
DataDirect Developer’s Toolkit Programmer’s Guide

Go To

DataDirect Developer’s Toolkit
Programmer’s Guide
Table of Contents

List of Tables..ix

Using this Manual ..xi
Conventions Used in This Manual ..xii

Terminology...xiii
Environment-Specific Information ...xiii

Part 1: Using DTK

1 Getting Started...1
About the DataDirect Developer’s Toolkit .. 1

Distributing INTERSOLV’s Database Drivers .. 2

Installing DTK .. 3

Building a DTK Application .. 4
What Can You Do with DTK? .. 4
What Is a DTK Application? .. 6
Sample Programs.. 9

Solving Problems and Getting Technical Support................................ 15
Product Documentation... 15
Technical Support for Registered Users.. 15
Before You Call ... 16
Calling for Technical Support... 17

Go To Table of Contents iv

DataDirect Developer’s Toolkit Programmer’s Guide

2 Connecting to Databases.......................................19
Connecting to a Database ... 20

Initializing and Terminating DTK .. 22

Getting Setup and Version Information.. 23

3 Executing SQL Statements.....................................25
Executing SQL Statements.. 25

Using Statement Parameters... 28

Using Stored Procedures... 33

Join Behavior in DTK ... 35

4 Retrieving and Converting Data.............................37
Fetching Records... 37

Binding Data to Columns... 41
Using qeVal Functions... 43
Comparing qeBindCol and qeVal Techniques 46

Getting Column Information... 47

Converting Data Types .. 50

Data Types in DTK... 53
Fixed and Variable Character Strings.. 54
Date-Time Values.. 54
Decimal Number Format ... 55
Binary and Date-Time Constants .. 56
Blobs and Memos.. 57
Null Values .. 58
Logical Values ... 59

Format Strings ... 59
Numeric Format Strings .. 60

Go To Table of Contents v

DataDirect Developer’s Toolkit Programmer’s Guide

5 Modifying Data...71
Current-Record Functions ... 71

Column Functions ... 74
Record Functions .. 75

Unique Keys .. 78

6 Using Transaction Functions.................................81
Transaction Functions.. 81

Transactions, Locking, and Logging .. 84
Transactions.. 84
Locking.. 85
Logging.. 89
Emulated Transactions.. 92
Controlling Statement Persistence.. 92

7 Error Handling and Debugging............................117
Handling Errors and Warnings... 119

Debugging Your Applications... 120
Tracing Statement and Connection Errors 122

8 QBE and Query Builder Functions......................127
Using Query By Example and Finding Records 127

Using QBE Functions .. 130

Using Query Builder Functions .. 132

The Query Builder Interface... 136
Query Builder Icons... 138
Query Builder Parameters... 140

Go To Table of Contents vi

DataDirect Developer’s Toolkit Programmer’s Guide

9 Utility Functions..143
Using Data Dictionary Functions ... 143

Parsing SQL Statements ... 147

ODBC Handle Conversion... 149

Part 2: Function Reference

10 DTK Functions...151
Parameter Conventions... 151

Parameter Data Types... 151

Functions That Return Pointers ... 152

Functions that Vary by Data Type or Column Type 153
qeBindCol functions .. 154
qeCol functions.. 154
qePut functions.. 155
qeRecSetCondition functions.. 155
qeVal functions.. 156

Functions ... 156

Part 3: Appendixes

A Data Conversion Functions..................................493
Converting Hexadecimal Values to Binary... 493

Converting to Character Strings .. 495

Converting Character Strings to Date Values 498

Converting to Decimal Numbers.. 499

Converting to Double-Precision Floating-Point Numbers 502

Converting to Floating-Point Numbers... 503

Go To Table of Contents vii

DataDirect Developer’s Toolkit Programmer’s Guide

Converting Binary Values to Hexadecimal... 505

Converting to Integers ... 506

Converting to Long Integers .. 507

B For Microsoft Visual Basic Users.........................509
Using DTK with Visual Basic ... 509

A VB Example.. 510

DTK Functions for Visual Basic Users... 512

Standard DTK Functions ... 513

VB-Specific Functions.. 513

qeVBFetchNext.. 513

qeVBFetchPrev.. 516

qeVBFetchRandom ... 518

qeVBPutRecord ... 521

“Buf” Functions .. 524
Allocating Buffers .. 526

Data Types... 527

C Coding for Single Statement Database
Systems..529
Why Is This an Issue? ... 529

Locking Considerations ... 531

Performance Considerations ... 532

Controlling Read-ahead Activity .. 534

Preventing Statement Conflicts ... 536

Go To Table of Contents viii

DataDirect Developer’s Toolkit Programmer’s Guide

D Result and Error Message Codes........................537
Result Codes ... 537

Error Codes and Messages ... 538

E Compatibility Issues..553
QELIB 1.0 Compatibility... 553

Native Column Type Support .. 554
Column Width Support .. 554
Error Checking .. 555
SQL Compatibility.. 555
Issuing Multiple SQL Statements .. 555
SQL Server Character Strings... 556

