the column is automatically
AUTO_INCRE incremented on update or insert
qeCOL_NOT_AUTO_INCRE 0
The column is not automatically incremented
qeCOL_AUTO_INCRE 1
The column is automatically incremented
geATTRIBUTE_N 2 Returns whether the column is nullable. Possible
ULLABLE result values are
qeCOL_NOT_NULLABLE 0
The column cannot be null
qeCOL_NULLABLE 1
The column can be null.
geCOL_UNKNOWN 100
The function cannot report whether the column is
nullable.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

Chapter 10 DTK Functions
geColTypeAttr 219

Attribute Value Description

geATTRIBUTE_ 3 Reports whether a column can be used in a SQL

SEARCHABLE Where clause to search for specific records.
Possible result values are
qeCOL_UNSEARCHABLE 0
The column cannot appear in the Where clause
qeCOL_LIKE_ONLY 1

The column can appear in the Where clause only
when used with the LIKE operator.

qeCOL_ALL_EXCEPT_LIKE 2
The column can appear in the Where clause
except with the LIKE operator.

qeCOL_SEARCHABLE 3
The column can appear anywhere within the
Where clause.

qeCOL_UNKNOWN 100
The function cannot report whether the column is
searchable.

result contains a constant returned by the function that reports the status of
the specified attribute in column col_num. See the description of attribute for
possible values.

hdbc = geConnect (" DSN=CEDBF") ;

hstm = geExecSQ (hdbc, "SELECT * FROM enp") ;
nul I abl e = geCol TypeAttr (hstni, 1,

geATTR BUTE_NULLABLE) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geColumns 220
geColumns

geColumns returns information on the set of column definitions for a table.
Syntax intl6 hstnt geColum s (int1l6 hdbc, ptrstr table_nane)
Description geColumns creates a statement execution (hstmt) that returns information on

the set of column definitions for a table. geColumns returns one record per
column. Each record contains the following columns:

Column
Table Qualifier
Table User
Table Name
Column

Type

Width

DB Type

DB Type Name
Attrl

Attr2

Nullable

Remarks

Type
Char(128)
Char(128)
Char(128)
Char(128)
Int16
Int32
Int16
Char(128)
Int16

Int16

Int16

Char(256)

Description

Table qualifier.

Table user.

Table name.

Column name.

Data type (DTK types).

Width in bytes.

Database data type.

Data source-dependent data type name

Precision for decimal types, date start
position for dates, null otherwise.

Scale for decimal types, date end position for
dates, null otherwise.

Whether column can be null. Values:
qeCOL_NULLABLE,
qeCOL_NOT_NULLABLE,
geCOL_UNKNOWN.

Comments (if available).

You retrieve this information like you would other database values—using the
geVal, geBindCol, and geFetch functions.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions
I GoTo W I geColumns 221

Parameters hdbc is a handle to a database connection obtained from geConnect.
table_name is the table whose columns are to be returned.

hstmt is the handle to the statement returned by geColumns.

Example hdbc = geConnect ("DSN=CEDBF') ;
hstnmt = geCol ums (hdbc, "enp.dbf") ;
whi | e (geFet chNext (hstnt) == geSUCCESS) {

/* Get info about colums. * /

}
res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geColWidth 222

geColWidth

Syntax

Description

Parameters

Example

Notes

geColWidth returns the width of a column.
int32 col_width geColWdt h (intl16 hstmt, intl6 col _num

geColWidth returns the column width of one column in a SQL Select
statement. The column width is the size, in bytes, of the longest value that
may be stored in this column.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the column number whose width is to be returned. The first
column number is 1.

col_width is the returned column width.
To get the column width of the first column in the dBASE employee file:
hdbc = geConnect (" DSN=CEDBF") ;

hstm = geExecSQ (hdbc, "SELECT * FROM enp") ;
col_width = geCol Wdth (hstnt, 1) ;

res_code
res_code

geEndSQ. (hstnt)
geDi sconnect (hdbc)

For character and date-time types, geColWidth returns the maximum number
of characters for a column including the zero terminator byte. Therefore the
returned width is 1 greater than the maximum value length. If you are defining
a variable or allocating a buffer to hold these values, you must take into
account the zero terminator byte that is added by the geValChar,
geValCharBuf, or geBindCol functions.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | geColwidth 223

When you use geValChar to retrieve values whose type is Integer, Long
Integer, Float, Double Float, Decimal, or Date-Time, you must consider that
geColWidth returns the width of the stored values, not the number of
characters returned by geValChar. The number of characters returned by
geValChar is determined by the format string you use.

See “Data Types in DTK” on page 53 and “Format Strings” on page 59, as
well as Appendix E, “Compatibility Issues,” on page 553 for more information.

See Also geColType.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geCommit 224

geCommit

Syntax

Description

Parameters

Example

See Also

geCommit ends a database transaction and commits all changes to the
database made during the transaction.

intlé6 res_code geCommi t (intl1l6 hdbc)

geCommit commits all changes that have been made using Insert, Update, or
Delete statements on the connection since geBeginTran was called. You
must call geBeginTran to start a transaction before you can call geCommit to
save all changes.

geCommit also frees all locks that have been held in the database system.

hdbc is the handle to the database connection returned by geConnect.

res_code is the result code returned by geCommit, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

To commit changes made to a SQL Server database:
hdbc = geConnect (" DSN=CESS; U D=sa; SRVR=PI ONL") ;

res_code = geBegi nTran (hdbc) ;
hstm = geExecSQ (hdbc
"UPDATE enp SET sal ary=sal ary*1.1") ;
res_code = qeEndSQ (hstnt) ;
res_code = geCommit (hdbc) ;
res_code = geD sconnect (hdbc) ;

geBeginTran, geRollback.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geConnect 225

geConnect

geConnect opens a connection to a database system to allow SQL
statements to be executed.

Syntax intl6 hdbc geConnect (ptrstr con_string)

Description geConnect opens a connection to a database system to allow SQL
statements to be executed.

You can have several connections open simultaneously to different database
systems, or simultaneous connections to the same database system, if
supported by the database system you are using. Refer to the INTERSOLV
database driver reference for more information on specific database systems.

Parameters con_string is a connection string identifying the database system and any
additional logon information. The connection string has the form:

“DSN=data source name[;attribute=value[;attribute=value]...]’

The attributes required by each database system vary. See the INTERSOLV
database driver reference for the attributes supported by specific databases.
DTK recognizes the following attributes for all database systems:

Attribute Description

DSN The name of the data source defined in the
ODBC.INI file.

DLG When DLG=1, displays a logon dialog box that

allows user input of connection string
information. When DLG=2, displays a logon
dialog box only when the connection string
supplied via geConnect is insufficient to log on to
the data source.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Attribute
DRV

uID
PWD
MODIFYSQL

ALLOWLOCKS

REREADAFTERUPDATE

REREADAFTERINSERT

Chapter 10 DTK Functions
geConnect

Description

For compatibility with QELIB 1.0, this value is
used if a data source name (DSN) is not present
in the connection string. DTK changes it to the
data source name.

The user ID or name.
The password.

Used by DTK to ensure compatibility between
the SQL used in the application and the SQL
used in the database system. When set to 1 (the
default), the database driver expects ODBC-
compliant syntax, which it will modify as
necessary for the underlying database system.
When set to 0, the database driver expects and
supports the native syntax of the underlying
database system. This enables you to continue
using applications developed with the SQL
supported by the QELIB 1.0 database drivers

If enabled (set to 1), ensures that the isolation
level chosen via geSetlsolationLevel will support
locking. May reduce performance. SQLBase is
the only database system currently affected by
this option.

If enabled (set to 1), DTK rereads a record from
the database after updating it. This is useful for
getting the correct value of auto-updated
columns such as timestamps.

If enabled (set to 1), DTK rereads a record from
the database after inserting it. This is useful for
getting the correct value of auto-updated
columns such as timestamps.

226

hdbc is the returned handle to the database connection. This identifies the
connection and is a parameter to other functions. If the hdbc is 0, the
connection could not be opened.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I geConnect 227

Example To connect to dBASE files:

hdbc = geConnect (" DSN=CQEDBF")
.r.eé_code = geDi sconnect (hdbc) ;

To connect to SQL Server:

hdbc = gqeConnect (" DSN=CESS; SRVR=PI O\1; U D=sa; PWD=nagi c")
.r.eé_code = geDi sconnect (hdbc) ;

See Also geDisconnect.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geDatabases 228

geDatabases

Syntax

Description

Parameters

Example

DataDirect Developer’s

geDatabases returns information on the set of databases that can be
accessed from a connection.

intl6 hstnt geDatabase s (int16 hdbc)

geDatabases creates a statement execution handle (hstmt) that returns
information on the set of databases that can be accessed by a specific
database connection.

geDatabases returns one record per database. Each record contains the
following columns:

Column Type Description
Database Char(128) A database name.

Remarks Char(256) Comments (if available).

You retrieve this information like you would other database values—using the
geVal, geBindCol, and geFetch functions.

Note: If you call this function when connected to a flat-file database such as
Btrieve, dBASE, Paradox, Excel, or text files, it does not return a result.

hdbc is a handle to a database connection obtained from geConnect.

hstmt is the handle to the statement returned by geDatabases.

hdbc = geConnect (" DSN=CECRA; DLG=1") ;

hstmt = geDat abases (hdbc) ;

whi | e (geFet chNext (hstnt) == geSUCCESS) {
...get info about databases..

}

res_code = geD sconnect (hdbc) ;

Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geDataLen 229

geDatalLen
geDatalen returns the length of a value retrieved by a geVal function.
Syntax int32 len geDataLe n (int16 hstnt)
Description geDatalen returns the length from the previous call to a geVal function.
Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.
len is the returned column value length in bytes. If the column value was null,
geNULL_DATA (-2) is returned. If the column value was truncated,
geTRUNCATION (-1) is returned.
Example To get the first column’s value and its length for each record in the dBASE
employee file:
hdbc = geConnect (" DSN=CEDBF") ;
hstm = geExecSQ (hdbc, "SELECT * FRCM enp") ;
whi |l e (geFetchNext (hstnt) == 0) {
val ue = geval Char (hstnt,1,"",0) ;
val | en = geDatalLen (hstm) ;
}
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;
Notes If your database system can store null values, you should follow every call to

a geVal function with a call to geDataLen to determine if the value is null. See
“Null Values” on page 58 for more information. If the call to geDatalLen follows
a call to geValChar or geValCharBuf, a return value of geTRUNCATION (-1)
means that the entire column value was not returned. This occurs if a non-
zero max_len was specified on the geVal function and the length of the

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I geDataLen 230

column value is greater than max_len, or if a zero max_len was specified and
the length of the column value is greater than 1000 characters. See
geValChar and geValCharBuf for more information.

See Also geVal functions.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geDBErr 231

geDBErr

Syntax

Description

Parameters

geDBErr returns the database error resulting from the last DTK function.
int32 db_code qgeDBEr r ()

geDBErr returns the underlying database system’s error code resulting from
the last DTK function you called.

The purpose of this function is to allow you to get the error numbers
generated by database systems such as Oracle or SQL Server.

If a database system detects an error, geErr returns a number indicating that
an error occurred. If geErr returns geDBSYS_ERROR (4), meaning that the
error was reported by the database system, then you can call geDBErr to get
a database system error number. Use the database system error number
when you consult the database system’s documentation. You can also call
geErrMsg to get the underlying database system error message text.

geDBErr is not a substitute for geErr. First call geErr to determine if the
function succeeded. If geErr returns geDBSYS_ERROR (4), then you can
call geDBErr to determine if a database error number is associated with the
error and call geErrMsg to get the error message text.

db_code is the returned error number from the underlying database system.
If 0, no database system error was reported.

When geErr returns qeDBSYS_ERROR (4), qeDBErr may return 0. This
result means that the underlying database system does not have a separate
error code.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I geDBErr 232

Example To execute a Select statement on a dBASE file, checking for errors after each
function call:

hdbc = geConnect (" DSN=CEDBF") ;

if (geErr () == 0) {
hstm = geExecSQ (hdbc, "SELECT * FROM enp") ;
if (geErr () == 0) {

res_code = geEndSQL (hstnt) ;
}
elseif (geErr () == geDBSYS ERRCR)
db_err = geDBEr () ;
res_code = geD sconnect (hdbc) ;

}
else
db_err = qgeDBErr ()
See Also geErr, geErrMsg and qeErrMsgBuf, geDBErr.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geDisconnect 233

geDisconnect

geDisconnect closes a database connection.
Syntax intl6 res_code geD sconnec t (intl6 hdbc)

Description geDisconnect closes a connection to a database system. You should close all
connections before your program terminates to free system resources.

Parameters hdbc is the handle to the database connection returned by geConnect.

res_code is the result code returned by geDisconnect, which returns the

same set of result codes as geErr. See Appendix D, “Result and Error

Message Codes,” on page 537 for a list of these result codes.
Example hdbc = geConnect (" DSN=CEDBF") ;

res_code = geD sconnect (hdbc) ;

See Also geConnect.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geEndSQL 234

geEndSQL

Syntax
Description

Parameters

Example

See Also

geEndSQL ends the execution of a SQL statement.
intle res_code geEndSQL (intl1l6 hstnt)

geEndSQL ends the execution of a SQL statement. It is important to call
geEndSQL to free system resources.

Note that geDisconnect closes all statements for the connection.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

res_code is the result code returned by geEndSQL, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

To execute a select statement on a dBASE file:

hdbc = geConnect (" DSN=CEDBF") ;

hstmt = geExecSQ (hdbc, "SELECT * FROM enp") ;

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

geExecSQL.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geErr 235

gekrr

Syntax

Description

Parameters

geErr returns the result code of the last DTK function.
intlée res_code geErr ()

geErr returns the result code of the last DTK function you called.

You should call geErr immediately after calling any other DTK function that
does not return a result code (for example, a geVal function). You should
determine whether any errors have occurred before using the results of a
function or before calling other DTK functions.

res_code is the returned result or error code. If res_code is qeSUCCESS (0),
the last DTK function called completed without error. If res_code contains a 4-
or 5-digit error code, you can call geErrMsg to get the DTK error message
text. If the result code is qeDBSYS_ERROR (4), then a call to geErrMsg
returns the underlying database system error message text. When the result
code is qeDBSYS_ERROR (4), you can also call geDBEtrr to get the
underlying database system error code.

The following table lists the result codes returned by qgekErr.

Constant Value Description

geLOCK_NO_REC -6 A lock was attempted, but either no record
was selected by the primary key, the
record has been deleted by another user,
or another user has changed the value of
a key field.

geEOF -5 EOF. Returned by geFetchNext,
geFetchPrev, or geFetchRandom when
there is no record to return.

geUSER_CANCELED -4 User canceled out of the logon dialog box
geOUT_OF_MEMORY -3 Windows or OS/2 is out of memory. This is
usually fatal.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

See Also

Chapter 10 DTK Functions

geErr 236
Constant Value Description
geSUCCESS 0 Success.
geSUCCESS_WITH_ 1 Success with information (warning).
INFO
geNO_DATA_WITH_ 2 EOF with additional information (usually
INFO ESC during a fetch).
geDBSYS_ERROR 4 Database system error. CallqeDBErr to
retrieve the database system'’s error
number.
geLIBSYS_ERROR 5 Returned when the system cannot locate

the DTK Dynamic Link Library.

See Appendix D, “Result and Error Message Codes,” on page 537 for a list of
the 4- or 5-digit error codes returned by geErr and their corresponding
messages.

To execute a select statement on a dBASE file, checking for errors after each
function call:

hdbc = geConnect ("DSN=QEDBF') ;

if (geErr () == qeSUCCESS) {
hstm = geExecSQ (hdbc, "SELECT * FROM enp") ;
if (geErr () == qeSUCCESS) {

res_code = qeEndSQ (hstnt) ;
}

res_code = geD sconnect (hdbc) ;

}

geErrMsg and gqeErrMsgBuf, geDBEtr.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geErrMsg and geErrMsgBuf 237

geErrMsg and geErrMsgBuf

Syntax

Description

Parameters

These functions return the text associated with the error or warning
generated by the last DTK function you called.

ptrstr err_nsg geErrMg ()

int1l6 res_code geErrMsgBuf (ptrstr err_mnsg)

geErrMsg and geErrMsgBuf return the text associated with the error or
warning generated by the last DTK function you called. These functions are
usually called after you have called geErr to determine if there is an error
message.

Because this function returns a pointer, it has two forms (see “Parameter
Conventions” on page 151).

When you use geErrMsg, the function returns a pointer to the string. The
string is stored in a buffer maintained by DTK. Copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

When you use geErrMsgBuf, you pass in a pointer to a buffer you have
allocated. The string is put in the buffer. Make sure the buffer is large enough
to hold the returned string.

err_msg is the returned error or warning message text. Error messages may
contain up to 512 characters. It is important that the variable you pass as the
parameter is declared large enough to hold 512 characters. err_msg can also
contain multiple errors or warnings of under 512 bytes.

res_code is the result code returned by geErrMsgBuf, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geErrMsg and geErrMsgBuf 238

Example To execute a Select statement on a dBASE file, checking for errors after each
function call, and getting the message text if an error occurs:

hdbc = geConnect (" DSN=CEDBF") ;

if (geErr () == 0) {
hstm = geExecSQ (hdbc, "SELECT * FROM enp") ;
if (geErr () == 0) {

res_code = qeEndSQ (hstnt) ;

}
else
msg = geBErrMsg ()
res_code = geD sconnect (hdbc) ;
}
else
msg = gqeBErrMsg ()
See Also geErr, qeDBET"r.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geExecSQL 239

geExecSQL

Syntax

Description

Parameters

Example

Notes

geExecSQL executes a SQL statement.
intl6e hstnt geExecSQ (intl16 hdbc, ptrstr sql _stnt)

geExecSQL executes a SQL statement. The SQL statement may be a
Select, Insert, Update, or Delete statement, or any other valid statement for
the database system.

hdbc is the handle to the database connection returned by geConnect.

sgl_stmt is the SQL statement to be executed. If sql_stmt is a zero-length
string (the empty string, “”), DTK executes the SQL statement sent using the
geSetSQL and qeAppendSQL functions.

hstmt is the returned handle to the statement execution. This identifies the
statement and is a parameter to other functions. If hstmt is 0, the statement
could not be executed.

To execute a Select statement on a dBASE file:

hdbc = geConnect (" DSN=CEDBF") ;

hstm = geExecSQ (hdbc, "SELECT * FROM enp") ;

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

For Select statements, use the geCol functions to get information about the
columns in the statement, the geFetch functions to retrieve records, and the
geVal functions to retrieve column values.

For all statements, call geEndSQL to terminate execution of the statement.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I gqeExecSQL 240

See Also geAppendSQL, geEndSQL, geSetSQL, geCol functions, geFetchNext,
geFetchPrev, geFetchRandom, geSetSelectOptions, geNumCols, and the
geVal functions.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geFetchLogClose 241

geFetchLogClose
geFetchLogClose closes the log files used by DTK'’s fetching functions.
Syntax int1l6 res_code geFetchLogd ose (int16 hstnt)

Description geFetchLogClose closes the temporary log files used to support the
geFetchPrev, geFetchRandom, and geFetchNumRecs functions. Temporary
files are created only if geSetSelectOptions has been called with options that
require them.

See geSetSelectOptions for more information.

geFetchLogClose does not delete the temporary log files. DTK automatically
reopens the files when you call geFetchNext, geFetchPrev, geFetchRandom,
or geFetchNumRecs.

Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

res_code is the result code returned by geFetchLogClose, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geFetchLogClose 242

Example To close the temporary log files while fetching records from the employee
database file:

hdbc=geConnect (" DSN=CESS; U D=sa; SRVR=PI ONL") ;
res_code = geSet Sel ect Opti ons (hdbc, geLOG ALWAYS)
hstmt = geExecSQ (hdbc, "SELECT * FROM enp") ;
whi |l e (geFetchNext (hstnt) == 0) {

res_code = geFetchLogd ose (hstnt) ;

}

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;
See Also geSetSelectOptions.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geFetchNext 243

geFetchNext

Syntax

Description

Parameters

geFetchNext retrieves the next record from the database.
intl6é res_code geFetchNext (int1l6 hstnt)

geFetchNext retrieves the next record from a database system. If this is the
first call to geFetchNext following geExecSQL, this function retrieves the first
record. The retrieved record becomes the current record.

If a geBindCol function was not called before geFetchNext, this function gets
a record from the database system and stores it in DTK’s current record
buffer. The record is not returned to your application. To get the column
values from the current record, use the geVal functions.

If a geBindCol function was called before qeFetchNext, this function gets a
record from the database system and puts the column values into the
variables specified by the qeBindCol function.

If geSetAutoUpdate has been called to enable auto-updating, and changes
have been made to the current record via calls to qePut functions, a call to
geFetchNext updates the current record.

A result of qeEOF (-5) is returned if an attempt is made to read past the last
record returned by the Select statement.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

res_code is the result code returned by geFetchNext, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

See Also

Chapter 10 DTK Functions
geFetchNext

To fetch all records from the employee database file:
hdbc = geConnect (" DSN=CEDBF") ;

hstmt = geExecSQ (hdbc, "SELECT * FROM enp") ;
whi | e (geFetchNext (hstnt) == 0) {

}
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

geVal functions, gePut functions, qeBindCol functions, geFetchPrev,
geFetchRandom, geSetSelectOptions.

DataDirect Developer’s Toolkit Programmer’s Guide

244

Chapter 10 DTK Functions

| GoTo = | geFetchNumRecs 245

geFetchNumRecs
geFetchNumRecs returns the number of records chosen by the Select
statement.
Syntax int32 numrecs geFetchNunRecs (intl6 hstnt)
Description geFetchNumRecs returns the number of records chosen by the Select

statement. This function can be used only if geSetSelectOptions has been
called to enable it.

To determine the number of records selected, DTK fetches all rows from the
result set. If you have not enabled backward fetching, calling
geFetchNumRecs causes an error to be returned. If you have selected a
large number of records, this function may work slowly, and may create large
temporary log files.

Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

num_recs is the number of records selected by the SQL statement.

Example To get the number of records in the employee database file:

hdbc = geConnect (" DSN=CEDBF") ;

res_code = geSet Sel ect Opti ons (hdbc, geFETCH ANY_D R ;
hstm = geExecSQ (hdbc, "SELECT * FROM enp") ;
numrecs = geFet chNunRecs (hstnt) ;

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;
See Also geSetSelectOptions.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geFetchPrev 246

geFetchPrev

Syntax

Description

Parameters

geFetchPrev retrieves the previous record from the database.
intlé res_code geFetchPrev (int1l6 hstnt)

geFetchPrev retrieves the previous record from a database system. The
retrieved record becomes the current record. This function can be used only if
geSetSelectOptions has been called to enable it.

If a geBindCol function was not called before fetching records, this function
gets a record from the database system and stores it in DTK’s current record
buffer. The record is not returned to your application. To get the column
values from the current record, use the geVal functions.

If a geBindCol function was called, this function gets a record from the
database system and puts the column values into the variables specified by
the qeBindCol function.

If geSetAutoUpdate has been called to enable auto-updating, and changes
have been made to the current record via calls to gePut functions, a call to
geFetchPrev updates the current record.

When geFetchPrev attempts to fetch a record before the first record returned
by the Select statement, it returns a result of geEOF (-5).

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

res_code is the result code returned by geFetchPrev, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | geFetchPrev 247

Example To fetch a record that has already been read from the employee database
file:

hdbc = geConnect (" DSN=CEDBF") ;
res_code = geSet Sel ect Ooti ons (geFETCH ANY_DI R
hstmt = geExecSQ (hdbc, "SELECT * FROM enp") ;

res_code = geFet chNext (hstnt) ;
/* This is repeated to read other records * /
res_code = geFetchPrev (hstnt) ;
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;
See Also geVal functions, gePut functions, geBindCol functions, geFetchNext,

geFetchRandom, geSetSelectOptions.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geFetchRandom 248

geFetchRandom

geFetchRandom retrieves a designated record from the database.
Syntax int1l6 res_code geFetchRandom (int1l6 hstnt, int32 rec_nun

Description geFetchRandom retrieves a designated record from a database system,
which becomes the current record. This function returns EOF if the
designated record is not in the result set.

This function can be used only if geSetSelectOptions has been called to
enable it.

If a geBindCol function was not called before fetching records, this function
gets a record from the database system and stores it in DTK’s current record
buffer. The record is not returned to your application. To get the column
values from the current record, use the geVal functions.

If a geBindCol function was called, this function gets a record from the
database system and puts the column values into the variables specified by
the geBindCol function.

If geSetAutoUpdate has been called to enable auto-updating, and changes
have been made to the current record via calls to qePut functions, a call to
geFetchRandom updates the current record.

Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

rec_num is the record number to be read. The first record is 1.

res_code is the result code returned by geFetchRandom, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

See Also

Chapter 10 DTK Functions
geFetchRandom

To fetch the last record from the employee database file:

hdbc = geConnect (" DSN=CQEDBF") ;

res_code = geSet Sel ect Ooti ons (geFETCH ANY_DI R ;
hstmt = geExecSQ (hdbc, "SELECT * FROM enp") ;
numrecs = geFet chNunRecs (hstnt) ;

res_code = geFet chRandom (hstnt, numrecs) ;
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

geVal functions, gePut functions, qeBindCol functions, geFetchNext,
geFetchPrev, geSetSelectOptions.

DataDirect Developer’s Toolkit Programmer’s Guide

249

Chapter 10 DTK Functions

| GoTo = | geForeignKeys 250

geForeignKeys

geForeignKeys creates a statement execution (hstmt) that returns
information on the set of columns that compose a table’s foreign keys.

Syntax intl6 hstmt = geForei gnKeys (
int16 hdbc,
ptrstr pk_t abl e_nane,
ptrstr fk_t abl e_nane)

Description geForeignKeys returns one record per column in the primary key. Each
record contains the following columns:

Column Type Description

PK Table Qualifier Char(128) Primary key table qualifier. May be NULL
PK Table User Char(128) Primary key table user. May be NULL
PK Table Name Char(128) Primary key table name.

PK Column Name Char(128) Primary key column name.

FK Table Qualifier Char(128) Foreign key table qualifier. May be NULL
FK Table User Char(128) Foreign key table user. May be NULL

FK Table Name Char(128) Foreign key table name.

FK Column Name Char(128) Foreign key column name.

Sequence No Int16 Column sequence number, which is the

number of this column within the foreign
key. For example, for the foreign key
LAST_NAME, FIRST_NAME, the
Sequence No would be 1 in the row
returned for LAST_NAME and 2 in the row
returned for FIRST_NAME.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geForeignKeys 251

Column Type Description

Update Action Int16 Action applied to the foreign key when an
UPDATE is performed. Values:
0 = geCascade
1 = geRestrict
2 = geSetNull
Delete Action Int16 Action applied to the foreign key when a
DELETE is performed. Values:
0 = geCascade
1 = geRestrict
2 = geSetNull

FK Index Name Char(128) Foreign key name. NULL if not applicable
to the data source.

PK Index Name Char(128) Primary key name. NULL if not applicable
to the data source.

Not all database systems support foreign keys. You should include error-
checking code to handle those database systems that do not.

Parameters hstmt is the handle to the statement returned by geForeignKeys.
hdbc is the handle to a database connection obtained from geConnect.
pk_table_name is the table whose primary keys are to be returned.

fk_table_name is the table whose foreign keys are to be returned.

Example hdbc = geConnect (“DSN=CESS; DLG=1") ;
hst mt = geForei gnKeys (hdbc, “DEPT", “EMP’);
whi | e (geFet chNext (hstnt) == geSUCCESS) {
/* Get info about Foreign Keys * /
}
See Also gePrimaryKeys.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I geGetAutoUpdate 252
geGetAutoUpdate
geGetAutoUpdate returns the auto-update setting.
Syntax intl6 option geCGetAutolUpdate (int16 hdbc)
Parameters option reports whether DTK automatically generates Update or Insert

statements when you move off a changed or inserted row. It has one of the
following values:

Constant Value Action

geAUTOUPD_DISCARD 1 DTK discards changes or insertions.
This is the default.

geAUTOUPD_DEFER 2 DTK saves the changes but does not
update the database. This option
enables you to use the qeApplyAll and
geUndoAll functions.

geAUTOUPD_UPDATE 3 DTK updates the changed or inserted
record.

hdbc is the handle to the database connection returned by geConnect.
Example hdbc = geConnect ("DSN=CEDBF') ;

Aut oUpdat e = geCGet Aut oUpdat e (hdbc) ;

/* Value will be default of geAUTQUPD DI SCARD * /

res_code = geD sconnect (hdbc) ;

See Also geSetAutoUpdate.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | geGetlsolationLevel 253

geGetlsolationLevel
geGetlsolationLevel returns the isolation level for the connection.
Syntax intl6 |evel geCetlsol ationLevel (int16 hdbc)

Parameters level is the isolation level currently set in the database. It has one of the
following values:

Constant Value Description
gelSO_READ_ 0x0001 Read uncommitted (0) isolation level.
UNCOMMITTED Locks are obtained on modifications to

the database and held until end of
transaction (EOT). Reading from the
database does not involve any locking

gelSO_READ_ 0x0002 Read committed (1) isolation level.
COMMITTED Locks are acquired for reading and
modifying the database. Locks are
released after reading but locks on
modified objects are held until EOT.

gelSO_REPEATABLE_R 0x0004 Repeatable read (2) isolation level.

EAD Locks are obtained for reading and
modifying the database. Locks on all
modified objects are held until EOT.
Locks obtained for reading data are held
until EOT. Locks on non-modified access
structures (indexes, hashing structures,
etc.) are released after reading.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

See Also

Chapter 10 DTK Functions
geGetlsolationLevel 254

Constant Value Description

gelSO_SERIALIZABLE 0x0008 Serializable (3) isolation level. All data
read or modified is locked until EOT. All
access structures that are modified are
locked until EOT. Access structures used
by the query are locked until EOT.

gelSO_VERSIONING 0x0010 Versioning (4) isolation level. Similar to
isolation level 3, serializable, but
provides greater concurrence through
the use of non-locking “record
versioning” protocols.

hdbc is the handle to the database connection returned by geConnect.

hdbc = geConnect ("DSN=CESS') ;
| evel s = geGet Support edl sol ati onLevel s (hdbc) ;
cur_level = geCetlsolationLevel (hdbc) ;
if (levels & gel SO READ COW TTED)
res_code = geSetlsol ati onLevel (hdbc,
gel SO READ COW TTED) ;
res_code = geD sconnect (hdbc) ;

geSetlsolationLevel.

DataDirect Developer’s Toolkit Programmer’s Guide

GoT Chapter 10 DTK Functions
| GoTo = | geGetLockOptions 255

geGetLockOptions

geGetLockOptions returns the current lock options.

Syntax int16 option geCGetLockOptions (intl6 hdbc)

Parameters option is the current lock options setting. It has one of the following values:
Constant Value Description
geLOCK_NO_OPTIONS 0 Default; DTK neither compares nor

refreshes the record in the log file.

geLOCK_COMPARE 1 When locking, DTK compares the record
in the log file to the corresponding record
in the database, and raises a warning if
they are different.

geLOCK_REFRESH 2 When locking, DTK automatically
refreshes the record in the log file with
new column values.

hdbc is the handle to the database connection returned by geConnect.
Example hdbc = geConnect ("DSN=CEDBF') ;

| ock_options = geCGet LockQptions (hdbc) ;

/* This will return O (the default, * /

/* no lock options set. * /

res_code = geD sconnect (hdbc) ;

See Also geSetLockOptions.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | geGetLoginTimeout 256

geGetLoginTimeout

geGetLoginTimeout returns the login timeout.

Syntax int32 tineout geGetloginTinmeout ()
Description geGetLoginTimeout returns the login timeout, in seconds.
Parameters timeout is the login timeout set in the last call to geSetLoginTimeout. If the

login timeout has not been set, geGetLoginTimeout returns the default.

Example ti meout = geCetLogi nTineout () ;
/* Default is O, which indicates to wait indefinitely * /
See Also geSetLoginTimeout.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I geGetMaxRows 257

geGetMaxRows

geGetMaxRows returns either the current value of the maximum number of
rows that should be returned for the query as specified in the last call to
geSetMaxRows, or it returns the default of 0.

Syntax int32 nmax_rows geGet MaxRows (int16 hdbc)

Parameters max_rows is the maximum number of rows that should be returned for the
guery as specified in the last call to geSetMaxRows. If geSetMaxRows has
not been called, the default of O is returned, indicating that all rows are to be
returned.

hdbc is the handle to the database connection returned by geConnect.

Example /* Return all rows fromthe query. * /
hdbc = geConnect (" DSN=CEDBF") ;
max_rows = geCGet MaxRows (hdbc) ;
/* Returns O, indicating no limt on rows returned. * /
res_code = geD sconnect (hdbc) ;

See Also geSetMaxRows.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | qeGetODBCHdbc 258

geGetODBCHdbc

geGetODBCHdbc returns the ODBC hdbc that corresponds to the DTK hdbc.

Important This function is potentially dangerous. Using the ODBC hdbc to
change the state of the ODBC connection may create situations that trap.
Use at your own risk.

Syntax int32 ODBCHdbc geGet DBCHdbc (int16 hdbc)

Parameters hdbc is the handle to the database connection returned by geConnect.

ODBCHdbc is the handle used as a pointer to information about the ODBC
connection.

Example hdbc = geConnect ("DSN=CESS') ;
odbc_hdbc = geGet CDBCHdbc (hdbc) ;

/* Use odbc_hdbc in direct calls to ODBC functions. * /

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geGetODBCHenv 259

geGetODBCHenv

Syntax

Description

Parameters

Example

geGetODBCHenv returns the ODBC environment handle associated with the
instance of DTK.

int32 ODBCHenv geGet CDBCHenv ()

geGetODBCHenv returns the ODBC environment handle associated with the
instance of DTK.

The ODBCHenv is a handle to the implied environment that is created
between calls to geLibInit and geLibTerm. When you call geLibinit, DTK
closes any currently allocated ODBCHenv and opens a new one. A call to
geLibTerm closes this ODBCHenv. Therefore, the current ODBCHenv
becomes invalid when you call either geLiblnit or geLibTerm.

Important This function is potentially dangerous. Using the ODBC hdbc to

change the state of the ODBC connection may create situations that trap.
Use at your own risk.

ODBCHenv is an environment handle used as a pointer to information about
the ODBC environment.

res_code = qgeLiblnit () ;
odbc_henv = geGet CDBCHenv () ;

/* Use odbc_henv in direct calls to ODBC functions. * /

res_code = geLi bTerm () ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geGetODBCHstmt

260

geGetODBCHstmt

Syntax

Parameters

Example

geGetODBCHstmt returns the ODBC hstmt that corresponds to the DTK

hstmt.

Important This function is potentially dangerous. Using the ODBC hdbc to

change the state of the ODBC connection may create situations that trap.

Use at your own risk.
int32 ODBCHstnt geGetDBCHstnt (intl6 hstnt)

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

ODBCHstmt is the handle used as a pointer to information about the ODBC

statement.

hdbc = geConnect (" DSN=CEDBF") ;
hstm = geExecSQ (hdbc, "SELECT * FROM dept™) ;
odbc_hstm = geGet CDBCHstnt (hstnt) ;

/* Use odbc_hstnt in direct calls to CDBC functions.

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

GoT Chapter 10 DTK Functions
| GoTo w | geGetODBCInfoChar and qeGetODBCInfoCharBuf 261

geGetODBCInfoChar and qeGetODBCInfoCharB uf

These functions return information about an ODBC connection.

Syntax ptrstr char_val geGetDBC nfoCha r (
int16 hdbc,
i nt 16 option)

intle res_code geGet CDBC nfoCharBu f (
int16 hdbc,
i nt 16 option,
ptrstr char _val)

Description geGetODBClInfoChar returns a pointer to the information string. This string is
stored in a buffer maintained by DTK. You must copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

With qeGetODBCInfoCharBuf, you pass in a pointer to a buffer you have
allocated. The information string is put in the buffer. You must make sure that
the buffer is large enough to hold the returned string.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Parameters

Chapter 10 DTK Functions

geGetODBCInfoChar and qeGetODBCInfoCharBuf

hdbc is a connection returned from geConnect.

option is either one of the following constants, or one of the constants defined

by ODBC for use with the ODBC SQLGetlInfo function that returns a

character string.

Constant
geINFO_DRIVER_VER

qeINFO_SEARCH_
PATTERN_ESCAPE

geINFO_DATA_SOURCE_R
EAD_ONLY

qeINFO_EXPRESSIONS_
IN_ORDERBY

qeINFO_IDENTIFIER

QUOTE_CHAR
gelINFO_OUTER_JOINS

qeINFO_OWNER_TERM

geINFO_PROCEDURE._
TERM

DataDirect Developer’s Toolkit Programmer’s Guide

Value

14

25

27

29

38

39

40

Description

A character string specifying the
version, and optionally a description,
of the driver. The form isaa.bb.cccc,
where aa is the major version, bb is
the minor version, and cccc is the
release version.

A character string specifying the
escape character the driver supports
for the pattern-matching characters
underscore (_) and percent (%).

A character string: Y if the data
source is read only; otherwise N.

A character string: Y if the data
source supports ORDER BY
expressions; N if not

The character string that surrounds a
delimited identifier; blank if none.

A character string: Y if the data
source supports outer joins and the
driver supports the ODBC outer join
request syntax; N if not

A character string that contains the
data source vendor’'s name for an
owner; for example, “owner” or
“Authorization ID.”

A character string that contains the
data source vendor's name for a
procedure; for example, “database
procedure” or “stored procedure”

| Go To

Example

Chapter 10 DTK Functions

geGetODBCInfoChar and qeGetODBCInfoCharBuf

Constant Value

geINFO_QUALIFIER_ 41
NAME_SEPARATOR

qeINFO_TABLE_TERM 45
qeINFO_QUALIFIER_ 42
TERM

Description

A character string that contains the
separators the data source uses
between the qualifier name and the
qualified name element

A character string that contains the
data source vendor's name for a
table; for example, “table” or “file”

A character string that contains the
data source vendor's name for a
qualifier; for example, “database” or
“directory.”

char_val is a pointer to a string that is the connection information.

263

res_code is the result code returned by qeGetinfoCharBuf, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CESS')

versi on = gqeGet COBA nf oChar (hdbc, gel NFO DRI VER VER)

res_code = geD sconnect (hdbc)

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geGetODBClInfoLong

264

geGetODBClInfoLong

Syntax

Parameters

geGetODBCInfoLong returns information about an ODBC connection.

int32 |ong_val
option)

geCGet CDBA nfoLong (int 16

hdbc, int16

hdbc is a connection returned from geConnect.

option is one of the following constants, or any other constant defined by
ODBC for use with the ODBC SQLGetInfo function that returns a 4-byte

integer.

Constant

qeINFO_ACTIVE_
CONNECTIONS

qeINFO_ACTIVE_
STATEMENTS

qeINFO_IDENTIFIER
CASE

qeINFO_MAX_
COLUMN_NAME_LEN

qeINFO_MAX_
CURSOR_NAME_LEN

DataDirect Developer’s Toolkit Programmer’s Guide

Value
0

28

30

31

Description

An integer specifying the number of
active hdbcs that the driver can
support. Zero indicates no specified
limit or the limit is unknown.

An integer specifying the number of
active hstmts that the driver can
support for an hdbc. Zero indicates
no specified limit or the limit is
unknown.

An integer indicating the forms of
names:

1 =must be uppercase

2 = must be lowercase

3 = case sensitive; can contain
upper and lowercase

4 =not case sensitive

An integer specifying the maximum
length of a column name.

An integer specifying the maximum
length of a cursor name.

|GoTo v|

Constant

qeINFO_MAX_
OWNER_NAME_LEN

qeINFO_MAX_
PROCEDURE_NAME_LEN

qeINFO_MAX_
QUALIFIER_NAME_LEN

qeINFO_MAX_TABLE_
NAME_LEN

qeINFO_CONVERT_
FUNCTIONS

DataDirect Developer’s Toolkit Programmer’s Guide

Value
32

33

34

35

48

Chapter 10 DTK Functions
geGetODBClInfoLong

Description

An integer specifying the maximum
length of an owner name.

An integer specifying the maximum
length of a procedure name. Zero
means procedures are not
supported.

An integer specifying the maximum
length of a qualifier name. Zero
means qualifier names are not
supported.

An integer specifying the maximum
length of a table name.

A mask enumerating the scalar
conversion functions supported by
the driver and data source. The
mask qeSQL_FN_CVT_CONVERT
determines which conversion
functions are supported.

265

| Go To

v i

DataDirect Developer’s Toolkit Programmer’s Guide

Constant

qeINFO_NUMERIC_
FUNCTIONS

Value
49

Chapter 10 DTK Functions
geGetODBCInfoLong 266

Description

A mask enumerating the numeric
functions supported by the driver
and data source. The following
masks are used:

qeSQL_FN_NUM_ABS
geSQL_FN_NUM_ACOS
qeSQL_FN_NUM_ASIN
qeSQL_FN_NUM_ATAN
qeSQL_FN_NUM_ATAN2
qeSQL_FN_NUM_CEILING
geSQL_FN_NUM_COS
qeSQL_FN_NUM_COT
qeSQL_FN_NUM_EXP
qeSQL_FN_NUM_FLOOR
qeSQL_FN_NUM_LOG
geSQL_FN_NUM_MOD
qeSQL_FN_NUM_RAND
gqeSQL_FN_NUM_PI
qeSQL_FN_NUM_SIGN
qeSQL_FN_NUM_SIN
qeSQL_FN_NUM_SQRT
qeSQL_FN_NUM_TAN

|GoTo v|

Constant

qeINFO_STRING _
FUNCTIONS

qeINFO_SYSTEM_
FUNCTIONS

DataDirect Developer’s Toolkit Programmer’s Guide

Value
50

51

Chapter 10 DTK Functions
geGetODBClInfoLong

Description

A mask enumerating the scalar
string functions supported by the
driver and data source. The following
masks are used:

qeSQL_FN_STR_ASCII
qeSQL_FN_STR_CHAR
qeSQL_FN_STR_CONCAT
qeSQL_FN_STR_INSERT
qeSQL_FN_STR_LEFT
qeSQL_FN_STR_LTRIM
qeSQL_FN_STR_LENGTH
qeSQL_FN_STR_LOCATE
qeSQL_FN_STR_LCASE
geSQL_FN_STR_REPEAT
qeSQL_FN_STR_REPLACE
qeSQL_FN_STR_RIGHT
qeSQL_FN_STR_RTRIM
qeSQL_FN_STR_SUBSTRING
qeSQL_FN_STR_UCASE

At mask enumerating the scalar
string functions supported by the

driver and data source. The following
masks are used:

qeSQL_FN_SYS_USERNAME
geSQL_FN_SYS_DBNAME
qeFN_SYS_IFNULL

267

|GoTo v|

Constant Value
geINFO_TIMEDATE_ 52
FUNCTIONS

Example hdbc = geConnect (" DSN=QESS")

Chapter 10 DTK Functions
geGetODBClInfoLong

Description

A mask enumerating the scalar date
and time functions supported by the
driver and data source. The following
masks are used:

geSQL_FN_TD_NOW
qeSQL_FN_TD_CURDATE
qeSQL_FN_TD_DAYOFMONTH
qeSQL_FN_TD_DAYOFWEEK
geSQL_FN_TD_DAYOFYEAR
qeSQL_FN_TD_MONTH
qeSQL_FN_TD_QUARTER
qeSQL_FN_TD_WEEK
qeSQL_FN_TD_YEAR
qeSQL_FN_TD_CURTIME
geSQL_FN_TD_HOUR
qeSQL_FN_TD_MINUTE
qeSQL_FN_TD_SECOND

num connect s = geGet CDBA nf oLong (hdbc,

gel NFO_ACTI VE_CONNECTI ONS)
res_code = geD sconnect (hdbc)

DataDirect Developer’s Toolkit Programmer’s Guide

268

Chapter 10 DTK Functions

| GoTo w | geGetOneHstmtPerHdbcOptions 269

geGetOneHstmtPerHdbcOptions

geGetOneHstmtPerHdbcOptions returns the settings that determine which
fetching commands and statement behaviors are allowed by DTK when
connected to statements that support only one statement per connection. For
more information, see Appendix C, “Coding for Single Statement Database
Systems,” on page 529.

Syntax intle flags qeGet Onelst i PerHdbcOption s (intl16 hdbc)

Parameters flags is a set of option flags that specifies the read-ahead activity, statement
routing, and hstmt behavior in effect when DTK uses multiple connections to
databases that support only one statement per connection. It returns one
read-ahead, routing, and hstmt option from among the following:

Constant Value Description

geREADAHEAD_AT_ 0x0001 DTK reads the statement’s entire result

EXEC set into the log file when the statement
executes.

geREADAHEAD_AT_ 0x0002 DTK reads the remainder of the result

UPDATE set into the log file whenever a record

is locked, updated, or deleted. This is
the default read-ahead option.

geREADAHEAD_ 0x0003 DTK avoids all read-ahead activity by

COMMIT_UPDATES requiring you to commit all updates
before fetching any more records.

geROUTING_READ 0x0008 DTK routes this statement through a
connection used for read-only
statements.

geROUTING_UPDATE 0x0010 DTK routes this statement through a

connection used for statements that
modify the database.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Constant Value

geROUTING_DEFAULT

qeHSTMT_LOCAL

qeHSTMT_NONLOCAL

0x0018

0x0020

0x0040

Chapter 10 DTK Functions
geGetOneHstmtPerHdbcOptions

Description

This option lets DTK decide which
connection to send the statement to.
This is the default routing option.

Tells DTK that this hstmt cannot affect
any other active hstmt in the same
application.

Tells DTK that this hstmt may affect
other hstmts in the same application.
This is the default hstmt behavior.

hdbc is the handle to the database connection returned by geConnect.

Example hdbc = geConnect (" DSN=QESS")

options = geGet OneHst nt Per HAbcOpt i ons (hdbc) ;

res_code = geD sconnect (hdbc)

DataDirect Developer’s Toolkit Programmer’s Guide

270

Chapter 10 DTK Functions

I GoTo W= I geGetParamBinary and qeGetParamBinaryBuf 271

geGetParamBinary and geGetParamBinaryBuf

These functions are used with stored procedures and return an output or
input/output parameter’s value as a binary value.

Syntax ptrstr bin_val geGetParanBinary (
int16 hstnt,
i nt 16 param num

ptrint32 max_| en)

int1l6 res_code geCet ParanBi naryBuf (
i nt 16 hstnt,
ptrstr bi n_val ,
i nt 16 param num
ptrint32 max_| en)

Description geGetParamBinary and geGetParamBinaryBuf return the value of a stored
procedure’s output or input/output parameter as a binary value. If the
parameter’s data type is not binary, the value is converted to binary.

The geGetParamBinary function returns a pointer to the binary value, which
is stored in a buffer maintained by DTK. Copy the value out of this buffer
before you call another DTK function, because the next function may use the
same buffer.

The geGetParamBinaryBuf function passes a pointer to a buffer you have
allocated, and the value is put in the buffer. Make sure the buffer is large
enough to hold the returned value.

If the parameter’s data type is a character string (type 1 or 2) or a binary
value (type 101 or 102), you may specify the maximum length of data to be
returned.

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Parameters

Example

Chapter 10 DTK Functions
geGetParamBinary and qeGetParamBinaryBuf 272

hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter value to be returned.

max_len is the maximum number of characters returned if the parameter’s
data type is character string (type 1 or 2) or binary (type 101 or 102). If
max_len is zero, the entire string is returned (up to 1000 characters). If
max_len is not zero and the parameter’s data type is not 1, 2, 101, or 102, an
error is returned.

max_len is typically used either because your macro language limits
character strings to a size that is less than the size of the values of the
parameters, or because the parameter values are very large and you want to
retrieve only part of the value.

If the value of the parameter is too large to retrieve with one call to
geGetParamBinary, you can call geGetParamBinary again and again on the
same parameter to retrieve more of the value.

bin_val is the returned binary value.

res_code is the result code returned by geGetParamBinaryBuf, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CQECRA; DLG=2") ;

hstm = geSQPrepare (hdbc, "{call getPicture (?)}") ;
res_code = geSet Param Olype (hstnt, 1, gePARAM CUTPUT) ;
res_code = qgeSet ParanbDat aType (hstnt, 1, geBl NARY, 100,

0) ;

res_code = geSQExecute (hstnt) ;

bi nVal ue = geGet ParanBi nary (hstnt, 1) ;

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geGetParamBit 273

geGetParamBit

Syntax

Description

Parameters

Example

geGetParamBit is used with stored procedures and returns an output or
input/output parameter’s value as a bit in a 2-byte integer.

intle bit_val geGetParanBit (
i nt 16 hst nt,
i nt 16 param num

geGetParamBit returns the parameter’s value as a bit in a 2-byte integer. If
the parameter’s data type is not bit (type 110), the value is converted to this
data type.

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter value to be returned.

bit_val is the returned bit value.

hdbc = geConnect (" DSN=CQECRA; DLG=2") ;
hstm = gqeSQPrepare (hdbc, "{call IsExenpt (?)}") ;

res_code = geSet Param Olype (hstnt, 1, gePARAM CUTPUT) ;
res_code = geSet ParanbDat aType (hstnt, 1, geBI T, 0, 0) ;
res_code = geSQExecute (hstnt) ;

bi t Val ue = geCGetParanBit (hstnt, 1) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geGetParamChar and qeGetParamCharBuf 274

geGetParamChar and geGetParamCharBuf

These functions are used with stored procedures and return a character
string containing the value from an output or input/output parameter.

Syntax ptrstr char_val qgeGetParanChar (
int16 hstnt,
i nt 16 param num

ptrstr fnt_string,
ptrint32 max_| en)

int1l6 res_code geCet ParantChar Buf (
i nt 16 hstnt,
ptrstr char _val,
i nt 16 param num
ptrstr fnt_string,
ptrint32 max_| en)

Description geGetParamChar and geGetParamCharBuf return the value of a stored
procedure’s output or input/output parameter as a character string. If the
parameter’s data type is not character string, the value is converted to a
character string.

The geGetParamChar function returns a pointer to the string, which is stored
in a buffer maintained by DTK. Copy the string out of this buffer before you
call another DTK function, because the next function may use the same
buffer.

The geGetParamCharBuf function passes a pointer to a buffer you have
allocated, and the string is put in the buffer. Make sure the buffer is large
enough to hold the returned string.

Format number and date values by providing a format string (see “Format
Strings” on page 59).

If the parameter’s data type is a character string (type 1 or 2), you may
specify the maximum length of data to be returned.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Parameters

Chapter 10 DTK Functions
geGetParamChar and qeGetParamCharBuf 275

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter value to be returned.
fmt_string is the format string.

max_len is the maximum number of characters returned if the parameter’s
data type is character string (type 1 or 2) or binary (type 101 or 102). If
max_len is zero, the entire string is returned (up to 1000 characters). If
max_len is not zero and the parameter’s data type is not 1, 2, 101, or 102, an
error is returned.

max_len is typically used either because your macro language limits
character strings to a size that is less than the size of the values of the
parameters, or because the parameter values are very large and you want to
retrieve only part of the value.

If the value of the parameter is too large to retrieve with one call to
geGetParamChar, you can call geGetParamChar again and again on the
same parameter to retrieve more of the value.

char_val is the returned character value.

res_code is the result code returned by geGetParamCharBuf, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geGetParamChar and qeGetParamCharBuf 276

Example hdbc = geConnect (" DSN=QECRA; DLG=2") ;
hstm = geSQ.Prepare (hdbc, "{call GetDeptNane (?)}") ;

res_code = geSet Param Olype (hstnt, 1, gePARAM CUTPUT) ;
res_code = qgeSet ParanbDat aType (hstnt, 1, geCHAR 10, 0) ;
res_code = geSQExecute (hstnt) ;

char Val ue = geCet ParanChar (hstnt, 1) ;

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;
See Also geValChar and geValCharBuf.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geGetParamDate and qeGetParamDateBuf 277

geGetParamDate and qeGetParamDateB uf

These functions are used with stored procedures and return an output or
input/output parameter’s value as a date value.

Syntax ptrstr date_val geGetParanDate (
i nt 16 hstnt,
i nt 16 param num

int1l6 res_code geCet Paranbat eBuf (
int16 hstnt,
ptrstr date_val,
i nt 16 param num

Description geGetParamDate and geGetParamDateBuf return the value of a stored
procedure’s output or input/output parameter as a date value. If the
parameter’s data type is not date, the value is converted to date.

The geGetParamDate function returns a pointer to the date value, which is
stored in a buffer maintained by DTK. Copy the value out of this buffer before
you call another DTK function, because the next function may use the same
buffer.

The geGetParamDateBuf function passes a pointer to a buffer you have
allocated, and the value is put in the buffer. Make sure the buffer is large
enough to hold the returned value.

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

Parameters hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter value to be returned.

date_val is the returned date value.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | geGetParamDate and qeGetParamDateBuf 278

res_code is the result code returned by geGetParamDateBuf, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect (" DSN=QECRA; DLG=2") ;
hstm = geSQ.Prepare (hdbc, "{call LastHreDate (?)}") ;

res_code = qgeSet Param Olype (hstnt, 1, gePARAM CUTPUT) ;
res_code = qgeSet ParanbDat aType (hstnt, 1, geDATE, 0, 0) ;
res_code = geSQExecute (hstnt) ;

dat eVal ue = geCet ParanDate (hstnt, 1) ;
res_code
res_code

geEndSQ. (hstnt)
geDi sconnect (hdbc)

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geGetParamDateTime and qeGetParamDateTimeBuf 279

geGetParamDateTime and geGetParamDateTimeB uf

These functions are used with stored procedures and return an output or
input/output parameter’s value as a date-time value.

Syntax ptrstr datetine_val qgeGetParanDateTinme (
i nt 16 hstnt,
i nt 16 param num

int1l6 res_code geCet ParanbDat eTi meBuf (
i nt 16 hstnt,
ptrstr dat eti nme_val ,
i nt 16 param num

Description geGetParamDateTime and geGetParamDateTimeBuf return the value of a
stored procedure’s output or input/output parameter as a date-time value. If
the parameter’s data type is not date-time, the value is converted to date-
time.

The geGetParamDateTime function returns a pointer to the date-time value,
which is stored in a buffer maintained by DTK. Copy the value out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

The geGetParamDateTimeBuf function passes a pointer to a buffer you have
allocated, and the value is put in the buffer. Make sure the buffer is large
enough to hold the returned value.

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

Parameters hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter value to be returned.

datetime_val is the returned date-time value.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | geGetParamDateTime and qeGetParamDateTimeBuf 280

res_code is the result code returned by geGetParamDateBuf, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect (" DSN=QECRA; DLG=2") :
hstm = geSQPrepare (hdbc, "{call LastHreDate (?)}") ;
res_code = qgeSet Param Olype (hstnt, 1, gePARAM CUTPUT) ;
res_code = geSet Par anDat aType (hstm, 1, qeDATETI Mg, 26,
0);
res_code = geSQExecute (hstnt) ;
dat eti meVal ue = qeCGet Par anbDat eTi me (hstnt, 1) ;

res_code
res_code

geEndSQ. (hstnt)
geDi sconnect (hdbc)

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | geGetParamDecimal and geGetParamDecimalBuf 281

geGetParamDecimal and geGetParamDecimalB uf

These functions are used with stored procedures and return an output or
input/output parameter’s value as a decimal value.

Syntax ptrstr dec_val geGet ParanDeci nal (
int16 hstnt,
i nt 16 param num
intl6 preci si on,
int16 scal e

int1l6 res_code geCet Paranbeci mal Buf (
int16 hstnt,
ptrstr dec_val,

i nt 16 param num
int16 preci sion,
int16 scal e
Description The geGetParamDecimal function returns a pointer to the decimal value,

which is stored in a buffer maintained by DTK. Copy the value out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

The geGetParamDecimalBuf passes a pointer to a buffer you have allocated,
and the value is put in the buffer. Make sure the buffer is large enough to hold
the returned value.

geGetParamDecimal and geGetParamDecimalBuf return the parameter
value as a decimal number. If the parameter’s data type is not a decimal
number, the value is converted to a decimal number (type 3).

If the parameter’s data type is a character string (type 1 or 2) and the
parameter’s value is not a number, 0 is returned.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Parameters

Example

See Also

Chapter 10 DTK Functions
geGetParamDecimal and geGetParamDecimalBuf 282

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the number of the parameter whose value is to be returned.
precision is the total number of digits to be returned in the decimal value.

scale is the number of digits right of the decimal point to be returned in the
decimal value.

dec_val is the returned decimal value.

res_code is the result code returned by geGetParamDecimalBuf, which
returns the same set of result codes as geErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CQECRA; DLG=2") ;
hstm = qeSQ.Prepare (hdbc, "{call TotEmpSalary (?)}}") ;
res_code = qgeSet Param Olype (hstnt, 1, gePARAM CUTPUT) ;

res_code = qgeSet ParanbDat aType (hstnt, 1, geDEC MAL, 10,
2) ;

res_code = geSQExecute (hstnt) ;

decVal ue = geCet ParanDeci nal (hstnm, 1) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

geValDecimal and geValDecimalBuf.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geGetParamDouble 283

geGetParamDouble

geGetParamDouble is used with stored procedures and returns an output or
input/output parameter’s value as a double-precision floating point number.

Syntax float64 paramval geGetParanbouble (
int16 hst nt,
i nt 16 param num
Description geGetParamDouble returns the parameter’s value as a double-precision

floating-point number. If the parameter’s data type is not double-precision
floating-point (type 7), the value is converted to this data type.

If the parameter’s data type is a character string (type 1 or 2) and the
parameter’s value is not a number, 0 is returned.

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

Parameters hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the number of the parameter whose value is to be returned.

param_val is the returned value.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geGetParamDouble 284

Example hdbc = geConnect (" DSN=QECRA; DLG=2") ;
hstm = geSQ.Prepare (hdbc, "{call TotEnpSalary (?)}") ;
res_code = qgeSet Param Olype (hstnt, 1, gePARAM CUTPUT) ;

res_code = geSet Par anbDat aType (
hstm, 1, geDOUBLEPRECI SION, 0, 0) ;
res_code = geSQExecute (hstnt) ;
dbl Val ue = geGet ParanDoubl e (hstnt, 1) ;
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;
See Also geValDouble.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geGetParamFloat 285

geGetParamFloat

geGetParamFloat is used with stored procedures and returns an output or
input/output parameter’s value as a single-precision floating point number.

Syntax float32 paramval geCetParantl oat (
i nt 16 hst nt,
i nt 16 param num
Description geGetParamFloat returns the parameter’s value as a floating-point number. If

the parameter’s data type is not floating-point (type 6), the value is converted
to this data type.

If the parameter’s data type is character string (type 1 or 2) and the
parameter’s value is not a number, 0 is returned.

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

Parameters hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the number of the parameter whose value is to be returned.

param_val is the returned value.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geGetParamFloat 286

Example hdbc = geConnect (" DSN=QECRA; DLG=2") ;
hstm = geSQ.Prepare (hdbc, "{call TotEnpSalary (?)}") ;

res_code = qgeSet Param Olype (hstnt, 1, gePARAM CUTPUT) ;
res_code = qgeSet ParanbDat aType (hstnt, 1, geFLQAT, 0, 0) ;
res_code = geSQExecute (hstnt) ;

fl oat Val ue = geGet Paranfl oat (hstnt, 1) ;

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;
See Also geValFloat.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geGetParamint 287

geGetParamint

Syntax

Description

Parameters

geGetParamint is used with stored procedures and returns an output or input/
output parameter’s value as a 2-byte integer.

int1l6 paramval geGetParamint (
i nt 16 hstnt,
i nt 16 param num

geGetParamint returns the parameter’s value as a 2-byte integer. If the
parameter’s data type is not 2-byte integer (type 5), the value is converted to
this data type.

If the parameter’s data type is character string (type 1 or 2) and the
parameter’s value is not a number, 0 is returned.

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the number of the parameter whose value is to be returned.

param_val is the returned value.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geGetParamint 288

Example hdbc = geConnect (" DSN=QECRA; DLG=2") ;
hstm = geSQPrepare (hdbc, "{call TotNunEnp (?)}") ;

res_code = geSet Param Olype (hstnt, 1, gePARAM CUTPUT) ;
res_code = geSet Par anDat aType (hstnt, 1, qel NTEGER 0, 0) ;
res_code = geSQExecute (hstnt) ;
i nt Val ue = geGet Param nteger (hstnt, 1) ;
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

See Also geValint.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geGetParamLong 289

geGetParamLong

Syntax

Description

Parameters

geGetParamLong is used with stored procedures and returns an output or
input/output parameter’s value as a 4-byte integer.

int32 paramval geGetParaniong (
i nt 16 hstnt,
i nt 16 param num

geGetParamLong returns the parameter’s value as a 4-byte integer. If the
parameter’s data type is not a 4-byte integer (type 4), the value is converted
to this data type.

If the parameter’s data type is character string (type 1 or 2) and the
parameter’s value is not a number, 0 is returned.

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the number of the parameter whose value is to be returned.

param_val is the returned value.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geGetParamLong 290

Example hdbc = geConnect (" DSN=QECRA; DLG=2") ;
hstm = geSQPrepare (hdbc, "{call TotNunEnp (?)}") ;

res_code = qgeSet Param Olype (hstnt, 1, gePARAM CUTPUT) ;
res_code = qgeSet ParanbDat aType (hstnt, 1, geLONG 0, 0) ;
res_code = geSQExecute (hstnt) ;

| ongVal ue = geGet Paraniong (hstnt, 1) ;

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc); hdbc = geConnect
(" DSN=CECRA; DLGR2")

See Also geValLong.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I geGetParamTime and geGetParamTimeBuf 291

geGetParamTime and geGetParamTimeBuf

These functions are used with stored procedures and return an output or
input/output parameter’s value as a time value.

Syntax ptrstr time_val geGetParanTinme (
i nt 16 hstnt,
i nt 16 param num

int1l6 res_code geCet Parani meBuf (
i nt 16 hstnt,
ptrstr time_val,
i nt 16 param num

Description geGetParamTime and geGetParamTimeBuf return the value of a stored
procedure’s output or input/output parameter as a time value. If the
parameter’s data type is not time, the value is converted to time.

The geGetParamTime function returns a pointer to the time value, which is
stored in a buffer maintained by DTK. Copy the value out of this buffer before
you call another DTK function, because the next function may use the same
buffer.

The geGetParamTimeBuf function passes a pointer to a buffer you have
allocated, and the value is put in the buffer. Make sure the buffer is large
enough to hold the returned value.

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

Parameters hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter value to be returned.

time_val is the returned time value.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geGetParamTime and qeGetParamTimeBuf 292

res_code is the result code returned by geGetParamDateBuf, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hstm = qeSQPrepare (hdbc, "{call GetStartTine (?) }") ;
res_code = qgeSet Param Olype (hstnt, 1, gePARAM CUTPUT) ;
res_code = qeSet ParanbDat aType (hstnt, 1, geTIMg 0, 0) ;
res_code = geSQExecute (hstnt) ;
ti meVal ue = geGet Paranine (hstnt, 1) ;

res_code
res_code

geEndSQ. (hstnt)
geDi sconnect (hdbc)

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geGetQueryTimeout 293

geGetQueryTimeout
geGetQueryTimeout returns the query timeout.
Syntax int32 tinmeout geGet QueryTinmeout (intl6 hdbc)

Parameters timeout is the query timeout set in the last call to geSetQueryTimeout. If a
guery timeout has not been set, the default of 0 (wait indefinitely) is returned.

hdbc is the handle to the database connection returned by geConnect.

Example hdbc = geConnect ("DSN=CESS') ;

ti me_secs = geGet QueryTi neout (hdbc) ;

[* WII return default of O (wait indefinitely). * /
See Also geSetQueryTimeout.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geGetSelectOptions

geGetSelectOptions

geGetSelectOptions returns the option flag settings that determine fetching
behavior during the current database connection. These options affect the
level of fetching allowed in the current connection, whether logging is used

when not made necessary by the database system, and the extent to which

the result set persists after a transaction ends.

Syntax int32 flags qgeCGetSel ect ptions (intl6 hdbc)

Parameters hdbc is a connection returned from geConnect.

flags is the set of option flags, which can include the following:

Constant
geFETCH_FORWARD_DIR

qeFETCH_ANY_DIR

qeLOG_IF_NEEDED

geLOG_ALWAYS

geSELECT_INVALIDATE

DataDirect Developer’s Toolkit Programmer’s Guide

Value
0x0001

0x0002

0x0008

0x0010

0x0020

Description

Only forward fetching is allowed.
This is the default fetching behavior
option.

Random and previous fetching is
enabled.

Use log file only as needed to
enable previous and random
fetching. This is the default logging
behavior.

Force use of log file when it is not
required. (This does not activate
random fetching if it is not explicitly
set with geFETCH_ANY_DIR).

Disable fetching at the end of
transaction (EOT). Calls made after
a commit or rollback to any function
except geEndSQL cause an error.

|GoTo v|

Constant
geSELECT_TRUNCATE

qeSELECT_PERSIST

Value
0x0040

0x0060

Chapter 10 DTK Functions
geGetSelectOptions 295

Description

Truncate the result set at EOT. This
option lets you continue fetching
only those records that have
already been read from the
database (if qeFETCH_ANY_DIR
is set).

The result set persists at EOT. This
is the default behavior, which lets
you continue fetching from the
entire set of records returned by the
Select statement. To enable this
behavior for databases that
invalidate the hstmt at commit or
rollback, the records in the result
set that have not been fetched by
EOT are written to a log file.

These values can be combined by adding them together or joining them with

an OR clause.

Example hdbc = geConnect (" DSN=QESS")
options = geCet Sel ect Qpti ons (hdbc) ;
res_code = geD sconnect (hdbc)

See Also geSetSelectOptions.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geGetSupportedisolationLevels 296

geGetSupportedlsolationLevels

geGetSupportedlsolationLevels returns the isolation levels supported by the
database system.

Syntax intl6 |evels qgeGetSupportedlsolationLevels (intl6 hdbc)

Parameters hdbc is the handle to the database connection returned by geConnect.

levels is the set of isolation levels supported by the database system. One of
the following flags is set for each isolation level supported:

Constant Value Description
gelSO_READ_ 0x000 Read uncommitted (0) isolation level.
UNCOMMITTED 1 Locks are obtained on modifications to

the database and held until end of
transaction (EOT). Reading from the
database does not involve any locking

gelSO_READ_ 0x000 Read committed (1) isolation level. Locks

COMMITTED 2 are acquired for reading and modifying
the database. Locks are released after
reading but locks on modified objects are

held until EOT.
gelSO_REPEATABLE_ 0x000 Repeatable read (2) isolation level. Locks
READ 4 are obtained for reading and modifying

the database. Locks on all modified
objects are held until EOT. Locks
obtained for reading data are held until
EOT. Locks on non-modified access
structures (indexes, hashing structures,
etc.) are released after reading.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

See Also

Chapter 10 DTK Functions

geGetSupportedlsolationLevels
Constant Value Description
gelSO_SERIALIZABLE 0x000 Serializable (3) isolation level. All data
8 read or modified is locked until EOT. All
access structures that are modified are
locked until EOT. Access structures used
by the query are locked until EOT.
gelSO_VERSIONING 0x001 Versioning (4) isolation level. Similar to
0 isolation level 3, serializable, but provides

greater concurrence through the use of
non-locking “record versioning” protocols

The isolation levels supported and default isolation level are database-
dependent.

hdbc = geConnect ("DSN=CESS') ;
| evel s = geGet Support edl sol ati onLevel s (hdbc) ;
cur_level = geCetlsolationLevel (hdbc) ;
if (levels & gel SO READ COW TTED)
res_code = geSetlsol ati onLevel (hdbc,
gel SO READ COW TTED)
res_code = geD sconnect (hdbc) ;

geGetlsolationLevel, geSetlsolationLevel.

DataDirect Developer’s Toolkit Programmer’s Guide

297

GoT Chapter 10 DTK Functions
I o0 ¥ I geGetTableCaching 298

geGetTableCaching

geGetTableCaching returns the caching setting specified in the last call to

geSetTableCaching.
Syntax int1l6 setting geCGetTabl eCaching (intl16 hdbc)
Parameters setting is one of the following:
Constant Value Description
geCACHE_PERMANENT 1 Turn caching on, and have the cache
file remain after the connection
terminates. You must specify a file
name with the geSetCacheFileName
function when using this option.
geCACHE_SESSION 2 Turn caching on for this session. The
cache file is deleted when the
connection terminates. This is the
default.
geCACHE_OFF 3 Turn caching off.

hdbc is the handle to the database connection returned by geConnect.
Example /* Cache_Permanent * /

hdbc = geConnect (" DSN=CEDBF") ;

setting = geCet Tabl eCachi ng (hdbc) ;

res_code = geD sconnect (hdbc) ;

See Also geSetTableCaching.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geGetTraceOptions 299

geGetTraceOptions

geGetTraceOptions returns the current trace options.

Syntax intle flags qeGet TraceQotions ()
Parameters flags is a set of option flags that defines the tracing options in effect. They can
be:
Constant Value Description
geTRACE_NON_VAL_ 0x0001 Trace all non-geVal calls.
CALLS
geTRACE_USER 0x0002 Trace strings sent via geTraceUser.
geTRACE_VAL_CALLS 0x0004 Trace geVal calls and bound data at fetch
time.
geTRACE_WINDOW 0x0008 Write all trace information (except ODBC
calls) to a trace window.
geTRACE_ODBC 0x0010 Trace ODBC calls.
Example res_code = geTraceOn ("\\trace.txt") ;

trc_val = geCGet Tracetions () ;
hdbc = geConnect (" DSN=CEDBF") ;

res_code = geD sconnect (hdbc) ;
res_code = geTracedf () ;

See Also geSetTraceOptions.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I gelndexes 300

gelndexes

gelndexes creates a statement execution (hstmt) that returns information on
the set of indexes for a table.

Syntax intlée hstm = gel ndexes (
int16 hdbc,
ptrstr t abl e_nane,
int16 fl ags)

Description gelndexes returns one record for each column in each index. Each record
contains the following columns:

Column Type Description

Table Qualifier Char(128) Table qualifier. This is a path for file-based
databases. May be NULL

Table User Char(128) Table user. May be NULL
Table Name Char(128) Table name.
Nonunique Int16 Indicates whether every index entry must be

unigue or not.
Values:
0 = FALSE if the index values must be unique

1 = TRUE if the index values do not have to be
unique; can be nonunique.

Index Qualifier Char(128) Index qualifier. May be needed in a DROP
INDEX statement.

Index Name Char(128) Index name.

Index Type Int16 Type of index.
Values:

1 = geINDEX_CLUSTERED
2 = qeINDEX_HASHED
3 = geINDEX_OTHER

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | gelndexes 301

Column Type Description

Sequence No Int16 The number of this column within the index.
For example, for the index LAST_NAME,
FIRST_NAME, the Sequence No would be 1
in the row returned for LAST_NAME and 2 in
the row returned for FIRST_NAME.

Column Name Char(128) Column name.
Collation Char(1) Collating sequence.
Values:

A = geINDEX_ASCENDING
D = geINDEX_DESCENDING
NULL = geINDEX_ORDER_UNKNOWN

Cardinality Int32 Number of unique values in index; may be
NULL

Pages Int32 Number of pages used to store index; may be
NULL

Filter Char(128) The filter condition when one exists.

Otherwise, the value is NULL. For example,
SALARY > 25000.

Not all database systems support indexes. You should include error-checking
code to handle those database systems that do not.

Parameters hstmt is the handle to the statement returned by gelndexes.
hdbc is a handle to a database connection obtained from geConnect.

table_name is the table whose indexes are to be returned.

DataDirect Developer’s Toolkit Programmer’s Guide

GoT Chapter 10 DTK Functions
| GoTo = | gelndexes 302

flags is a set of option flags that control the values returned from gelndexes.
Each of these options overrides the DTK default. They can be combined by
adding them together or joining them with an OR clause.

Constant Value Description

geUNIQUE_INDEXES 0x0001 Return only unique indexes;
returning all indexes is defaul

geACCURATE_STATS 0x0002 Always request statistics from
server, even if it takes a long time;

quick retrieval is the default

Example hdbc = geConnect (“DSN=CESS; DLG=1") ;
hstmt = gel ndexes (hdbc, “EMP", geACCURATE STATS);
whi | e (geFet chNext (hstnt) == geSUCCESS) {
/* Get info about |ndexes * [/

}

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geLiblnit 303

gelLiblnit

Syntax

Description

Parameters

Example

See Also

geLiblnit initializes a DTK program.
intlé6 res_code geLiblnit ()

geLiblnit initializes an individual DTK program by allocating memory for that
program. Whenever possible, programs that call the DTK API should call this
function before making any other calls.

If you write a multi-threaded application, you should call this function to
initialize each thread of execution.

Some programming structures make it impossible to call geLibinit for every
instance of DTK calls. For example, a DLL shared by multiple applications
cannot know whether or not the calling application had already called
geLiblnit or geLibTerm. Even so, by using these functions whenever possible
you can keep more memory available to your applications.

res_code is the result code returned by geLiblnit, which returns the same set
of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

res_code = qgeLiblnit () ;
res_code = geLi bTerm () ;
geLibTerm.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geLibTerm 304

geLibTerm

Syntax

Description

Parameters

Example

See Also

geLibTerm terminates a DTK program.
intl6 res_code geLibTerm()

geLibTerm terminates a DTK program and frees the memory allocated for
that program by the corresponding call to geLiblnit. Whenever possible,
programs that call the DTK API should call this function as the last DTK
function call.

If you write a multi-threaded application, you should call this function to
terminate each thread of execution.

Some programming structures make it impossible to call geLibinit for every
instance of DTK calls. For example, a DLL shared by multiple applications
cannot know whether or not the calling application has already called
geLiblnit or geLibTerm. Even so, by using these functions whenever possible
you can keep more memory available to your applications.

res_code is the result code returned by geLibTerm, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

res_code = qgeLiblnit () ;

geLi bTerm () ;

res_code

geLiblnit.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geMoreResults

305

geMoreResults

Syntax

Description

Parameters

Example

geMoreResults begins a new result set from statements or stored procedures

that return multiple result sets.
intlée res_code geMreResults (int1l6 hstnt)

geMoreResults ends the current result set and starts a new one. If the
res_code is qeEOF, then there are no more result sets. Otherwise, hstmt
represents the new result set. Some drivers do not support this function.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

res_code is the result code returned by geMoreResults, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

hdbc = geConnect ("DSN=CESS') ;

hstm = geExecSQ (hdbc, "sp_enpdept™) ;

/* sp_enpdept is a stored procedure containing * /
/* "SELECT * FROM enp; SELECT * FROM dept " * /

whi | e (geFet chNext (hstnt) == geSUCCESS) {
/* Get values fromenp * /

}

res_code = geMoreResults (hstnt) ;
if (res_code != ECF) {
whi | e (geFet chNext (hstnt) == geSUCCESS) {
/* Get values fromdept * /

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geMoreResults 306

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

See Also geProcedureColumns.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geNativeSQL and geNativeSQLBuf 307

geNativeSQL and geNativeSQLBuf

Syntax

Description

Parameters

Example

These functions return the SQL string as translated by the driver.

ptrstr native_sql geMNativeSQ (intl6 hstnt)

intle res_code geNativeSQ@QBuf (intl6 hstnt, ptrstr
st nt _buf)

geNativeSQL returns a pointer to the translated SQL string. This string is
stored in a buffer maintained by DTK. You must copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

With geNativeSQLBUf, you pass in a pointer to a buffer you have allocated.
The translated SQL string is put in the buffer. You must make sure that the
buffer is large enough to hold the returned string.

This function depends on driver support and returns an error if the driver does
not support the ODBC function SQLNativeSq|.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

stmt_buf points to an allocated buffer for the resulting statement.

res_code is the result code returned by geNative SQLBuf, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;

hstm = geSQPrepare (hdbc, "SELECT * FROM em p
WHERE LAST_NAME = "Wl tman'")

native = geMNativeSQ (hstnt) ;

res_code

res_code

geEndSQ. (hstnt)
geDi sconnect (hdbc)

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geNumCols 308

geNumcCols

geNumCols returns the number of columns present in a SQL Select
statement.

Syntax intl6 numcols geNunCols (intl16 hstnt)

Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

num_cols is the returned number of columns. Its value is O if the statement is
not a Select statement.

Example To determine the number of columns in the dBASE employee file:
hdbc = geConnect (" DSN=CEDBF') ;

hstm = geExecSQ (hdbc, "SELECT * FROM enp") ;
numcols = geNunCol s (hstnt)

geEndSQ. (hstnt)
geDi sconnect (hdbc)

res_code
res_code

See Also geExecSQL.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geNumModRecs 309

geNumModRecs

geNumModRecs returns the number of records modified by the last function
called that modified the database.

Syntax int32 numrecs geNumMbdRecs (intl1l6 hstnt)

Description geNumModRecs returns the number of records modified by a SQL Insert,
Update, or Delete statement, geRecUpdate, geRecDelete, geApplyAll, or
auto-update operation.

Parameters hstmt is the handle to the statement returned by geExecSQL.

num_recs is the returned number of records. Returns O if the statement is a
Select statement.

Example To determine the number of records modified by an Update statement to the
dBASE employee file:

hdbc = geConnect (" DSN=CEDBF") ;

hstmt = geExecSQ (hdbc, "UPDATE enp. dbf SET
sal ary=sal ary*1. 1 WHERE dept =' D101' ") ;
numrecs = geNunMbdRecs (hstnt) ;

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;
See Also geExecSQL.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geNumParams 310

geNumParams
geNumParams returns the number of parameters that appeared in the
statement.
Syntax int1l6 num paramnms geNunParans (int1l6 hstnt)
Parameters hstmt is the handle to the statement returned by geSQLPrepare.

num_params is the number returned by geNumParams.

Example hdbc = geConnect ("DSN=CEDBF') ;
hstnm = geSQPrepare (hdbc, "SELECT * FROM em p
WHERE | ast _nane = ?") ;
num par ans = geNunParans (hstnt); /* WIIl return 1 * /

res_code = geSQExecute (hstnt) ;
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geParamNum 311

geParamNum

Syntax

Description

Parameters

Example

geParamNum returns the number of the parameter corresponding to a
specified name.

int16 param num geParam\um (int16 hstnt, ptrstr
par am nane)

geParamNum returns the number of the parameter that corresponds to
param_name. Use this function to specify parameters by name in functions
that take parameters by number.

If a parameter name is used more than once in the statement, the position of
the first occurrence is returned. Setting or binding this position binds for all
parameters with the same name.

hstmt is the handle to the statement returned by geSQLPrepare.
param_name is the name of a parameter for hstmt.

param_num is the parameter number returned by geParamNum. If the
parameter name does not correspond to any of the parameters in hstmt, its
value is 0.

hdbc = geConnect (" DSN=CEDBF") ;

hstm = geSQPrepare (hdbc, "SELECT * FROM em p
WHERE | ast _nanme = ?last") ;

res_code = geSet ParantChar (hstnt,
gePar am\um (hstnt, "last"),"Smth", 10) ;

res_code = geSQExecute (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geProcedureColumns

312

geProcedureColumns

geProcedureColumns returns a description of the parameters to a specified
stored procedure and the result columns for that procedure.

Syntax int1l6 hstnt qgeProcedureCol ums (int16 hdbc, ptrstr
proc_nane)
Description geProcedureColumns returns an hstmt for a result set describing the

parameters to a stored procedure and the result columns for that procedure.
The resulting records contain the following columns:

Column

Procedure
Qualifier

Procedure Owner
Procedure Name
Column Name

Column Type

Data Type

DB Type Name
Width

Attrl

Attr2

Type
Char(128)

Char(128)
Char(128)
Char(128)
Int16

Int16
Char(128)
Int16
Int16

Int16

DataDirect Developer’s Toolkit Programmer’s Guide

Description

Procedure qualifier identifier

Procedure owner identifier
Procedure identifier
Procedure column identifier

Result type: gePARAM_UNKNOWN,
gePARAM_INPUT, gePARAM_INOUT,
gePARAM_OUT, geRESULT_COL,
qeRETURN_VAL

Data type
Data source-dependent type name
Data type size

Precision for decimal types, date start
position for dates, null otherwise.

Scale for decimal types, date end
position for dates, null otherwise.

Chapter 10 DTK Functions

| GoTo = | geProcedureColumns 313

Column Type Description

Nullable Int16 Result type:
qeCOL_NULLABLE,
qeCOL_NOT_NULLABLE,
geCOL_UNKNOWN

Remarks Char(256) Description of column (if available).

You retrieve this information like you would other database values—using the
geVal, geBindCol, and geFetch functions.

Parameters hdbc is the handle to a connection returned by geConnect.

proc_name is a name or pattern of the procedure to find. If the pattern is “%”
or “*", all procedures are selected. You can also specify the qualifier name,
owner name, or both.

hstmt is the handle to the statement returned by geProcedureColumns. Its
value is null if the database does not store the procedure.

Example hdbc = geConnect (" DSN=CESS; DLG=1") ;
hstmt = qgeProcedureCol ums (hdbc, "sp_who") ;
whi | e (geFet chNext (hstnt) == geSUCCESS) {
/* Get info about stored procedure colums. * /
}

res_code = geD sconnect (hdbc) ;

See Also geMoreResults.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
gePrimaryKeys 314

gePrimaryKeys

gePrimaryKeys creates a statement execution (hstmt) that returns
information on the set of columns that compose a table’s primary keys.

Syntax intlée hstmt = gePrimaryKeys (
intl6 hdbc,
ptrstr t abl e_nane)
Description gePrimaryKeys returns one record per column in the primary key. Each

record contains the following columns:

Column

Table Qualifier

Table User
Table Name
Column Name

Sequence No

Index Name

Type
Char(128)

Char(128)
Char(128)
Char(128)
Int16

Char(128)

Description

Table qualifier. This is a path for file-based
databases. May be NULL

Table user. May be NULL
Table name.
Column name.

Column sequence number, which is the number
of this column within the primary key. For
example, for the primary key LAST_NAME,
FIRST_NAME, the Sequence No would be 1 in
the row returned for LAST_NAME and 2 in the
row returned for FIRST_NAME

Primary key name. NULL if not applicable to the
data source.

Not all database systems support primary keys. You should include error-
checking code to handle those database systems that do not.

Parameters hstmt is the handle to the statement returned by gePrimaryKeys.

hdbc is a handle to a database connection obtained from geConnect.

table_name is the table whose primary keys are to be returned.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I gePrimaryKeys 315
Example hdbc = geConnect (“DSN=CESS; DLG=1") ;
hstnmt = gePrinaryKeys (hdbc, “EMP");
whi | e (geFet chNext (hstnt) == geSUCCESS) {
/* Get info about Primary Keys * /
}
See Also geForeignKeys.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
gePutBinary 316

gePutBinary

Syntax

Description

Parameters

Example

gePutBinary updates a column with binary data bytes.

intlé res_code gePutBinary (
int16 hstnt,
int16 col _num
ptrstr new_val ,
i nt 32 val _| en)

gePutBinary updates a column value in the current record buffer with a
specified number of binary data bytes.

This function does not change the value in the database. The new value is
sent to the database when geRecUpdate is called or if auto-updating has
been enabled for the hstmt and the current record position changes.

hstmt is the statement handle returned by qeExecSQL or qeSQLPrepare.

col_num is the column number whose field is to be modified. The first column
number is 1.

new_val is a buffer of binary data.
val_len is the number of bytes to use from the new_val buffer.

res_code is the result code returned by gePutBinary, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;
hstmt = geExecSQ (hdbc, "SELECT interests FROM enp") ;

res_code = geFet chNext (hstnt) ;

res_code = gePutBinary (hstnt, 1, bindata, bin_Ien) ;
res_code = geRecUpdate (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
gePutChar 317

gePutChar

Syntax

Description

Parameters

gePutChar updates a column with a character value.

int1l6 res_code gePutChar (
int16 hstnt,
int16 col _num
ptrstr fnt_string,
ptrstr new_val)

gePutChar updates a column value in the current record buffer with a null-
terminated character value.

A format string can be used if formatting is desired and the column type is a
date/time or a number.

This function does not change the value in the database. The new value is
sent to the database when geRecUpdate is called or if auto updating has
been enabled for the hstmt and the current record position changes.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the column number whose field is to be modified. The first column
number is 1.

fmt_string is a pointer to a null-terminated format string which controls the
formatting of dates and numbers.

new_val is a null-terminated character string which holds the new value for
the column.

res_code is the result code returned by gePutChar, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | gePutChar 318

Example hdbc = geConnect ("DSN=CEDBF') ;
hstm = geExecSQ (hdbc, "SELECT first_name FROM enp") ;
res_code = geFet chNext (hstnt) ;

/* Update the record. * /

res_code = gePutChar (hstni, 1, "", "Joe") ;
res_code = geRecUpdate (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | gePutDecimal 319

gePutDecimal

gePutDecimal updates a column with a decimal value.

Syntax intl6 res_code gePutDecimal (
int16 hstnt ,
intl6 col _num
intl6 preci si on,
int16 scal e,
ptrstr new_val)

Description gePutDecimal updates a column value in the current record buffer with a
decimal value.

This function does not change the value in the database. The new value is
sent to the database when geRecUpdate is called or if auto updating has
been enabled for the hstmt and the current record position changes.

Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the column number whose field is to be modified. The first column
number is 1.

precision is the number of significant digits in the result.
scale is the number of digits to the right of the decimal point in the result.
new_val is a pointer to a string that holds the new value for the column.

res_code is the result code returned by gePutDecimal, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | gePutDecimal 320

Example hdbc = geConnect ("DSN=CEDBF') ;
hstmt = geExecSQ (hdbc, "SELECT sal ary FROM enp") ;
res_code = geFetchNext (hstnt) ;
/* Update the record. * /

res_code = qgePutDecimal (hstnt, 1, 9, 2, dec_val) ;
res_code = geRecUpdate (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | gePutDouble 321

gePutDouble

gePutDouble updates a column with a double-precision floating-point value.

Syntax int16 res_code gePutDouble (
i nt 16 hstnt,
intl6 col _num
float64 new val)

Description gePutDouble updates a column value in the current record buffer with a
double-precision floating-point value.

This function does not change the value in the database. The new value is
sent to the database when geRecUpdate is called or if auto updating has
been enabled for the hstmt and the current record position changes.

Parameters hstmt is the statement handle returned by geExecSQL or geSQLPrepare.

col_num is the column number whose field is to be modified. The first column
number is 1.

new_val is a double-precision floating-point value which is the new value for
the column.

res_code is the result code returned by gePutDouble, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;
hstmt = geExecSQ (hdbc, "SELECT sal ary FROM enp") ;

res_code = geFet chNext (hstnt) ;

res_code = gePutDoubl e (hstnt, 1, 10000. 50) ;
res_code = geRecUpdate (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
gePutFloat 322

gePutFloat

Syntax

Description

Parameters

Example

gePutFloat updates a column with a single-precision floating-point value.

intlé res_code gePutFloat (
int16 hstnt,
i nt 16 col _num
float32 new val)

gePutFloat updates a column value in the current record buffer with a single-
precision floating-point value.

This function does not change the value in the database. The new value is
sent to the database when geRecUpdate is called or if auto updating has
been enabled for the hstmt and the current record position changes.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the column number whose field is to be modified. The first column
number is 1.

new_val is a single-precision floating-point value which is the new value for
the column.

res_code is the result code returned by gePutFloat, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;
hstmt = geExecSQ (hdbc, "SELECT sal ary FROM enp") ;
res_code = geFet chNext (hstnt) ;

res_code = gePutFl oat (hstnt, 1, 10000. 50) ;
res_code = geRecUpdate (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
gePutint 323

gePutint

Syntax

Description

Parameters

Example

gePutint updates a column with a 2-byte integer.

intlée res_code gePutlint (
int16 hstnt,
int16 col _num
int16 new_val)

gePutint updates a column value in the current record buffer with a 2 byte
signed integer.

This function does not change the value in the database. The new value is
sent to the database when geRecUpdate is called or if auto updating has
been enabled for the hstmt and the current record position changes.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the column number whose field is to be modified. The first column
number is 1.

new_val is a 2-byte signed integer which is the new value for the column.

res_code is the result code returned by gePutint, which returns the same set
of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;
hstm = geExecSQ (hdbc, "SELECT sal ary FROM enp") ;

res_code = geFetchNext (hstnt) ;
res_code = gePutlnt (hstni, 1, 10000) ;
res_code = geRecUpdate (hstnt) ;
res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
gePutLong 324

gePutLong

Syntax

Description

Parameters

Example

gePutLong updates a column with a 4-byte integer.

intl6 res_code gePutlLong (
intl6 hstnt,
int1l6 col _num
int32 new_ val)

gePutLong updates a column value in the current record buffer with a 4-byte
integer.

This function does not change the value in the database. The new value is
sent to the database when geRecUpdate is called or if auto updating has
been enabled for the hstmt and the current record position changes.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the column number whose field is to be modified. The first column
number is 1.

new_val is a 4-byte integer that is the new value for the column.

res_code is the result code returned by gePutLong, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;
hstm = geExecSQ (hdbc, "SELECT sal ary FROM enp") ;

res_code = geFetchNext (hstnt) ;
res_code = gePutLong (hstni, 1, 10000) ;
res_code = geRecUpdate (hstnt) ;
res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
gePutNull 325

gePutNull

Syntax

Description

Parameters

Example

gePutNull updates a column to have the value null.
intl6 res_code gePutNull (int1l6 hstmt, intl6 col _num

gePutNull updates a column value in the current record buffer to have the
value null.

This function does not change the value in the database. The new value is
sent to the database when geRecUpdate is called or if auto updating has
been enabled for the hstmt and the current record position changes.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the column number whose field is to be modified. The first column
number is 1.

res_code is the result code returned by gePutNull, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;
hstmt = geExecSQ (hdbc, "SELECT hire_date FROM enp") ;
res_code = geFetchNext (hstnt) ;

res_code = gePutNull (hstnt, 1) ;
res_code = geRecUpdate (hstnt) ;
res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
gePutUsingBindColumns 326

gePutUsingBindColumns

Syntax

Description

Parameters

gePutUsingBindColumns updates columns with the values in the bind
buffers.

int1l6 res_code gePut Usi ngBi ndCol ums (i nt 16 hstnt)

gePutUsingBindColumns updates column values in the current record with
the values in the bind buffers.

If the length value of the bound column is set to geNO_DATA_CHANGE (-9),
then the column is not updated. You can use this function to put a value of
null by setting the bound column’s length value to qeNULL_DATA (-2).

This function does not change the value in the database. The new value is
sent to the database when geRecUpdate is called or if auto updating has
been enabled for the hstmt and the current record position changes.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

res_code is the result code returned by gePutUsingBindColumns, which
returns the same set of result codes as geErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | gePutUsingBindColumns 327

Example char first_name[9] ;
long fn_length ;

hdbc = geConnect (" DSN=CEDBF") ;
hstm = geExecSQ (hdbc, "SELECT first_name FROM enp") ;
fn_length = 9 ;
geBi ndCol (hstm, 1, first_nane, &f n_|ength) ;
whi |l e (geFetchNext (hstnt) == 0) {
/* geFetchNext has automatically filled
/[* first_name
/*
/* If the first name is David then change
/* to Dave and insert this new val ue.

* % kX X
~ Y~ Y~~~

if (strcnp (first_name, "David') == 0) {
strcpy (first_name, "Dave") ;
fn_length = 4 ;
}

gePut Usi ngBi ndCol ums (hstnt)
res_code = geRecUpdate (hstnt) ;

}
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geQBEPrepare 328

geQBEPrepare

Syntax

Description

Parameters

Example

See Also

geQBEPrepare creates a new hstmt that contains the Where clause
conditions that were created for the original hstmt by calls to the
geRecSetCondition functions.

intl6e new _hstn ge@EPrepare (intl6 ol d_hstnt)

geQBEPrepare creates a new hstmt that contains the Where clause
conditions that were created for the original hstmt by calls to
geRecSetCondition functions.

The new hstmt inherits the parameters from the original hstmt. Make
appropriate parameter routine calls to change these parameters.

After you have made one or more calls to geRecSetCondition, call
geQBEPrepare to add all the conditions to the Select statement’'s Where
clause. Call geSQLExecute to execute the resulting statement. Subsequent
calls to the geFetch functions retrieve the records that result from the
modified Select statement.

new_hstmt is the handle to a SQL statement to which a Where clause
containing QBE conditions has been added.

old_hstmt is the handle to an existing SQL statement to which you want to
add a Where clause containing QBE conditions.

hdbc = geConnect (" DSN=CEDBF") ;

hstmt = geExecSQ (hdbc, "SELECT * FROM enp") ;

res_code = geRecSet Condi tionChar (hstnt, 1 ,
geFl ND_ EQUAL, "David", "", FALSE) ;

new hstnm = qe@EPrepare (hstnt) ;

res_code = geSQExecute (new_hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

geRecSetCondition functions, geRecFind.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geQryAllocate 329

geQryAllocate

Syntax

Description

Parameters

Example

See Also

geQryAllocate builds a query based on a string containing a SQL statement.
intl6 hqry geQyA locate (int1l6 hdbc, ptrstr statenent)

geQryAllocate builds a query based on statement, which may be null. It
returns a query handle (hqgry), which may be used to communicate with the
Query Builder.

hgry is the handle to a query returned by geQryAllocate.
hdbc is a handle to a database connection obtained from geConnect.

statement is a pointer to a string containing a SQL statement. It may be Null if
no statement is to be associated with the returned hqry.

hdbc = geConnect (" DSN=CEDBF") ;
hgry = geQ yA | ocate (hdbc, " SELECT * FROM enp. dbf");
if (hgry == 0)

res_code = qeQyBuil der (hqgry, 0, geQRY_TABLES,

geQRY_DEFAULT) ;
res_code = geQyFree (hgry) ;
res_code = geD sconnect (hdbc) ;

geQryBuilder, qeQryOpenQueryFile.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geQryBuilder 330

geQryBuilder

geQryBuilder runs the Query Builder.

Syntax intl6 res_code geQyBuilder (
i nt 16 hary,
intl6 par ent _wi ndow,
int16 fl ags,
int16 i nit_dial og)
Description geQryBuilder runs the Query Builder, based on the query represented by

hgry. Any editing applied via the Query Builder affects this query.

An hgry can be obtained by calling geQryAllocate or geQryOpenQueryFile.

Parameters hgry is a handle to a query obtained from geQryAllocate or
geQryOpenQueryFile.

parent_window is a handle to the parent window of the calling application. It
may be 0.

flags is a set of option flags that control the behavior and appearance of the
Query Builder. Each of these options overrides the DTK default. They can be
combined by adding them together or joining them with an OR clause. They
include the following:

Constant Value Description

geQRY_NO_COL_ALIAS 0x0001 Column aliases not allowed.

geQRY_EXIT_AFTER_DLG 0x0002 Exit after first dialog box is exited.
Valid only if initial dialog specified.

geQRY_ALLOW_SRC_ 0x0004 Source can be changed in file

CHANGE open box.

geQRY_SYSTABLES 0x0008 List system tables in table dialog
box.

geQRY_SYNONYMS 0x0010 List synonyms in table dialog box

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Constant
geQRY_TABLES
geQRY_VIEWS
geQRY_NO_PARAMS
geQRY_BIG_ICONS
geQRY_VALIDATE
geQRY_SAMPLE

init_dialog specifies the initial dialog box to be displayed when the query

Value

0x0020
0x0040
0x0080
0x0100
0x0200
0x0400

builder is called. Valid values are:

Constant
geQRY_DEFAULT
geQRY_FILE
geQRY_JOIN
geQRY_SELECT
geQRY_ORDER
qeQRY_WHERE
geQRY_GROUP
geQRY_HAVING
geQRY_TEXT

Value

© 00 N o o b~ W0 N P

Chapter 10 DTK Functions
geQryBuilder

Description

List tables in table dialog box
List views in table dialog box.
Disallow parameters.

Use big icons in icon bar.
Validate SQL.

Show sample values in conditions
dialog box.

Description

Bring up the default initial dialog.
File dialog.

Join dialog

Select dialog.

Order by dialog.

Where dialog.

Group by dialog.

Having dialog.

Edit query text dialog.

331

res_code is the result code returned by qeQryBuilder, which returns the same

set of result codes as geErr. See Appendix D, “Result and Error Message

Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions
| GoTo w | qeQryBuilder 332

Example hdbc = geConnect ("DSN=CEDBF') ;
if (hdbc == 0)
hgry = geQyA | ocate (hdbc,"");
if (hgry == 0)
res_code = qeQyBuil der (hqgry, 0, geQRY_TABLES,

qeQRY_DEFAULT) ;
res_code = geQyFree (hgry) ;
res_code = geD sconnect (hdbc) ;
See Also geQryAllocate, geQryOpenQueryFile.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geQryFree 333

geQryFree

Syntax

Parameters

Example

geQryFree frees the memory associated with an hqgry. It is important to call
geQryFree to free system resources when you are finished using an hqry.

intl6 res_code geQyFree (intl6 hqry)

hgry is the handle to the query which is to be freed, which was obtained from
geQryAllocate or geQryOpenQueryFile.

res_code is the result code returned by geQryFree, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;

hgry = geQyA | ocate (hdbc,"");

res_code = qeQyBuil der (hqgry, 0, geQRY_TABLES,
geQRY_DEFAULT) ;

res_code
res_code

qeQyFree (hary)
geDi sconnect (hdbc)

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geQryGetFileName and qeQryGetFileNameBuf 334

geQryGetFileName and geQryGetFileNameB uf

geQryGetFileName and geQryGetFileNameBuf return the file name, if any,
associated with the query represented in hqry.

Syntax ptrstr file_name geQyGetFileNane (int16 hqry)

intl6 res_code geQyCetFil eNaneBuf (intl16 hagry,
ptrstr file_nane)

Description geQryGetFileName and geQryGetFileNameBuf return the file name, if any,
associated with the query represented in hqry.

geQryGetFileName returns a pointer to the file name string. This string is
stored in a buffer maintained by DTK. You must copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

With qeQryGetFileNameBuf, you pass in a pointer to a buffer you have
allocated. The file name string is put in the buffer. You must make sure that
the buffer is large enough to hold the returned string.

Parameters hgry is a handle to a query obtained from qeQryAllocate or
geQryOpenQueryFile.

file_name points to a buffer to hold the returned file name.

res_code is the result code returned by qeQryGetFileNameBuf, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geQryGetFileName and qeQryGetFileNameBuf 335

Example hdbc = geConnect ("DSN=QEDBF')

hary = geQ yenQueryFile ("queryl.gef") ;
res_code = gqeQySet Hdbc (hqgry, hdbc);

res_code = qeQyCGetF | eNarreBuf (hgry, fil e_nane) ;
res_code = qeQyFree (hgry) ;
res_code = geD sconnect (hdbc) ;

See Also geQrySetFileName.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | qeQryGetFileOffset 336

geQryGetFileOffset

geQryGetFileOffset returns the offset of the extra information that is
associated with the query represented by hgry. This information is everything
in the query file except the query.

Syntax int32 file_offset geQyGetFileOfset (intl6 hary)

Parameters file_offset is an integer that represents the position of the first byte after the
SQL statement in the query file.

hgry is a handle to a query obtained from geQryAllocate or
geQryOpenQueryFile.

Example hdbc = geConnect ("DSN=CEDBF') ;
hgry = geQ yQpenQueryFil e ("queryl. gef");
res_code = gqeQySet Hdbc (hqgry, hdbc);
file offset = geQyCetFileOfset (hgry) ;
if (file_offset == -1)
printf ("There is no extra information") ;

res_code
res_code

qeQyFree (hary)
geDi sconnect (hdbc)

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geQryGetHdbc 337

geQryGetHdbc
geQryGetHdbc returns the hdbc associated with the query represented by
hgry.

Syntax int16 hdbc qeQyCetHdbc (int16 hqry)

Parameters hgry is a handle to a query obtained from geQryAllocate or

geQryOpenQueryFile.

hdbc is the handle to a database connection returned by qeQryGetHdbc.

Example hdbc
hary

geConnect (" DSN=CEDBF") ;
geQ yAl | ocate (hdbc,"");

hdbc_val

geQ yGet Hdbc (hagry) :

res_code
res_code

qeQyFree (hary)
geDi sconnect (hdbc)

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geQryGetNumParams 338

geQryGetNumParams

geQryGetNumParams returns the number of parameters in the query
represented by hqry.

Syntax int16 num paranms geQ yGet NunParans (int16 hqry)
Parameters num_params is the number of parameters returned by
geQryGetNumParams.

hgry is a handle to a query obtained from geQryAllocate or
geQryOpenQueryFile.

Example hdbc = geConnect (" DSN=QEDBF") :
hary = geQ yQpenQueryFile ("queryl.qgef");
res_code = geQySet Hdbc (hgry, hdbc);

num parans = geQ yGet NunPar ans (hqry) ;

if (numparans != 0)
{
res_code = geQySet NunParans (hgry,1)
/* Code to set the paraneter nane, * /
/* pronpt, format, default, and type * /
}
res_code = geQySaveQueryFile (hgry, "query2.gef") ;
res_code = qeQyFree (hgry) ;
res_code = geD sconnect (hdbc) ;
See Also geQrySetNumParams.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geQryGetParamDefault and qeQryGetParamDefaultBuf 339

geQryGetParamDefault and geQryGetParamDefaultB uf

Syntax

Description

Parameters

These functions return the default value of a parameter associated with the
specified query.

ptrstr param default geQ yGCet ParanbDefaul t (
i nt 16 hary,
i nt 16 param num

int1le res_code geQ yGet Par anDef aul t Buf (
i nt 16 hary,
i nt 16 param num
ptrstr par am def aul t)

geQryGetParamDefault and geQryGetParamDefaultBuf return the default
value of the param_numth parameter associated with the query represented
in hagry. This value is used for the parameter if the user does not provide one,
and is represented as a character string.

These functions return an error if you specify a param_num value greater
than the value returned by qeQryGetNumParams.

geQryGetParamDefault returns a pointer to the default value string. This
string is stored in a buffer maintained by DTK. You must copy the string out of
this buffer before you call another DTK function, because the next function
may use the same buffer.

With qeQryGetParamDefaultBuf, you pass in a pointer to a buffer you have
allocated. The default value string is put in the buffer. You must make sure
that the buffer is large enough to hold the returned string.

hgry is a handle to a query obtained from geQryAllocate or
geQryOpenQueryFile.

param_num is the parameter number whose default is to be returned. The
first parameter number is 1.

param_default points to a buffer to hold the returned parameter default value.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geQryGetParamDefault and qeQryGetParamDefaultBuf 340

res_code is the result code returned by qeQryGetParamDefaultBuf, which
returns the same set of result codes as geErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;

hgry = geQ yQpenQueryFil e ("queryl. gef");
res_code = gqeQySetHdbc (hqgry, hdbc);

param default = gqeQ yGetParanDefault (hgry, 1) ;
if (paramdefault == "20000")
res_code = qeQySet ParanbDefault (hgry, 1, "22000") ;

res_code = geQySaveQueryFile (hagry, "query2.qgef") ;
res_code = qeQyFree (hgry) ;
res_code = geD sconnect (hdbc) ;

See Also geQrySetParamDefault.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geQryGetParamFormat and geQryGetParamFormatBuf 341

geQryGetParamFormat and geQryGetParamFormatB uf

These functions return the format string to be applied to the value of a
parameter associated with the specified query.

Syntax ptrstr paramfm geQ yGet Par anfor mat (
i nt 16 hary,
i nt 16 param num

int1l6 res_code geQ yGCet Par anfor mat Buf (
i nt 16 hary,
i nt 16 param num
ptrstr param fnt)

Description geQryGetParamFormat and geQryGetParamFormatBuf return the format
string to be applied to the value of the param_numth parameter associated
with the query represented in hqry.

These functions return an error if you specify a param_num value greater
than the value returned by qeQryGetNumParams.

geQryGetParamFormat returns a pointer to the format string. This string is
stored in a buffer maintained by DTK. You must copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

With geQryGetParamFormatBuf, you pass in a pointer to a buffer you have
allocated. The format string is put in the buffer. You must make sure that the
buffer is large enough to hold the returned string.

Parameters hgry is a handle to a query obtained from geQryAllocate or
geQryOpenQueryFile.

param_num is the parameter number whose format string is to be returned.
The first parameter number is 1.

param_fmt points to a buffer to hold the returned parameter format string.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geQryGetParamFormat and geQryGetParamFormatBuf 342

res_code is the result code returned by qeQryGetParamFormatBuf, which
returns the same set of result codes as geErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;

hgry = qeQ yQpenQueryFil e ("queryl.gef") ;
res_code = gqeQySetHdbc (hqgry, hdbc);

param fnm = geQ yGet Parantornat (hqry, 2) ;

res_code = geQySaveQueryFile (hagry, "query2.qgef") ;
res_code = qeQyFree (hgry) ;
res_code = geD sconnect (hdbc) ;

See Also geQrySetParamDefault.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geQryGetParamName and qeQryGetParamNameBuf 343

geQryGetParamName and qeQryGetParamNameB uf

Syntax

Description

Parameters

These functions return the name of a parameter associated with the specified
query.

ptrstr param nanme geQyGet ParamNanme (
i nt 16 hary,
i nt 16 param num

int1l6 res_code geQ yGet Par amNaneBuf (
i nt 16 hary,
i nt 16 param num
ptrstr par am nane)

geQryGetParamName and qeQryGetParamNameBuf return the parameter
name of the param_numth parameter associated with the query represented
in hqry.

These functions return an error if you specify a param_num value greater
than the value returned by qeQryGetNumParams.

geQryGetParamName returns a pointer to the parameter name string. This
string is stored in a buffer maintained by DTK. You must copy the string out of
this buffer before you call another DTK function, because the next function
may use the same buffer.

With qeQryGetParamNameBuf, you pass in a pointer to a buffer you have
allocated. The parameter name string is put in the buffer. You must make
sure that the buffer is large enough to hold the returned string.

hgry is a handle to a query obtained from geQryAllocate or
geQryOpenQueryFile.

param_num is the parameter number whose name is to be returned. The first
parameter number is 1.

param_name points to a buffer to hold the returned parameter name.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geQryGetParamName and qeQryGetParamNameBuf 344

res_code is the result code returned by geQryGetParamNameBuf, which
returns the same set of result codes as geErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;

hgry = qeQ yQpenQueryFil e ("queryl.gef") ;
res_code = gqeQySetHdbc (hqgry, hdbc);

param nane = geQ yGet ParamNane (hqgry, 1) ;
/* If the paranmeter name <> "SALARY", then set it. * /
if (strcnp (paramnane, "SALARY') =0)

res_code = qeQySet ParamNanme (hgry, 1, " SALARY") ;

res_code = geQySaveQueryFile (hagry, "query2.gef") ;
res_code = qeQyFree (hgry) ;
res_code = geD sconnect (hdbc) ;

See Also geQrySetParamName.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geQryGetParamPrompt and qeQryGetParamPromptBuf 345

geQryGetParamPrompt and qeQryGetParamPromptBuf

Syntax

Description

Parameters

These functions return the prompt for a parameter associated with the
specified query.

ptrstr param pronpt geQ yGet ParanPronpt (
i nt 16 hary,
i nt 16 param num

int1l6 res_code geQ yGCet Par anPr onpt Buf (
i nt 16 hary,
i nt 16 param num
ptrstr par am pronpt)

geQryGetParamPrompt and qeQryGetParamPromptBuf return the prompt for
the param_numth parameter associated with the query represented in hqry.
This is the text that appears in the dialog box when the user is prompted to
enter a value for the parameter.

These functions return an error if you specify a param_num value greater
than the value returned by qeQryGetNumParams.

geQryGetParamPrompt returns a pointer to the parameter prompt string. This
string is stored in a buffer maintained by DTK. You must copy the string out of
this buffer before you call another DTK function, because the next function
may use the same buffer.

With qeQryGetParamPromptBuf, you pass in a pointer to a buffer you have
allocated. The parameter prompt string is put in the buffer. You must make
sure that the buffer is large enough to hold the returned string.

hgry is a handle to a query obtained from geQryAllocate or
geQryOpenQueryFile.

param_num is the parameter number whose prompt is to be returned. The
first parameter number is 1.

param_prompt points to a buffer to hold the returned parameter prompt.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geQryGetParamPrompt and qeQryGetParamPromptBuf 346

res_code is the result code returned by geQryGetParamPromptBuf, which
returns the same set of result codes as geErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;

hgry = qeQ yQpenQueryFil e ("queryl.gef") ;
res_code = gqeQySetHdbc (hqgry, hdbc);

param pronpt = qeQ yCet ParanPronpt (hgry, 2) ;

res_code = qeQyFree (hgry) ;
res_code = geD sconnect (hdbc) ;
See Also geQrySetParamPrompt.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geQryGetParamType 347

geQryGetParamType

Syntax

Description

Parameters

geQryGetParamType returns the parameter type associated with the
specified query.

int1l6 paramtype geQ yGet Paramlype (
i nt 16 hgry,
i nt 16 param num

geQryGetParamType returns the parameter type of the param_numth
parameter associated with the query represented in hqry.

This function returns an error if you specify a param_num value greater than
the value returned by qeQryGetNumParams.

hgry is a handle to a query obtained from geQryAllocate or
geQryOpenQueryFile.

param_num is the parameter number whose type is to be returned. The first
parameter number is 1.

param_type is the parameter type returned by geQryGetParamType. It can
have the following values:

Char
Numeric
Date
Time
Date-time
Logical

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo W | geQryGetParamType 348

Example hdbc = geConnect ("DSN=QEDBF')

hary = geQ yenQueryFile ("queryl.gef") ;
res_code = gqeQySet Hdbc (hqgry, hdbc);

num parans = geQ yGet NunParans (hqry) ;
if (numparans >=1)

{
for (i=1; i <= numparans; ++i)
{
param type = geQ yGet ParamType (hary, i) ;
/[* if paramtype is Date or Tinme * /
/* then set to Date-Time * /
if (paramtype == geQ@RYPARM DATE | |
paramtype == qeQRYPARM TIME)
res_code = geQ ySet Paraniype (hary,i ,
geQRYPARM DATETI ME)
}
}
res_code = geQySaveQueryFile (hgry, "query2.gef") ;
res_code = qeQyFree (hgry) ;
res_code = geD sconnect (hdbc) ;
See Also geQrySetParamType.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geQryGetSource and qeQryGetSourceBuf 349

geQryGetSource and geQryGetSourceBuf

Syntax

Description

Parameters

These functions return the data source name used in the query file.

ptrstr source_nane gqeQyCetSource (int1l6 hqry)

int1lé res_code geQ yGCet Sour ceBuf (
i nt 16 hary,
ptrstr sour ce_nane)

geQryGetSource returns a pointer to the data source name string. This string
is stored in a buffer maintained by DTK. You must copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

With qeQryGetSourceBuf, you pass in a pointer to a buffer you have
allocated. The source name string is put in the buffer. You must make sure
that the buffer is large enough to hold the returned string.

Calling geQrySetHdbc to set the hdbc changes the source name specified in
the query file to the one used when the hdbc was created. This new source
name is the one returned by qeQryGetSource if it is called after
geQrySetHdbc.

hgry is a query handle obtained from geQryAllocate or geQryOpenQueryFile.
source_name points to a buffer to hold the returned data source name string.

res_code is the result code returned by geQryGetSourceBuf, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I Go To - I geQryGetSource and qeQryGetSourceBuf 350

Example hgry = geQ yQpenQueryFile ("queryl. gef") ;
hdbc = geConnect (" DSN=CEDBF') ;
res_code = qeQySet Hdbc (hqgry, hdbc) ;

source_nane = geQ yCet Source (hqgry) ;

res_code = geQyFree (hgry) ;
res_code = geD sconnect (hdbc) ;
See Also geQrySetStmt.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geQryGetStmt and qeQryGetStmtBuf 351

geQryGetStmt and qeQryGetStmtBuf

These functions return the statement associated with the query represented
by hary.

Syntax ptrstr stnmt qeQyCGetStnt (intl6 hqry)

intle res_code geQyGetStnt Buf (intl6 hqry, ptrstr stnt)

Description geQryGetStmt returns a pointer to the statement string. This string is stored
in a buffer maintained by DTK. You must copy the string out of this buffer
before you call another DTK function, because the next function may use the
same buffer.

With qeQryGetStmtBuf, you pass in a pointer to a buffer you have allocated.
The statement string is put in the buffer. You must make sure that the buffer is
large enough to hold the returned string.

Parameters hgry is a handle to a query obtained from geQryAllocate or
geQryOpenQueryFile.

stmt points to a buffer to hold the returned statement.

res_code is the result code returned by geQryGetStmtBuf, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;
hgry = geQ yQpenQueryFile ("queryl") :
res_code = geQySet Hdbc (hqgry, hdbc);

stm = geQyCetStnt (hgry) ;

res_code = geQyFree (hgry) ;
res_code = geD sconnect (hdbc) ;
See Also geQrySetStmt.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geQryOpenQueryFile 352

geQryOpenQueryFile

Syntax

Description

Parameters

Example

See Also

geQryOpenQueryFile builds a handle to a query based on the contents of the
query file.

intle hqry geQyenQueryFile (ptrstr pat hnane)

geQryOpenQueryFile reads a query file and builds a handle to a query based
on the contents of that file.

The contents of the query file are made available via a series of functions that
access the parts of the query file.

hgry is the handle to a query returned by the function. Its value is O if the file
could not be opened and converted to an hqry.

pathname points to a string which holds a pathname to the query file.

hdbc = geConnect (" DSN=CEDBF") ;

hgry = geQ yQoenQueryFil e ("queryl") ;
res_code = gqeQySet Hdbc (hqgry, hdbc);

res_code
res_code

qeQyFree (hary)
geDi sconnect (hdbc)

geQryBuilder, geQryAllocate, geQrySaveQueryFile.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geQryPrepare 353

geQryPrepare

Syntax

Description

Parameters

Example

See Also

geQryPrepare prepares a SQL statement, represented by a handle to a
query, for execution.

intl6 hstnt geQyPrepare (intl6 hqry)

geQryPrepare prepares the SQL statement represented by hqry for
execution.

The statement must subsequently be executed using geSQLExecute.

hary is a handle to a query obtained from geQryAllocate or
geQryOpenQueryFile.

hstmt is the handle to the statement returned by the function.

hdbc = geConnect (" DSN=CEDBF") ;

hgry = qeQyA | ocate (hdbc, "SELECT * FROM EMP") ;
hstm = qeQyPrepare (hgry) ;

res_code = geSQExecute (hstnt) ;

res_code = qeEndSQ (hstnt) ;
res_code = geQyFree (hgry) ;
res_code = geD sconnect (hdbc) ;
geSQLEXxecute.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | geQrySaveQueryFile 354

geQrySaveQueryFile

geQrySaveQueryFile writes a query to a query (.QEF) file.

Syntax intl6 res_code geQySaveQueryFile (int16 hgry, ptrstr
pat hnane)
Description geQrySaveQueryFile writes the query associated with the hqgry as a query

(.QEF) file. If pathname is null, then hgry must have a name for the file
associated with it.

If the query was read from a query file initially, the contents of the file that do
not correspond to the query or its parameters are preserved.

Parameters hqgry is a handle to a query.

pathname points to a string which holds a pathname for the query file to be
written. If null, the pathname is obtained from the hqry.

res_code is the result code returned by geQrySaveQueryFile, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DRv=CEDBF') ;

hgry = geQ yQpenQueryFil e ("queryl. gef");
res_code = geQySet Hdbc (hqgry, hdbc);

res_code = geQySaveQeryFile (hgry, "newquery.qgef") ;
res_code = geQyFree (hgry) ;
res_code = geD sconnect (hdbc) ;

See Also geQryOpenQueryFile, geQryAllocate, geQryBuilder.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geQrySetFileName 355

geQrySetFileName

geQrySetFileName sets the file name of a query (.QEF) file associated with

hgry.

Syntax intl6 res_code geQySetFileNane (int16 hqry, ptrstr
file_nane)

Parameters hgry is a handle to a query obtained from geQryAllocate or

geQryOpenQueryFile.
file_name points to a string with the new file name.

res_code is the result code returned by qeQrySetFileName, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DRv=CEDBF') ;
hary = qeQ yenQueryFile ("queryl.gef");
res_code = gqeQySet Hdbc (hqgry, hdbc);
res_code = geQyBuilder (hgry, O,
ge@RY_TABLES, geRY_DEFAULT) ;

res_code = geQySetFileNanme (hgry, "qry.qef") ;
res_code = geQySaveQueryFile (hary,"") ;
res_code = qeQyFree (hgry) ;
res_code = geD sconnect (hdbc) ;

See Also geQryGetFileName and qeQryGetFileNameBuUf.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I geQrySetHdbc 356

geQrySetHdbc

geQrySetHdbc sets the handle to the connection for the query represented

by hary.
Syntax intlée res_code geQySetHdbc (int1l6 hqry, int1l6 hdbc)
Description geQrySetHdbc sets the handle to the database connection for the query

represented by hqry.

Calling this function to set the hdbc changes the source name specified in the
query file to the one used when the connection was created. This new source
name is the one returned by geQrySetSource, and is written in the header of
the query file created by geQrySaveQueryFile.

Parameters hgry is a handle to a query obtained from geQryOpenQueryFile.
hdbc is a handle to a database connection returned by geConnect.

res_code is the result code returned by geQrySetHdbc, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect (" DSN=QEDBF") :

hgry = geQ yQorenQueryFil e ("queryl") ;
res_code = gqeQySet Hdbc (hqgry, hdbc);

param nane = geQ yGet ParamNane (hqry, 1) ;
if (strcnp (paramnanme, "SALARY') !'=0)
res_code = qeQySet ParamNane (hgry, 1, "SALARY") ;

res_code = geQySaveQeryFile (hgry, "query2") ;
res_code = qeQyFree (hgry) ;
res_code = geD sconnect (hdbc) ;

See Also geQryGetHdbc.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geQrySetNumParams 357

geQrySetNumParams

Syntax

Parameters

Example

See Also

geQrySetNumParams sets the number of parameters associated with the
query represented by hqry.

intle res_code geQySet NunParans (intl16 hgry, intl16
num par ans)

hgry is a handle to a query obtained from geQryAllocate or
geQryOpenQueryFile.

num_params is the new number of parameters to be associated with the
query represented by hqry. If you increase the number of parameters, the
new parameters default to character type.

res_code is the result code returned by geQrySetNumParams, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;

hgry = geQ yQpenQueryFil e ("queryl. gef");
res_code = gqeQySet Hdbc (hqgry, hdbc);

num parans = geQ yGet NunPar ans (hqry) ;

if (numparans == 0)
{
res_code = geQySet NunParans (hgry, 1)
/* code to set the Paraneter nane, * /
/* pronpt, format, default, and type * /
}
res_code = geQySaveQueryFile (hagry, "query2.qgef") ;
res_code = geQyFree (hgry) ;
res_code = geD sconnect (hdbc) ;
geQryGetNumParams.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geQrySetParamDefault 358

geQrySetParamDefault

Syntax

Description

Parameters

geQrySetParamDefault sets the default value of a parameter associated with
the specified query.

int1le res_code geQ ySet ParanbDefaul t (
i nt 16 hary,
i nt 16 param num
ptrstr par am def aul t)

geQrySetParamDefault sets the default parameter value of the param_numth
parameter associated with the query represented by hqry.

This function returns an error if you specify a param_num value greater than
the value returned by qeQryGetNumParams.

hgry is a query handle obtained from geQryAllocate or geQryOpenQueryFile.

param_num is the parameter number for which a default value is to be
set.The first parameter number is 1.

param_default points to a string that is the new parameter default value.

res_code is the result code returned by geQrySetParamDefault, which
returns the same set of result codes as geErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo W | geQrySetParamDefault 359

Example hdbc = geConnect ("DSN=QEDBF')

hgry = gqeQ yQpenQueryFile ("queryl") :
res_code = qeQySet Hdbc (hqgry, hdbc) ;

param default = gqeQ yGetParanDefault (hgry, 1) ;
if (paramdefault == "20000")
res_code = qeQySet ParanbDefault (hgry, 1, "22000") ;

res_code = geQySaveQeryFile (hgry, "query2") ;
res_code = qeQyFree (hgry) ;
res_code = geD sconnect (hdbc) ;

See Also geQryGetParamDefault and geQryGetParamDefaultBuf.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geQrySetParamFormat 360

geQrySetParamFormat

Syntax

Description

Parameters

geQrySetParamFormat sets the format string for a parameter associated with
the specified query.

int1l6é res_code geQ ySet Paranfor mat (
i nt 16 hary,
i nt 16 param num
ptrstr param fnt)

geQrySetParamFormat sets the parameter format string to be applied to the
param_numth parameter associated with the query represented by hqry.

This function returns an error if you specify a param_num value greater than
the value returned by qeQryGetNumParams.

hgry is a handle to a query obtained from geQryAllocate or
geQryOpenQueryFile.

param_num is the parameter number for which a format string is to be set.
The first parameter number is 1.

param_fmt points to a string that is the new parameter format string.

res_code is the result code returned by geQrySetParamFormat, which
returns the same set of result codes as geErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo W | geQrySetParamFormat 361

Example hdbc = geConnect (" DRV=QEDBF") :
hgry = geQ yQpenQueryFil e ("queryl. gef");
res_code = qeQySet Hdbc (hqgry, hdbc) :

num parans = geQ yGet NunParans (hqry) ;
for (i=1; i<=numparans; ++H)
{

paramtype = qeQyCGet Paraniype (hgry, i) ;

/* If the paraneter type is Date * /

if (paramtype == 3)

res_code = qeQySet Parantormat (hgry, i, "m

d/yy") ;
}
res_code
res_code
res_code

geQ ySaveQueryFile (hagry, "query2.qgef") ;
geQyFree (hary)
geDi sconnect (hdbc) ;

See Also geQryGetParamFormat and geQryGetParamFormatBuf.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | qeQrySetParamName 362

geQrySetParamName

geQrySetParamName sets the name of a parameter associated with the
specified query.

Syntax int1l6 res_code geQySetParam\ane (
i nt 16 hary,
i nt 16 param num

ptrstr par am nane)

Description geQrySetParamName sets the parameter name of the param_numth
parameter associated with the query represented by hqry.

This function returns an error if you specify a param_num value greater than
the value returned by qeQryGetNumParams.

Parameters hgry is a handle to a query obtained from geQryAllocate or
geQryOpenQueryFile.

param_num is the number of the parameter for which the name is to be set.
The first parameter number is 1.

param_name points to a string that is the new parameter name.

res_code is the result code returned by geQrySetParamName, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geQrySetParamName 363

Example hdbc = geConnect ("DSN=QEDBF')

hgry = gqeQ yQpenQueryFile ("queryl") :
res_code = qeQySet Hdbc (hqgry, hdbc) ;

param nane = geQ yGet ParamNane (hqry, 1) ;
if (strcnp (paramnanme, "SALARY') !'=0)
res_code = qeQySet ParamNanme (hgry, 1, "SALARY") ;

res_code = geQySaveQeryFile (hgry, "query2") ;
res_code = qeQyFree (hgry) ;
res_code = geD sconnect (hdbc) ;

See Also geQryGetParamName and qeQryGetParamNameBuf.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geQrySetParamPrompt 364

geQrySetParamPrompt

Syntax

Description

Parameters

geQrySetParamPrompt sets the prompt for a parameter associated with the
specified query.

int1l6é res_code geQ ySet ParanPronpt (
i nt 16 hary,
i nt 16 param num
ptrstr par am pronpt)

geQrySetParamPrompt sets the parameter prompt of the param_numth
parameter associated with the query represented by hqry.

This function returns an error if you specify a param_num value greater than
the value returned by qeQryGetNumParams.

hgry is a handle to a query obtained from geQryAllocate or
geQryOpenQueryFile.

param_num is the number of the parameter for which a prompt is to be set.
The first parameter number is 1.

param_prompt points to a string that is the new parameter prompt.

res_code is the result code returned by geQrySetParamPrompt, which
returns the same set of result codes as geErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo W | geQrySetParamPrompt 365

Example hdbc = geConnect ("DSN=QEDBF')

hgry = geQ yQpenQueryFile ("queryl");
res_code = qeQySet Hdbc (hqgry, hdbc) ;

res_code = geQySet ParanPronpt (hgry, 1, "Salary") ;
res_code = geQySaveQeryFile (hgry, "query2") ;
res_code = qeQyFree (hgry) ;
res_code = geD sconnect (hdbc) ;

See Also geQryGetParamPrompt and geQryGetParamPromptBuf.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geQrySetParamType 366

geQrySetParamType

Syntax

Description

Parameters

geQrySetParamType sets the data type of a parameter associated with the
specified query.

intl6 res_code geQ ySetParanilype (
i nt 16 hary,
i nt 16 param num
i nt 16 param type)

geQrySetParamType sets the data type of the param_numth parameter
associated with the query represented by hqry.

This function returns an error if you specify a param_num value greater than
the value returned by qeQryGetNumParams.

hgry is a handle to a query obtained from geQryAllocate or
geQryOpenQueryFile.

param_num is the number of the parameter for which a type is to be set. The
first parameter number is 1.

param_type is the new data type. It can have the following values:

Char
Numeric
Date
Time
Date-time
Logical

res_code is the result code returned by qeQrySetParamType, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I geQrySetParamType 367

Example hdbc = geConnect ("DSN=QEDBF')

hary = geQ yenQueryFile ("queryl.gef") ;
res_code = qeQySet Hdbc (hqgry, hdbc) ;

num parans = geQ yGet NunParans (hqry) ;
if (numparans >=1)

{
for (i=1; i <= numparans; ++i)
{
paramtype = geQ yGet Paramlype (hqry, i) ;
/[* if paramtype is Date or Tinme * /
/* then set to Date-Time * /
if (paramtype == geQ@RYPARM DATE | |
paramtype == qeQRYPARM TIME)
res_code = qeQySet Paraniype (hgry, i ,
geQRYPARM DATETI ME)
}
}
res_code = qeQySaveQueryFile (hgry, "query2.qgef") ;
res_code = qeQyFree (hgry) ;
res_code = geD sconnect (hdbc) ;
See Also geQryGetParamType.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geQrySetStmt 368

geQrySetStmt

Syntax

Parameters

Example

See Also

geQrySetStmt sets the statement associated with the query represented by
hgry.

intlée res_code geQySetStm (intl6 hqgry, ptrstr stnt)

hary is a handle to a query obtained from geQryAllocate or
geQryOpenQueryFile.

stmt is a pointer to a variable containing the text of the statement to be set.

res_code is the result code returned by qeQrySetStmt, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;
hgry = geQ yQpenQueryFil e ("queryl.gef") ;
res_code = qeQySet Hdbc (hqgry, hdbc) ;

res_code = qeQySetStm (hgry, "SELECT * FROM enp. dbf") ;
res_code = geQySaveQueryFile (hagry, "query2.qgef") ;
res_code = qeQyFree (hgry) ;

res_code = geD sconnect (hdbc) ;

geQryGetStmt and geQryGetStmtBuf.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geQrySetSource 369

geQrySetSource

geQrySetSource sets the data source for the query represented by hqry.
Syntax intlée res_code gqeQySetSource (int1l6 hqry, ptrstr source)
Parameters hgry is a handle to a query obtained from gqeQryAllocate or

geQryOpenQueryFile.
source is a new data source for the query that will be saved in the query file.

res_code is the result code returned by qeQrySetSource, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CESS') ;
hgry = geQ yQpenQueryFil e ("queryl.gef") ;
res_code = qeQySet Source (hgry, "QESS") ;

res_code = geQySaveQueryFile ("query2.qgef") ;
res_code = geQyFree (hgry) ;
res_code = geD sconnect (hdbc) ;
Notes Calling geQrySetHdbc causes DTK to reset the source name to that used by

the query file.

See Also geQryGetSource and geQryGetSourceBuf.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geRecClearConditions 370

geRecClearConditions

geRecClearConditions clears a statement’s search conditions.

Syntax intl6 res_code geRecd earConditions (intl6 hstnt)
Description geRecClearConditions clears all search conditions associated with a
statement.

This call is necessary only if search conditions have been previously set for a
statement with geRecSetCondition functions. Newly created statements have
no search conditions.

Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

res_code is the result code returned by geRecClearConditions, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

Chapter 10 DTK Functions
geRecClearConditions

hdbc = geConnect (" DSN=CEDBF") ;
hstm = geExecSQ (hdbc, "SELECT * FROM enp") ;
res_code = geRecSet Condi ti onChar (hstnt, 1,
geFl ND_ EQUAL, "Tyler", "", FALSE) ;
new hstm = qe@EPrepare (hstnt) ;
res_code = geSQExecute (new_hstnt) ;
whi | e (geFet chNext (new hstmt) == qeSUCCESS)

/* Get val ues matching condition. * /

res_code = geEndSQ (new hstnt) ;
res_code = geRecd ear Conditions (hstnt) ;
res_code = geRecSet Condi ti onChar (hstnt, 1,

geFl ND_ NOT_EQUAL, "Tyler", "", FALSE) ;
new hstm = qe@EPrepare (hstnt) ;
res_code = geSQExecute (new_hstnt) ;
whi | e (geFet chNext (new hstmt) == qeSUCCESS)

/* Get val ues matching condition. * /

res_code = geEndSQ (new hstnt) ;
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

371

Chapter 10 DTK Functions

| GoTo = | geRecDelete 372

geRecDelete

geRecDelete deletes the current record.
Syntax intlé res_code geRecDelete (int1l6 hstnt)

Description When you call geRecDelete, DTK removes the current record from the buffer.
The next record fills the position of the deleted record, all subsequent records
advance by one, and the total number of records in the buffer decreases by
one. If the buffer contains 10 records and the hstmt is positioned on record 2,
then a call to geRecDelete deletes record 2, record 3 becomes record 2, 4
becomes 3, etc., and the total count for the buffer becomes 9.

When geRecDelete is invoked during a transaction, record deletions are
either written to the database by a call to geCommit or aborted by a call to
geRollback. Otherwise, deletions resulting from calls to geRecDelete are
made instantly to the database.

After a record is deleted, the current record is positioned between the
previous record and the next record in the buffer. You must call geFetchNext
after deleting a record to position on the next record.

You can call geNumModRecs to determine the number of records deleted by
a call to geRecDelete.

Calling this function causes DTK to generate a unique key if you have not
already defined one with geRecSetKey.

geRecDelete cannot delete records from joined tables.

Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

res_code is the result code returned by geRecDelete, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

Notes

See Also

Chapter 10 DTK Functions
geRecDelete 373

hdbc = geConnect (" DSN=CEDBF") ;

hstm = geExecSQ (hdbc, "SELECT * FROM enp") ;
res_code = geFet chNext (hstnt) ;

res_code = geRecDel ete (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

If you call geRecDelete without having previously called a geFetch function to
position the hstmt on a record, DTK returns an error. For example, if you call
geExecSQL and then immediately call geRecDelete on the new hstmt, DTK
cannot delete a record because the hstmt is still on record 0 (no record). In
order to delete a record, you must first call geFetchNext to position the hstmt
on the first record in the buffer (record 1).

Important To delete the current record, geRecDelete generates a SQL
Delete statement that uses a Where clause to uniquely identify that record. If
this Where clause matches multiple records, geRecDelete deletes all
matching records. You can recover from such invalid deletions by using
transactions and calling geNumModRecs after each call to geRecDelete to
verify that multiple records were not deleted. Calling geRecLock before calls
to geRecDelete also helps prevent multiple deletions, since geRecLock uses
the same Where clause as geRecDelete and returns a warning if it locks
multiple records.

geRecSetKey.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geRecFind 374

geRecFind

Syntax

Description

Parameters

geRecFind positions to the next row matching the geRecSetCondition search
criteria.

int32 result geReckind (int1l6 hstmt, intl6 start_pos,
intl6 flags)

geRecFind attempts to find the next row matching the search criteria
specified by calls to the geRecSetCondition functions.

If a matching row is found, it becomes the current position in the result set. If
not, the position is unchanged.

You can use geRecFind along with the geBindCol or geVal functions to
retrieve the set of records that match the geRecSetCondition search criteria.

result is the number of the row matching the search conditions. It is O if no
row was found.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

start_pos is the starting position for the search. There is no default; you must
specify one of the following values:

Constant Value Description

geFIND_BEGIN 1 Start at the beginning of the result set
geFIND_END 2 Start at the end of the result set
geFIND_CURRENT 3 Start at the current record of the result set

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

See Also

Chapter 10 DTK Functions
geRecFind 375

flags is a set of option flags that controls the way the search is performed:

Constant Value Description

geFIND_BACKWARD 0x0001 The search goes backwards. The
default is forward.

geFIND_SKIP_ROW 0x0002 The search skips the current row if
start_pos = geFIND_CURRENT. The
default is to start with the current row.

These values can be combined by adding them together or joining them with
an OR clause.

hdbc = geConnect (" DSN=CEDBF") ;
hstm = geExecSQ (hdbc, "SELECT * FRCM enp") ;
res_code = geRecSet Condi ti onChar (hstnt, 1 ,

geFl ND_ EQUAL, "David", "", FALSE) ;
new pos = geRecFind (hstni, geFIND BEG N 0) ;
/* The hstnt is now either on the sane record * /
/* or on the first occurrence of a record * /
/* matching the condition set above. * /

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

geRecSetCondition functions, geQBEPrepare.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geRecGetKey 376
geRecGetKey
geRecGetKey reports whether a column is part of the key used by DTK.
Syntax intle setting geRecGetKey (intl6 hstnt, intl6 col _nun
Description geRecGetKey returns whether DTK uses the specified column as part of a
key.

DTK does not generate a default key until geRecUpdate, geRecDelete,
geRecLock, or geUniqueWhereClause is called for the hstmt. Until you call
one of these functions (or specify a key by calling geRecSetKey), hstmt will
have no key—every column specified in calls to geRecGetKey returns False

(0).
See “Unique Keys” on page 78 for information on DTK’s use of unique keys.
Parameters setting is True (1) if the column is in the key; otherwise it is False (0).

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the column number which is to be tested. The first column number
is 1.

Example hdbc = geConnect ("DSN=CEDBF') ;
hstm = geExecSQ (hdbc, "SELECT * FROM enp") ;

/* Check to see if LAST NAME field is used * /
/* as part of the primary key. * /
set_val = geRecCGetKey (hstnt, 2) ;

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;
See Also geRecSetKey.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geRecLock 377

geRecLock

Syntax

Description

Parameters

geRecLock locks the current record during a transaction.
intl6 res_code geRecLock (intl6 hstnt)

geRecLock attempts to lock the current record. It works only if a transaction is
currently active. Otherwise, it returns an error.

The lock is freed by a call to geCommit or geRollback.

If enabled by options passed to geSetLockOptions, geRecLock can compare
the record with the log file or refresh the log file.

If 0 records are locked geRecLock returns an error (qeLOCK_NO_REC (-6)).
geRecLock issues a warning if multiple records are locked
(qeLOCK_MULTI_REC (-7)) or the optional log file comparison fails
(qeLOCK_CHANGE_REC (-8)). This makes geRecLock useful for ensuring
that only one record is affected by a call to geRecDelete or geRecUpdate.

Calling this function causes DTK to generate a unique key if you have not
already defined one with geRecSetKey.

This function has no effect with some databases.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

res_code is the result code returned by geRecLock, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geRecLock 378

Example hdbc = geConnect ("DSN=CEDBF') ;
res_code = geBegi nTran (hdbc) ;
hstm = geExecSQ (hdbc, "SELECT * FROM enp") ;
res_code = geFet chNext (hstnt) ;

res_code = geRecLock (hstnt) ;
res_code = qeEndSQ (hstnt) ;
res_code = geCommit (hdbc) ;
res_code = geD sconnect (hdbc) ;
See Also geSetLockOptions, geBeginTran, geCommit, geRollback.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geRecNew 379

geRecNew

Syntax

Description

Parameters

Example

geRecNew creates a buffer for a new record.
intlée res_code geRecNew (int1l6 hstnt, int32 rec_nun

geRecNew creates a buffer to be used for a new record. All column values
are initially set to null. The record can then be placed in the buffer by calls to
the gePut functions.

To insert the record, call geRecUpdate. The record is also inserted when the
hstmt is moved to a different record number, and geSetAutoUpdate is set to
geAUTOUPD_UPDATE (3).

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

rec_num is the location where the new record is to be inserted. If random
fetching is enabled, rec_num can be any number from 1 to the last record
fetched plus 1. If random fetching is not enabled, rec_num must be the
current record number plus 1.

res_code is the result code returned by geRecNew, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;
res_code = geBegi nTran (hdbc) ;
hstm = geExecSQ (hdbc, "SELECT * FROM enp") ;

res_code = geRecNew (hstnt, 1) ;

res_code = gePutChar (hstnt, 1, "", "Mke") ;
res_code = gePutChar (hstnt, 2, "", "MGrrah") ;
res_code = geRecUpdate (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geCommit (hdbc) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

GoT Chapter 10 DTK Functions
| GoTo = | geRecNew 380

Notes When auto-updating has not been enabled by geSetAutoUpdate, if you call
geRecNew and then move off of the current record before calling
geRecUpdate, then the buffer created by the call to geRecNew is destroyed.

See Also geSetAutoUpdate.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geRecNum 381

geRecNum

Syntax

Parameters

Example

geRecNum returns the number of the current record in the buffer.
int32 rec_numgeRecNum (intl16 hstnt)

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

rec_num is the number of the current record in the buffer returned for this
statement execution. If there is no current record number—that is, when
geRecState returns geSTATE_NO_REC—then the hstmt is positioned
between rec_num and <rec_num + 1>. In this situation, a call to geFetchPrev
returns the hstmt to rec_num, and a call to geFetchNext increments rec_num
by 1.

hdbc = geConnect (" DSN=CEDBF") ;

hstmt = geExecSQ (hdbc, "SELECT * FROM enp") ;
res_code = geFetchNext (hstnt) ;

/* Return the record nunber of the current * /
/* record in the sel ected query. * /
res_code = geRecNum (hstnt) ;

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geRecSetConditionBinary 382

geRecSetConditionBinary

Syntax

Description

Parameters

geRecSetConditionBinary adds a search condition to the statement having a
binary value to compare.

int1l6 res_code geRecSet ConditionBi nary (
int16 hstnt,
int16 col _num

int16 oper at or,
ptrstr val ue,
i nt32 | engt h)

geRecSetConditionBinary adds a search condition to the statement having a
binary value to compare.

For all operators except the IN operator, multiple search conditions for a
column are joined with a boolean AND (that is, all conditions must be true for
the row to match the search conditions).

For the IN operator, multiple search conditions for a column are joined with a
boolean OR (that is, at least one of the IN conditions must be true for the row
to match the search conditions).

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the number of the column on which a search condition is being
placed. The first column number is 1.

operator is the comparison operator and has one of the following values:

Constant Value Operator
geFIND_LESS_THAN 1 <
geFIND_LESS_THAN_ 2 <=
OR_EQ

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Constant

qeFIND_GREATER_
THAN

qeFIND_GREATER_
THAN_OR_EQ

qeFIND_EQUAL
qeFIND_NOT_EQUAL
qeFIND_IN

Value

(e}

9

Chapter 10 DTK Functions
geRecSetConditionBinary 383

Operator

>

value points to the binary comparison value.

length is the length (in bytes) of the comparison value.

res_code is the result code returned by geRecSetConditionBinary, which
returns the same set of result codes as geErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect (" DSN=QEDBF")
hstmt = geExecSQ (hdbc,

"SELECT * FROM enp") ;
/* bindata contains the binary value for conparison. * /
res_code = geRecSet ConditionBinary (hstnt, 8 ,
geFl ND_NOT_EQUAL, bindata, 10000) ;
new hstm = qe@EPrepare (hstnt) ;
res_code = geSQExecute (new_hstnt) ;
whi | e (geFet chNext (new hstmt) == qeSUCCESS)

/* Get val ues matching condition. * /

res_code = geEndSQ (new_hstnt) ;

res_code
res_code

DataDirect Developer’s Toolkit Programmer’s Guide

geEndSQ@ (hstnt)
geD sconnect (hdbc)

|GoTo v|

Chapter 10 DTK Functions
geRecSetConditionChar 384

geRecSetConditionChar

Syntax

Description

Parameters

geRecSetConditionChar adds a search condition to the statement having a
character value to compare.

int1l6 res_code geRecSet ConditionChar (
int16 hstnt,
i nt 16 col _num
int16 oper at or,
ptrstr val ue,
ptrstr fnt_string,
int16 case_sens)

geRecSetConditionChar adds a search condition to the statement having a
character value to compare.

For all operators except the IN operator, multiple search conditions for a
column are joined with a boolean AND (that is, all conditions must be true for
the row to match the search conditions).

For the IN operator, multiple search conditions for a column are joined with a
boolean OR (that is, at least one of the IN conditions must be true for the row
to match the search conditions).

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the number of the column on which a search condition is being
placed. The first column number is 1.

operator is the comparison operator and has one of the following values:

Constant Value Operator
geFIND_LESS_THAN 1 <
geFIND_LESS_THAN_ 2 <=
OR_EQ

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Constant Value
geFIND_GREATER_ 3
THAN

geFIND_GREATER_ 4
THAN_OR_EQ

qeFIND_EQUAL
qeFIND_NOT_EQUAL
qeFIND_LIKE
qeFIND_NOT_LIKE

© 00 N o O

qeFIND_IN

value points to the comparison string.

Chapter 10 DTK Functions
geRecSetConditionChar

Operator

>

<>

LIKE
NOT LIKE
IN

385

fmt_string is a string used to control formatting of dates and numbers into a

character string.

case_sens determines if character comparisons are case-sensitive. Its value
must be TRUE for non-character columns.

res_code is the result code returned by gqeRecSetConditionChar, which
returns the same set of result codes as geErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geRecSetConditionChar 386

Example hdbc = geConnect ("DSN=CEDBF') ;
hstm = geExecSQ (hdbc, "SELECT * FROM enp") ;
res_code = geFet chNext (hstnt) ;
res_code = geRecSet Condi ti onChar (hstnt, 2 ,
geFI ND_LIKE, "Dav%, "" , FALSE) ;
new hstm = qe@EPrepare (hstnt) ;
res_code = geSQExecute (new_hstnt) ;
whi | e (geFet chNext (new hstmt) == qeSUCCESS)

/* Get val ues matching condition. * /

res_code = geEndSQ (new_ hstnt) ;
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geRecSetConditionDecimal 387

geRecSetConditionDecimal

Syntax

Description

Parameters

geRecSetConditionDecimal adds a search condition to the statement having
a decimal value to compare.

int1l6 res_code geRecSet Conditi onDeci nal (
int16 hstnt,
i nt 16 col _num

int16 oper at or,
ptrstr val ue,
intl6 preci si on,
int16 scal e)

geRecSetConditionDecimal adds a search condition to the statement having
a decimal value to compare.

For all operators except the IN operator, multiple search conditions for a
column are joined with a boolean AND (that is, all conditions must be true for
the row to match the search conditions).

For the IN operator, multiple search conditions for a column are joined with a
boolean OR (that is, at least one of the IN conditions must be true for the row
to match the search conditions).

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the number of the column on which a search condition is being
placed. The first column number is 1.

operator is the comparison operator and has one of the following values:

Constant Value Operator
geFIND_LESS_THAN 1 <
geFIND_LESS_THAN_OR_EQ 2 <=
geFIND_GREATER_THAN 3 >

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Constant
geFIND_GREATER_THAN_OR_EQ
geFIND_EQUAL
geFIND_NOT_EQUAL

geFIND_IN

Chapter 10 DTK Functions
geRecSetConditionDecimal

Value Operator

4 >=
5 =

6 <>
9 IN

value points to the decimal comparison value.

precision is the precision of the decimal value.

scale is the scale of the decimal value.

388

res_code is the result code returned by geRecSetConditionDecimal, which
returns the same set of result codes as geErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect (" DSN=QEDBF")

hstm = geExecSQ (hdbc, "SELECT * FROM enp") ;

res_code = geRecSet Condi ti onDecimal (hstmt, 5 ,
geFl ND_GREATER THAN, dec_val, 8, 2) ;

new hstm = qe@EPrepare (hstnt) ;

res_code = geSQExecute (new_hstnt) ;

whi | e (geFet chNext (new hstmt) == qeSUCCESS)

/* Get val ues matching condition. * /

res_code
res_code = gqeEndSQ (hstmnt)
res_code = geD sconnect (hdbc)

DataDirect Developer’s Toolkit Programmer’s Guide

geEndSQL (new _hstnt)

|GoTo v|

Chapter 10 DTK Functions
geRecSetConditionDouble 389

geRecSetConditionDouble

Syntax

Description

Parameters

geRecSetConditionDouble adds a search condition to the statement having a
double-precision floating-point value to compare.

int1l6 res_code geRecSet Conditi onDoubl e (
int16 hstnt,
i nt 16 col _num
int16 oper at or,
float64 val ue)

geRecSetConditionDouble adds a search condition to the statement having a
double-precision floating-point value to compare.

For all operators except the IN operator, multiple search conditions for a
column are joined with a boolean AND (that is, all conditions must be true for
the row to match the search conditions).

For the IN operator, multiple search conditions for a column are joined with a
boolean OR (that is, at least one of the IN conditions must be true for the row
to match the search conditions).

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the number of the column on which a search condition is being
placed. The first column number is 1.

operator is the comparison operator and has one of the following values:

Constant Value Operator
geFIND_LESS_THAN 1 <
geFIND_LESS_THAN_OR_EQ 2
geFIND_GREATER_THAN 3 >
geFIND_GREATER_THAN_OR_EQ 4

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geRecSetConditionDouble 390

Constant Value Operator
geFIND_EQUAL 5 =
geFIND_NOT_EQUAL 6 <
geFIND_IN 9 IN

value points to the double-precision floating-point comparison value.

res_code is the result code returned by geRecSetConditionDouble, which
returns the same set of result codes as geErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;
hstmt = geExecSQ (hdbc, "SELECT * FROM enp") ;
res_code = geRecSet Condi ti onDouble (hstnt, 5
geFl ND_GREATER THAN, 20000.00) ;
new hstnm = qe@EPrepare (hstnt) ;
res_code = geSQExecute (new_hstnt) ;
whi | e (geFet chNext (new hstmt) == qeSUCCESS)

/* Get val ues matching condition. * /

res_code = geEndSQ (new hstnt) ;
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geRecSetConditionFloat 391

geRecSetConditionFloat

Syntax

Description

Parameters

geRecSetConditionFloat adds a search condition to the statement having a
single-precision floating-point value to compare.

int1l6 res_code geRecSet Conditi onFl oat (
int16 hstnt,
i nt 16 col _num
int16 oper at or,
float32 val ue)

geRecSetConditionFloat adds a search condition to the statement having a
single-precision floating-point value to compare.

For all operators except the IN operator, multiple search conditions for a
column are joined with a boolean AND (that is, all conditions must be true for
the row to match the search conditions).

For the IN operator, multiple search conditions for a column are joined with a
boolean OR (that is, at least one of the IN conditions must be true for the row
to match the search conditions).

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the number of the column on which a search condition is being
placed. The first column number is 1.

operator is the comparison operator and has one of the following values:

Constant Value Operator
geFIND_LESS_THAN 1 <
geFIND_LESS_THAN_OR_EQ 2
geFIND_GREATER_THAN 3 >
geFIND_GREATER_THAN_OR_EQ 4

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geRecSetConditionFloat 392

Constant Value Operator
geFIND_EQUAL 5 =
geFIND_NOT_EQUAL 6 <>
geFIND_IN 9 IN

value points to the single-precision floating-point comparison value.

res_code is the result code returned by geRecSetConditionFloat, which
returns the same set of result codes as geErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;
hstmt = geExecSQ (hdbc, "SELECT * FROM enp") ;
res_code = geRecSet ConditionFloat (hstnt, 5 ,
geFl ND_GREATER THAN, 20000.00) ;
new hstnm = qe@EPrepare (hstnt) ;
res_code = geSQExecute (new_hstnt) ;
whi | e (geFet chNext (new hstmt) == qeSUCCESS)

/* Get val ues matching condition. * /
res_code = geEndSQ (new hstnt) ;

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geRecSetConditionint 393

geRecSetConditionInt

Syntax

Description

Parameters

geRecSetConditionint adds a search condition to the statement having a 2-
byte integer value to compare.

int1l6 res_code geRecSet Conditionlnt (
int16 hstnt,
i nt 16 col _num
int16 oper at or,
i nt 16 val ue)

geRecSetConditionint adds a search condition to the statement having a 2-
byte integer value to compare.

For all operators except the IN operator, multiple search conditions for a
column are joined with a boolean AND (that is, all conditions must be true for
the row to match the search conditions).

For the IN operator, multiple search conditions for a column are joined with a
boolean OR (that is, at least one of the IN conditions must be true for the row
to match the search conditions).

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the number of the column on which a search condition is being
placed. The first column number is 1.

operator is the comparison operator and has one of the following values:

Constant Value Operator
geFIND_LESS_THAN 1 <
geFIND_LESS_THAN_OR_EQ 2
geFIND_GREATER_THAN 3 >
geFIND_GREATER_THAN_OR_EQ 4

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geRecSetConditionint 394

Constant Value Operator
geFIND_EQUAL 5 =
geFIND_NOT_EQUAL 6 <>
geFIND_IN 9 IN

value points to the 2-byte integer comparison value.

res_code is the result code returned by geRecSetConditionint, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;
hstmt = geExecSQ (hdbc, "SELECT * FROM enp") ;
res_code = geRecSetConditionlnt (hstnt, 7 ,
geFIND EQUAL, 1) ;
new hstm = qe@EPrepare (hstnt) ;
res_code = geSQExecute (new_hstnt) ;
whi | e (geFet chNext (new hstmt) == qeSUCCESS)

/* Get val ues matching condition. * /
res_code = geEndSQ (new hstnt) ;

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geRecSetConditionLong 395

geRecSetConditionLong

Syntax

Description

Parameters

geRecSetConditionLong adds a search condition to the statement having a
4-byte integer value to compare.

int1l6 res_code geRecSet ConditionLong (
int16 hstnt,
int16 col _num
int16 oper at or,
i nt 32 val ue)

geRecSetConditionLong adds a search condition to the statement having a
4-byte integer value to compare.

For all operators except the IN operator, multiple search conditions for a
column are joined with a boolean AND (that is, all conditions must be true for
the row to match the search conditions).

For the IN operator, multiple search conditions for a column are joined with a
boolean OR (that is, at least one of the IN conditions must be true for the row
to match the search conditions).

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the number of the column on which a search condition is being
placed. The first column number is 1.

operator is the comparison operator and has one of the following values:

Constant Value Operator
geFIND_LESS_THAN 1 <
geFIND_LESS_THAN_OR_EQ 2
geFIND_GREATER_THAN 3 >
geFIND_GREATER_THAN_OR_EQ 4

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | geRecSetConditionLong 396

Constant Value Operator
geFIND_EQUAL 5 =
geFIND_NOT_EQUAL 6 <
geFIND_IN 9 IN

value points to the 4-byte integer comparison value.

res_code is the result code returned by geRecSetConditionLong, which
returns the same set of result codes as geErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;
hstmt = geExecSQ (hdbc, "SELECT * FROM enp") ;
res_code = geRecSet ConditionLong (hstnt, 5 ,
geFl ND_GREATER THAN, 20000) ;
new hstnm = qe@EPrepare (hstnt) ;
res_code = geSQExecute (new_hstnt) ;
whi | e (geFet chNext (new hstmt) == qeSUCCESS)

/* Get val ues matching condition. * /
res_code = geEndSQ (new hstnt) ;

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geRecSetConditionNull 397

geRecSetConditionNull

Syntax

Description

Parameters

geRecSetConditionNull adds a search condition to the statement having a
value to compare of null.

int1l6 res_code geRecSet ConditionNull (
int16 hstnt,
int16 col _num
int16 operat or)

geRecSetConditionNull adds a search condition to the statement having a
value to compare of null.

For all operators except the IN operator, multiple search conditions for a
column are joined with a boolean AND (that is, all conditions must be true for
the row to match the search conditions).

For the IN operator, multiple search conditions for a column are joined with a
boolean OR (that is, at least one of the IN conditions must be true for the row
to match the search conditions).

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the number of the column on which a search condition is being
placed. The first column number is 1.

operator is the comparison operator and has one of the following values:

Constant Value Operator
geFIND_EQUAL 5 =
geFIND_NOT_EQUAL 6 <
geFIND_IN 9 IN

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | geRecSetConditionNull 398

res_code is the result code returned by geRecSetConditionNull, which
returns the same set of result codes as geErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;
hstm = geExecSQ (hdbc, "SELECT * FROM enp") ;
res_code = geRecSet ConditionNull (hstnt, 3,
geFl ND_NOT_EQUAL) ;
new hstm = qe@EPrepare (hstnt) ;
res_code = geSQExecute (new_hstnt) ;
whi | e (geFet chNext (new hstmt) == qeSUCCESS)

/* Get val ues matching condition. * /

res_code = geEndSQ (new_ hstnt) ;
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geRecSetKey 399

geRecSetKey

Syntax

Description

Parameters

geRecSetKey determines which columns DTK uses to uniquely identify a
row.

intlé res_code geRecSetKey (
int16 hstnt,
i nt 16 col _num
int16 val ue)

A column that helps uniquely identify records in the database is part of a
primary key for the database. When geRecDelete, geRecUpdate, and
geRecLock are called, the columns specified by geRecSetKey are used to
help identify the record within the result set to be operated on. DTK uses
these columns in a Where clause that uniquely identifies the current record in
the buffer in the statement it generate for the database operation.

If no columns are flagged as being part of the unique key when geRecDelete,
geRecUpdate, geRecLock, or geUniqueWhereClause is called, DTK chooses
a set of columns as the key. These columns are set as the unique key until
the user changes them. A call to geRecGetKey reports an individual column’s
presence in the key. To return the complete set of columns that DTK will
choose for the key, call geUniqueWhereClause.

See “Unique Keys” on page 78 for more information on DTK’s use of unique
keys.

An error is issued if the column is not valid for use in a primary key.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the column number that is to be included in the primary key. The
first column number is 1.

value is TRUE (1) to set the column as a key, and FALSE (0) to exclude the
column from the primary key.

DataDirect Developer’s Toolkit Programmer’s Guide

GoT Chapter 10 DTK Functions
| GoTo = | geRecSetkey 400

res_code is the result code returned by geRecSetKey, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;
hstm = geExecSQ (hdbc, "SELECT * FROM enp") ;
/* Make 4th colum part of the key * /

res_code = geRecSetKey (hstnt, 4, 1) ;
res_code = qeEndSQ (hstnt) ;
res_code = geDi sconnect (hdbc) ;
See Also geRecGetKey, geSetLockOptions, geUniqueWhereClause and

geUniqueWhereClauseBuf.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions

geRecState
geRecState
geRecState returns the state of the current record.
Syntax intlée rec_state geRecState (intl6 hstnt)
Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.
rec_state is the returned state of the record. It has one of the following
values:
Constant Value Description
geSTATE_NEW 1 The record is a new record that has
not been sent to the database and
contains no fields that have been
updated.
geSTATE_UNCHANGED 2 The record has no changes waiting
to be sent to the database.
geSTATE_CHANGED 3 The record has changes waiting to
be sent to the database.
geSTATE_NOREC 4 The hstmt is not currently
positioned on a record.
geSTATE_NEW_ 5 The record is new and has not
CHANGED been sent to the database but has
had one or more columns modified
by calls to gePut functions.
Example hdbc = geConnect ("DSN=CEDBF') ;

hstmt = geExecSQ (hdbc,
res_code = geFetchNext (hstnt)

"SELECT * FROM enp") ;

state = geRecState (hstnmt)

res_code
res_code

DataDirect Developer’s Toolkit Programmer’s Guide

geEndSQ@ (hstnt)
geDi sconnect (hdbc)

|GoTo v|

Chapter 10 DTK Functions
geRecUndo 402

geRecUndo

Syntax

Description

Parameters

Example

geRecUndo discards changes to the current record that have not been sent
to the database.

intlé res_code geRecndo (intl1l6 hstnt)

geRecUndo discards all changes that have been performed on the current
record but have not been sent to the database.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

res_code is the result code returned by geRecUndo, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;
res_code = geBegi nTran (hdbc) ;
hstmt = geExecSQ (hdbc, "SELECT * FROM enp") ;

res_code = geFet chNext (hstnt) ;

res_code = gePutChar (hstnt, 1, "", "Mke") ;
res_code = gePutChar (hstnt, 2, "", "MGrrah") ;
res_code = geRecUndo (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geCommit (hdbc) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geRecUpdate 403

geRecUpdate

Syntax

Description

Parameters

Example

Notes

geRecUpdate updates the current record with the new values set using gePut
functions.

intlé res_code geRecUpdate (int1l6 hstnt)

geRecUpdate updates the current record with new values that were set using
gePut functions. It also inserts a record that was created by geRecNew.

You can call geNumModRecs to determine the number of records affected by
a call to geRecUpdate.

Calling this function causes DTK to generate a unique key if you have not
already defined one with geRecSetKey.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

res_code is the result code returned by geRecUpdate, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;
hstmt = geExecSQ (hdbc, "SELECT * FROM enp") ;

res_code = geFetchNext (hstnt) ;

res_code = gePutChar (hstnt, 1, "", "Mke") ;
res_code = gePutChar (hstnt, 2, "", "MGrrah") ;
res_code = geRecUpdate (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

If you call geRecUpdate without having called a geFetch function or
geRecNew, DTK returns an error. For example, if you call geExecSQL and
then immediately call geRecUpdate on the new hstmt, DTK cannot update a

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

See Also

Chapter 10 DTK Functions
geRecUpdate 404

record because the hstmt is still positioned on record 0 (no record). In order
to update a record, you must first call geFetchNext to position on the first
record in the buffer (record 1).

Important To update the current record, geRecUpdate generates a SQL
Update statement that uses a Where clause to uniquely identify that record. If
this Where clause matches multiple records, geRecUpdate updates all
matching records. You can recover from such invalid modifications by using
transactions and calling geNumModRecs after each call to geRecUpdate to
verify that multiple records were not affected. Calling geRecLock before calls
to geRecUpdate can also help prevent multiple modifications, since
geRecLock uses the same Where clause as geRecUpdate and returns a
warning if it locks multiple records.

geRecSetKey.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geRollback 405

geRollback

Syntax

Description

Parameters

geRollback ends a database transaction and cancels all changes to the
database made during the transaction.

intl6 res_code geRollback (int16 hdbc)

geRollback discards all changes made on the connection since geBeginTran
was called and removes all locks held in the database system.

The discarded changes include any saved changes on records other than the
current record, any records created by calling geRecNew, and any new
values placed in the current record by calls to gePut functions.

After a rollback, DTK is positioned between what was the last current record
in the transaction and the next record in the hstmt. Before you perform any

operations against the records, call one of the geFetch functions to position
on a valid record.

You must call geBeginTran to start a transaction before you can call
geRollback to undo all changes.

hdbc is the handle to the database connection returned by geConnect.

res_code is the result code returned by geRollback, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions
| GoTo = | geRollback 406

Example To roll back changes made to a SQL Server database:

hdbc=geConnect (" DSN=CESS; U D=sa; SRVR=PI ONL") ;

res_code = geBegi nTran (hdbc) ;
hstm = geExecSQ (hdbc
"UPDATE enp SET sal ary=sal ary*1.1") ;

res_code = qeEndSQ (hstnt) ;

res_code = geRol | back (hdbc) ;

res_code = geD sconnect (hdbc) ;
See Also geBeginTran, geCommit.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geSetAutoUpdate 407

geSetAutoUpdate

Syntax

Description

Parameters

geSetAutoUpdate determines what happens when the hstmt is moved to a
new record before changed values have been updated or inserted.

int1l6 res_code geSet AutoUpdate (int16 hdbc, int16 option)

geSetAutoUpdate determines what happens when the hstmt is moved to a
new record before changed values have been updated or inserted by a call to
geRecUpdate. When option is set to qgeAUTOUP_UPDATE (3), a call to
geFetchNext or any other command that changes the current record number
causes DTK to automatically update the current record if any changes have
been made to it. When option is set to qeAUTOUP_DEFER (2), changes can
be deferred—saved but not updated in the database—until a call to
geApplyAll, geUndoAll, geRecUndo, or geRollback updates the database or
discards the changes. The default is geAUTOUPD_DISCARD (1), which
causes DTK to discard changes or insertions.

hdbc is the handle to the database connection returned by geConnect.

option determines whether DTK automatically generates Update or Insert
statements when you move off a changed or inserted row. It has one of the
following values:

Constant Value Action

geAUTOUPD_ 1 DTK discards changes or insertions. This is

DISCARD the default.

geAUTOUPD_ 2 DTK saves the changes but does not update

DEFER the database. This option enables you to use
the geApplyAll and geUndoAll functions

geAUTOUPD_ 3 DTK updates the changed or inserted record

UPDATE

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geSetAutoUpdate 408

res_code is the result code returned by geSetAutoUpdate, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;
res_code = geSet Aut oUpdat e (hdbc, geAUTOUPD DEFER) ;
hstm = geExecSQ (hdbc, "SELECT * FRCM enp") ;

res_code = geFetchNext (hstnt) ;

res_code = gePutLong (hstni, 5, 32000) ;

res_code = geFetchNext (hstnt) ;

/* At this point, the change to the previous record * /
/* has not been sent to the database, but if the user * /
/* were to position back to the first record, and issue

*/

/* a geRecUpdate, the nodification woul d be nade. * /

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

See Also geGetAutoUpdate, geApplyAll, geUndoAll, geRecUndo, geRollback.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geSetCacheFileName 409

geSetCacheFileName

Syntax

Description

Parameters

geSetCacheFileName sets the file name to be used when caching table
names.

int1lé res_code geSetCacheFil eNane (
int16 hdbc,
ptrstr file_nanme)

You can call this function to set the file name to be used when caching of
table names is enabled.

The geSetTableCaching function determines whether the results of geTables
calls are cached. You can call geGetTableCaching to determine the level of
caching enabled. If table caching is set to geCACHE_PERMANENT (1), you
can reuse an existing cache file by specifying it in a call to this function.

A cache file is maintained for each connection.

Important If session caching is in progress when you call
geSetCacheFileName, the existing cache file is deleted.

hdbc is the handle to the connection returned by geConnect.

file_name is the name of the file to use for caching. It must be a valid name
for the operating system you are using. A null value results in a system-
generated temporary file being used.

res_code is the result code returned by geSetCacheFileName, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geSetCacheFileName 410

Example hdbc = geConnect (" DSN=QEDBF") :
res_code = geSet CacheFi | eNane (hdbc, "CacheF") :

res_code = geD sconnect (hdbc) ;

See Also geSetTableCaching.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geSetDB 411

geSetDB

Syntax

Description

Parameters

Example

geSetDB sets the default database in database systems that allow tables to
be stored in separate databases.

intlée res_code geSetDB (intl16 hdbc, ptrstr database)

When using a database system that lets you store tables in separate
databases, you can set the default database for your application with a call to
geSetDB. All subsequent SQL statements are sent to this database.

This function is supported by a limited number of database systems.

hdbc is the handle to the database connection returned by geConnect.
database is the name of the database to become the default.

res_code is the result code returned by geSetDB, which returns the same set
of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

To change the SQL Server default database:
hdbc = geConnect (" DSN=CESS; U D=sa; SRVR=PI ONL") ;
res_code = qeSet DB (hdbc, "pubs") ;
hstm = geExecSQ (hdbc

"SELECT * FROM aut hors") ;
res_code
res_code

geEndSQ. (hstnt)
geDi sconnect (hdbc)

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geSetDriverTracefile 412

geSetDriverTracefile

geSetDriverTracefile specifies a driver trace file.

Syntax intlée res_code geSetDriverTracefile (
intl6 hdbc,
ptrstr file_nane)
Description geSetDriverTracefile lets you specify a file to which driver tracing is written.

This file traces the ODBC calls made by DTK, and so is not the same as the
standard DTK trace file.

This function is useful only when ODBC tracing is enabled by a call to
geSetTraceOptions.

Parameters hdbc is a handle to a database connection obtained from geConnect.

file_name points to the name of the file to which trace information should be
written. It must be a valid name for the operating system you are using. If null,
trace information is written to SQL.LOG.

res_code is the result code returned by qeSetDriverTracefile, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example res_code = geTraceOn ("\\trace.txt") ;
res_code = geSet TraceQpti ons (geTRACE CDBC) ;
res_code = qgeSetDriverTracefile (hdbc, "\\odbctrc.txt") ;
hdbc = geConnect (" DSN=CEDBF") ;

res_code = geD sconnect (hdbc) ;
res_code = geTraceCf () ;

See Also geSetTraceOptions.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | geSetisolationLevel 413

geSetlsolationLevel

geSetlsolationLevel sets the isolation level for the connection.

Syntax int1l6 res_code geSetlsol ationLevel (intl6 hdbc, int16
| evel)
Description geSetlsolationLevel sets the isolation level for the database to which you are

connected. An isolation level represents a particular locking strategy
employed in the database to improve data consistency. The higher the
isolation level, the more complex the locking strategy behind it. The following
table shows what data consistency behaviors can occur at each isolation

level:

Level Dirty Non-repeatable Phantom
reads reads reads

0, Read uncommitted Yes Yes Yes

1, Read committed No Yes Yes

2, Repeatable read No No Yes

3, Serializable No No No

(4, Versioning)

These behaviors are described along with other information on isolation
levels in “Isolation Levels” on page 85.

The isolation levels supported and default isolation level are database-
dependent. Many databases support only a subset of these isolation levels.
Call geGetSupportedisolationLevels, which returns the set of isolation levels
the database supports, before calling geSetlsolationLevel.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geSetlsolationLevel

Parameters hdbc is the handle to the database connection returned by geConnect.

level is the isolation level that is to be set in the database. It is one of the

following values:

Constant

gelSO_READ_
UNCOMMITTED

gelSO_READ_
COMMITTED

qelSO_REPEATABLE_

READ

gelSO_SERIALIZABLE

qelSO_VERSIONING

Value
0x0001

0x0002

0x0004

0x0008

0x0010

Description

Read uncommitted (0) isolation level.
Locks are obtained on modifications to
the database and held until end of
transaction (EOT). Reading from the
database does not involve any locking

Read committed (1) isolation level. Locks
are acquired for reading and modifying
the database. Locks are released after
reading but locks on modified objects are
held until EOT.

Repeatable read (2) isolation level. Locks
are obtained for reading and modifying
the database. Locks on all modified
objects are held until EOT. Locks
obtained for reading data are held until
EOT. Locks on non-modified access
structures (indexes, hashing structures,
etc.) are released after reading.

Serializable (3) isolation level. All data
read or modified is locked until EOT. All
access structures that are modified are
locked until EQOT. Access structures used
by the query are locked until EOT.

Versioning (4) isolation level. Similar to
isolation level 3, serializable, but provides
greater concurrence through the use of
non-locking “record versioning” protocols

414

res_code is the result code returned by geSetlsolationLevel, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | geSetlsolationLevel 415

Example hdbc = geConnect ("DSN=CESS') ;
| evel s = geGet Support edl sol ati onLevel s (hdbc) ;
cur_level = geCetlsolationLevel (hdbc) ;
if (levels & gel SO READ COW TTED)
res_code = geSetlsol ati onLevel (hdbc,
gel SO READ COW TTED)
res_code = geD sconnect (hdbc) ;

See Also geGetlsolationLevel, geGetSupportedisolationLevels.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geSetLockOptions 416

geSetLockOptions

Syntax

Description

Parameters

geSetLockOptions controls the behavior of geRecLock in regard to records
that may have changed in the database since they were initially read.

int1l6 res_code geSetLockOptions (intl6 hdbc, int16
option)

geSetLockOptions sets the behavior of the geRecLock function, providing
options that help you avoid locking and updating records in the log file that
have changed in the database since they were first read. By default, you can
lock and update such records. However, by setting the geLOCK_COMPARE
or qeLOCK_REFRESH options, you can have DTK either warn you when the
locked record has changed or automatically refresh the copy in the log file
with the corresponding values from the database so that the values you see
are always current.

Calls to geSetLockOptions are not cumulative; the options it sets are valid for
the entire connection or until you change them by calling this function.

hdbc is the handle to the database connection returned by geConnect.

option lets you control DTK’s optional locking behavior. You can specify one
of the following values:

Constant Value Description

geLOCK_NO_OPTIONS 0 Default; DTK neither compares nor
refreshes the record in the log file

geLOCK_COMPARE 1 When locking, DTK compares the

record in the log file to the
corresponding record in the database,
and raises a warning if they are
different.

geLOCK_REFRESH 2 When locking, DTK automatically
refreshes the record in the log file with
new column values.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geSetLockOptions 417

res_code is the result code returned by geSetLockOptions, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;
res_code = geSetLockQptions (hdbc, geLOCK COMPARE) ;
/* Set locking to conpare and raise a * /

/* warning if buffer differs for log file.* /
hstm = geExecSQ (hdbc, "SELECT * FRCM enp") ;
/* Statenment has | ock options set to geLOCK COMPARE. * /

res_code = geD sconnect (hdbc) ;

See Also geRecLock, geGetLockOptions.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geSetLoginTimeout 418

geSetLoginTimeout

Syntax

Description

Parameters

Example

See Also

geSetLoginTimeout sets the number of seconds to wait for a login request to
complete before returning.

int1l6é res_code geSetLoginTi meout (int32 seconds)

geSetLoginTimeout sets the login timeout, in seconds.

This function has no effect if the driver does not support timeouts.

seconds is the number of seconds to wait for a login to complete. The default
is 15. If seconds is 0, a connection attempt waits indefinitely.

res_code is the result code returned by geSetLoginTimeout, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

To have SQL Server wait indefinitely:

res_code = geSet Logi nTi meout (0) ;
hdbc = geConnect ("DSN=gess") ;

res_code = geD sconnect (hdbc) ;

geGetLoginTimeout.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I geSetMaxRows 419

geSetMaxRows

geSetMaxRows sets the maximum number of rows that a statement returns.
You can call this function to limit the amount of records that a Select
statement will return.

Syntax intlé res_code geSet MaxRows (int1l6 hdbc, int32 max_rows)

Parameters hdbc is the handle to the database connection returned by geConnect.

max_rows is the maximum number of rows that should be returned for the
query. 0, the default, indicates that all rows are to be returned.

res_code is the result code returned by geSetMaxRows, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CESS') ;
res_code = geSet MaxRows (hdbc, 10) ;
hstmt = geExecSQ (hdbc, "SELECT * FROM enp") ;
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

See Also geGetMaxRows.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geSetODBCHdbc 420

geSetODBCHdbc

Syntax

Description

Parameters

Example

geSetODBCHdbc creates a DTK hdbc from the ODBC hdbc.
int16 hdbc geSet ODBCHdbc (ptrstr ODBCHdbc)

geSetODBCHdbc creates a DTK hdbc from the ODBC hdbc. This function is
useful when you want to connect to a database using the ODBC
SQLDriverConnect or SQLBrowseConnect functions. After establishing a
connection via the ODBC function, you can call geSetODBCHdbc to convert
the ODBC connection handle to a handle usable by DTK functions.

Important This function is potentially dangerous. Using the ODBC hdbc to
change the state of the ODBC connection may create situations that trap.
There is no guarantee of proper behavior when you call geSetODBCHdbc,
because DTK cannot know any information about the hstmt or hdbc involved.
Use at your own risk.

hdbc is the handle to the connection returned by qeSetODBCHdbc.

ODBCHdbc is a pointer to the hdbc returned by the ODBC SQLConnect,
SQLBrowseConnect, or SQLDriverConnect function.

res_code is the result code returned by qeSetODBCHdbc, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

/* Previous code retrieved an CDBC hdbc * /
hdbc = geSet CDBCHdbc (odbc_hdbc) ;

/* Use as a norrmal hdbc. * /
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geSetOneHstmtPerHdbcOptions

421

geSetOneHstmtPerHdbcOptions

geSetOneHstmtPerHdbcOptions sets options that determine which fetching
commands and statement behaviors are allowed by DTK.

Note: If the data source to which you are connected supports more than one
hstmt per hdbc, this function has no effect.

Syntax intl6 res_code geSet CneHst i Per HAbcOptions (

int16 hdbc,
i nt32 fl ags)

Parameters hdbc is the handle to the database connection returned by geConnect.

flags is a set of option flags that controls read-ahead activity, statement
routing, and hstmt behavior when DTK uses multiple connections to

databases that support only one statement per connection. You can set one
read-ahead, routing, and hstmt option from among the following:

Constant

qeREADAHEAD AT
EXEC

qeREADAHEAD AT
UPDATE

qeREADAHEAD_

COMMIT_UPDATES

geROUTING_READ

DataDirect Developer’s Toolkit Programmer’s Guide

Value
0x0001

0x0002

0x0003

0x0008

Description

DTK reads the statement’s entire result
set into the log file when the statement
executes. Reading result sets at this
time will often free handles for users of
databases who have licenses
restricting open handles.

DTK reads the remainder of the result
set into the log file whenever a record
is locked, updated, or deleted. This is
the default read-ahead option.

DTK avoids all read-ahead activity by
requiring you to commit all updates
before fetching any more records.

DTK routes this statement through a
connection used for read-only
statements.

| Go To

v i

Example

See Also

Chapter 10 DTK Functions
geSetOneHstmtPerHdbcOptions 422

Constant Value Description

geROUTING_UPDATE 0x0010 DTK routes this statement through a
connection used for statements that
modify the database.

geROUTING_DEFAULT 0x0018 This option lets DTK decide which
connection to send the statement to.
This is the default routing option.

geHSTMT_LOCAL 0x0020 Tells DTK that this hstmt cannot affect
any other active hstmt in the same
application.

geHSTMT_NONLOCAL 0x0040 Tells DTK that this hstmt may affect

other hstmts in the same application.
This is the default hstmt behavior.

These values can be combined by adding them together or joining them with
an OR clause. For example, the default is geREADAHEAD_AT_UPDATE +
geROUTING_DEFAULT + geHSTMT_NONLOCAL.

res_code is the result code returned by geSetOneHstmtPerHdbc-Options,
which returns the same set of result codes as geErr. See Appendix D, “Result
and Error Message Codes,” on page 537 for a list of these result codes.

hdbc = geConnect ("DSN=CESS') ;

res_code = geSet OneHst m Per HdbcOpt i ons (hdbc,
geREADAHEAD AT UPDATE +qeHSTMI_LQOCAL) ;

hstm = geExecSQ (hdbc, "SELECT * FROM enp") ;

[* Options will affect what happens if records * /
/* are nodified on this hstnt. * /

res_code
res_code

geEndSQ. (hstnt)
geDi sconnect (hdbc)

For more information on using this function, see Appendix C, “Coding for
Single Statement Database Systems,” on page 529.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geSetParamBinary 423

geSetParamBinary

geSetParamBinary sets the value of a binary parameter.

Syntax intl6 res_code geSetParanBinary (
i nt 16 hstnt,
i nt 16 param num
ptrstr param val ,
i nt32 param | en)
Description geSetParamBinary assigns the value of a parameter in a SQL statement to a
binary value.

DTK copies the assigned value, so the pointer need not remain valid after this
call. This parameter has this value until geClearParam or a geSetParam or
geBindParam function is called again for this parameter. All parameters with
the same name as the one identified by param_num are affected.

Before calling geSetParamBinary, you must call geSQLPrepare. You must
give values to all parameters before calling geSQLExecute.

Parameters hstmt is the handle to the statement returned by geSQLPrepare,
geQryPrepare, or geQBEPrepare.

param_num is the position of the parameter to be set. The first parameter
number is 1.

param_val is the value to be assigned to the parameter.
param_len is the number of valid bytes in param_val.

res_code is the result code returned by geSetParamBinary, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo W | geSetParamBinary 424

Example hdbc = geConnect ("DSN=CEDBF') ;
hstnmt = geSQPrepare (hdbc,
"I NSERT I NTO enp (MEMD) VALUES (?)")
/* bindata contains binary information. * /

res_code = qgeSetParanBi nary (hstnt, 1, bindata, 10) ;
res_code = geSQExecute (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions
| GoTo w | geSetParamChar 425
geSetParamChar
geSetParamChar sets the value of a character parameter.

Syntax int1l6 res_code geSetParanChar (

int16 hstnt,

i nt 16 param num

ptrstr param val ,

i nt32 max_| en)
Description geSetParamChar assigns the value of a parameter in a SQL statement to a

character value.

DTK copies the assigned value, so the pointer need not remain valid after this
call. This parameter has this value until geClearParam or a geSetParam or
geBindParam function is called again for this parameter. All parameters with
the same name as the one identified by param_num are affected.

Before calling geSetParamChar, you must call geSQLPrepare. You must give
values to all parameters before calling qeSQLExecute.

geSetParamChar may be called multiple times before executing, resulting in
the parameter value being set to the concatenation of all values sent. Lengths
of zero are ignored.

Parameters hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter to be set.
param_val is the character value to be assigned to the parameter.

max_len is the size of the column with which this parameter is associated.
This setting determines whether the parameter is of varying character or long
varying character type. If max_len is less than or equal to the largest
character string allowed by the database, then the parameter is varying
character type. If greater, it is long varying character type.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions
I GoTo W I geSetParamChar 426

Important A mismatch between the parameter type and the database
column type (varying character versus long varying character) may cause
unusual problems for some database drivers, for which no errors are
returned.

res_code is the result code returned by geSetParamChar, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;
hstnmt = geSQPrepare (hdbc, "SELECT * FROM enp WHERE
| ast_nane = ?") ;
res_code = qgeSet ParantChar (hstnt, 1, "Joe", 10) ;
res_code = geSQExecute (hstnt) ;
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geSetParamDataType 427

geSetParamDataType

Syntax

Description

geSetParamDataType sets the data type of a stored procedure’s output
parameters.

int1l6é res_code geSet ParanDat aType (
int16 hstnt,

i nt 16 param num
int16 param type,
i nt32 preci si on,
int16 scal e)

When the geSetParam and geGetParam functions are being used in place of
the geBindParam functions, you should call geSetParamDataType for every
output parameter.

This function is used only with output parameters. Thus, before
geSetParamDataType can be called for a parameter, geSetParamlOType
must be called for that parameter to set it as an output parameter.

When binding parameters, you must call a geBindParam function for each
parameter to create a buffer to pull the input value from or put the output
value into; since the geBindParam functions set the data type for all
parameters, you do not need to call geSetParamDataType when you bind
parameters.

When using the geSetParam and geGetParam functions instead of binding,
you must call geSetParam for all input and all input/output parameters.
Because the geSetParam functions cannot set the data type for output
parameters, you must use geSetParambDataType for output parameters.

Calling both geSetParamDataType and a geBindParam/geSetParam function
for the same parameter does not result in an error as long as the data type
and data size passed for the parameter are the same in both calls; if the
parameter’s data type or data size conflicts between the two calls, an error is
issued.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Parameters

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

geSetParamDataType 428

Calling this function on an input or an input/output parameter results in an

error.

hstmt is the handle to the statement returned by geSQLPrepare.

param_num is the position of the parameter to be set.

param_type is the data type of the specified parameter. It can have one of the

following values:

Constant

geCHAR

geVARCHAR
gqeDECIMAL
geINTEGER
geSMALLINT

geFLOAT
qeDOUBLEPRECISION
qeDATETIME

qeBINARY
qeVARBINARY
qeBIT

qeDATE

qeTIME
qeNO_DATA_TYPE

Value

0 N o o~ W N P

101
102
110
111
112

Description

Blank-padded, fixed-length string.
Variable-length string.

BCD number.

4-byte signed integer.

2-byte signed integer.

4-byte floating-point number.
8-byte floating-point number.

26-byte date time value. Example:
YYYY-MM-DD HH:MM:SS:FFFFFF

Binary string.
Variable-length binary string.
Bit value.

26-byte date value.

26-byte time value.

No data type.

precision varies by data type. For a decimal value, it is the total number of
digits returned. For a character string or binary value, it is the maximum
number of characters returned. For a date-time value, it is the number of

Chapter 10 DTK Functions

| GoTo W | geSetParamDataType 429

characters from the returned value to actually use (16, 19, 23, or 26). This
value is required only if applicable to the parameter whose data type is being
set.

scale is a decimal value’s scale. This value is required only if applicable to the
parameter whose data type is being set.

res_code is the result code returned by the geSetParamlOType function,
which returns the same set of result codes as geErr. See Appendix D, “Result
and Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect (“DSN=QECRA; DLG=2") ;
hstm = geSQ.Prepare (hdbc, “{call = GetDeptNanme(?)}") ;

res_code = qgeSet Param Olype (hstnt, 1, gePARAM CUTPUT) ;
res_code = qgeSet ParanbDat aType (hstnt, 1, geCHAR 10, 0) ;
res_code = geSQExecute (hstnt) ;

dept _name = geCet ParanChar (hstnt, 1, “”, 10)

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hstnt) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geSetParamDate 430

geSetParamDate

geSetParamDate sets the value of a date parameter.

Syntax intlée res_code geSetParanDate (
int16 hstnt,
i nt 16 param num

ptrstr param val)

Description geSetParamDate assigns the value of a parameter in a SQL statement to a
date value.

DTK copies the assigned value, so the pointer need not remain valid after this
call. This parameter has this value until geClearParam or a geSetParam or
geBindParam function is called again for this parameter. All parameters with
the same name as the one identified by param_num are affected.

Before calling geSetParamDate, you must call geSQLPrepare. You must give
values to all parameters before calling qeSQLExecute.

Parameters hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter to be set.
param_val is the 26-byte date value to be assigned to the parameter.

res_code is the result code returned by geSetParamDate, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;

hstm = geSQPrepare (hdbc, "SELECT * FROM enp WHERE
hire_date = ?") ;

res_code = geSet ParanDate (hstni, 1,
"1983- 06- 01 00: 00: 00: 000000") ;

res_code = geSQExecute (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo W | geSetParamDateTime 431

geSetParamDateTime

geSetParamDateTime sets the value of a date-time parameter.

Syntax intlé res_code geSet ParanDateTine (
int16 hstnt,
i nt 16 param num
ptrstr param val ,
i nt 16 preci si on)
Description geSetParamDateTime assigns the value of a parameter in a SQL statement

to a date-time value. DTK copies the assigned value, so the pointer need not
remain valid after this call. This parameter has this value until geClearParam
or a geSetParam or geBindParam function is called again for this parameter.
All parameters with the same name as the one identified by param_num are
affected.

Before calling geSetParamDateTime, you must call geSQLPrepare. You must
give values to all parameters before calling geSQLExecute.

Parameters hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter to be set.
param_val is the 26-byte date-time value to be assigned.

precision is the length of the date-time value to be assigned. It is a 2-byte
integer giving the number of characters in param_val to use: 16, 19, 23, or
26.

res_code is the result code returned by geSetParamDateTime, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo W | geSetParamDateTime 432

Example hdbc = geConnect ("DSN=CEDBF') ;
hstnmt = geSQPrepare (hdbc, " SELECT * FROM enp WHERE
hire_date = ?") ;
res_code = geSet ParanDateTinme (hstnt, 1,
"1983- 06- 01 12: 00: 00: 000000", 26) ;

res_code = geSQExecute (hstnt) ;
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | geSetParamDecimal 433

geSetParamDecimal

geSetParamDecimal sets the value of a decimal parameter.

Syntax int1l6 res_code geSet Paranbeci nal (
int16 hstnt,
i nt 16 param num
ptrstr param val ,
intl6 preci si on,
int16 scal e)
Description geSetParamDecimal assigns the value of a parameter in a SQL statement to
a decimal value. The value is formatted based on the values of precision and
scale.

DTK copies the assigned value, so the pointer need not remain valid after this
call. This parameter has this value until geClearParam or a geSetParam or
geBindParam function is called again for this parameter. All parameters with
the same name as the one identified by param_num are affected.

Before calling geSetParamDecimal, you must call geSQLPrepare. You must
give values to all parameters before calling geSQLExecute.

Parameters hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter to be set.
param_val is the value to be assigned to the parameter.
precision is the number of digits in the value.
scale is the number of digits to the right of the decimal point.

res_code is the result code returned by geSetParamDecimal, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo W | geSetParamDecimal 434

Example hdbc = geConnect (" DSN=QEDBF") :
hstm = geSQLPrepare (hdbc, "SELECT * FROM enp
WHERE salary = ?")

res_code = qgeSet ParanbDeci mal (hstnt, 5, dec_val, 9, 2) ;
res_code = geSQExecute (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geSetParamDouble 435

geSetParamDouble

Syntax

Description

Parameters

Example

geSetParamDouble sets the value of a double-precision floating-point
parameter.

int1l6 res_code geSetParanbouble (
int16 hstnt,
i nt 16 param num
float64 paramval)

geSetParamDouble assigns the value of a parameter in a SQL statement to a
double-precision floating-point value.

DTK copies the assigned value, so the pointer need not remain valid after this
call. This parameter has this value until geClearParam or a geSetParam or
geBindParam function is called again for this parameter. All parameters with
the same name as the one identified by param_num are affected.

Before calling geSetParamDouble, you must call geSQLPrepare. You must
give values to all parameters before calling geSQLExecute.

hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter to be set.
param_val is the double-precision floating-point value to be assigned.

res_code is the result code returned by geSetParamDouble, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;
hstm = geSQPrepare (hdbc, "SELECT * FROM enp
WHERE salary = ?") ;

res_code = geSet ParanbDoubl e (hstnt, 1, 32000. 00) ;
res_code = geSQExecute (hstnt) ;
res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geSetParamFloat 436

geSetParamFloat

Syntax

Description

Parameters

geSetParamFloat sets the value of a single-precision floating-point
parameter.

int1l6 res_code geSetParantl oat (
int16 hstnt,
i nt 16 param num
float32 paramval)

geSetParamFloat assigns the value of a parameter in a SQL statement to a
single-precision floating-point value.

DTK copies the assigned value, so the pointer need not remain valid after this
call. This parameter has this value until geClearParam or a geSetParam or
geBindParam function is called again for this parameter. All parameters with
the same name as the one identified by param_num are affected.

Before calling geSetParamFloat, you must call geSQLPrepare. You must give
values to all parameters before calling qeSQLExecute.

hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter to be set.

param_val is the single-precision floating-point value to be assigned to the
parameter.

res_code is the result code returned by geSetParamFloat, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo W | geSetParamFloat 437

Example hdbc = geConnect (" DSN=QEDBF") :
hstm = geSQLPrepare (hdbc, "SELECT * FROM enp
WHERE salary = ?")

res_code = geSetParantl oat (hstnt, 1, 32000. 00) ;
res_code = geSQExecute (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geSetParamint 438

geSetParamint

Syntax

Description

Parameters

Example

geSetParamint sets the value of a 2-byte integer parameter.

intl6é res_code geSetParamint (
int16 hstnt,
i nt 16 param num
int16 param val)

geSetParamint assigns the value of a parameter in a SQL statement to a 2-
byte integer value.

DTK copies the assigned value, so the pointer need not remain valid after this
call. This parameter has this value until geClearParam or a geSetParam or
geBindParam function is called again for this parameter. All parameters with
the same name as the one identified by param_num are affected.

Before calling geSetParamint, you must call geSQLPrepare. You must give
values to all parameters before calling qeSQLExecute.

hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter to be set.
param_val is the 2-byte integer value to be assigned to the parameter.

res_code is the result code returned by geSetParamint, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;

hstm = geSQPrepare (hdbc, "SELECT * FROM enp
WHERE salary = ?") ;

res_code = geSetParamint (hstnt, 1, 32000) ;

res_code = geSQExecute (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geSetParamIOType 439

geSetParamIOType

Syntax

Description

Parameters

geSetParamlOType sets a parameter’s input/output (I/O) type.

int1l6 res_code geSetParam Olype (
int16 hstnt,
i nt 16 param num
int16 type_flag)

DTK applications should call geSetParamIOType along with one of the
geBindParam or geSetParam functions for each parameter in a SQL
statement or stored procedure.

If geSetParamlOType is not called for a parameter, the parameter is
assumed to be an input parameter. An error is issued if the application tries to
retrieve the output value from a parameter that has not been defined as either
gePARAM_INOUT or gePARAM_OUTPUT with geSetParamIOType.

hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter to be set.

type_flag is a flag to indicate the parameter’s 10 type. The type flags are:

Constant Value Description
gePARAM_INPUT 2 Input parameter.
gePARAM_INOUT 3 Input/Output parameter.
gePARAM_OUTPUT 5 Output parameter.

res_code is the result code returned by the geSetParamlIOType function,
which returns the same set of result codes as geErr. See Appendix D, “Result
and Error Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo W | geSetParamlOType 440

Example hdbc = geConnect (“DSN=QECRA; DLG=2") :
hstm = gqeSQPrepare (hdbc, “{call GetDeptNarme(?)}”) ;
char _len = 10 ;
res_code = geBi ndParantChar (hstnt, 1, dept, &char_|en) ;
res_code = qgeSet Param Olype (hstnt, 1, gePARAM CUTPUT) ;
res_code = geSQExecute (hstnt) ;

/* The val ue of ?DEPT_NAME is in the dept buffer* /
res_code = geEndSQ.(hstm) ;
res_code = geD sconnect (hstnt) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geSetParamLong 441

geSetParamlLong

Syntax

Description

Parameters

Example

geSetParamLong sets the value of a 4-byte integer parameter.

int1l6 res_code geSetParanmiong (
i nt 16 hstnt,
i nt 16 param num
i nt32 param val)

geSetParamLong assigns the value of a parameter in a SQL statement to a
4-byte integer value.

DTK copies the assigned value, so the pointer need not remain valid after this
call. This parameter has this value until geClearParam or a geSetParam or
geBindParam function is called again for this parameter. All parameters with
the same name as the one identified by param_num are affected.

Before calling geSetParamLong, you must call geSQLPrepare. You must give
values to all parameters before calling qeSQLExecute.

hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter to be set.
param_val is the 4-byte integer value to be assigned to the parameter.

res_code is the result code returned by geSetParamLong, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;

hstm = geSQPrepare (hdbc, "SELECT * FROM enp
WHERE salary = ?") ;

res_code = geSetParaniong (hstnt, 1, 32000) ;

res_code = geSQExecute (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geSetParamNull 442

geSetParamNull

geSetParamNull sets the value of a parameter in a SQL statement to null.

Syntax intlé res_code geSetParamull (
int16 hstnt,
i nt 16 param num
i nt 16 param type,
i nt32 preci si on,
int16 scal e)
Description geSetParamNull assigns a null value to a parameter in a SQL statement.

Before calling geSetParamNull, you must call geSQLPrepare. You must give
values to all parameters before calling qeSQLExecute.

Parameters hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter to be set.

param_type is the data type of the specified parameter. It can have one of the
following values:

Constant Value Description

geCHAR 1 Blank-padded, fixed-length string
geVARCHAR 2 Variable-length string.
geDECIMAL 3 BCD number.

geINTEGER 4 4-byte signed integer.
geSMALLINT 5 2-byte signed integer.

geFLOAT 6 4-byte floating-point number.
geDOUBLEPRECISION 7 8-byte floating-point number.
geDATETIME 8 26-byte date time value. Example:

YYYY-MM-DD HH:MM:SS.FFFFR-

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I geSetParamNull 443

Constant Value Description
geDATE 111 26-byte date value.
geTIME 112 26-byte time value.
geNO_DATA_TYPE 0 No data type.

You can specify geNO_DATA_TYPE only if the specified parameter has
already been assigned a data type by a previous call to a geSetParam or
geBindParam function.

precision is a decimal value’s precision, the maximum size of a character, or
the length (in bytes) of a date-time value. This value is required only if
applicable to the parameter being set to null.

scale is a decimal value’s scale. This value is required only if applicable to the
parameter being set to null.

res_code is the result code returned by geSetParamNull, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;
hstm = geSQPrepare (hdbc, "SELECT * FROM enp
WHERE first_name = ?") ;
res_code = geSetParam\ul | (hstnt, 1, geVARCHAR 10, 0)
res_code = geSQExecute (hstnt) ;
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geSetParamTime 444

geSetParamTime

geSetParamTime sets the value of a time parameter.

Syntax intl6 res_code geSetParanTinme (
int16 hstnt,
i nt 16 param num

ptrstr param val)

Description geSetParamTime assigns the value of a parameter in a SQL statement to a
26-byte time value.

DTK copies the assigned value, so the pointer need not remain valid after this
call. This parameter has this value until geClearParam or a geSetParam or
geBindParam function is called again for this parameter. All parameters with
the same name as the one identified by param_num are affected.

Before calling geSetParamTime, you must call geSQLPrepare. You must give
values to all parameters before calling qeSQLExecute.

Parameters hstmt is the handle to the statement returned by geSQLPrepare.
param_num is the position of the parameter to be set.
param_val is the 26-byte time value to be assigned to the parameter.

res_code is the result code returned by gqeSetParamTime, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;

hstm = geSQPrepare (hdbc, "SELECT * FROM enp
WHERE hire_date = ?") ;

res_code = geSetParanTime (hstni, 1,
"0000- 00- 00 03: 14: 12: 000000") ;

res_code = geSQExecute (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo W | geSetQueryTimeout 445

geSetQueryTimeout

geSetQueryTimeout sets the time to wait for a SQL statement to execute
before aborting the query and returning to the application.

Syntax intle res_code geSet QueryTi meout (intl6 hdbc, int32
seconds)
Description geSetQueryTimeout sets the timeout for SQL statement execution.

This function depends on driver support, and has no effect if the driver does
not support timeouts.

Parameters hdbc is the handle to the connection returned by geConnect.

seconds is how many seconds to wait. 0, the default, indicates that no
timeout is to occur.

res_code is the result code returned by geSetQueryTimeout, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CESS') ;
res_code = geSet QueryTi meout (hdbc, 20) ;
hstm = geExecSQ (hdbc, "SELECT * FROM enp") ;
[* Query will fail if no response within 20 seconds. * /
res_code = qeEndSQ (hstnt) ;

See Also geGetQueryTimeout.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geSetSelectOptions 446

geSetSelectOptions

geSetSelectOptions sets options that determine which fetch commands and
positioning behaviors are allowed.

Syntax intle res_code geSetSel ectptions (intl6 hdbc, int32
fl ags)
Description geSetSelectOptions lets you set options that affect fetching behavior during

the current database connection. These options affect the level of fetching
allowed in the current connection, whether logging is used when not made
necessary by the database system, and the extent to which the result set
persists after a transaction ends.

Parameters hdbc is the handle to the database connection returned by geConnect.

flags is a set of option flags that controls fetching and statement persistence
behavior for the current connection. These values can be combined by
adding them together or joining them with an OR clause. Possible values
include the following:

Constant Value Description

geFETCH_FORWARD_DIR 0x0001 Only forward fetching is allowed.
This is the default fetching behavior

option.

geFETCH_ANY_DIR 0x0002 Random and previous fetching is
enabled.

geLOG_IF_NEEDED 0x0008 Use log file only as needed to

enable previous and random
fetching. This is the default logging
behavior.

geLOG_ALWAYS 0x0010 Force use of log file when it is not
required. (This does not activate
random fetching if it is not explicitly
set with geFETCH_ANY_DIR).

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Constant Value

geSELECT_INVALIDATE 0x0020
geSELECT_TRUNCATE 0x0040
geSELECT_PERSIST 0x0060

Chapter 10 DTK Functions
geSetSelectOptions

Description

Disable fetching at the end of
transaction (EOT). Calls made after
a commit or rollback to any function
except geEndSQL cause an error.

Truncate the result set at EOT. This
option lets you continue fetching
only those records already read
from the database (if
geFETCH_ANY_DIR is set).

The result set persists at EOT. This
is the default behavior, which lets
you continue fetching from the
entire set of records returned by the
Select statement. To enable this
behavior for databases that
invalidate the hstmt at commit or
rollback, the records in the result
set that have not been fetched by
EOT are written to a log file.

447

res_code is the result code returned by geSetSelectOptions, which returns

the same set of result codes as qeErr. See Appendix D, “Result and Error

Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect (" DSN=QESS")

res_code = geSet Sel ect Opti ons (hdbc, geFETCH ANY DIR +

QeSELECT PERSI ST) ;

hstm = geExecSQ (hdbc, "SELECT * FROM enp") ;

/* Options affect behavior of this and future hstnts. *

res_code
res_code

geEndSQ. (hstnt)
geDi sconnect (hdbc)

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geSetSQL 448

geSetSQL

Syntax

Description

Parameters

geSetSQL places a partial statement in the SQL buffer.
intlée res_code geSetSQ (int1l6 hdbc, ptrstr partial_stnt)

Some macro languages cannot send an entire SQL statement to geExecSQL
due to limits in the lengths of strings they support. For example, Excel strings
are limited to 255 characters. Since many Select statements are longer than
255 characters, Excel cannot send long Select statements to geExecSQL.

Internally, DTK maintains one SQL buffer per hdbc. geSetSQL replaces the
contents of the SQL buffer with the partial statement sent as a parameter.
Each subsequent call to qeAppendSQL appends text to the SQL buffer. Once
the complete SQL statement has been sent to the DTK API, you can call
geSQLPrepare (with “” as the sql_stmt value) or geExecSQL to use the SQL
statement saved in the SQL buffer.

hdbc is the handle to the database connection returned by geConnect.

partial_stmt is the character string that is to replace the contents of the SQL
buffer. It must contain the first part of a SQL statement.

res_code is the result code returned by geSetSQL, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions
| GoTo = | qeSetSQL 449

Example To send a Select statement in pieces and execute it:

hdbc = geConnect (" DSN=CESS; U D=sa; SRVR=PI ONL") ;

res_code = geSet SQL (hdbc, "SELECT *") ;
res_code = geAppendSQ (hdbc, " FRCM enp") ;
res_code = geAppendSQ (hdbc, " CRDER BY | ast _nane")

hstnt = gqeExecSQ@ (hdbc, "") ;

res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;
See Also geAppendSQL, geExecSQL.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geSetTableCaching 450

geSetTableCaching

Syntax

Description

geSetTableCaching controls whether table information is cached after calls to
geTables.

int1l6 res_code geSet Tabl eCaching (int16 hdbc, int16
setting)

geSetTableCaching controls whether the results of geTables calls are
cached. It can take a noticeable amount of time to retrieve the names of all
available tables via geTables, so caching the table names in a file is a good
idea if your application uses them repeatedly. Call geSetCacheFileName to
specifically name a file for table caching. If you do not, DTK stores the table
names in a temporary file.

When caching is enabled, only the first call to geTables returns table names
from the database. All subsequent calls to geTables read table names from
the cache file. To reread tables from the database, either turn caching off or
delete the cache file before calling geTables.

You can call geSetTableCaching to turn caching on for the current session, on
for all sessions, or off for all sessions. If enabled for all sessions, the cache
file is saved when the connection terminates so that it can be used again
when needed. The first time you call this function to set caching to
geCACHE_PERMANENT (1), you must call geSetCacheFileName to assign
a name to the cache file. To reuse the cache file in another session, call
geSetCacheFileName to specify the existing file.

Important Calling this function to turn caching off deletes the cache file.

DataDirect Developer’s Toolkit Programmer’s Guide

GoT Chapter 10 DTK Functions
I o0 ¥ I geSetTableCaching 451
Parameters hdbc is the handle to the connection returned by geConnect.

setting is one of the following:

Constant Value Description

geCACHE_PERMANENT 1 Turn caching on, and have the cache
file remain after the connection
terminates. You must specify a file
name with the geSetCacheFileName
function when using this option.

geCACHE_SESSION 2 Turn caching on for this session. The
cache file is deleted when the
connection terminates. This is the
default.

geCACHE_OFF 3 Turn caching off.

res_code is the result code returned by geSetTableCaching, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example /* Cache_Session * /
hdbc = geConnect (" DSN=CEDBF") ;
res_code = geSet Tabl eCachi ng (hdbc, geCACHE_SESSI ON) ;
hstm = qgeTables (hdbc, "*", "*", qeTBL_TABLE) ;
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

See Also geTables, geSetCacheFileName, geGetTableCaching.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geSetTraceOptions

452

geSetTraceOptions

geSetTraceOptions sets the type of information that is sent to the trace file.

Syntax intle res_code geSet Tracetions (intl6 fl ags)

Parameters flags is a set of option flags that defines which tracing options are enabled/
disabled. These values can be combined by adding them together or joining
them with an OR clause. flags can be:

Constant

qeTRACE_NON_
VAL_CALLS

qeTRACE_USER

qeTRACE_VAL_
CALLS

geTRACE_WINDOW

qeTRACE_ODBC

geTRACE_NO_
FLUSH

The default when geTraceOn is called is geTRACE_NON_VAL_CALLS +

Value
0x0001

0x0002
0x0004

0x0008

0x0010

0x0020

Description

Trace all non-geVal calls.

Trace strings sent via geTraceUser.

Trace geVal calls and bound data at
fetch time.

Write all trace information (except
ODBC calls) to a trace window.

Trace ODBC calls. Tracing is written to
either SQL.LOG or another file that
you have specified via the
geSetDriverTracefile function.

Allows faster tracing by writing trace
strings to disk in blocks instead of one
at a time. Choosing this method can
cause some loss of trace information if
your program terminates abnormally—
use it only when your application is
reasonably stable.

geTRACE_USER (0x0001 and 0x0002), unless the Trace section of the
QELIB.INI file contains an Options entry.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Example

Notes

See Also

Chapter 10 DTK Functions
geSetTraceOptions 453

res_code is the result code returned by geSetTraceOptions, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

res_code = geTraceOn ("\\trace.txt") ;

res_code = geSet TraceQpti ons (geTRACE NON VAL _CALL S
+ qeTRACE_VAL_CALLS) ;

hdbc = geConnect (" DSN=CEDBF") ;

res_code = geD sconnect (hdbc) ;
res_code = geTraceCf () ;

Calls to this function are not cumulative; only the options set in the last call
are valid.

geSetDriverTracefile, geTraceUser.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geSetupinfo and geSetupinfoBuf 454

geSetuplinfo and geSetupinfoBuf

Syntax

Description

Parameters

Example

These functions return the information entered when DTK was installed.

ptrstr info geSetuplnfo ()

int1l6 res_code geSetuplnfoBuf (ptrstr i nf o)

geSetuplnfo and geSetupinfoBuf return the user name, company name, and
serial number entered the first time DTK was installed. The first time you run
the DTK Setup program, you are prompted for this information.

When you use geSetuplnfo, the function returns a pointer to the string. The
string is stored in a buffer maintained by DTK. Copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

When you use geSetuplnfoBuf, you pass in a pointer to a buffer you have
allocated. The string is put in the buffer. Make sure the buffer is large enough
to hold the returned string.

info is the character string containing the user name, company name, and
serial number. A Tab character (9) separates the three values and a zero-
terminator ends the string. The string may contain up to 128 characters of
information.

res_code is the result code returned by geSetupinfoBuf, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

To retrieve DTK setup information:

setup_info = geSetuplnfo () ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geSources 455

geSources

Syntax

Description

Parameters

geSources returns information on the database sources (systems) that can
be accessed.

intlé6 hstnt qgeSources (intl6 option)
geSources creates a statement execution (hstmt) that returns information on

the database sources (systems) that can be accessed. geSources returns
one record per source. Each record contains the following columns:

Column Type Description

Name Char(32) Source name.

Extension Char(32) File extension. May be null.

DTK hdbc Int16 If geConnect has been used to connect to

this source, the DTK hdbc. This is 0 if not
currently connected.

Remarks Char(256) Comments (if available).

You retrieve this information like you would other database values—using the
geVal, geBindCol, and geFetch functions.

option determines which sources are returned by the hstmt returned by
geSources. There is no default; option must contain one of the following
values:

Constant Value Description
geSRC_AVAIL_LOGON 1 All sources
geSRC_CONN_LOGON 2 All connected sources

hstmt is the handle to the statement returned by geSources.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | geSources 456
Example hdbc = geConnect (" DSN=QEQUP; DLG=1") ;

hstnmt = geSources (gqeSRC_CONN_LOXN) ;

whi | e (geFet chNext (hstnt) == geSUCCESS) {

/* Get info about avail abl e sources. * /

}

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo = | qeSQLExecute 457

geSQLEXxecute

geSQLExecute executes a statement previously prepared with
geSQLPrepare, qeQBEPrepare, or geQryPrepare.

Syntax intl6 res_code geSQLExecute (intl6 hstnt)

Description geSQLExecute executes a statement previously prepared with
geSQLPrepare, qeQBEPrepare, or geQryPrepare.

This function is also useful for re-executing the active statement without re-
parsing.

If the statement contains any parameters that have not been assigned
values, geSQLExecute prompts you for the values.

Parameters hstmt is the handle to the statement returned by geSQLPrepare,
geQBEPrepare, or geQryPrepare.

res_code is the result code returned by geSQLExecute, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;
hstm = geSQPrepare (hdbc, "SELECT * FROM enp
WHERE first_pame = ?") ;
res_code = geSet ParanChar (hstnt, 1, "Ed", 10) ;
res_code = geSQExecute (hstnt) ;
res_code = geFet chNext (hstnt) ;
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | geSQLPrepare 458

geSQLPrepare

geSQLPrepare prepares a SQL statement for execution.
Syntax intl6e hstnm qeSQPrepare (intl6 hdbc, ptrstr stnt)
Description geSQLPrepare returns an hstmt for a statement and places it in the

statement buffer, but does not execute it. Call this function to get a handle for
a statement on which you want to do additional processing before you
execute it.

geSQLPrepare is most useful for preparing statements that use parameters,
although parameters do not have to be present to use it.

Routines that call this function must call geSQLExecute to execute.

Parameters hdbc is the handle to the connection returned from geConnect.

stmt is a null-terminated character string representing a SQL statement. If
stmt is null, then the routine uses the statement passed using geSetSQL and
geAppendSQL.

hstmt is the handle to the statement returned by geSQLPrepare.

Example hdbc = geConnect ("DSN=CEDBF') ;
hstm = geSQPrepare (hdbc, "SELECT * FROM enp
WHERE first_name = ?") ;
res_code = geSet ParantChar (hstnt, 1, "Ed", 10) ;
hstm = geSQExecute (hstnt) ;
res_code = geFetchNext (hstnt) ;
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo W | geTables 459

geTables
geTables returns information on the available database tables.
Syntax intlée hstnt geTables (
int16 hdbc,
ptrstr qual i fier_pattern,
ptrstr user_pattern,
ptrstr tabl e_pattern,
int16 fl ags)
Description geTables creates a statement execution (hstmt) that returns information on

the available database tables. geTables returns one record per table. Each
record contains the following columns:

Column Type Description
Table Qualifier Char(128) Qualifier for returned table.

Table User Char(128) A user name (for table-based sources) or
directory name (for file-based sources)

Table Name Char(128) A table name (for table-based sources) or file
name (for file-based sources).

Table Type Int16 Type of table: geTBL_TABLE, qeTBL_VIEW,
geTBL_SYNONYM, qeTBL_PROCEDURE,
or geTBL_SYSTABLE.

Remarks Char(256) Comments (if available).

You retrieve this information like you would other database values—using the
geVal, geBindCol, and geFetch functions.

It can take a noticeable amount of time to retrieve the names of all available
tables via geTables, so caching the table names in a file is a good idea if your
application uses them repeatedly. You can call geSetTableCaching to turn
caching on for the current session, on for all sessions, or off for all sessions.
You can specifically name a file to use for table caching by calling
geSetCacheFileName. If you do not, DTK stores them in a temporary file.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Parameters

Chapter 10 DTK Functions
geTables 460

When caching is enabled, only the first call to geTables returns table names
from the database. All subsequent calls to geTables read table names from
the cache file. To reread tables from the database, either turn caching off or
delete the cache file before calling geTables.

hdbc is a handle to a database connection obtained from geConnect.

qualifier_pattern is a pointer to a string containing a qualifier or path for the
set of tables to be selected.

user_pattern is the pattern used for selecting users. If the pattern is null, the
current user is assumed. If the pattern is “%” or “*”, all users are selected.
This parameter is ignored for file-based databases, where the current
working directory is assumed.

table_pattern is the pattern used for selecting tables or files. If the pattern is
“%” or “*”, all tables are selected.

flags is a set of option flags that specifies the types of tables to be returned.
The value sent determines the types of items to be returned by the hstmt.
These are also the values returned in the Type column.

flags has no default value; you must specify at least one of the following
values:

Constant Value Description
geTBL_TABLE 0x0001 Get table names.
geTBL_VIEW 0x0002 Getview names.

geTBL_PROCEDURE 0x0004 Get stored procedure names.

geTBL_SYSTABLE 0x0008 Get system table names.
geTBL_SYNONYM 0x0010 Get synonym names.
geTBL_DATABASE 0x0080 Get database names.

Note: geTBL_DATABASE cannot be combined with the other values. All
other values can be combined by adding them together or joining them with
an OR clause.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions
| GoTo W | geTables 461

hstmt is the handle to the statement returned by geTables.
Example hdbc = geConnect ("DSN=CEl NF; DLG=1") :

hstnmt = geTabl es (hdbc, "%, "SYS%, "%, qeTBL_TABLE |

geTBL_SYSTABLE) ;

whi | e (geFet chNext (hstnt) == geSUCCESS) {

/* Get info about tables. * /

}

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geTraceOff 462

geTraceOff

Syntax

Parameters

Example

See Also

geTraceOff closes the trace file opened by geTraceOn and discontinues the
tracing of calls to the DTK API.

intl6 res_code geTracef ()
res_code is the result code returned by qeTraceOff, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message

Codes,” on page 537 for a list of these result codes.

res_code = geTraceOn ("\\trace.txt") ;
hdbc = geConnect (" DSN=CEDBF") ;

res_code = geD sconnect (hdbc) ;
res_code = geTraceCf () ;
geTraceOn.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geTraceOn 463

geTraceOn

Syntax

Description

Parameters

Example

Notes

See Also

geTraceOn initiates tracing of DTK functions.
intlé res_code geTraceOn (ptrstr file_pathnane)

geTraceOn starts tracing calls to the DTK API by writing debugging
information to a trace file. Tracing helps you debug programs that call the
DTK API by writing a log of the function calls to the DTK API, as well as the
parameters to each call, and the returned value.

The trace file is an ASCII text file that can be edited with Notepad or any other
text editor.

DTK continues to write to the Trace file until you call geTraceOff.

file_pathname is the pathname to the trace file you want DTK to write to. It
must be a valid pathname for the operating system you are using.

res_code is the result code returned by geTraceOn, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

res_code = geTraceOn ("\\trace.txt") ;
hdbc = geConnect (" DSN=CEDBF") ;

res_code = geD sconnect (hdbc) ;
res_code = geTraceCf () ;

Tracing can also be enabled by the QELIB.INI file. See Appendix F, “The
QELIB.INI File,” on page 565 for more information.

geTraceOff, geSetTraceOptions.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geTraceUser

464

geTraceUser

Syntax

Parameters

Example

Notes

geTraceUser sends a user-defined string to the tracefile.
intl6 res_code geTracelser (ptrstr tracestring)

tracestring is a string written to the trace file if geSetTraceOptions is not
called to disable such writing.

res_code is the result code returned by geTraceUser, which returns the same

set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

res_code = geTraceOn ("\\trace.txt") ;

res_code = geSet TraceQpti ons (geTRACE NON VAL _CALL S
+ geTRACE_USER ;

res_code = geTracelser ("This is the beginnin g
of the trace file.") ;

hdbc = geConnect (" DSN=CEDBF") ;

res_code = geD sconnect (hdbc) ;

res_code = geTracelser ("This is the end of the
trace file.") ;

res_code = geTraceCf () ;

This function is useful only when tracing is on and user string tracing (the
default) is enabled by a call to geSetTraceOptions.

DataDirect Developer’s Toolkit Programmer’s Guide

I GoTo - I Chapter 10 DTKqZEIJ_;;glc;]r;z .
geTypelnfo
geTypelnfo returns information about the data types supported by a
database.
Syntax intle hstm geTypelnfo (int16 hdbc)
Description geTypelnfo creates a statement execution (hstmt) that returns information

about the types supported on a particular database. The resulting records
contain the following columns:

Column
Type Name
Type

DB Type
Width

Attrl

Attr2

Literal Prefix

Literal Suffix

Create Params

Nullable

Type
Char(128)
Int16
Int16
Int32
Int16

Int16

Char(128)

Char(128)

Char(128)

Int16

DataDirect Developer’s Toolkit Programmer’s Guide

Description

Data source-dependent data type name
DTK type.

Database type.

Size of type in bytes.

Precision for decimal types, date start
position for dates, null otherwise.

Scale for decimal types, date end position
for dates, null otherwise.

Characters used to prefix a literal. Null if
not applicable.

Characters used to terminate a literal. Null
if not applicable.

The parameters necessary to use the type
in a Create Table statement (for Decimal,
this would be “precision,scale”).

Whether type can be null. Values:
qeCOL_NULLABLE,
qeCOL_NOT_NULLABLE,
geCOL_UNKNOWN.

Chapter 10 DTK Functions

I GoTo W I geTypelnfo 466

Column Type Description

Case Sensitive Int16 Whether type can be treated as case
sensitive for sorting (T/F).

Searchable Int16 How the type can be used in a WHERE
clause. Values:
qeCOL_UNSEARCHABLE,
qeCOL_LIKE_ONLY,
qeCOL_ALL_EXCEPT_LIKE,
qeCOL_SEARCHABLE.

Unsigned Int16 Whether type is unsigned (T/F). Null if not
applicable.

Money Int16 Whether type is a money data type (T/F).

Auto Increment Int16 Whether type is auto incrementing. Null if

not applicable (T/F).

Local Type Name Char(128) Localized version of the data source-
dependent name of the data type. Null if
not supported by the data source.

You retrieve this information like you would other database values—using the
geVal, geBindCol, and geFetch functions.

Parameters hdbc is a handle to a database connection obtained from geConnect.

hstmt is the handle to the statement returned by geTypelnfo.

Example hdbc = geConnect ("DSN=CEl NF; DLG=1") :
hstmt = geTypelnfo (hdbc) ;
whi | e (geFet chNext (hstnt) == geSUCCESS) {

/* Get info about types. * /

}

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geUndoAll 467

geUndoAll

Syntax

Description

Parameters

Example

geUndoAll discards all changes to a statement that have not been sent to the
database.

intlée res_code gendoAll (intl6 hstnt)

When geSetAutoUpdate is set to geAUTOUPD_DEFER(2) to cause record
changes to be deferred (that is, saved but not updated in the database),
geUndoAll discards all record changes performed on the statement but not
applied to the database. The changes discarded include any saved changes
on records other than the current record, any unsaved records created by
calling geRecNew, and any new values placed in the current record by calls
to gePut functions.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

res_code is the result code returned by geUndoAll, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

hdbc = geConnect (" DSN=CEDBF") ;
res_code = geSet Aut oUpdat e (hdbc, geAUTOUPD DEFER) ;
hstm = geExecSQ (hdbc, "SELECT * FRCM enp") ;

res_code = geFet chNext (hstnt) ;

res_code = gePutChar (hstnt, 1, "", "Rachel™) ;
res_code = geFet chNext (hstnt) ;

res_code = gePutChar (hstnt, 1, "", "Eddie") ;
res_code = geFet chNext (hstnt) ;

res_code = geUndoAl |l (hstnt) ;

res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | geUniqueWhereClause and geUniqueWhereClauseBuf 468

geUniqgueWhereClause and geUniqueWhereClauseBuf

These functions return a Where clause that attempts to uniquely identify the
current record in an active Select statement.

Syntax ptrstr where_cl ause geUni queWered ause (intl16 hstnt)

int1l6 res_code gelni queWered auseBuf (
int16 hstnt,
ptrstr cl ause_buf)

Description geUnigueWhereClause and geUniqueWhereClauseBuf return the Where
clause being used to identify the current record in an active Select statement.
The Where clause attempts to uniquely identify the current record on calls to
geRecUpdate, geRecDelete, and geRecLock.

These functions use the columns specified by geRecSetKey if that function is
called. If no columns are specified as a primary key, DTK chooses a key that
includes all appropriate columns. For most databases, this includes all
searchable, non-character columns and character columns that are not over
256 bytes long.

geUniqueWhereClause returns a pointer to the Where clause string. This
string is stored in a buffer maintained by DTK. You must copy the string out of
this buffer before you call another DTK function, because the next function
may use the same buffer.

With geUniqueWhereClauseBuf, you pass in a pointer to a buffer you have
allocated. The Where clause string is put in the buffer. You must make sure
that the buffer is large enough to hold the returned string.

If you are not currently positioned on a record, these functions return null.

Calling these functions causes DTK to generate a unique key if you have not
already defined one with geRecSetKey.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo w | geUniqueWhereClause and geUniqueWhereClauseBuf 469

Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

clause_buf points to an allocated buffer for the resulting clause.

res_code is the result code returned by geUniqueWhereClauseBuf, which
returns the same set of result codes as geErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = geConnect ("DSN=CEDBF') ;
hstmt = geExecSQ (hdbc, "SELECT * FROM enp") ;
res_code = geFetchNext (hstnt) ;
uni que = geUni queWier ed ause (hstnt) ;

geEndSQ. (hstnt)
geDi sconnect (hdbc)

res_code
res_code

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geValChar and geValCharBuf 470

geValChar and geValCharBuf

Syntax

Description

These functions return a column value as a character string.

ptrstr char_val geVal Char (
int16 hstnt,
int16 col _num
ptrstr fnt_string,
i nt 16 max_| en)

int1l6 res_code geVal CharBuf (
i nt 16 hstnt,
ptrstr char _val,
i nt 16 col _num
ptrstr fnt_string,
i nt 16 max_| en)

geValChar and geValCharBuf return the value of a column in the current
record as a character string. If the data type of the column is not a character
string, the value is converted to a character string.

When you use geValChar, the function returns a pointer to the string. The
string is stored in a buffer maintained by DTK. Copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

When you use geValCharBuf, you pass a pointer to a buffer you have
allocated. The string is put in the buffer. Make sure the buffer is large enough
to hold the returned string.

Format number and date values by providing a format string (see “Format
Strings” on page 59).

If the data type of the column is a character string (type 1 or 2), you may
specify the maximum length of data to be returned.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Parameters

Chapter 10 DTK Functions
geValChar and geValCharBuf 471

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the column number whose value is to be returned. The first
column number is 1.

fmt_string is the format string. If the column’s data type is numeric or a date-
time type (types other than 1 or 2), the format string specifies how to format
the value when converting it to a character string. If no format string is given,
“GN” is used for numbers and “GD” is used for date-time values.

max_len is the maximum number of characters that are to be returned if the
column’s data type is character string (type 1 or 2). If max_len is zero, the
entire string is returned (up to 1000 characters). If max_len is not zero and
the column’s data type is not 1 or 2, an error is returned.

max_len is typically used either because your macro language limits the size
of a character string that is less than the size of the values in the database, or
because the database values are very large and you want to retrieve only
part of the value.

For max_len values greater than zero, the actual limit is a little less than 64K
(65280 bytes or characters, to be exact). However, if this is not sufficient for
your needs, you can make multiple calls to geValChar and retrieve the value
in pieces.

If you use a non-zero max_len value to retrieve part of a value, you can call
geValChar again on the same column to retrieve more of the value. For
example, you can retrieve a 4000-character value 500 characters at a time by
calling geValChar 8 times, each time setting max_len to 500. See “Blobs and
Memos” on page 57 for more information.

If you specify a max_len of zero, geValChar returns the entire value with an
upper limit of 1000 characters. If the value is longer than 1000 characters,
you receive only the first 1000 characters. Call geValChar again to get the
second 1000 characters.

char_val is the returned character value.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

Notes

Chapter 10 DTK Functions
geValChar and geValCharBuf 472

res_code is the result code returned by geValCharBuf, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

To get the values of the first column for every record in the dBASE employee
file:

hdbc = geConnect (" DSN=CEDBF") ;

hstmt = geExecSQ (hdbc, "SELECT * FROM enp") ;
whi |l e (geFet chNext (hstnt) == 0) {

val ue = geval Char (hstnt,1,"",0) ;

val | en = geDatalLen (hstm) ;

}
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

Column values must be retrieved starting with the first column and stepping
through the columns in order (column 1, 2, 3, etc.). You can skip columns, but
you cannot get a previous column’s value. You cannot retrieve the same
column’s value more than once unless max_len is used to retrieve part of a
value.

These functions add a zero byte to the end of each character string value.
This is the C convention and is supported by most macro languages.
Following a call to a geVal function, geDatalLen returns the actual number of
characters returned (not counting the zero byte). If the column value is null,
geDatalLen returns geNULL_DATA (-2). If the entire column value is not
returned by geValChar, geDatalLen indicates that the value was truncated by
returning qeTRUNCATION (-1). This occurs if a non-zero max_len is
specified and the length of the column value is greater than max_len, or if a
zero max_len is specified and the length of the column value is greater than
1000 characters.

Following a call to a geVal function, geWarning also returns geNULL_DATA (-
2) if the column value is null, or geTRUNCATION (-1) if the column value is
truncated.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

| GoTo W I geValChar and geValCharBuf 473

See Also geDatalen, geWarning, geValMultiChar and geValMultiCharBuf,
geGetParamChar and geGetParamCharBuf.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geValDecimal and geValDecimalBuf 474

geValDecimal and geValDecimalB uf

These functions return a column value as a decimal number.

Syntax ptrstr dec_val geVal Decimal (
int16 hstnt,
int16 col _num
intl6 preci si on,
int16 scal e)

int1l6 res_code geVal Deci mal Buf (
int16 hstnt,
ptrstr dec_val,
i nt 16 col _num

int16 preci sion,
int16 scal e)
Description When you use geValDecimal, the function returns a pointer to the value. The

value is stored in a buffer maintained by DTK. Copy the value out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

When you use geValDecimalBuf, you pass in a pointer to a buffer you have
allocated. The value is put in the buffer. Make sure the buffer is large enough
to hold the returned value.

geValDecimal and geValDecimalBuf return the value of a column in the
current record as a decimal number. If the data type of the column is not
decimal number, the value is converted to a decimal number (type 3).

If the column’s data type is character string (type 1 or 2) and the column’s
value is not a number, the value 0 is returned.

Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

Notes

Chapter 10 DTK Functions
geValDecimal and geValDecimalBuf 475

col_num is the column number whose value is to be returned. The first
column number is 1.

precision is the total number of digits to be returned in the decimal value.

scale is the number of digits right of the decimal point to be returned in the
decimal value.

dec_val is the returned decimal value.

res_code is the result code returned by geValDecimalBuf, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

To get the values of the SALARY column for every record in the dBASE
employee file:

hdbc = geConnect (" DSN=CEDBF") ;

hstmt = geExecSQ (hdbc, "SELECT sal ary FROM enp") ;
whi |l e (geFetchNext (hstnt) == 0) {
val ue = geVal Deci mal (hstnt, 1, 10, 2) ;

}
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

Column values must be retrieved starting with the first column and stepping
through the columns in order (column 1, 2, 3, etc.). You can skip columns, but
you cannot get a previous column’s value. You cannot retrieve the same
column’s value more than once.

Values are formatted using the Binary Coded Decimal (BCD) format. This
format is described in “Decimal Number Format” on page 55.

Since most macro languages do not support the BCD format, you may find it
more convenient to retrieve decimal columns as floating-point numbers using
geValFloat or geValDouble, or as character strings using geValChar or
geValCharBuf.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geValDecimal and geValDecimalBuf 476

Following a call to a geVal function, geDatalLen returns the actual number of
bytes returned. If the column value is null, geDatalLen returns geNULL_DATA

(-2).

Following a call to a geVal function, geWarning also returns geNULL_DATA (-
2) if the column value is null.

See Also geDatalLen, geWarning, geGetParamDecimal and geGetParamDecimalBuf.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geValDouble 477

geValDouble
geValDouble returns a column’s value as a double-precision floating-point
number.
Syntax float64 dbl _val geVal Double (int16 hstmt, intl6 col _num
Description geValDouble returns the value of a column in the current record as double-

precision floating-point. If the data type of the column is not double-precision
floating-point (type 7), the value is converted to this data type.

If the column’s data type is character string (type 1 or 2) and the column’s
value is not a number, the value 0 is returned.

Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the column number whose value is to be returned. The first
column number is 1.

dbl_val is the returned value.

Example To get the values of the SALARY column for every record in the dBASE
employee file:

hdbc = geConnect (" DSN=CEDBF") ;

hstmt = geExecSQ (hdbc, "SELECT sal ary FROM enp") ;
whi |l e (geFetchNext (hstnt) == 0) {
val ue = geVal Double (hstnt,1) ;

}
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

GoT Chapter 10 DTK Functions
I cfo W I geValDouble 478
Notes Column values must be retrieved starting with the first column and stepping

through the columns in order (column 1, 2, 3, etc.). You can skip columns, but
you cannot get a previous column’s value. You cannot retrieve the same
column’s value more than once.

Following a call to a geVal function, geDatalLen returns the actual number of
bytes returned. If the column value is null, geDatalLen returns geNULL_DATA

(-2).

Following a call to a geVal function, geWarning also returns geNULL_DATA (-
2) if the column value is null.

See Also geDatalen, geWarning, geGetParamDouble.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I geValFloat 479

geValFloat
geValFloat returns a column’s value as a floating-point number.

Syntax float32 flt_val geValFloat (intl6 hstnt, int1l6 col_num

Description geValFloat returns the value of a column in the current record as floating-
point. If the data type of the column is not floating-point (type 6), the value is
converted to this data type.
If the column’s data type is character string (type 1 or 2) and the column’s
value is not a number, the value O is returned.

Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.
col_num is the column number whose value is to be returned. The first
column number is 1.
flt_val is the returned value.

Example To get the values of the SALARY column for every record in the dBASE

employee file:
hdbc = geConnect (" DSN=CEDBF") ;

hstmt = geExecSQ (hdbc, "SELECT sal ary FROM enp") ;
whi |l e (geFetchNext (hstnt) == 0) {
value = geVal Float (hstm,1) ;

}
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

GoT Chapter 10 DTK Functions
| GoTo = | geValFloat 480
Notes Column values must be retrieved starting with the first column and stepping

through the columns in order (column 1, 2, 3, etc.). You can skip columns, but
you cannot get a previous column’s value. You cannot retrieve the same
column’s value more than once.

Following a call to a geVal function, geDatalLen returns the actual number of
bytes returned. If the column value is null, geDatalLen returns geNULL_DATA

(-2).

Following a call to a geVal function, geWarning also returns geNULL_DATA (-
2) if the column value is null.

See Also geDatalen, geWarning, geGetParamFloat.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geValint 481

geValint
geValint returns a column’s value as a 2-byte integer.

Syntax intle int_val geVallnt (intl6 hstnt, intl16 col _num

Description geValint returns the value of a column in the current record as a 2-byte
integer. If the data type of the column is not 2-byte integer (type 5), the value
is converted to this data type.
If the column’s data type is character string (type 1 or 2) and the column’s
value is not a number, the value O is returned.

Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.
col_num is the column number whose value is to be returned. The first
column number is 1.
int_val is the returned value.

Example To get the values of the SALARY column for every record in the dBASE

employee file:
hdbc = geConnect (" DSN=CEDBF") ;

hstm = geExecSQ (hdbc, "SELECT sal ary FROM enp") ;
whi |l e (geFetchNext (hstnt) == 0) {
value = gevalInt (hstnt,1) ;

}
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions
| GoTo w | gevalint 482
Notes Column values must be retrieved starting with the first column and stepping

through the columns in order (column 1, 2, 3, etc.). You can skip columns, but
you cannot get a previous column’s value. You cannot retrieve the same
column’s value more than once.

Following a call to a geVal function, geDatalLen returns the actual number of
bytes returned. If the column value is null, geDatalLen returns geNULL_DATA

(-2).

Following a call to a geVal function, geWarning also returns geNULL_DATA (-
2) if the column value is null.

See Also geDatalen, geWarning, geGetParamint.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geValLong

483

geValLong

Syntax

Description

Parameters

Example

geVallLong returns a column’s value as a 4-byte integer.
int32 long_val geVallLong (intl6 hstnt, intl6 col _num

geValLong returns the value of a column in the current record as a 4-byte
integer. If the data type of the column is not a 4-byte integer (type 4), the
value is converted to this data type.

If the column’s data type is character string (type 1 or 2) and the column’s
value is not a number, the value 0 is returned.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

col_num is the column number whose value is to be returned. The first
column number is 1.

long_val is the returned value.

To get the values of the SALARY column for every record in the dBASE
employee file:

hdbc = geConnect (" DSN=CEDBF") ;

hstm = geExecSQ (hdbc, "SELECT sal ary FROM enp") ;
whi |l e (geFetchNext (hstnt) == 0) {
val ue = geval Long (hstnt,1) ;

}
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

DataDirect Developer’s Toolkit Programmer’s Guide

GoT Chapter 10 DTK Functions
I olo W I geValLong 484
Notes Column values must be retrieved starting with the first column and stepping

through the columns in order (column 1, 2, 3, etc.). You can skip columns, but
you cannot get a previous column’s value. You cannot retrieve the same
column’s value more than once.

Following a call to a geVal function, geDatalLen returns the actual number of
bytes returned. If the column value is null, geDatalLen returns geNULL_DATA

(-2).

Following a call to a geVal function, geWarning also returns geNULL_DATA (-
2) if the column value is null.

See Also geDatalen, geWarning, geGetParamLong.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geValMultiChar and geValMultiCharBuf 485

geValMultiChar and geValMultiCharB uf

Syntax

Description

These functions return the values of multiple columns as a single character
string.

ptrstr val geval MiltiChar (
int16 hstnt,
int16 start _col _num
int16 end_col _num
ptrstr num fnt_string,
ptrstr date_fnt_string,
ptrstr separat or)

int1l6 res_code geVal Mil ti Char Buf (
int16 hstnt,
ptrstr val ,
int16 start _col _num
i nt 16 end_col _num
ptrstr num fnt_string,
ptrstr date_fnt_string,
ptrstr separat or)

geValMultiChar and geValMultiCharBuf return the values of several columns
in the current record as a single character string. Each column value is
separated by a character you specify, typically either Tab (9) or comma (,).

If the data type of the column is not character string, the value is converted to
a character string. Number and date values are formatted by providing a
format string (see “Format Strings” on page 59).

When you use geValMultiChar, the function returns a pointer to the string.
The string is stored in a buffer maintained by DTK. Copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Parameters

Chapter 10 DTK Functions
geValMultiChar and geValMultiCharBuf 486

When you use geValMultiCharBuf, you pass in a pointer to a buffer you have
allocated. The string is put in the buffer. Make sure the buffer is large enough
to hold the returned string.

You can combine the use of geValChar and geValMultiChar to retrieve the
values in a record. For example, you can call geValChar to get the value of
column 1, then call geValMultiChar to retrieve the values of columns 2—4. You
should mix calls to geValChar and geValMultiChar in the following situations:

® Two or more numeric (or date) columns are in the record and you want to
use different format strings for each column. You can specify only one
numeric (or date) format for each call to geValMultiChar.

® One or more columns may contain character strings whose length is
greater than 1000 characters. geValMultiChar truncates column values to
1000 characters. To retrieve larger character strings, use geValChar with
a non-zero max_len parameter.

® Your macro language has a limit on the size of character strings, and the
sum of the sizes of the columns in the record exceeds this limit.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

start_col_num is the column number of the first column whose value is to be
returned. Column 1 is the first column.

end_col_num is the column number of the last column whose value is to be
returned. Column 1 is the first column.

num_fmt_string is the format string to be used to convert all numeric columns
to character strings. If no format string is given, “GN” is used.

date_fmt_string is the format string to be used to convert all date-time
columns to character strings. If no format string is given, “GD” is used.

separator is the character to be used to separate the column values in the
resulting string.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geValMultiChar and geValMultiCharBuf 487

val is the returned character string containing the values of the specified
columns. The last value is followed by a zero rather than a separator
character.

res_code is the result code returned by geValMultiCharBuf, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example To get the FIRST_NAME, LAST_NAME, HIRE_DATE, and SALARY values,
separated by Tab characters, for every record in the EMP file:

hdbc = geConnect (" DSN=CEDBF") ;

hstmt = geExecSQ (hdbc, "SELECT first_name, |ast_nane,
hire_date, salary FROMenp") ;
whi | e (geFetchNext (hstnt) == 0) {

val ue = gevVal Mul ti Char (hstnt, 1, 4, "", "" ,

"\ x09") ;

/* value points to the string * /

/* containing four values * /

/* separated by Tabs and zero- * /

/* termnated. */

val | en = gebDatalLen (hstnt) ;

/* val _lenis the length of the * /

/* entire string. * /

}
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

Notes Column values must be retrieved starting with the first column and stepping
through the columns in order (column 1, 2, 3, etc.). You can skip columns, but
you cannot get a previous column’s value. You cannot retrieve the same
column’s value more than once.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W= I geValMultiChar and geValMultiCharBuf 488

These functions add a zero byte to the end of the string. This is the C
convention and is supported by most macro languages. Following a call to a
geVal function, geDatalen returns the actual number of characters returned
(including the separator characters but not counting the zero byte).

Unlike geValChar, you cannot determine if an individual column value was
null or truncated by checking if geDatalLen returns geNULL_DATA (-2) or
geTRUNCATION (-1). geDataLen never returns these values when calling
geValMultiChar since multiple values are returned in the string.

These functions are very similar to geValChar and geValCharBuf. They
functions provide better performance if the records you are retrieving contain
many columns.

See Also geDatalen, geErr, geValChar and geValCharBuf.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geVerNum and geVerNumBuf 489

geVerNum and geVerNumBuf

Syntax

Description

Parameters

Example

geVerNum and geVerNumBuf return the DTK version number that you are
using.

ptrstr ver_num geVer Num ()

int1l6 res_code geVer NunBuf (ptrstr ver _nun

When you use geVerNum, the function returns a pointer to the string. The
string is stored in a buffer maintained by DTK. Copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

When you use geVerNumBuf, you pass in a pointer to a buffer you have
allocated. The string is put in the buffer. Make sure the buffer is large enough
to hold the returned string.

ver_num is the DTK version number returned as a zero-terminated character
string.

res_code is the result code returned by gqeVerNumBuf, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

To retrieve the DTK version number:

ver_num = geVerNum () ;

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Chapter 10 DTK Functions
geWarning

geWarning
geWarning returns the warning generated by the last DTK function you
called. It is usually called after qeErr to determine if the database system or
the last function called returned any warnings.

Syntax intl6 res_code geWarning ()

Parameters res_code is the result code returned by geWarning. It is either a warning code

returned by the database system or one of the following values:

Constant Value
geLOCK_CHANGE_REC -8
geLOCK_MULTI_REC -7
geNULL_DATA -2
geTRUNCATION -1

DataDirect Developer’s Toolkit Programmer’s Guide

Description

A lock was obtained, but the record has
been changed since it was originally
read. (This can occur only for database
systems that require a log file.)

A lock was obtained, but more than one
record was locked. This occurred
because the primary key fields caused
more than one record to be selected

A geVal function returned a null value.
Also returned as the length from a
geDatalLen call.

A geVal function truncated the returned
value because the value’s size
exceeded the buffer.

Chapter 10 DTK Functions
I GoTo W I geWarning 491

Example hdbc = geConnect ("DSN=CEDBF') ;
if ((geBErr() == qeSUCCESS) && (geVér ni ng() == qeSUCCESS))
{
hstmt = geExecSQ (hdbc, "SELECT * FROM enp") ;
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

}

See Also geErr, qeDBETr.

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 10 DTK Functions

I GoTo W I geWarning 492

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Part 3: Appendixes

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix A Data Conversion Functions
Converting Hexadecimal Values to Binary 494

A Data Conversion Functiors

|GoTo v|

Data conversion functions let you convert values from any data type that DTK
supports to any other data type. For example, you can convert long integers
to floating-point values. These functions are not tied to a database
connection or SQL statement execution. You can call these functions even if
you are not using the Database functions described in the previous section.

When converting values to or from character strings, you may specify a
format string. When converting to character strings, the format string controls
the format of the resulting string. When converting from character strings, the
format string gives the format of the character string value to be converted.

Errors may be detected when converting values. Use the geErr, geErrMsg,
and geErrMsgBuf functions to determine if any errors have occurred.

Converting Hexadecimal Values to Binary

geHexToBin and geHexToBinBuf convert a hexadecimal value into a binary
value and place the result in a buffer.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Syntax

Description

Parameters

Example

Appendix A Data Conversion Functions
Converting Hexadecimal Values to Binary 495

ptrstr bin_value geHexToBin (
ptrstr hex_val ue,
i nt32 | engt h)

int1l6 res_code geHexToBi nBuf (
ptrstr bi n_val ue,
ptrstr hex_val ue,
i nt32 | engt h)

geHexToBin and geHexToBinBuf convert a hexadecimal value into a binary
value, and place the result in a buffer. The buffer must be at least half the size
of the hexadecimal value.

geHexToBin returns a pointer to the binary value. This value is stored in a
buffer maintained by DTK. You must copy the value out of this buffer before
you call another DTK function, because the next function may use the same
buffer.

With geHexToBinBuf, you pass in a pointer to a buffer you have allocated.
The binary value is put in the buffer. You must make sure that the buffer is
large enough to hold the returned value.

bin_value points to a buffer allocated by the user to accept the converted
hexadecimal value. It must be at least length/2 bytes long.

hex_value points to a string of length bytes of hexadecimal data. It is not a
null-terminated string.

length is the length of the binary string that hex_value points to.

res_code is the result code returned by geHexToBinBuf, which returns the
same set of result codes as qeErr. See Appendix D for a list of these result
codes.

bin_val = geHexToBin ("0A32Bl6F1AIA", 12)

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

Appendix A Data Conversion Functions
Converting to Character Strings 496

Converting to Character Strings

Syntax

These functions convert a value from any of DTK’s data types to a character
string. You can specify a format string to control the string formatting. The
format of decimal numbers is described in “Format Strings” on page 59.

Because these functions return a pointer, they have two forms (see
“Parameter Conventions” on page 151). The names are identical, except one
is appended with “Buf.” In the first form listed, the function returns a pointer to
the string. The string is stored in a buffer maintained by DTK. You must copy
the string out of this buffer before you call another DTK function, because the
next function may use the same buffer.

In the second form listed, appended with “Buf’, you pass in a pointer to a
buffer you have allocated. The string is put in the buffer. You must make sure
that the buffer is large enough to hold the returned string.

Converting from Date:

ptrstr char_val qeDateToChar (
ptrstr date_val,
ptrstr fnt_string)

int1l6 res_code geDateToCharBuf (
ptrstr char _val,
ptrstr date_val,
ptrstr fnt_string)

Converting from Decimal:

ptrstr char_val qeDeci nal ToChar (
ptrstr dec_val,
intl6 preci si on,
int16 scal e,
ptrstr fnt_string)

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix A Data Conversion Functions

| GoTo = | Converting to Character Strings 497

int1l6 res_code geDeci mal ToChar Buf (
ptrstr char _val,
ptrstr dec_val,
intl6 preci si on,
int16 scal e,
ptrstr fnt_string)

Converting from Double:

ptrstr char_val qgeDoubl eToChar (
float64 dbl _val,
ptrstr fnt_string)

int1l6 res_code geDoubl eToChar Buf (
ptrstr char _val,
float64 dbl _val,
ptrstr fnt_string)

Converting from Float:

ptrstr char_val qeFl oat ToChar (
float32 flt_val,
ptrstr fnt_string)

int1l6 res_code geFl oat ToChar Buf (
ptrstr char _val,
float32 flt_val,
ptrstr fnt_string)

Converting from Int:

ptrstr char_val gelntToChar (
intl6 i nt_val,
ptrstr fnt_string)

int1l6 res_code gel nt ToCharBuf (
ptrstr char _val,
i nt 16 int_val,
ptrstr fnt_string)

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Parameters

Example

Appendix A Data Conversion Functions
Converting to Character Strings 498

Converting from Long:

ptrstr char_val gelLongToChar (
i nt32 | ong_val ,
ptrstr fnt_string)

int1l6 res_code geLongToCharBuf (
ptrstr char _val,
i nt32 | ong_val ,
ptrstr fnt_string)

char_val is the returned character string value.

fmt_string is the format string (see “Format Strings” on page 59). If no format
string is given, numbers are formatted using GN, and dates are formatted
using GD.

date_val, dec_val, dbl_val, flt_val, int_val, and long_val are the values to be
converted.

res_code is the result code returned by the function, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

precision is the number of significant digits when converting from a decimal
number.

scale specifies the location of the decimal point when converting from a
decimal number.

To convert 125.3 to a character string formatted as money:
stringl = geDoubl eToChar (125.3, "$#, ##0.00") ;
To convert a Julian date value to a formatted date:

stringl = geDateToChar (jul, "mdd/ yyyy") ;

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix A Data Conversion Functions

| GoTo = | Converting Character Strings to Date Values 499

Converting Character Strings to Date Values

These functions convert a character string into a standard date value using
format strings that you specify.

Syntax ptrstr date_val ue geChar ToDate (
ptrstr char _val ue,
ptrstr fm _string)

int1l6 res_code geCharToDateBuf (
ptrstr dat e_val ue,
ptrstr char _val ue,
ptrstr fnt_string)

Description geCharToDate and geCharToDateBuf convert a character string formatted
using the format string into a standard date value using the specified format
string.

geCharToDate returns a pointer to the date value. This value is stored in a
buffer maintained by DTK. You must copy the value out of this buffer before
you call another DTK function, because the next function may use the same
buffer.

With geCharToDateBuf, you pass in a pointer to a buffer you have allocated.
The date value is put in the buffer. You must make sure that the buffer is large
enough to hold the returned value.

Parameters date_value points to a buffer allocated by the user to accept the converted
character value.

char_value points to the formatted character value to convert. If this character
value is null, the function returns a date value of “01/01/94.”

fmt_string is the string used to format the value pointed to by char_val.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

Appendix A Data Conversion Functions
Converting to Decimal Numbers 500

res_code is the result code returned by geCharToDateBuf, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

date val = geCharToDate (date_string, "nmm dd/yyyy") ;

Converting to Decimal Numbers

Syntax

These functions convert a value from any of DTK’s data types to a decimal
number. When converting from a character string, you can specify a format
string to give the format of the character string.

Because these functions return a pointer, they have two forms (see
“Parameter Conventions” on page 151). The names are identical, except one
is appended with “Buf.” In the first form listed, the function returns a pointer to
the string. The string is stored in a buffer maintained by DTK. You must copy
the string out of this buffer before you call another DTK function, because the
next function may use the same buffer.

In the second form listed, appended with “Buf’, you pass in a pointer to a
buffer you have allocated. The string is put in the buffer. You must make sure
that the buffer is large enough to hold the returned string.

Converting from Char:

ptrstr dec_val geChar ToDeci mal (
intl6 preci si on,
int16 scal e,
ptrstr char _val,
ptrstr fnt_string)

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix A Data Conversion Functions

| GoTo w | Converting to Decimal Numbers 501

int1l6 res_code geChar ToDeci mal Buf (
ptrstr dec_val,
i nt 16 preci si on,
int16 scal e,
ptrstr char _val,
ptrstr fnt_string)

Converting from Double:

ptrstr dec_val geDoubl eToDeci mal (
intl6 preci si on,
int16 scal e,
float64 dbl _val)

int1l6 res_code geDoubl eToDeci nal Buf (
ptrstr dec_val,
i nt 16 preci si on,
int16 scal e,
float64 dbl_val)

Converting from Float:

ptrstr dec_val geFl oat ToDeci mal (
intl6 preci si on,
int16 scal e,
float32 flt_val)

int1l6 res_code geFl oat ToDeci mal Buf (
ptrstr dec_val,
i nt 16 preci si on,
int16 scal e,
float32 flt_val)

Converting from Int:

ptrstr dec_val gelntToDeci mal (

int16 preci si on,
int16 scal e,
i nt 16 int_val)

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix A Data Conversion Functions

| GoTo w | Converting to Decimal Numbers 502

int1l6 res_code gelnt ToDeci mal Buf (
ptrstr dec_val,

int16 preci si on,
int16 scal e,
int16 i nt_val)

Converting from Long:

ptrstr dec_val gelLongToDeci mal (

int16 preci si on,
int16 scal e,
i nt32 | ong_val)

int1l6 res_code gelLongToDeci mal Buf (
ptrstr dec_val,

int16 preci sion,
intl6 scal e,
i nt32 | ong_val)
Parameters dec_val is the returned decimal number value.

precision is the number of significant digits in the result.
scale specifies the location of the decimal point in the result.

char_val, dbl_val, flt_val, int_val, and long_val are the values to be converted
to a decimal number.

fmt_string is the format string (see “Format Strings” on page 59). If no format
string is given, DTK assumes that the character string contains a number
formatted as GN. If the character string contains a date-time value, fmt_string
can be used to give its format, and the result will be the Julian value
represented by the date-time.

res_code is the result code returned by the function, which returns the same
set of result codes as geErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix A Data Conversion Functions

| GoTo w | Converting to Double-Precision Floating-Point Numbers 503

Example To convert a character string to a decimal number with 8 digits of precision
and 2 digits right of the decimal point:

stringl = geChar ToDeci mal (8, 2, "1500", "") :

To convert a character string containing a date-time value to a Julian decimal
number with 12 digits of precision and 2 digits right of the decimal point:

stringl = geChar ToDeci mal (12, 2, "04/07/53", " dd/
yy")

Converting to Double-Precision Floating-Point Numbers

These functions convert a value from any of DTK’s data types to an 8-byte
double-precision floating-point number (type 7).

When converting from a character string, you can specify a format string to
give the format of the character string.

Syntax float64 dbl val qgeCharToDouble (
ptrstr char _val,
ptrstr fnt_string)

float64 dbl _val geDateToDouble (ptrstr date_val)

float64 dbl _val geDecinmal ToDouble (

ptrstr dec_val ,

int16 preci si on,

int16 scal e)
float64 dbl _val geFl oat ToDoubl e (fl oat 32 flt_val)
float64 dbl _val gelntToDouble (int1l6 int_val)

float64 dbl _val gelLongToDouble (int32 1ong_val)

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Parameters

Example

Appendix A Data Conversion Functions
Converting to Floating-Point Numbers 504

dbl_val is the returned double float value.

char_val, flt_val, long_val, dec_val, int_val, and date_val are the values to be
converted to a double float.

fmt_string is the format string (see“Format Strings” on page 59). If no format
string is given, DTK assumes that the character string contains a number
formatted as “GN.” If the character string contains a date-time value,
fmt_string can be used to give its format, and the result will be the Julian
value represented by the date-time.

precision is the number of significant digits when converting from a decimal
number.

scale specifies the location of the decimal point when converting from a
decimal number.

To convert a character string to a double float:
dbl _val = geChar ToDoubl e ("1500", "") :

To convert a character string containing a date-time value to a Julian double
float:

dbl _val = geChar ToDoubl e ("04/07/53", " dd/yy") ;

Converting to Floating-Point Numbers

These functions convert a value from any of DTK’s data types to a 4-byte
floating-point number (type 6).

When converting from a character string, you can specify a format string to
give the format of the character string.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Syntax

Parameters

Example

Appendix A Data Conversion Functions
Converting to Floating-Point Numbers 505

float32 flt_val geCharToFl oat (
ptrstr char_val, ptrstr fnt_string)

float32 flt_val geDecinmal ToH oat (
ptrstr dec_val,
i nt 16 preci si on,
int16 scal e)

float32 flt_val geDoubl eToFl oat (fl oat64 dbl _val)
float32 flt_val gelntToF oat (int1l6 int_val)

float32 flt_val geLongToFloat (int32 [|ong_val)

flt_val is the returned floating-point value.

char_val, dbl_val, long_val, dec_val, and int_val are the values to be
converted to a floating-point number.

fmt_string is the format string (see “Format Strings” on page 59). If no format
string is given, DTK assumes that the character string contains a number
formatted as GN. If the character string contains a date-time value, fmt_string
can be used to give its format, and the result will be the Julian value
represented by the date-time.

precision is the number of significant digits when converting from a decimal
number.

scale specifies the location of the decimal point when converting from a
decimal number.

To convert a character string to a floating-point number:
flt_val = geCharToFl oat ("1500", "") :

To convert a character string containing a date-time value to a Julian floating-
point number:

flt_val = geChar ToFl oat ("04/07/53", "rmi dd/yy") ;

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix A Data Conversion Functions

| GoTo w | Converting Binary Values to Hexadecimal 506

Converting Binary Values to Hexadecimal

geBinToHex and qeBinToHexBuf convert a binary value into a hexadecimal
value.

Syntax ptrstr hex_val ue geBi nToHex (ptrstr bi n_val ue, intl16
| engt h)

int1l6 res_code geBi nToHexBuf (
ptrstr hex_val ue,
ptrstr bi n_val ue,
i nt 16 | engt h)

Description geBinToHex and geBinToHexBuf convert a binary value into a hexadecimal
value and place the result in a buffer. The buffer must be twice the size of the
binary value.

Because this function returns a pointer, it has two forms (see “Parameter
Conventions” on page 151).

geBinToHex returns a pointer to the hexadecimal value. This value is stored
in a buffer maintained by DTK. You must copy the value out of this buffer
before you call another DTK function, because the next function may use the
same buffer.

With geBinToHexBuf, you pass in a pointer to a buffer you have allocated.
The hexadecimal value is put in the buffer. You must make sure that the
buffer is large enough to hold the returned value.

Parameters hex_value points to a buffer allocated by the user to accept the converted
binary value. It must be at least 2 * length bytes long.

bin_value points to a string of length bytes of binary data. It is not a null-
terminated string.

length is the length of the binary string pointed to by bin_value.

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix A Data Conversion Functions

| GoTo = | Converting to Integers 507

res_code is the result code returned by geBinToHexBuf, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hex_val ue = geBi nToHex (bi n_val ue, bin_| ength) ;

Converting to Integers

These functions convert a value from any of DTK’s data types to a 2-byte
integer (type 5). When converting from a character string, you can specify a
format string to give the format of the character string.

Syntax intlée int_val geCharTolnt (ptrstr char_val, ptrstr
fnt_string)

intl6 int_val qeDecinal Tolnt (

ptrstr dec_val,

int16 preci si on,

int16 scal e)
int1l6 int_val qeDoubl eTolnt (float64 dbl _val)
intl6 int_val geFloatTolnt (float32 flt_val)

intl6 int_val qgelLongTolnt (int32 |ong_val)

Parameters int_val is the returned integer value.

char_val, dbl_val, flt_val, dec_val, and long_val are the values to be
converted to an integer.

fmt_string is the format string (see Chapter 4, “Retrieving and Converting
Data,” on page 37). If no format string is given, DTK assumes that the
character string contains a number formatted as GN.

precision is the number of significant digits when converting from a decimal
number.

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix A Data Conversion Functions

| GoTo = | Converting to Long Integers 508

scale specifies the location of the decimal point when converting from a
decimal number.

Example To convert a character string to an integer:
int_val = geCharTolnt ("1500", "") ;
Notes You should not attempt to convert date-time values to integers because the

resulting Julian value is too large for a 2-byte integer.

The format of decimal numbers is described in “Format Strings” on page 59.

Converting to Long Integers

These functions convert a value from any of DTK’s data types to a 4-byte
integer (type 4).

When converting from a character string, you can specify a format string to
give the format of the character string.

Syntax int32 |ong val geCharToLong (
ptrstr char_val, ptrstr fnt_string)

int32 | ong_val geDecimal ToLong (

ptrstr dec_val ,

int16 preci si on,

int16 scal e)
int32 | ong_val geDoubl eToLong (fl oat 64 dbl _val)
int32 | ong_val geFloatToLong (fl oat 32 flt_val)
int32 | ong_val gelntToLong (int16 int_val)

int32 | ong_val geDateToLong (ptrstr date_val)

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix A Data Conversion Functions

| GoTo = | Converting to Long Integers 509

Parameters long_val is the returned long integer value.

char_val, dbl_val, flt_val, dec_val, int_val, and date_val are the values to be
converted to a long integer.

fmt_string is the format string (see“Format Strings” on page 59). If no format
string is given, DTK assumes that the character string contains a number
formatted as GN. If the character string contains a date-time value, fmt_string
can be used to give its format, and the result will be the Julian value
represented by the date-time.

precision is the number of significant digits when converting from a decimal
number.

scale specifies the location of the decimal point when converting from a
decimal number.

Example To convert a character string to a long integer:
| Ong_VaI = qeO']ar TOLOﬂg (n 1500u , n n) ,

To convert a character string containing a date-time value to a Julian long
integer:

I ong_val = geChar ToLong ("04/07/53", "mm dd/yy") ;

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix A Data Conversion Functions

| GoTo = | Converting to Long Integers 510

DataDirect Developer’s Toolkit Programmer’s Guide

| GoTo w |

B For Microsoft Visual Basic
Users

This appendix explains how to use DTK with Visual Basic (VB), version 2.0 or
higher, to develop VB applications that access data from the databases DTK
supports.

Using DTK with Visual Basic

You can call DTK’s DLL functions directly from VB. For background
information, please read Chapter 22, “Calling Procedures in DLLs,” in the
Visual Basic Programmer’s Guide.

DTK comes with sample VB applications that can be used as template for
developing other VB applications. By default, these examples are installed in
subdirectories of the EXAMPLES directory under your install directory.

Every DTK function that can be called from VB is declared in the code
module file, QEDEMO.BAS. You can copy these declarations into the code
module of your application so that you do not have to enter them by hand.

This appendix contains the following sections:

®* “AVB Example” on page 510 shows the code for a sample VB application
that calls DTK functions.

® “DTK Functions for Visual Basic Users” on page 512 introduces the three
kinds of functions VB can use.

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix B For Microsoft Visual Basic Users
I GoTo W= I A VB Example 510
® “Standard DTK Functions” on page 513 explains how to call the majority
of DTK functions.
® “VB-Specific Functions” on page 513 covers the four DTK functions
designed for VB users only.
* “Buf’ Functions” on page 524 lists the functions VB users use as
alternatives to those functions that return a pointer to a value.
* “Data Types” on page 527 gives the VB equivalents for DTK'’s data types.
A VB Example

The following sample code shows how to use Visual Basic to connect and
disconnect from the dBASE database system, use the VB-specific functions
to fetch and update a record, and check for errors. The VB-specific functions
pass current record information into arrays. The line-continuation arrow

(0) denotes wrapped lines that must be entered as one line of code in the
Code window.

"Declare arrays to hold current record, format strings, and errors
D m RecordArray() As Varian t

DmFormat StringsArray() As Strin g
DmErrorsArray() As Intege r
Dimhdbc As Integer, hstnmt As Integer, res_code As Integer

"Call geConnect to connect to a data source. Check to see if hdbc == 0,
"which indicates that the connection failed.
hdbc = geConnect (" DRV=QEDBF")
"Error-handling routin e
If hdbc = 0 The n
MsgBox "qgeConnect failed, error =" + Str$(qekrr())
Exit Sub
End | f

"Call geExecSQ to select dept and salary values fromTim Gove's recor
hstmt = geExecSQ.(hdbc, "SELECT dept, salary FROM c:\qelib\enp
OWHERE first_nane = 'Tinothy' AND | ast_name = 'QGove'")

"Error-handling routin e

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix B For Microsoft Visual Basic Users
I GoTo W= I A VB Example 511

If hstnt = 0 The n
err_qge% = qekErr()
If err_ge% = 4 Then err_db& = geDBErr()
MsgBox "qgeExecSQ failed, error =" + Str$(err_qge® + "dberr =" +
Str$(err_db&)
res_code = geDi sconnect (hdbc)
Exit Sub
End | f

"Get the nunber of colums in the SQ statenen t
NunCol s% = geNunCol s(hstnt)
ReD m RecordArray(1 To NunmCol s%)
ReD m Format StringsArray(1 To NunCol s%)
ReDm ErrorsArray(1 To NunCol s%)
"Call geVBFetchNext to retrieve the record indicated by the SQ L
"statenen t
"This function stores the record' s values and other info in th e
‘array s
res_code = geVBFet chNext (hstnt, RecordArray(), FormatStringsArray(),
OErrorsArray())
"Error-handling routin e
If res_code <> 0 The n
MsgBox "qgeVBFet chNext failed, error =" + Str$(res_code)
Else
' Check whether errors occurred while fetching in a colum n
For n =1 To NunCols %
If ErrorsArray(n) <> 0 The n

MsgBox "qeVBFet chNext colum " + Str$(n) + " error =" +
OStr$(ErrorsArray(n))
End | f
Next n
End | f

'Set new dept and salary values for the current recor d
If res_code = 0 The n
RecordArray(1) = "D101 "
RecordArray(2) = "$42000 "
"Call qgeVBPutRecord to put the new values into the current recor d

res_code = geVBPut Record(hstnt, RecordArray(), FormatStringsArray(),
OErrorsArray())

If res_code <> 0 The n

MsgBox "qgeVBPut Record failed, error =" + Str$(res_code)
Hse

For n =1 To NunCols %
If ErrorsArray(n) <> 0 The n

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix B For Microsoft Visual Basic Users

I GoTo W I DTK Functions for Visual Basic Users 512

MsgBox "qeVBPut Record colum " + Str$(n) + " error =" +
OStr$(ErrorsArray(n))
End | f
Next n
End | f

"Call geRecUpdate to update the current record in the databas e
res_code = geRecUpdate(hstnt)
If res_code <> 0 The n
MsgBox "qgeRecUpdate failed, error =" + Str$(res_code)
End | f
"Call geEndSQ@ to end the SQ statenen t
res_code = geEndSQ.(hstnt)
If res_code <> 0 The n
MsgBox "qgeEndSQ. failed, error =" + Str$(res_code)
End | f
"Call qeDisconnect to disconnect froma data source
res_code = qgeD sconnect (hdbc)
If res_code <> 0 The n
MsgBox "qeDi sconnect failed, error =" + Str$(res_code)
End | f

DTK Functions for Visual Basic Users

To Visual Basic users, DTK has three kinds of functions:

® Standard DTK functions. Most of DTK'’s functions are standard functions
that can be called in VB just as they are in other development
environments.

® VB-specific functions. For VB users, DTK 2.x provides four functions to
simplify and speed up fetching and putting records: qeVBFetchNext,
geVBFetchPrev, geVBFetchRandom, and qeVBPutRecord.

® “Buf” functions. Because VB does not allow functions to return pointers to
values, DTK provides a set of alternate, “Buf” functions that fill memory
buffers that you must allocate.

The following sections tell you more about these functions.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Appendix B For Microsoft Visual Basic Users
Standard DTK Functions 513

Standard DTK Functions

The vast majority of DTK functions work the same in VB as they do in other
development environments. For example, you can insert, update, or delete
records in VB just as you do from Microsoft C++, by issuing a SQL Insert,
Update, or Delete statement using geExecSQL, or by calling geRecNew,
geRecUpdate, or geRecDelete. The previous chapters of this manual explain
how to call the standard DTK functions.

VB users cannot use the geBindCol function, nor any of those functions that
return a pointer to a value, such as geValChar. DTK provides the “Buf”
functions as alternatives.

VB-Specific Functions

Only VB users can call the four functions described in this section,
geVBFetchNext, geVBFetchPrev, geVBFetchRandom, and geVBPutRecord.
These functions provide a much faster and easier way to retrieve database
records than the geValBuf functions. The VB-specific functions treat records
as arrays of Variants, which are easier to manipulate than the data returned
from geValMultiCharBuf.

geVBFetchNext

Syntax

geVBFetchNext is used in VB applications to retrieve the next record from the
database.

intl6 res_code geVBFetchNext (intl6 hstnt, variant
RecordArray(), string FormatStringsArray(), intl6
ErrorsArray())

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Description

Parameters

Appendix B For Microsoft Visual Basic Users
geVBFetchNext 514

geVBFetchNext retrieves the next record from the database and passes
record values into the record array. If this is the first call to geVBFetchNext
following qeExecSQL, this function retrieves the first record. The retrieved
record becomes the current record.

geVBFetchNext passes the current record’s values into the record array as
Variants. If a column’s data type is numeric or date-time, the corresponding
element in the format string array can be set to a format string to format the
data. If an error occurs while fetching a particular column, the corresponding
element in the error array is set to the error returned.

The arrays passed to the function must be declared to contain at least as
many field values as there are in the current record, or in other words, the
number of columns present in the SQL Select statement.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

RecordArray() is a handle to a dynamic array of type Variant. Each element in
the array corresponds to a column in the Select statement and therefore a
value in the current record. If a column is of type numeric or date-time and a
format string is specified for the column, the column value is formatted and
converted into a character string.

FormatStringsArray() is a handle to a dynamic array of format strings, one for
each column returned. Each array element can be either a format string,
which formats date or number data, or a null or empty string value, in which
case the corresponding data is returned with no formatting. Numeric and
date-time columns with format strings are formatted and converted into
character strings. Format strings are ignored for columns of other data types.

ErrorsArray() is a handle to a dynamic array of errors that occur as the
function retrieves the current record. If an error occurs as the function fetches
the value of a column, the corresponding element contains error values such
as those returned by the geErr function.

res_code is the result code returned by geVBFetchNext, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

Notes

Appendix B For Microsoft Visual Basic Users
geVBFetchNext 515

To fetch all records from the employee database file:

D m RecordArray() As Varian t
DmFormat StringsArray() As Strin g
DmErrorsArray() As Intege r

hstmt = geExecSQ (hdbc, "SELECT * FROM enp") ;

ReDi m RecordArray(1 To NunCol s%)
ReDi m Format StringsArray(1l To NunCol s%)
ReDmErrorsArray(1l To NunCol s%)

whi | e (qgeVBFet chNext (hstnt, RecordArray(),
OFormat StringsArray(), ErrorsArray() = 0)

Wnd

Whenever you acquire a new hstmt, you must call geVBFetchNext to move
the cursor to the first record before you can perform any other operations on
the data.

If geSetAutoUpdate has been called to enable auto-updating, and changes
have been made to the current record via calls to geVBPutRecord, a call to
geVBFetchNext updates the current record.

When geVBFetchNext reaches the last record returned by the Select
statement, it returns a result of geEOF (-5).

Sometimes, calling the appropriate geValBuf function is a more efficient way
to get the values in the current buffer. For example, when you want to retrieve
one value of a character field in the Select statement, call geFetchNext and
geValCharBuf instead of geVBFetchNext.

geVBFetchNext returns values of DTK data type 2 (variable length character
string) as strings. Note that Visual Basic strings may have null characters in
them.

geVBFetchNext trims any trailing blanks on data returned as strings, unless
the data is of DTK type 2.

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix B For Microsoft Visual Basic Users

I GoTo W I geVBFetchPrev 516

Null database values are returned as an empty string for string and date
types, or as 0 for numeric types. When geVBFetchNext returns a null value,
the corresponding entry in the error array will be set to qgeNULL_DATA

(-2).

See Also geFetchNext, geSetSelectOptions, geVal functions, geVBFetchPrev,
geVBFetchRandom.

geVBFetchPrev

geVBFetchPrev retrieves the previous record from the database in VB
applications.

Syntax intl6 res_code geVBFetchPrev (int1l6 hstnt, variant
RecordArray(), string FormatStringsArray(), intl6
ErrorsArray())

Description geVBFetchPrev retrieves the previous record from the database and passes
record values into the record array. geVBFetchPrev cannot be called unless
geSetSelectOptions has been called to enable backwards scrolling.

geVBFetchPrev passes the current record’s values into the record array as
Variants. If a column’s data type is numeric or date-time, the corresponding
element in the format array can be set to a format string that formats the data.
If an error occurs while fetching a particular column, the corresponding
element in the error array is set to the error returned.

The arrays passed to the function must be declared to contain at least as
many field values as there are in the current record, or in other words, the
number of columns present in the SQL Select statement.

Parameters hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

Appendix B For Microsoft Visual Basic Users
geVBFetchPrev 517

RecordArray() is a handle to a dynamic array of type Variant. Each element in
the array corresponds to a column in the Select statement and therefore a
value in the current record. If a column is of type numeric or date-time and a
format string is specified for the column, the column value is formatted and
converted into a character string.

FormatStringsArray() is a handle to a dynamic array of format strings, one for
each column returned. Each array element can be either a format string,
which formats date or number data, or a null or empty string value, in which
case the corresponding data is returned with no formatting. Numeric and
date-time columns with format strings are formatted and converted into
character strings. Format strings are ignored for columns of other data types.

ErrorsArray() is a handle to a dynamic array of errors that occur as the
function retrieves the current record. If an error occurs as the function fetches
the value of a column, the corresponding element contains error values such
as those returned by the geErr function.

res_code is the result code returned by geVBFetchPrev, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

To fetch the previous record from the employee database file:

D m RecordArray() As Varian t
DmFormat StringsArray() As Strin g
DmErrorsArray() As Intege r

hstm = geExecSQ (hdbc, "SELECT * FRCM enp") ;
res_code = geSet Sel ect ptions (hstnt, 1)

ReDi m RecordArray(1 To NunCol s%)
ReDi m Format StringsArray(1 To NunCol s%)
ReDmErrorsArray(1l To NunCol s%)

geVBFet chPrev(hstnt, RecordArray(),
Format StringsArray(),
OErrorsArray()

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix B For Microsoft Visual Basic Users

| GoTo = | geVBFetchRandom 518

Notes If geSetAutoUpdate has been called to enable auto-updating, and changes
have been made to the current record via calls to geVBPutRecord, a call to
geVBFetchPrev updates the current record.
Sometimes, calling the appropriate geValBuf function is a more efficient way
to get the values in the current buffer. For example, when you want to retrieve
one value of a character field in the Select statement, call geFetchPrev and
geValCharBuf instead of geVBFetchPrev.
geVBFetchPrev returns values of DTK data type 2 (variable length character
string) as strings. Note that Visual Basic strings may have null characters in
them.
geVBFetchPrev trims any trailing blanks on data returned as strings, unless
the data is of DTK type 2.
Null database values are returned as an empty string for string and date
types, or as 0 for numeric types. When geVBFetchPrev returns a null value,
the corresponding entry in the error array will be set to qgeNULL_DATA
(-2).

See Also geFetchPrev, geVal functions, geSetQueryTimeout, geVBFetchNext,
geVBFetchRandom.

geVBFetchRandom
geVBFetchRandom retrieves a specific record from the database in VB
applications.

Syntax int1l6 res_code geVBFetchRandom (i nt 16 hstnt, int32

rec_num variant RecordArray(), string
Format StringsArray(), intl6 ErrorsArray())

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Description

Parameters

Appendix B For Microsoft Visual Basic Users
geVBFetchRandom 519

geVBFetchRandom retrieves a specified record from the database and
passes record values into the record array. geVBFetchRandom cannot be
called unless geSetSelectOptions has been called to enable backwards
scrolling.

geVBFetchRandom passes the current record’s values into the record array
as Variants. If a column’s data type is numeric or date-time, the
corresponding element in the format array can be set to a format string that
formats the data. If an error occurs while fetching a particular column, the
corresponding element in the error array is set to the error returned.

The arrays passed to the function must be declared to contain at least as
many field values as there are in the current record, or in other words, the
number of columns present in the SQL Select statement.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

rec_num is the record number to be read. The first record is 1.

RecordArray() is a handle to a dynamic array of type Variant. Each element in
the array corresponds to a column in the Select statement and therefore a
value in the current record. If a column is of type numeric or date-time and a
format string is specified for the column, the column value is formatted and
converted into a character string.

FormatStringsArray() is a handle to a dynamic array of format strings, one for
each column returned. Each array element can be either a format string,
which formats date or number data, or a null or empty string value, in which
case the corresponding data is returned with no formatting. Numeric and
date-time columns with format strings are formatted and converted into
character strings. Format strings are ignored for columns of other data types.

ErrorsArray() is a handle to a dynamic array of errors that occur as the
function retrieves the current record. If an error occurs as the function fetches
the value of a column, the corresponding element contains error values such
as those returned by the geErr function.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

Notes

Appendix B For Microsoft Visual Basic Users
geVBFetchRandom 520

res_code is the result code returned by geVBFetchRandom, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

To fetch the last record from the employee database file:

D m RecordArray() As Varian t
DmFormat StringsArray() As Strin g
DmErrorsArray() As Intege r

hstm = geExecSQ (hdbc, "SELECT * FRCM enp”)
res_code = geSet Sel ect ptions (hstnt, 1)

num recs% = geFet chNunmRecs (hstmnt)

ReDi m RecordArray(1 To NunCol s%)
ReDi m Format StringsArray(1l To NunCol s%)
ReDmErrorsArray(1l To NunCol s%)

geVBFet chRandom (hstmt, RecordArray(),
OFormat StringsArray(), ErrorsArray())

If geSetAutoUpdate has been called to enable auto-updating, and changes
have been made to the current record via calls to geVBPutRecord functions,
a call to qeVBFetchRandom updates the current record.

Sometimes, calling the appropriate geValBuf function is a more efficient way
to set the values in the current buffer. For example, when you want to retrieve
one value of a character field in the Select statement, call geFetchRandom
and geValCharBuf instead of geVBFetchRandom.

geVBFetchRandom returns values of DTK data type 2 (variable length
character string) as strings. Note that Visual Basic strings may have null
characters in them.

geVBFetchRandom trims any trailing blanks on data returned as strings,
unless the data is of DTK type 2.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Appendix B For Microsoft Visual Basic Users
geVBPutRecord 521

Null database values are returned as an empty string for string and date
types, or as 0 for numeric types. When geVBFetchRandom returns a null
value, the corresponding entry in the error array is set to qeNULL_DATA

(-2).

See Also geVal functions, geVBFetchPrev, geVBFetchRandom.

geVBPutRecord
geVBPutRecord is used to set values in the current record buffer.

Syntax intl6 res_code geVBPutRRecord (int1l6 hstnt, variant
RecordArray(), string FormatStringsArray(), intl6
ErrorsArray())

Description geVBPutRecord updates the current record buffer with new values passed in

from the record array. Note that geVBPutRecord does not change the values
in the database. To actually modify the database, you must call
geRecUpdate.

If you are putting a value into a date-time column, you must also pass a
format string in the corresponding element in the format string array. If you do
not know the value’s format, you can use the Format$ function to convert the
date to a known format. Then you can set the corresponding element in the
format string array to match this format, for example,

RecordArray(2) = Fornat$(Text2.text, "mid/yy")
Format StringsArray(2) = "md/yy "

Similarly, if you are putting a string value into a numeric column, you can use
VB’s conversion functions to convert it to a numeric value. For example, the
following code converts the value in the Textl control to a Variant that is
internally represented as an Integer.

RecordArray(3) = Cvar (Ant (Textl.text))

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Parameters

Appendix B For Microsoft Visual Basic Users
geVBPutRecord 522

Refer to Visual Basic’'s Language Reference for more information on these
VB functions.

If an error occurs while putting a value into a particular column, the
corresponding element in the error array is set to the error returned.

The arrays passed to the function must be declared to contain at least as
many elements as there are columns in the SQL Select statement.

If any element of the record array contains a null value or an empty string,
geVBPutRecord puts a null value into the current record buffer. To avoid
overwriting values in the database, be sure to pass values in all elements of
the record array, even if they do not differ from the original database values.

hstmt is the handle to the statement returned by geExecSQL or
geSQLPrepare.

RecordArray() is a handle to a dynamic array of type Variant. Each element in
the array corresponds to a column in the Select statement and therefore a
value in the current record. If a column is of type numeric or date-time and a
format string is specified for the column, the column value is formatted and
converted into a character string.

FormatStringsArray() is a handle to a dynamic array of format strings, one for
each column returned. Each array element can be either a format string,
which formats date or number data, or a null or empty string value, in which
case the corresponding data is returned with no formatting. Numeric and
date-time columns with format strings are formatted and converted into
character strings. Format strings are ignored for columns of other data types.

ErrorsArray() is a handle to a dynamic array of errors that occur as the
function retrieves the current record. If an error occurs as the function fetches
the value of a column, the corresponding element contains error values such
as those returned by the geErr function.

res_code is the result code returned by qeVBPutRecord, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

Example

Notes

Appendix B For Microsoft Visual Basic Users
geVBPutRecord

To put a record into the current record buffer and update the employee
database file:

D m RecordArray() As Varian t
DmFormat StringsArray() As Strin g
DmErrorsArray() As Intege r

hstmt = geExecSQ (hdbc, "SELECT dept, salary FROM
gd:\qgelib\enp WHERE first_nane = 'Tinothy' AND | ast _nane
O="QGove'") ;

ReDi m RecordArray(1 To NunCol s%)
ReDi m Format StringsArray(1 To NunCol s%)
ReDmErrorsArray(1l To NunCol s%)

res_code = geVBFet chNext (hstnt, RecordArray(),
Format StringsArray(), ErrorsArray()

If res_code =0 The n
RecordArray(1l) = "D101 "
RecordArray(2) = "$42,000.00 "
Format StringsArray(2) = "$###, ##4#.00 "
res_code = geVBPut Record(hstni, RecordArray(),
OFormat StringsArray(), ErrorsArray())

523

Sometimes it is more efficient to set values in the current buffer by calling the
appropriate gePut functions. For example, when updating only one column in

each record when several columns have been selected, calling a gePut
function is faster than calling geVBPutRecord.

geVBPutRecord returns values in DTK data type 2 (variable length character

string) columns as strings. Note that Visual Basic strings may have null
characters in them. To put a value into a of DTK type 2 column, set the
Variant to a string containing the value you wish to put.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

See Also

Appendix B For Microsoft Visual Basic Users
“Buf” Functions 524

Null database values are returned as an empty string for string and date
types, or as 0 for numeric types. When geVBFetchNext returns a null value,
the corresponding entry in the error array is set to geNULL_DATA

(-2).

gePut functions, geRecUpdate, geVal functions, geVBFetchNext,
geVBFetchPrev, geVBFetchRandom.

“Buf” Functions

Visual Basic does not support DLL functions that return a pointer to a value.
Because of this limitation, DTK provides alternative forms of these functions.
These forms have the same name as the standard forms and end with “Buf,”
for example, geErrMsgBuf.

When using the Buf functions, your VB program must allocate a buffer to hold
the value returned by the function. Also, you must pass the pointer to the
buffer as an additional parameter to the Buf functions. Make sure that the size
of the buffer you allocate is large enough to hold the returned value.

The following table lists the DTK functions not supported and the alternative
function that you must use.

Don’t Use Use Instead

geBindCol functions the geVBFetch functions or the geValBuf
functions

geClauseGet geClauseGetBuf

geColAlias geColAliasBuf

geColDBTypeName geColDBTypeNameBuf

geColExpr geColExprBuf

geColName geColNameBuf

geErrMsg geErrMsgBuf

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Appendix B For Microsoft Visual Basic Users
“Buf” Functions

Don’t Use
geGetODBClInfoChar
geNativeSQL
geQryGetFileName
geQryGetParamDefault
geQryGetParamFormat

geQryGetParamName

geQryGetParamPrompt
geQryGetSource
geQryGetStmt
geSetuplnfo
geUniqueWhereClause
geValChar

geValDecimal

geValMultiChar

geVerNum
geBinToHex
geHexToBin
geDateToChar
geDecimalToChar
geDoubleToChar
geFloatToChar

DataDirect Developer’s Toolkit Programmer’s Guide

Use Instead
geGetODBClInfoCharBuf
geNativeSQLBuf
geQryGetFileNameBuf
geQryGetParamDefaultBuf
geQryGetParamFormatBuf
geQryGetParamNameBuf

geQryGetParamPromptBuf
geQryGetSourceBuf
geQryGetStmtBuf
geSetuplnfoBuf
geUniqueWhereClauseBuf

the geVBFetch functions or geValCharBuf

the geVBFetch functions or
geValDecimalBuf

the geVBFetch functions or
geValMultiCharBuf

geVerNumBuf
geBinToHexBuf
geHexToBinBuf
geDateToCharBuf
geDecimalToCharBuf
geDoubleToCharBuf
geFloatToCharBuf

525

Appendix B For Microsoft Visual Basic Users

| GoTo W | “Buf” Functions 526

Don’t Use Use Instead
gelntToChar gelntToCharBuf
geLongToChar geLongToCharBuf
geCharToDate geCharToDateBuf
geCharToDecimal geCharToDecimalBuf
geDoubleToDecimal geDoubleToDecimalBuf
geFloatToDecimal geFloatToDecimalBuf
gelntToDecimal gelntToDecimalBuf
geLongToDecimal geLongToDecimalBuf

Allocating Buffers

When you call geValCharBuf, or any other Buf function, it is critical that you
allocate a buffer to hold the value returned by the function. In other words, the
string variable you pass as the second parameter must be long enough to
hold the column value returned from the database.

There are two ways you can set the size of a string variable. You can declare
the variable as a fixed-length string using the Dim statement:

Dmvalue As String * 25 5

Or you can use variable-length strings by either not declaring them at all—
just assign to value$—or declaring them as:

D mvalue As Strin g

If you use variable-length strings, you must immediately precede each call to
geValCharBuf with:

val ue = String$(255,0)

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Appendix B For Microsoft Visual Basic Users
Data Types 527

Both techniques allocate a string variable of the specified size, 255 in these
examples. The required length of your string variables depends on the size of
column values that you are retrieving. You can call geColWidth to get the
maximum size of a column.

If your application has a General Protection Fault on a call to a geVal
function, chances are the string variable you sent was not large enough to
hold the column value.

Data Types

Each column in a table has a data type. The data type determines the type of
information that can be stored in the column. See “Data Types in DTK” on
page 53 for more information.

With the exception of Decimal numbers, DTK'’s data types can be mapped
directly to VB data types. The following table shows the DTK data types and
the corresponding VB data types.

VB Data

Identifier DTK Data Type Type
1 Fixed length character string String
2 Variable length character string String
3 Decimal number (BCD) N/A
4 Long integer (4-byte) Long
5 Integer (2-byte) Integer
6 Floating-point numbers (4-byte) Single
7 Double-precision floating-point Double

numbers (8-byte)
8 Date-Time (26-byte character String

string)

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix B For Microsoft Visual Basic Users
| GoTo = | Data Types 528

DTK automatically converts data when you use the geVal functions. For
example, you can use the geValCharBuf function to retrieve any database
column value, and DTK will convert all values to character strings.

For your convenience, DTK also provides data type conversion functions,
listed in Appendix A, “Data Conversion Functions,” on page 493.

If your database contains Decimal numbers, you should use either
geValCharBuf or geValDouble to convert the numbers to double-precision
floating-point numbers.

DataDirect Developer’s Toolkit Programmer’s Guide

| GoTo w |

C Coding for Single Staement
Database Systens

Most database systems allow more than one active statement on a
connection. For example, you could read records from Oracle with one
statement and update records using a second statement, with both
statements sharing a single connection to the database.

Some database systems, however, have the limitation that for each database
connection, you can execute only one SQL statement at a time. For
convenience, such database systems are called single-statement systems in
this book. Refer to the DataDirect ODBC Drivers Reference for information on
whether specific database systems support single or multiple active
statements on a connection.

This appendix describes the issues that create special considerations for
DTK applications that support single-statement systems, as well as
techniques for achieving the best performance possible when writing such
applications.

Why Is This an Issue?

The single-statement limitation greatly affects the way that DTK handles the
execution of SQL statements, because when your program connects to a
single-statement database and issues a Select statement, you cannot issue
any other Select, Insert, Update, or Delete statements until you terminate the
first Select statement. So if you issue the first Select statement, read a few

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Appendix C Coding for Single Statement Database Systems
Why Is This an Issue? 530

records, and then want to update a record, you have a problem—you can’t

update a record until you terminate the Select statement, but if you terminate
the Select statement to do the update, then you won’t be able to read the rest
of the records returned by the Select statement (because you terminated it).

Fortunately, DTK avoids this problem by automatically creating a second
connection to the database system whenever it's necessary to execute a
SQL statement and the original connection is “busy.” This technique is called
cloning connections.

Suppose your application issues a Select statement, then reads a few
records, and then issues an Update (or any other SQL) statement. In this
case, DTK detects that your program is trying to issue a second SQL
statement while the first one is still active, so it clones the first connection to
get a second one, and then executes the Update statement on that second
connection.

Note: Many DTK functions create SQL statements as part of their
execution—and therefore cause DTK to clone connections to single-
statement database systems—so this behavior is not limited to the SQL
execution functions. Any DTK function that changes the database can issue
SQL statements.

When a statement terminates, the corresponding connection is no longer
busy so DTK retains this connection to ensure that it will have one ready
when another SQL statement is issued. DTK never retains more than one
inactive connection; if an application terminates two statements, it closes one
connection and retains the other one for future use.

DTK keeps the number of open connections to a minimum by automatically
terminating the Select statement when your application reads the last record.
From the viewpoint of your application, its “statement” has not been
terminated, because it can still scroll through the records (when random
fetching is enabled). But from the viewpoint of the database system, the
statement has been closed, so the associated connection can be used again.

DTK is able to continue scrolling through the records after the statement has
been terminated because it saves all records in a log file as it reads them.
These log files are stored in temporary files on the user’'s computer.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Appendix C Coding for Single Statement Database Systems
Locking Considerations 531

DTK'’s use of cloned connections for single statement database systems
creates special considerations relative to locking behavior and performance.
The following sections describe these considerations, as well as the options
that DTK provides for handling them.

Locking Considerations

Database systems generally allow you to have one transaction per
connection, and do not let you have one transaction that spans more than
one connection. For single-statement systems, two SQL statements running
at the same time in separate connections are in separate transactions. So for
these database systems, connections and transactions are equivalent.

When a statement causes the database system to lock a record, the lock is
acquired in the context of the connection’s transaction. If a second statement
executing in a second connection attempts to lock the same record, the
database system will not let the second lock succeed, because it treats the
two transactions as if they were two different users—even though the two
transactions were started by the same application. Two transactions cannot
lock the same record at the same time, even if the transactions were started
by the same application.

Some single-statement databases, when you issue a Select statement, will
acquire locks on the pages as they read records from the page. As soon as a
such a database reads a record from a different page, it removes the shared
lock it had on the first page and acquires a shared lock on the new page.
Thus, as an application is reading records from a Select statement, the
database system is acquiring and releasing shared locks on the pages as the
records are being read. As a result, DTK doesn’'t know which record’s page is
currently locked when an application is reading records.

If you issue an Update, Delete, or Insert statement in a single-statement
database, it will acquire an exclusive lock on the page containing the
changed record. These locks are held until the current transaction ends.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Appendix C Coding for Single Statement Database Systems
Performance Considerations 532

Here is an example of the type of locking problems that may occur. An
application issues a Select statement and reads the first record, then
attempts to update that record. The Select statement is being executed on
one connection, and the Update statement is being executed on a second
connection. The first connection has a lock on the page containing the first
record, and the Update statement attempts to acquire an exclusive lock on
the same page. If these happen to be the same page, the Update statement’s
attempt to acquire a lock will fail.

DTK avoids this potential problem by reading all of the records from all active
Select statements into the log file. This activity is called read-ahead in DTK.
By default, this read-ahead activity occurs whenever an application attempts
to update, delete, or insert a record. When the application attempts to update
the first record, DTK will first read all of the records from the Select statement
(putting them into the log file), terminate the Select statement, and then
execute the Update statement. By doing the read-ahead, DTK guarantees
that the Select statement is no longer holding any shared locks, so the
Update statement’s attempt to get an exclusive lock will not fail because of a
conflict with a Select statement in the same application. However, read-
ahead cannot prevent a lock conflict between one user’s exclusive lock and
some other user on a different computer who has a shared or exclusive lock
on the same page.

The following sections contain more information on read-ahead behavior and
the DTK options you can use to control it.

Performance Considerations

Depending on your network and your server computer, you may notice some
delay when connecting to a database; so every time your application issues
an SQL statement that causes the database driver to clone a connection,
there may be a noticeable delay.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Appendix C Coding for Single Statement Database Systems
Performance Considerations 533

Depending on the installation of your database system, your server may have
a limit on the total number of active connections. (For example, you could
have only 5 or 10 connections that are shared by all users.) In such a case,
you want DTK to use as few connections as possible, and to close them as
soon as possible.

One way that you can affect how soon DTK can reuse a connection is to have
DTK read all of the records from a Select statement as soon as possible.
(This is the same read-ahead activity described in the previous section.) After
reading the statement’s entire result set into the log file, DTK no longer needs
to keep the statement open for you to continue reading, inserting, updating,
and deleting records. Once the entire result set is read into the log file, DTK
closes the statement and frees the connection it used. So the sooner DTK
reads the entire result set returned by the Select statement, the sooner the
connection is freed.

Certain events cause DTK to automatically read the entire result set. To
optimize the performance and effect of this read-ahead activity, DTK allows
you to specify which events trigger it. The following section describes how.

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix C Coding for Single Statement Database Systems
| GoTo = | Controlling Read-ahead Activity 534

Controlling Read-ahead Activity

The geSetOneHstmtPerHdbcOptions function lets you specify when DTK will
perform read-ahead activity. In addition to other behavior that this function
controls, it provides the following read-ahead options:

Constant Value Description
geREADAHEAD_AT_ 0x0001 DTK reads the statement’s entire result
EXEC set into the log file when the statement

executes. Reading result sets at this
time will often free handles for users of
databases who have licenses restricting
open handles.

geREADAHEAD_AT_ 0x0002 DTK reads the remainder of the result

UPDATE set into the log file whenever a record is
locked, updated, or deleted. This is the
default read-ahead option.

geREADAHEAD_ 0x0003 DTK avoids all read-ahead activity by
COMMIT_UPDATES requiring you to commit all updates
before fetching any more records.

The qeREADAHEAD_AT_EXEC option uses the fewest database system
resources because it frees the Select statement’s connection earliest. It also
controls when the read-ahead occurs—any performance lags that the read-
ahead may cause occur when the application starts, and not while users are
trying to work with the data.

If you know that your users will rarely be updating the database, choose the
geREADAHEAD_AT_UPDATE option to prevent unnecessary read-ahead
activity. If your users will be updating the database, choosing this option
makes any performance penalty caused by read-ahead concurrent with the
events that make it necessary—the first time you lock, update, or delete a
record. DTK will free the Select statement’s connection at that time.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Appendix C Coding for Single Statement Database Systems
Controlling Read-ahead Activity 535

The qeREADAHEAD_COMMIT_UPDATES option allows you to avoid read-
ahead activity entirely when using transactions by agreeing to commit all
database changes before fetching additional records from the result set.
When using this option, your application must not fetch any records from this
result set from the time you first update a record until you commit all updates.
Note that when you choose this option, DTK uses a different locking protocol
to eliminate the need for read-ahead activity—fetching at the wrong time can
cause you to hang the database as well as your application. Because it does
not read-ahead, DTK cannot free the Select statement’s connection until
geEndSQL is called.

Another way to avoid unnecessary read-ahead activity is to tell DTK when the
statement you are issuing will not affect other active statements. For
example, suppose your application has an active Select statement like

SELECT * FROM em p
and you want to issue another statement like
SELECT * FROM dep t

Because these two statements read data from separate tables, updates to
the result set from one of these statements cannot affect records in the result
set of the other. This means that when you update a record returned by one
statement, DTK does not need to read-ahead to free shared locks on both
Select statements—only the one that is getting updated. If the two statements
read data from the same table, DTK would have to read-ahead on both
statements in order to free all shared locks and perform the update.

By default, DTK will always assume that a statement can affect other active
statements, and will read-ahead on all active statements when performing an
update. However, by calling the geSetOneHstmtPerHdbcOptions function
and setting the qeHSTMT_LOCAL flag (0x0020), you can inform DTK
whenever the next statement issued will not affect other active statements,
and thereby prevent unnecessary read-ahead activity on those statements.

DataDirect Developer’s Toolkit Programmer’s Guide

Preventing Statement Conflicts

When sending multiple statements through cloned connections, it is
important to send all statements that modify the database through the same
connection. Doing so prevents the locking conflicts that can otherwise occur.

DTK can usually determine whether a statement will modify the database. To
do so, it examines the first word of the statement. If that word is any other
than “Select,” DTK sends the statement through the connection used for
statements that modify the database. However, some statements, such as
those that invoke stored procedures, may cause DTK to guess incorrectly. If
your application uses such statements, then before issuing them you should
call the geSetOneHstmtPerHdbcOptions function and set one of the
following flags:

Constant Value Description

geROUTING_READ 0x0008 DTK will route this statement through a
connection used for read-only
statements.

geROUTING_UPDATE 0x0010 DTK will route this statement through a

connection used for statements that
modify the database.

geROUTING_DEFAULT 0x0018 This option allows DTK to decide which
connection to send the statement to.
This is the default routing option.

|GoTo vl

D Result and Error Message

Codes

This appendix lists the result and error codes returned by geErr and the error
messages returned by geErrMsg and geErrMsgBuf.

Result Codes

The following table lists the result codes returned by qeErr and other

functions that return result codes.

Constant Value
geLOCK_NO_REC -6
geEOF -5
geUSER_CANCELED -4
geOUT_OF_MEMORY -3

DataDirect Developer’s Toolkit Programmer’s Guide

Description

A lock was attempted, but either no
record was selected by the primary
key, the record has been deleted by
another user, or another user has
changed the value of a key field.

EOF. Returned by geFetchNext,
geFetchPrev, or geFetchRandom
when there is no record to return.

User canceled out of the logon
dialog box.

Windows or OS/2 is out of memory.
This is usually fatal.

|GoTo v|

Constant

geSUCCESS
qeSUCCESS_WITH_INFO
qeNO_DATA_WITH_INFO

geDBSYS_ERROR

geLIBSYS_ERROR

Value

Appendix D Result and Error Message Codes

Error Codes and Messages

Description

Success.

Success with information (warning).

EOF with additional information
(usually ESC during a fetch).

Database system error. Call
geDBEIr to retrieve the database
system'’s error number.

Returned when the system cannot
locate the DTK Dynamic Link
Library.

538

Error Codes and Messages

The following error codes are returned by geErr or any other function that

returns a result code. The corresponding messages can be retrieved with a
call to geErrMsg or geErrMsgBuf.

Code# Error Message Tex

1100 Error on menu operation. Resources may be getting low
1500 Not enough memory for data transfer--message truncated.
1501 Cannot create file file_name".

1502 Cannot delete file: 'file_name".

1503 Not enough memory for this command.

1504 Cannot set current working directory to'dir_name'.

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Code#
1506
1507
1508
1509
1510
1511

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
2100
2105
2106

2108
2700

Appendix D Result and Error Message Codes
Error Codes and Messages

Error Message Tex
Insufficient disk space.

Invalid file handle.

Access to file denied file_name".
File not found ‘file_name".

Path not found 'path_name'.

You must run SHARE when locking is enabled or you must set
Locking=NONE in your ODBC.INI file.

Whole or part of the region has already been locked.
Unable to unlock record.

Lock failed! SHARE buffers have been exceeded.
Unable to load help file.

Not a DOS disk.

Invalid Parameter.

File read locks not supported

Not owner of resource access has been denied
File currently exist.

File dead lock has been detected

No file lock resource exist

Unable to load DLL ‘dll_name’ because of ‘reason’.
File name is too long: 'file_name'.

You can only logon to this database once

Unable to load dynamic link library: file_name'

Connection string must contain a DSN=<driver_name>:
‘incorrect_string'

Transaction processing is not supported for this database driver

Token too big: 'token_name'

DataDirect Developer’s Toolkit Programmer’s Guide

539

Appendix D Result and Error Message Codes

| GoTo = | Error Codes and Messages 540

Code# Error Message Tex

2701 Number too large: 'number_string’

2702 Number contains an invalid character:'invalid_char'

2703 Unmatched quote character: ‘character'

2704 Error parsing connect string at offset'offset'.

2705 Error parsing 'string' at offset 'offset'.

2706 Attribute 'attribute' specified more than once.

2707 Attribute specified twice using keywords'keyword1' and 'keyword2'.

2708 Invalid hexadecimal character found during conversion

2709 Quicksort stack overflow.

2710 Too many sort keys.

2711 Invalid license file: file_name'

2712 The Beta period for this product has expired. Please contact
INTERSOLYV to obtain a production version of this product

2713 The evaluation period for this product has expired. Please contact
INTERSOLYV to obtain a production version of this driver

2714 The Beta period for this product will expire in less than 15 days.
Please contact INTERSOLYV to obtain a production version of this
product.

2715 The evaluation period for this product will expire in less than 15
days. Please contact INTERSOLYV to obtain a production version of
this driver.

2716 Cannot handle strings larger than 65500 bytes

2717 Initialization file is not open.

2718 This is a not-for-resale version of a INTERSOLV product. You can
order INTERSOLYV products by calling 800-547-400Q

2719 Could not create trace window.

2720 Error parsing first line of query file: ‘file_name’.

2721 Could not get needed access to'problem'.

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix D Result and Error Message Codes

| GoTo = | Error Codes and Messages 541

Code# Error Message Tex
2722 Can not increase internal array size past 1600Q

2723 You are now using the INTERSOLV ODBC Drivers from the
Database Library product. These drivers may only be used for
developing and testing applications. They may not be distributed for
commercial use.

2724 To use or distribute this ODBC-enabled application with drivers
from INTERSOLYV, you must purchase the appropriate driver
distribution license. Please contact INTERSOLYV at 800-547-4000
for more information and assistance.

2725 The license file, ‘file_name’, does not authorize you to use this
ODBC driver. Please contact INTERSOLYV at 800-547-4000 to
purchase a license.

2726 The license has expired. Please call INTERSOLYV to obtain a
production version of this product

2727 The license will expire in less than 15 days. Please call
INTERSOLYV to obtain a production version of this product

2728 USA and Canada: 800-547-4000 Asia Pacific: 301-838-5241

United Kingdom: +44 1727 812812 Australia: +61 (3) 9816 9977
France: +33 (1) 49.03.09.99 Germany: +49 (89)962 71-152 Other
countries: +44 1727 812812

3501 Your format mask is too long, the limit is 79 characters

3502 The E format character must be followed by a sign character; + or -
. For Example, '0.00E+00.

3503 The E format character must be followed by one or more digits to
display the exponent. For Example, '0.00E+00:

3504 The quoted string in your format mask is missing the second
quotation mark.

3505 The scale command must be followed by ™' for multiply or by '/* for
divide. For Example, '[S*1000].

3506 The scale operator must be followed by a number that is a power of
ten; 10, 100, 1000, etc. For Example, [S*1000].

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Code#
3507

3508
3509

3510

3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527

3528
3529

Appendix D Result and Error Message Codes
Error Codes and Messages

Error Message Tex

A command in your format mask is missing the ']' end command
character. For Example, '[S*1000].

Partial values cannot be formatted or converted

You attempted to format or convert a date value that is not a valid
date.

Overflow resulted when converting a value to single-precision
floating-point.

Overflow resulted when converting a value to short integer
Overflow resulted when converting a value to decimal format

The value being converted has an exponent that is too large
Overflow resulted when converting a value to long integer

The date contains an invalid year.

The date contains an invalid month

The date contains an invalid day.

The date contains an invalid hour.

The date contains an invalid minute.

The date contains an invalid second

The date contains invalid fractional seconds

This character cannot appear in a date format string:'character
This character cannot appear in a number format string:'character'
This character cannot appear in a general format string:'character’
This string cannot be converted to a number:'character’

Could not convert to a date value:'unconverted_value'

Overflow resulted when converting a value to double-precision
floating-point.

Invalid decimal (BCD) digit in nibble 'number".
Invalid decimal (BCD) sign.

DataDirect Developer’s Toolkit Programmer’s Guide

542

Appendix D Result and Error Message Codes

| GoTo = | Error Codes and Messages 543

Code# Error Message Tex

3530 The number 'number’ cannot be converted to a date.

4100 You have exceeded the limit on the number of connection and
statement handles.

4101 The connection, statement, or query handle you provided is not
valid.

4102 LIKE or NOT LIKE requested for a non-character data type

4103 You provided an invalid column number. Column numbers must be
between 1 and the number of columns returned by the SELECT
statement.

4104 The information you requested for a column is not relevant given its
data type.

4105 You have exceeded the limit on the number of active programs that
can use DTK.

4106 You must retrieve the values for columns in increasing column

number order, e.g. column 1, then 2, then 3, etc. You cannot
retrieve the value for a column more than once

4110 The last parameter to geValChar or geValCharBuf must be zero if
the underlying data type is not a character string

4111 You cannot call geBindCol after you have called geFetchNext,
geFetchPrev, geFetchRandom, or geFetchNumRecs

4112 You did not call geBindCol for every column in the Select
statement.

4114 The database system you are connected to does not support
transactions.

4117 You must call geBeginTran to begin a transaction before you can
call geCommit or geRollback

4118 You already have an active transaction. Call geCommit or
geRollback to end the active transaction

4119 You have not given an SQL statement to be executed

4120 Tracing has already been turned on

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Code#
4121
4122
4123

4125

4127

4128

4129
4130

4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143

Appendix D Result and Error Message Codes
Error Codes and Messages

Error Message Tex
The trace file name is not valid.
Tracing is not turned on.

You must call geFetchSetOptions before calling a geBindCol or
geFetch function.

You cannot use geFetchPrev, geFetchRandom, or
geFetchNumRecs without first calling geSetSelectOptions to
enable random fetching.

You can only call this function if the current statement is a Select
statement.

This evaluation copy of DTK has expired. Call INTERSOLY at (800)

547-4000 to purchase the product

You can only call this function if there is an active record

This evaluation copy of DTK will expire within the next two weeks.

Call INTERSOLYV at (800) 547-4000 to purchase the product
You cannot change this column's value 'reason’

Attempt to get column attribute that does not exist for this table
Dictionary query is not allowed for this function

Invalid option specified: ‘invalid_option'.

Statement has not been executed or is not positioned on a row
Row to be locked has changed.

Multiple rows locked.

No rows locked.

The specified column is not searchable

No database source has been specified

The parameter number supplied 'number' is invalid.

Field number supplied (number’) is invalid.

Missing keyword: 'keyword'

DataDirect Developer’s Toolkit Programmer’s Guide

544

|GoTo v|

Code#
4144

4145

4146
4147

4148
4149
4150
4151
4152
4153

4154
4155
4156
4157
4158
4159
4160

4161

4162

4163

Appendix D Result and Error Message Codes
Error Codes and Messages

Error Message Tex

This statement hasn't been executed. Execution required for this
operation.

You must call geBeginTran to begin a transaction before you can
call geRecLock.

No query save file specified.

Cannot insert row 'row_num' because it isn't within the rows you
have fetched (‘num_fetched_rows') or immediately following the
last row you have fetched.

Parameter type (param_type') not in range of 1 to 6.
error_text

warning_text

HSTMT was invalidated at end of transaction

Not currently positioned on a row.

Fetching on this statement cannot occur until the transaction has
been committed or rolled back

Query does not have a valid hdbc.

Operation only allowed with deferred auto-update
Parameter 'param’ in the SQL statement is un-named
DTK parameter 'param' doesn't have a name.

No DTK parameter for ‘param'.

DTK parameter ‘param' not found in SQL statement

geFetchSetOptions is an obsolete function and is not supported for
statements with parameters that haven't been bound or set

The specified column may not yield an exact match because of the
database's internal data representation

Locking is not supported. This is due to either a driver limitation or
your current isolation level.

Query Builder was canceled.

DataDirect Developer’s Toolkit Programmer’s Guide

545

Appendix D Result and Error Message Codes

| GoTo = | Error Codes and Messages 546

Code# Error Message Tex

4164 Unable to grow database greater than 30 records using a demo
version.

4165 The handle (‘handle’) is being used by another task

4166 geVal functions may not be used with this hstmt because
geBindCol has been used on this hstmt

4167 Unable to create a new handle because handle(‘handle") is still
active.

4168 Parameter (‘param’) not found.

4169 Unable to allocate buffer as large as the max_len passed to
geValChar or geValCharBuf.

4170 Unable to exit after first dialog of the Query Builder for an hqry
without a SQL statement.

4171 Unable to geSetParamDataType parameter(‘param'’) because it is
not of 10 type gePARAM_OUTPUT.

4172 geGetParam functions may not be used with parameter('param’)
because geBindParam has been used on this parametet

4173 The last parameter to geGetParamChar or geGetParamCharBuf
must be zero if the underlying data type is not a character string

4174 Unable to geGetParam parameter (‘param’) because it is of IO type
gqePARAM_INPUT

4175 Unable to set use the ODBC connection or statement handle

4500 Missing keyword: 'keyword'

4501 Unexpected text at end of SQL query: 'text'

4502 Empty SQL clause found.

4503 Missing matching */ in comment

4504 Improper select list in SELECT statement:'bad_list'

4505 You did not give a SQL statement to execute

4506 Cannot update or delete record, no primary key available

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix D Result and Error Message Codes

| GoTo W I Error Codes and Messages 547

Code# Error Message Tex

4507 Operation aborted!

4508 Duplicate table names not allowed in FROM clause:
'dup_table_names'

4510 Unable to lock this record. It has been modified or deleted by
another user.

4511 Unable to insert record into database.

4513 The number of parameters supplied does not match the number of
parameter markers in the statement

4514 The declared parameter names don't match the statement
parameters.

4515 You cannot delete the current record from a query containing a join

4516 You cannot insert a record into a query containing a join

4517 You cannot add another break to this field: field_name’

4518 You cannot read backwards without a logfile

4519 Unable to build select list

4520 You cannot modify a read-only query.

4522 Field number supplied (field_num’) is too large.

4523 Case-insensitive search requested on a non-character column

4524 This statement hasn't been executed. Execution required for this
operation.

4525 Invalid ODBC handle --- internal error.

4526 A table or table alias name exceeds'max_chars' characters.

4527 The parameter number supplied‘param_num' is too large.

4528 At least one parameter has not been supplied a value

4529 Fixing bind and set is not allowed for multiple value parameters

4530 End of results.

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix D Result and Error Message Codes

| GoTo = | Error Codes and Messages 548

Code# Error Message Tex

4531 The value of a field is longer than the maximum length that can be
stored in the database or generation of a SQL statement has run
out of space (> 65000 bytes).

4532 Fetching no longer allowed on this statement, probably due to a
previous update or delete. Enabling logging will probably fix the
error.

4533 Parameter 'param_num' hasn't been given a data type.

4534 Attempt to change the data type of parameter'param_num'.

4537 Inserting row 'row_num' is illegal with current row (row_num’).

4538 Attempt to insert 'num’ characters into a column that allows'num’
characters.

4539 'statement’ is invalid in a select statement

4540 Database does not support an uppercase function

4541 Internal error 00 -- contact INTERSOLV Technical Support

4542 Parameter input was canceled--statement was not executed

4543 Internal error 01 -- contact INTERSOLV Technical Support

4544 You have exceeded the limit on SQL statements allowed by this

demo version. To reset the SQL statement counter, exit and then
restart your application.

4545 You may not modify this column because we were unable to
determine the table for this column

4546 The column's ('pl') precision of 'p2' exceeds the limit of 'p3'.

4547 The parameter 'param' does not appear in the SQL statement

9000 Attempted linkout from empty list

9001 Attempted get from empty list

9002 Attempted update of empty list

9003 Seek to item not on list

9004 Not enough memory for List

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Code#
9006
9007

9009
9010
9011
9012
9013
9014
9015
9016
9017
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031

Appendix D Result and Error Message Codes
Error Codes and Messages

Error Message Tex
Unable to complete operation--out of memory!

The Query you entered is either incorrect or too complex to be
understood by the Query Builder. Click the Error Check icon to
check for errors.

Expression has changed--save?

Memory allocation error in Query parser.

An unterminated comment was found

SQL statement must begin with SELECT

No select list in Query.

No from clause in Query.

The BY was missing from GROUP BY clause
The BY was missing from ORDER BY clause

A empty clause was found.

An unsupported feature(e.g. UNION) was found
A wildcard had incorrect format in select list
Unmatched parens found in ORDER BY clause
Unmatched parens found in GROUP BY clause
Format of BETWEEN incorrect in WHERE clause
Format of BETWEEN incorrect in HAVING clause
No value found after operator in WHERE clause
No value found after operator in HAVING clause
Unmatched parens found in WHERE clause
Unmatched parens found in HAVING clause
Warning--no fields found for:

Joins only valid with two or more tables

Must specify grouping before you can edit grouping conditions

DataDirect Developer’s Toolkit Programmer’s Guide

549

|GoTo v|

Code#
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049

9050

9051
9052
9053
9054
9056

Appendix D Result and Error Message Codes
Error Codes and Messages

Error Message Tex

Error--incompatible data types.

Error--unmatched quote found in string

When comparing against NULL, use 'Is' or 'Is not:
Missing = after CHARSET, DELIMITER, or PARSE
Missing val after headerline.

Missing = after HEADERLINE.

Data type syntax error.

Syntax error in stmt

Missing right paren.

Missing paren or comma.

Bad parse string.

Unknown data type.

Number width invalid.

Character width invalid.

Decimal greater than width.

File options missing paren or too large (> 1024)
There are currently no parameters to edit

Parameter markers are only valid in the WHERE and HAVING
clauses.

Parameter name must begin with a letter, be alphanumeric, and
have no blanks.

No fields have been chosen.

Field aliases are not allowed.

Grouping change requires select list to change
Operator is required.

Parameter name already used.

DataDirect Developer’s Toolkit Programmer’s Guide

550

Appendix D Result and Error Message Codes

| GoTo = | Error Codes and Messages 551

Code# Error Message Tex

9057 Parameter must have a name.

9058 To compare against NULL, enter 'NULL' for the value

9059 Queries containing parameters must be validated by executing the
statement.

9060 A NULL value is not allowed.

9061 Unable to parse SQL. Database currently unknown to query
builder.

9062 Expression is too long.

9063 Query Builder error #

9064 Query Builder warning #

9065 Database error #

9066 Invalid logical value.

9067 Only one table is allowed to be entered at a time

9068 Invalid table entry. There are too many spaces

9069 The alias you specified conflicts with a previously used table. Use
another alias.

9070 The table name you specified conflicts with a previously used alias.
Use an alias for this table.

9071 The alias you specified has already been used

9072 The table name is too large.

9073 No functions have been defined for this data source

9074 Alias name is invalid.

9075 Warning--the left hand column is ambiguous. First table found was
selected.

9076 Warning--the right hand column is ambiguous. First table found was
selected.

9077 Warning--the left hand column wasn't found in any table

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Code#
9078
9080
9081
9082
9083
9084
10028
30040
30041
30042
30043
30045
30047
30049
30050
30051
30190

Appendix D Result and Error Message Codes
Error Codes and Messages

Error Message Tex

Warning--the right hand column wasn't found in any table
Unmatched parens found in FOR UPDATE OF clause
Invalid number - must be integer between 0 and 655%
Save Failed.

Multi-table queries (joins) are not allowed

This datasource does not support GROUP BYs
Cannot access drive.

Cannot open file 'file_name".

Error on input or output to a file.

Cannot rename ‘file_name1l' to 'file_name2'".

Not enough memory for this command.

The maximum number of files are already open.
Reserved file name cannot be opened 'file_name'.

File system is Read Only.

Need Additional Information.

Out of file handles. Cannot open file‘file_name’.

Out of memory.

DataDirect Developer’s Toolkit Programmer’s Guide

552

| GoTo w |

E Compatibility Issues

This appendix contains information about the compatibility of DTK Version 2.x
with QELIB 1.0, with future versions of DTK, and with ODBC database
drivers. It contains the following sections:

® “QELIB 1.0 Compatibility,” describes the differences between DTK Version
2.x functionality and the functionality provided for applications developed
using QELIB Version 1.0.

® “Obsolete QELIB Functions” on page 556 describes the
geFetchGetOptions and geFetchSetOptions functions, which have been
replaced by the new geSetSelectOptions and geGetSelectOptions
functions. These functions will not be supported in future versions of DTK.

® “ODBC Compatibility” on page 560 lists the ODBC functions that must be
supported by database drivers used with DTK and specific DTK functions.

QELIB 1.0 Compatibility

With DTK, applications developed using QELIB 1.0 can be run using version
2.x. However, because certain changes made for version 2.x create
incompatibilities with version 1.0 applications, you must specify when you
want to take advantage of version 1.0 compatibility by setting Revision = 1 in
the QELIB.INI file. For information on the QELIB.INI file, see Appendix F,
“The QELIB.INI File,” on page 565.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Appendix E Compatibility Issues
QELIB 1.0 Compatibility 554

When you specify Revision 1 compatibility in the QELIB.INI file, DTK 2.x
functions differently to support QELIB 1.0 behavior in the following areas:

Native column type support

Column width support

Error checking

SQL compatibility

Issuing multiple SQL statements

Character string values returned from SQL Server

The following sections describe each of these differences.

Note to OS/2 users In order to run your existing DTK applications using
DTK 2.x, you must first recompile them as 32-bit applications.

Native Column Type Suppot

In DTK 2.x, the geColDBType function does not support the data type values
of 1000 or greater that were returned by qeDBColType in QELIB version 1.0.
However, DTK will support these values when you specify Revision 1
compatibility.

Column Width Suppot

In QELIB 1.0, the geColWidth function could not return column width values
greater than 32K (32,760 bytes). This column width restriction continues to
apply when you specify Revision 1 compatibility. In DTK 2.x, the geColWidth
function can return column widths up to 231 bytes.

You should note this change if upgrading QELIB 1.0 applications that use the
geColWidth function to allocate memory, since this function can now return
width values that exceed the operating system’s ability to allocate memory.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Appendix E Compatibility Issues
QELIB 1.0 Compatibility 555

Error Checking

Because the geWarning function returns the values geTRUNCATION

(-1) and geNULL_DATA (-2), geErr does not return them in DTK 2.x. When
you choose Revision 1 compatibility, the qeErr function returns these values
as errors.

SQL Compatibiliy

The ODBC-compliant drivers used with Version 2.x of DTK support ANSI-
standard SQL, which they modify into the SQL dialect used in the database
system. This makes DTK 2.x applications portable among ODBC database
drivers. In QELIB 1.0, however, database system-specific SQL statements
are passed to the underlying database system without modification.
Therefore, SQL statements issued in QELIB 1.0 applications may be
incompatible with the ODBC drivers when you specify Revision 2
compatibility. When you specify Revision 1 compatibility, however, DTK adds
a connection string setting, MODIFYSQL=0, that allows database-specific
SQL to be passed unmodified through the ODBC drivers.

Issuing Multiple SQL Statemens

DTK 2.x provides the geMoreResults function for moving to the next set of
results from multiple SQL statements and stored procedures. When using a
Revision 2 compatibility setting, you must call geMoreResults to retrieve the
results of each statement executed, regardless of whether it was a Select,
Update, Delete, or other type of statement. Use the Revision 1 setting to
enable the QELIB 1.0 behavior for multiple statement results—where DTK
continues to execute SQL statements until it returns a result set from a Select
statement.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Appendix E Compatibility Issues
Obsolete QELIB Functions 556

SQL Server Character String

In QELIB 1.0, fixed length character string values were returned from SQL
Server as varying length character strings with the blanks removed. DTK
continues this behavior when you specify Revision 1 compatibility. In DTK
2.x, these fixed-length character strings are returned as fixed length, blank-
padded.

Obsolete QELIB Functions

The geFetchSetOptions and geFetchGetOptions functions are still supported
for compatibility with QELIB 1.0 applications, but will not be supported in
future versions of DTK. It is not recommended that you use these functions.
Instead, use the geSetSelectOptions and geGetSelectOptions functions,
which operate on the current hdbc instead of the current hstmt.

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix E Compatibility Issues

| GoTo = | geFetchGetOptions 557

geFetchGetOptions

geFetchGetOptions returns the fetch options that were set with the previous
call to geFetchSetOptions.

Syntax int32 options geFetchGet otions (intl6 hstnt)

Parameters hstmt is the handle to the statement returned by geExecSQL.

options are the returned option flag values.

Example To set the fetch options and then retrieve them:
hdbc = geConnect (" DSN=CEDBF') ;

hstm = geExecSQ (hdbc, "SELECT * FRCM enp") ;
res_code = geFetchSet Ootions (hstnt, 1) ;

options = geFetchGet Options (hstnt) ;
/* Returns 1 in this case * |/
res_code = qeEndSQ (hstnt) ;
res_code = geD sconnect (hdbc) ;

geFetchSetOptions

geFetchSetOptions sets options that determine which functions you can use
to retrieve records.

Syntax intlé res_code geFetchSet Otions (intl6 hstnmt, int32
opti ons)

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Description

Parameters

Appendix E Compatibility Issues
geFetchSetOptions 558

geFetchSetOptions sets options that determine which geFetch functions can
be used to retrieve records. If geFetchSetOptions is not called, only
geFetchNext can be used to retrieve records. If you wish to use geFetchPrev,
geFetchRandom, or geFetchNumRecs, you must call this function to enable
their use.

geFetchSetOptions must be called immediately after calling geExecSQL or
geSQLExecute and before calling geBindCol or any other geFetch function.

You can call geFetchSetOptions only once for a given hstmt.

Calling geFetchSetOptions on data dictionary queries returns an error.

hstmt is the handle to the statement returned by geExecSQL.

options is the set of options to be enabled. The separate options have a value
associated with them. To set more than one option, add the values together.
The individual option values are as follows:

Constant Value Description

geFETCH_FORWARD 0x0000 The default; only forward fetching
allowed.

geFETCH_RANDOM 0x0001 Allows the use of geFetchPreyv,
geFetchRandom, and geFetchNumRecs

geFORCE_LOG 0x0002 Forces the use of temporary log files for
database systems that do not require
them.

res_code is the result code returned by geFetchSetOptions, which returns the
same set of result codes as geErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Example

Notes

Appendix E Compatibility Issues
geFetchSetOptions 559

To set the fetch options to enable the use of geFetchPrev, geFetchRandom,
and geFetchNumRecs, and to retrieve the last record selected:

hdbc = geConnect (" DSN=QEDBF") ;

hstmt = geExecSQ.(hdbc, "SELECT * FROM enp") ;
res_code = geFetchSet Qotions(hstnt, 1) ;
numrecs = geFet chNunRecs(hstnt) ;

res_code = geFet chRandon(hstnt, numrecs) ;

/* Code to use the values in the record * /
res_code = qeEndSQ (hstnt) ;

res_code = geD sconnect (hdbc) ;

Most of the database systems DTK supports provide only a fetch next
function, neither previous nor random fetches are permitted. Also, the
database systems do not provide a function that returns the number of
records selected. If you call geFetchSetOptions to enable these functions,
DTK creates a temporary log file in your TEMP directory (specified by the
'SET TEMP='"line in your DOS AUTOEXEC.BAT or OS/2 CONFIG.SYS file).
Every record read from the database is saved in the temporary file so that
DTK can support the geFetchPrev, geFetchRandom, and geFetchNumRecs
functions. The temporary log file is deleted when qeEndSQL is called.

If you call geFetchSetOptions to enable the functions, you must have
sufficient disk space available to hold copies of the records selected from the
database.

If you call geFetchNumRecs, DTK retrieves every record chosen by your
Select statement and copies it to the temporary log files. DTK determines the
number of records by counting the number of records retrieved. This
operation can be slow for queries that return a large number of records.

Since there are a limited number of files that an application can have open at
any time (20 is the DOS/Windows default), you may exceed the limit if your
application has other files open or if you have several Select statements
active at the same time. You can call geFetchLogClose to close the
temporary log file used by a statement. DTK automatically re-opens the files
when you call a geFetch function.

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix E Compatibility Issues

| GoTo = | ODBC Compatibility 560

To increase the number of files that DTK can have open at one time, DTK
sets the limit to 200 by calling the Windows SetHandleCount function or the
0S/2 DosSetMaxFH function. If your application may exceed the default
number of file opens, it is recommended that your application also call these
system functions.

DTK’s Btrieve, dBASE, Paradox, text, and Excel file database drivers do not
require temporary log files to support the geFetchPrev, geFetchRandom, and
geFetchNumRecs functions. If you enable the functions by calling
geFetchSetOptions, DTK does not create temporary log files for these
database systems. If you want to force the use of temporary files for these
database systems, set the options parameter to 3 (1 to enable the functions +
2 to force the log file).

For all other database systems, you only need to set the options parameter to
1, since DTK must create the temporary log files for these systems.

ODBC Compatibility

DTK uses the ODBC API to communicate with database drivers. This section
lists the ODBC functions that DTK uses. You should be aware of these
compatibility issues when using ODBC database drivers other than those
supplied by INTERSOLV.

Required Functions

DTK will not run if the database driver does not implement the following
ODBC functions:

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Core Compliance

Appendix E Compatibility Issues
Optional Functions

The following are required Core functions:

SQLAllocConnect
SQLAIllocEnv
SQLAllocStmt
SQLBindCol
SQLColAttributes
SQLDescribeCol
SQLDisconnect
SQLError
SQLExecDirect

SQLExecute
SQLFetch
SQLFreeStmt
SQLGetCursorName
SQLNumResultCols
SQLPrepare
SQLRowCount
SQLSetParam

Level 1 Compliance

The following are required Level 1 functions:

SQLColumns
SQLDriverConnect
SQLGetData
SQLGetFunctions
SQLGetlInfo

SQLGetTypelnfo
SQLParamData
SQLPutData
SQLSetConnectOption
SQLSetStmtOption

561

Optional Functions

These functions are used by DTK, but can be absent in a driver. If a driver
does not support these functions, pieces of DTK functionality will not work.
This information is listed by function.

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix E Compatibility Issues

| GoTo = | Optional Functions 562

Core Compliance

There is one optional Core function, as follows:

SQLTransact Failure to implement this function will cause
geBeginTran, geCommit and geRollback to be
unsupported.

Level 1 Compliance

The following level 1 functions are optional:

SQLSpecialColumns DTK will use this function if it is available, but no
functions are disabled if it is not.

SQLTables Failure to implement this function will cause
geTables to fail, and will make the Query Builder
unable to populate the table name list box.

Level 2 Compliance

The following level 2 functions are optional:

SQLDataSources The driver does not have to implement this
function, it is provided by ODBC.

SQLExtendedFetch Failure to implement these functions will result
in DTK being unable to take advantage of the
native database's ability to fetch records at
random.

SQLSetScrollOptions Failure to implement these functions will result
in DTK being unable to take advantage of the
native database’s ability to fetch records at
random.

SQLMoreResults Failure to implement this function will cause
geMoreResults to fail.

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix E Compatibility Issues
| GoTo = | Optional Functions 563

SQLNativeSq|l Failure to implement this function will cause
geNativeSQL to fail.

SQLProcedureColumns Failure to implement this function will cause
geProcedureColumns to fail.

DataDirect Developer’s Toolkit Programmer’s Guide

Appendix E Compatibility Issues

| GoTo = | Optional Functions 564

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v |

F The QELIB.INI Fik

The QELIB.INI file contains a [QELIB] section containing global tracing and
revision level information. It can also contain a section corresponding to each
DTK application that runs on your system. The values in these application-
specific sections take precedence over the global settings in the [QELIB]
section. The application-specific sections also let you specify default
connection string values for the corresponding application.

The following sections describe the global and application-specific sections
that this file contains.

[QELIB]

In this section, you can specify the following default values for all DTK
applications:

TraceOptions = flags

The default tracing options for all DTK applications. This takes the same set
of flags as the parameter to the geSetTraceOptions function:

0x0001 Trace all non-geVal calls (geTRACE_NON_VAL_CALLS).
0x0002 Trace strings sent via geTraceUser (QeTRACE_USER).

0x0004 Trace geVal calls and bound data at fetch time
(geTRACE_VAL_CALLS).

0x0008 Write all info (except ODBC calls) to a trace window
(qeTRACE_WINDOW).

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Appendix F The QELIB.INI File 566

0x0010 Trace ODBC calls (qeTRACE_ODBC).

0x0020 Allows faster tracing by writing trace strings to disk in blocks
instead of one at a time (qeTRACE_NO_FLUSH). Choosing
this method can cause some loss of trace information if your
program terminates abnormally—use it only when your
application is reasonably stable.

If you don’t specify a different one here, the default when geTraceOn is called
will be 0x0003 (qeTRACE_NON_VAL_CALLS + qeTRACE_USER).

TraceFile = filename

The default file name for DTK trace files. This file name is equivalent to the
one passed as a parameter to the geTraceOn function. Any file name passed
to geTraceOn overrides this setting, but this file name will be used when
tracing is enabled by this section of the QELIB.INI file.

Revision = {1|2}

The default revision level support provided by DTK. If you do not specify this
setting, DTK defaults to Revision level 2 support. See Appendix E,
“Compatibility Issues,” on page 553 for information on how this setting affects
DTK functionality.

[program]

The QELIB.INI file can contain a section for each DTK application that runs
on your system. This section’s name is the same as that of the application’s
executable (.EXE) file, without the .EXE extension. It can specify the
following values:

TraceOptions = flags

The default tracing options for this application. This setting takes precedence
over any TraceOptions setting in the [QELIB] section, and takes the same set
of flags as that setting.

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Appendix F The QELIB.INI File 567

TraceFile = filename

For this application, the default file name for DTK trace files. Any file name

passed to the geTraceOn function in this application overrides this setting,

but this file name will be used when tracing is enabled by this section of the
QELIB.INI file.

Revision = {1|2}

The Revision level support provided by DTK for this application. See
Appendix E, “Compatibility Issues,” on page 553 for information on how this
setting affects DTK functionality.

ConnectString = connection_string

Specifies a string that is added to the connection string passed to the
geConnect function. Any connection option passed to geConnect that
contradicts a value in this string takes precedence over the value specified
here.

DataDirect Developer’s Toolkit Programmer’s Guide

| GoTo w | Appendix F The QELIB.INI File 568

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Index

A related functions 147
reporting 298
Character string data type 53, 54, 470, 485,

Aliases, retrieving 200 495
Appending SQL statements 157 Clearing statement parameters 199
Applications Code samples 9
building with DTK 4 Column aliases, retrieving 200
sample 9 Column attributes, retrieving 217
Applying deferred database changes 159 Column binding functions 162, 175
Attributes, retrieving for columns 217 advantages of using 46
Auto-incremented columns, reporting 218 allocating variables for 43
Auto-update mode, setting 77, 407 listed 41
Auto-updating records 407 Column data types 53
Available databases, reporting 228 Column definitions, retrieving 220

Column expressions, retrieving 209
Column information functions 200, 219, 222
listed 49
B sample program 47
Column names, retrieving 211
Column width, retrieving 222

BCD data type format 55 Columns
ngin transaction 84, 160 reporting attributes of 217
Binary data type constants, specifying 56 reporting number of 308
Binary-Coded Decimal format 55 Commit transaction 84, 224
Binding column values to variables Compatibility issues 553
associated functions 41, 162, 175 obsolete functions 556
sample program 38 ODBC compatibility 560
Blob data, reading and writing 57 QELIB 1.0 compatibility 553
Buf functions 152 Concurrency provided by isolation levels 88
Building a DTK application 4 Connecting to databases 225, 233

associated functions 20
connection strings 225
C disconnecting 233
sample program 19
Connection errors, tracing 124
Connection handle 21
conversion functions 149
Connection strings 225
tracing invalid 124

Caching tables
controlling 450
file, naming 409

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Consistency provided by isolation levels 87
Constants, date-time and binary 56
Current-record functions

column (qePut) functions 74

record (geRec) functions 74

sample program 71

writing binary data with 58

D

Data conversion functions 50, 493
Data dictionary functions
listed 145
sample program 143
Data fetching functions 41
data sources, reporting available 455
Data type
binary constants, specifying 56
blob 57
character 53, 54, 470, 485, 495
column 53, 215
conversion 50
date-time 53, 54, 202, 204
date-time constants, specifying 56
decimal 53, 55, 213, 214, 474, 499
double-precision floating-point
(float64) 53, 152, 477, 502
float32 53
float64 53
floating-point (float32) 53, 151, 479,
503
int16 151
int32 151
integer (int16) 53, 151, 481, 506
logical 59
long integer (int32) 53, 151, 483, 507
memo 57
native, retrieving 206, 207
parameter and return value 151
pointer 152
ptrfit32 152
ptrflté4 152
ptrintl6 152

DataDirect Developer’s Toolkit Programmer’s Guide

Index 570

ptrint32 152
ptrstr 152
retrieving supported 465
single-precision floating-point (float32)
53, 151, 479, 503
true/false 59
variable length character 53
Visual Basic 527
Database connection functions 20
Database drivers, distributing 2
Database errors, reporting 231
Database joins, DTK support for 35
Database system error 231, 236, 538
Databases, reporting available 228
Date-time data type 53, 54, 202, 204
constants, specifying 56
Date-time format strings 64
Debugging 117
Decimal number data type 53, 55, 213, 214,
474, 499
Default database 411
Default unique key, when generated 79
Deferred database changes 407
applying 159
undoing 467
Deferring (saving) record modifications 77,
407
Deleting records 372
Dirty reads 86
Disconnecting from a database 233
Double-precision floating-point data type
(float64) 53, 152, 477, 502
Driver trace file, naming 412
Drivers, distributing 2
DTK
compatibility with Version 1.0 553
distributing drivers 2
features of
listed 4
initializing 22, 303
terminating 22, 304

|GoTo v|

Index 571
E Float64 data type 152
Floating-point data type (float32) 53, 151,
479, 503

Emulated transactions 92 Foreign keys
EOF 235, 537 defined 146

record state following 77 returning information on 250
Error codes 235, 537 Format strings 59

returning from underlying databases date-time 64

231 examples 59

Error handling numeric 60

associated functions 119
sample program 117
Error messages G
reporting 237
returned by DTK 537
Excel 157, 448
Exclusive database locks 88
Executing SQL statements
associated functions 26
sample program 25
Explicit locking with geRecLock 89

General Protection Fault (GPF), avoiding
120
Granularity of database locking 88

Expressions, retrieving 209 H
F Handle
database connection 21
ODBC connection 258, 420
Features ODBC conyersion functions 149
. ODBC environment 259
listed 4

ODBC statement 260
query object 135
SQL statement 28

hdbc 21, 226

hgry 135

hstmt 28, 239

Fetching options
reporting 294
setting 446
Fetching records
associated functions 40, 241
methods compared 46
geBindCol method 37
associated functions 41, 162, 175
sample program 38 |
geVal method
associated functions 45, 470, 488

sample program 43 Indexes
Finding records 374 defined 145
Fixed-length character data type 53, 54 returning information on 300
Float32 data type 151 Initializing DTK 22, 303

DataDirect Developer’s Toolkit Programmer’s Guide

|GoTo v|

Index 572
Input parameters Library system error 236, 538
defined 32 Locking
setting 1/0 type 32, 439 definition 85
Input/output parameters granularity of 88
defined 32 shared versus exclusive 88
setting 1/0 type 32, 439 Locking options
Inserting records 379 returning current 255
Int16 data type 151 setting 416
Int32 data type 151 Locking records 377
Integer data type (intl16) 53, 151, 481, 506 getting options 255
Invalid connection string, tracing 124 in joined tables 36
Isolation levels 85 setting options 416
concurrency provided by 88 Log files 89
consistency provided by 87 closing 241
getting current 88, 253 consistency and geRecLock 91
log file considerations 90 controlling use of 446
reporting support for 87, 296 isolation level considerations 90
setting 88, 413 reporting use of 294
Logical data type 59
Login timeout
reporting 256
\] setting 418
Long integer data type (int32) 53, 151, 483,

. 7
Joining tables 35 50

Julian date value 68

M
K

Maximum number of rows returned
reporting 257
setting 419
Memo data, reading and writing 57
Money columns, reporting 218
Multiple SQL statements, getting results
from 305

Keys
default 79
foreign 250
generating 78, 399, 468
joined tables, using in 36
primary 314
reporting 376

N
L

Native data types, retrieving 206, 207
Native SQL, retrieving from driver 307

Length of retrieved data, reporting 229 New record. inserting 379

DataDirect Developer’s Toolkit Programmer’s Guide

| Go To

v i

Non-repeatable reads 86

Null value 58, 229, 472

Nullable columns, reporting 218

Number of columns, reporting 308

Number of parameters, reporting 310
from the Query Builder 338

Number of records modified, reporting 309
Number of records retrieved, reporting 245

O

Obsolete QELIB functions 556
ODBC compatibility 560
ODBC connection information, reporting
261, 268
ODBC drivers, distributing 2
ODBC handle conversion functions 149
Out of memory 235, 537
Output parameters
defined 32
setting 1/0 type 32, 439

P

Page-level locking 88
Parameter conventions 151
Parameter data types 34, 151
Parameterized queries 31
Parameters in SQL statements
associated functions 30
binding functi 176, 196
setting functi 423, 444
clearing 199
counting 310
identifying 311
input 32
input/output 32
output 32
sample program 28
setting data type 427

DataDirect Developer’s Toolkit Programmer’s Guide

Index 573

setting 1/0 type 32, 439

setting versus binding values 32

writing binary data with 58
Parsing SQL statements

associated functions 149

sample program 147
Parsing statement clauses 197
Persistence of Select statements, control-

ling 92, 294, 446

Phantom reads 86
Pointer 152
Precision 55, 282, 475

retrieving for column values 213
Prepared statements, executing 457
Previous fetching function 41
Primary keys

default 79

defined 145

generating 78, 399, 468

joined tables, using in 36

reporting 376

returning information on 314

Q

QBE 127
geAppendSQL 27, 28, 157
geApplyAll 76, 78, 159
geBeginTran 83, 84, 160
geBindCol 42, 162
geBindCol functions 162, 175
listed 41
sample program 38
geBindColChar 42, 164
reading binary data with 58
geBindColDecimal 42, 166
geBindColDouble 42, 168
geBindColFloat 42, 170
geBindColint 42, 172
geBindColLong 42, 174
geBindParamBinary 30, 176
writing binary data with 58
geBindParamChar 30, 178

| Go To

v i

geBindParamDate 30, 181

geBindParamDateTime 30, 183

geBindParamDecimal 30, 185

geBindParamDouble 30, 187

geBindParamFloat 30, 189

geBindParamint 30, 191

geBindParamLong 30, 193

geBindParamTime 31, 195

geBinToHex and geBinToHexBuf 50, 505

geCharToDate and geCharToDateBuf 50,
498

geCharToDecimal and geCharToDecimal-
Buf 50, 499

geCharToDouble 51, 502

geCharToFloat 51, 504

geCharTolnt 51, 506

geCharTolLong 51, 507

geClauseGet and geClauseGetBuf 149, 197

geClearParam 31, 32, 199

geColAlias and geColAliasBuf 49, 200

geColDateEnd 49, 54, 202

geColDateStart 49, 54, 204

qeColDBType 49, 54, 206

geColDBTypeName and geColDBType-
NameBuf 49, 54, 207

geColExpr and qeColExprBuf 49, 209

geColName and geColNameBuf 49, 211

geColPrecision 49, 56, 213

geColScale 49, 56, 214

geColType 49, 53, 215

geColTypeAttr 49, 217

geColumns 146, 220

geColWidth 42, 49, 222

geCommit 83, 84, 224

geConnect 21, 225

geDatabases 146, 228

geDatalLen 45, 46, 59, 229

geDateToChar and geDateToCharBuf 51

geDateToDouble 51, 502

geDateTolLong 51, 507

qeDBErr 119, 120, 231

geDecimalToChar and geDecimalToChar-
Buf 51

geDecimalToDouble 51, 502

geDecimalToFloat 51, 504

DataDirect Developer’s Toolkit Programmer’s Guide

Index 574

geDecimalTolnt 51, 506

geDecimalTolLong 51, 507

QEDEMO.BAS 509

geDisconnect 21, 233

geDoubleToChar and geDoubleToCharBuf
51, 496

geDoubleToDecimal and geDoubleToDeci-
malBuf 51, 500

geDoubleToFloat 51, 504

geDoubleTolnt 51, 506

geDoubleToLong 51, 507

geEndSQL 27, 28, 234

geErr 119, 235

geErrMsg and geErrMsgBuf 119, 120, 237

geExecSQL 27, 239

geFetchGetOptions 557

geFetchLogClose 40, 41, 90, 241, 560

geFetchNext 40, 41, 243

geFetchNumRecs 40, 41, 245, 559

geFetchPrev 40, 41, 246

geFetchRandom 40, 41, 248

geFetchSetOptions 557

geFloatToChar and geFloatToCharBuf 51,
496

geFloatToDecimal and gqeFloatToDecimal-
Buf 51, 500

geFloatToDouble 52, 502

geFloatTolnt 52, 506

geFloatToLong 52, 507

geForeignKeys 146, 250

geGetAutoUpdate 76, 78, 252

geGetlsolationLevel 83, 253

geGetLockOptions 75, 255

geGetLoginTimeout 21, 256

geGetMaxRows 40, 257

qeGetODBCHdbc 150, 258

qeGetODBCHenv 150, 259

qeGetODBCHstmt 150, 260

geGetODBCInfoChar and qeGetODBClnfo-
CharBuf 150, 261

geGetODBCInfoLong 150, 264

geGetOneHstmtPerHdbcOptions 27, 269

geGetParamBinary 34, 271

geGetParamBinaryBuf 34, 271

geGetParamBit 34, 273

| Go To

v i

geGetParamChar 34, 274

geGetParamCharBuf 34, 274

geGetParamDate 34, 277

geGetParamDateBuf 34, 277

geGetParamDateTime 34, 279

geGetParamDateTimeBuf 34, 279

geGetParamDecimal 35, 281

geGetParamDecimalBuf 35, 281

geGetParamDouble 35, 283

geGetParamFloat 35, 285

geGetParamint 35, 287

geGetParamLong 35, 289

geGetParamTime 35, 291

geGetParamTimeBuf 35, 291

geGetQueryTimeout 27, 293

geGetSelectOptions 40, 83, 294

geGetSupportedisolationLevels 83, 296

geGetTableCaching 146, 298

geGetTraceOptions 122, 299

geHexToBin and geHexToBinBuf 494

geHextoBin and geHexToBinBuf 52

gelndexes 145, 146, 300

gelntToChar and gelntToCharBuf 52, 496

gelntToDecimal and gelntToDecimalBuf 52,
500

gelntToDouble 52, 502

gelntToFloat 52, 504

gelntToLong 507

geLiblnit 22, 303

geLibTerm 22, 304

geLongToChar and geLongToCharBuf 52,
497

geLongToDecimal and geLongToDecimal-
Buf 52, 501

geLongToDouble 52, 502

geLongToFloat 52, 504

geLongTolnt 52, 506

geMoreResults 27, 305

geNativeSQL and geNativeSQLBuf 149,
307

geNumCols 49, 308

geNumModRecs 27, 79, 309

geNumParams 31, 32, 310

geParamNum 31, 32, 311

gePrimaryKeys 145, 146, 314

DataDirect Developer’s Toolkit Programmer’s Guide

Index 575

geProcedureColumns 146, 312
gePutBinary 74, 316
writing Blob or Memo data with 58
gePutChar 317
gePutDecimal 74, 319
gePutDouble 74, 321
gePutFloat 74, 322
gePutint 74, 323
gePutLong 74, 324
gePutNull 74, 325
gePutUsingBindColumns 74, 326
qeQBEPrepare 130, 131, 328
geQryAllocate 134, 329
qeQryBuilder 135, 136, 137, 330
geQryFree 134, 333
geQryGetFileName and geQryGetFileNa-
meBuf 134, 334
qeQryGetFileOffset 134, 336
qeQryGetHdbc 134, 337
geQryGetNumParams 134, 136, 338
geQryGetParamDefault and geQryGet-
ParamDefaultBuf 134, 339
geQryGetParamFormat and gqeQryGet-
ParamFormatBuf 134, 341
geQryGetParamName and geQryGet-
ParamNameBuf 134, 343
geQryGetParamPrompt and geQryGet-
ParamPromptBuf 134, 345
geQryGetParamType 134, 347
geQryGetSource and qeQryGetSourceBuf
135, 349
geQryGetStmt and qeQryGetStmtBuf 134,
351
geQryOpenQueryFile 134, 352
geQryPrepare 135, 136, 353
geQrySaveQueryFile 135, 136, 354
geQrySetFileName 135, 355
geQrySetHdbc 135, 356
geQrySetNumParams 135, 357
geQrySetParamDefault 135, 358
geQrySetParamFormat 135, 360
geQrySetParamName 135, 362
geQrySetParamPrompt 135, 364
geQrySetParamType 135, 366
geQrySetSource 135, 369

| Go To

v i

geQrySetStmt 135, 368
geRecClearConditions 130, 131, 370
geRecDelete 75, 76, 372
geRecFind 131, 132, 374
geRecGetKey 75, 77, 78, 376
geReclLock 75, 77, 89, 377

log file considerations 91
geRecNew 75, 76, 379
geRecNum 75, 77, 381
geRecSetConditionBinary 130, 382
geRecSetConditionChar 130, 384
geRecSetConditionDecimal 130, 387
geRecSetConditionDouble 131, 389
geRecSetConditionFloat 131, 391
geRecSetConditionint 131, 393
geRecSetConditionLong 131, 395
geRecSetConditionNull 131, 397
geRecSetKey 75, 77, 78, 399
geRecState 75, 77

using with deferred record changes 78
geRecUndo 75, 76, 402
geRecUpdate 75, 76, 403
geRollback 83, 84, 405

record state following 77
geSetAutoUpdate 75, 77, 407
geSetCacheFileName 147, 409
geSetDB 21, 411
geSetDriverTraceFile 122
geSetlsolationLevel 83, 413
geSetLockOptions 75
geSetLoginTimeout 21, 418
geSetMaxRows 40, 41, 419
qeSetODBCHdbc 150, 420
geSetOneHstmtPerHdbcOptions 27, 421
geSetParamBinary 31, 423

writing binary data with 58
geSetParamChar 31, 425
geSetParamDataType 34, 427
geSetParamDate 31, 430
geSetParamDateTime 31, 431
geSetParamDecimal 31, 433
geSetParamDouble 31, 435
geSetParamFloat 31, 436
geSetParamint 31, 438
geSetParamlOType 31, 32, 33, 34, 439

DataDirect Developer’s Toolkit Programmer’s Guide

Index 576

geSetParamLong 31, 441
geSetParamNull 31, 442
geSetParamTime 31, 444
geSetQueryTimeout 27, 445
geSetSelectOptions 40, 41, 83, 446
controlling statement persistence with
92
enabling logging with 89
geSetSQL 27, 28, 448
geSetTableCaching 147, 450
geSetTraceOptions 122, 452
geSetupinfo and geSetuplnfoBuf 23, 454
geSources 146, 455
qeSQLExecute 27, 28, 32, 457
geSQLPrepare 27, 28, 32, 458
geTables 146, 459
geTraceOff 122, 462
geTraceOn 122, 463
geTraceUser 122, 464
geTypelnfo 146, 465
geUndoAll 76, 78, 467
geUniqueWhereClause and geUnique-
WhereClauseBuf 149, 468
geVal functions 152, 470, 488
advantages of using 46
listed 45
sample program 43
geValChar and geValCharBuf 45, 470
reading binary data with 57
geValDecimal and geValDecimalBuf 45,
474
geValDouble 45, 477
geValFloat 45, 479
geValint 45, 481
geValLong 45, 483
geValMultiChar and geValMultiCharBuf 45,
46, 485
geVBFetchNext 513
geVBFetchPrev 516
geVBFetchRandom 518
geVBPutRecord 521
geVerNum and geVerNumBuf 23, 489
geWarning 119, 490
Query Builder 136
associated functions 134, 329

| Go To

v i

Edit Query Text screen 139

icons 138

parameters 140

preferences 140

sample program 132
Query By Example

associated functions 130, 328, 370,

374, 382, 397

description 127

sample program 129
Query file

assigning name to 355

getting name of 334

offset 336

opening 352

saving 354
Query object, handling 135
Query timeout

reporting 293

setting 445

R

Random fetching function 41
Read commited isolation level 86
Read uncommited isolation level 86
Read-ahead activity, controlling 534
Reading records 37
Record number, getting 77, 381
Record state, getting 77, 401
Record-level locking 88
Records
deleting 372
finding 374, 382, 399
inserting 379
locking 85, 377
number modified, reporting 309
number retrieved, reporting 245
updating 403
Result codes 235, 537
description 119
returning 235

DataDirect Developer’s Toolkit Programmer’s Guide

Index 577

Revision 1 compatibility 553
Rollback transaction 84, 405

S

Sample programs
column information functions, using 47
connecting to databases 19
copying 12
current-record functions, using 71
data dictionary functions 143
descriptions 12
executing SQL statements 25
fetching records using geBindCol 38
fetching records using geVal 43
finding other samples 14
handling and tracing errors 117
listed by chapter 8
parameters in SQL statements 28
parsing SQL statements 147
Query Builder 132
Query By Example 129
running 9
transactions, using 81
Visual Basic 510
Sample trace files 120
SAMPLE.EXE program 9
Saving (deferring) record modifications 77,
407
Scale 55, 282, 475
retrieving for column values 214
Search condition functions 130
Searchable columns, reporting 219
Select statement persistence, controlling 92,
294, 446
Serializable isolation level 87
Setup
getting information about 23, 454
Shared database locks 88
Single-precision floating-point data type
(float32) 53, 151, 479, 503
Single-statement database systems, coding
for 269, 421, 529

| Go To

v i

SQL statements

appending 157

ending execution 234

executing 27, 239

associated functions 26
sample program 25

multiple, getting results from 305

parameters on 28

partial, sending 448

preparing 458
SQLGetlInfo function, using 262, 264
Statement clauses, parsing 197
Statement conflicts, preventing 536
Statement execution errors, tracing 123
Statement handle 28
Statement persistence, controlling 92, 294,

446

Status constants 119
Stored procedures

calling 33

defined 33

getting results from 305

parameters on 33

retrieving information about 312
Supported isolation levels, getting 87, 296

T

Table caching
controlling 450
file, naming 409
reporting 298
Table-level locking 88
Tables
joining 35
retrieving available 459
Technical support 15
Temporary files 89
Terminating DTK 22, 304
Timeout
login
reporting 256
setting 418

DataDirect Developer’s Toolkit Programmer’s Guide

Index 578

query
reporting 293
setting 445
Tracing errors
associated functions 122
driver trace file name, setting 412
getting options 299
passing strings 464
sample program 117
sample trace files 120
setting options 452, 565
starting 463
stopping 462
Tracing statement and connection errors
122
Transactions
beginning 160
committing 224
definition 84
emulated 92
functions for using 83
rolling back 405
sample program 81
True/false data type 59
Truncated value 229, 472

U

Undoing current record changes 402
Undoing deferred database changes 467
Unique keys

default 79

generating 78, 399, 468

joined tables, using in 36

reporting 376
Unsigned columns, reporting 217
Updatable columns, reporting 217
Updating records 403

automatically 77, 407

in joined tables 36

with deferred database changes 159

I Go To hd I Index 579

\%

Variable-length character data type 53, 54
Version number, getting 23, 489
Visual Basic
Buf functions 524
data types 527
decimal numbers 528
DTK declarations for 509
fixed-length string 526
special functions for 513
using DTK with 509
variable-length string 526

W

Warnings, handling 490

DataDirect Developer’s Toolkit Programmer’s Guide

| GoTo w | Index 580

DataDirect Developer’s Toolkit Programmer’s Guide