Obsolete QELIB Functions .. 556

qeFetchGetOptions.. 557

qeFetchSetOptions.. 557

ODBC Compatibility... 560

Required Functions.. 560

Optional Functions... 561

F The QELIB.INI File...565
[QELIB].. 565
[program]... 566

DataDirect Developer’s Toolkit Programmer’s Guide

Go To

List of Tables

Table 2-1. Functions that Establish or Close Database
Connections... 21

Table 2-2. Functions that Initialize and Terminate DTK Programs.. 22

Table 2-3. Functions that Retrieve Setup Information and Version
Numbers .. 23

Table 3-1. Functions that Execute SQL Statements....................... 27

Table 3-2. Functions to Use with SQL-Statement Input
Parameters .. 30

Table 3-3. Functions that Support Stored-Procedure I/O
Parameters .. 34

Table 4-1. Functions that Fetch Data.. 40

Table 4-2. Functions that Bind Data to Columns 42

Table 4-3. Functions that Return Values from the Current Record. 45

Table 4-4. Functions that Return Select-Statement Column Info. .. 49

Table 4-5. Functions that Convert Data Types 50

Table 5-1. Functions that Change Column Values in the Current
Record ... 74

Go To List of Tables x

DataDirect Developer’s Toolkit Programmer’s Guide

Table 5-2. Functions that Operate on the Current Record.............. 75

Table 6-1. Functions that Support Transactions 83

Table 7-1. Error Handling Functions... 119

Table 7-2. Functions that Log Calls to Database-Connection
and SQL-Execution Functions 122

Table 8-1. Functions that Change Query Conditions at Runtime . 130

Table 8-2. Functions that Support the Query Builder Tool............ 134

Table 9-1. Data Dictionary Functions.. 146

Table 9-2. Functions that Parse the Active SQL Statement 149

Table 9-3. Functions that Access SQLGetInfo.............................. 150

DataDirect Developer’s Toolkit Programmer’s Guide

Go To

Using this Manual

This manual is organized to make DTK easy to learn and to provide a
convenient reference guide. You don’t have to read the entire manual to
begin using the product.

Part I contains guidelines and specific information about using DTK to create
applications. Each chapter in Part I describes a specific set of tasks and
related concepts, gives sample applications to illustrate their usage, and lists
the related DTK functions. Chapter 1 describes a sample DTK application
that you can run to better familiarize yourself with DTK’s capabilities.

Part II is a complete, alphabetical reference to the DTK functions. It begins by
describing some of the parameter conventions employed in the functions.

The appendixes in Part III contain information tailored to specific tasks and
users. Appendix A describes the data conversion functions that DTK
provides. Appendix B contains information specific to using DTK with
Microsoft Visual Basic®. Appendix C describes considerations and
techniques for coding DTK applications for connection to database systems
that support only one statement per connection. Appendix D lists DTK error
message codes and their corresponding text. Appendix E describes
compatibility issues of interest to users of version QELIB 1.0. Appendix F
describes the contents and format of the QELIB.INI file.

Information on the database drivers supplied with DTK and the SQL
language is provided in the INTERSOLV driver reference manual that
accompanies this product.

Go To
Using this Manual

Conventions Used in This Manual xii

DataDirect Developer’s Toolkit Programmer’s Guide

Conventions Used in This Manual

This manual uses various conventions to aid in its usability. The typography,
terminology, and callouts to environment-specific information used are
intended to make this manual easy to use, regardless of the operating
environment you are using. The following sections describe these
conventions.

Typography

This manual uses various typefaces, fonts, and characters to indicate certain
types of information, as follows:

Convention Explanation

italics Used to identify parameters to DTK functions, to
introduce new terms that you may not be familiar with,
and occasionally for emphasis.

bold Used to emphasize important information.

bold italics Used to identify parameters in syntax descriptions of
DTK function calls. Each such parameter is preceded in
the description by its declared data type.

monospac e Code examples or results that you receive.

UPPERCASE Indicates the name of a file. For operating environments
that use case-sensitive filenames, the correct
capitalization is used in information specific to those
environments.

Go To
Using this Manual

Conventions Used in This Manual xiii

DataDirect Developer’s Toolkit Programmer’s Guide

Terminology

This manual uses the following terminology:

• The term ODBC.INI refers to the ODBC.INI file format as defined by the
Microsoft ODBC specification.

• The suffix .DLL refers to a dynamic link library file. Your operating system
may use shared object or shared library files instead.

Environment-Specific Information

This manual shows dialog boxes that are specific to Windows. If you are
using DTK on Windows 95, Windows NT, OS/2, Macintosh, or UNIX, the
dialog boxes you see may differ slightly from the Windows version.

Go To
Using this Manual

Conventions Used in This Manual xiv

DataDirect Developer’s Toolkit Programmer’s Guide

DataDirect Developer’s Toolkit Programmer’s Guide

Go To

Part 1: Using DTK
1 Getting Started

This chapter contains the following information to help you get started using
the DataDirect Developer’s Toolkit:

• “About the DataDirect Developer’s Toolkit,”next
• “Installing DTK” on page 3
• “Building a DTK Application” on page 4
• “Solving Problems and Getting Technical Support” on page 15

About the DataDirect Developer’s Toolkit

Whether you are working with spreadsheets, word processors, graphics
packages, or development tools, it is often important to incorporate
information from a database into your application. Unfortunately, most
products provide little or no support for direct access to databases. The
DataDirect Developer’s Toolkit provides a powerful, flexible way for you to
add database access to your applications. DTK contains functions that allow
you to read, insert, update, and delete records from databases.

Many Microsoft® WindowsTM or IBM® OS/2® products include a macro or
script language that lets you customize the product or build your own
applications. These macro languages usually provide a way for you to call
functions in Dynamic Link Libraries (DLLs). DTK is packaged as a set of
DLLs, so you can call DTK functions from the macro and script languages of
any application that supports DLLs. Or, you can call DTK functions from
programming languages such as C.

Go To
Chapter 1 Getting Started

Distributing INTERSOLV’s Database Drivers 2

DataDirect Developer’s Toolkit Programmer’s Guide

Using DTK, you can

• Use a graphics product to build a pie chart from data stored in Oracle.

• Use a spreadsheet product to analyze data stored in SQL Server.

• Use a word processor to write a memo containing last month’s sales
figures stored in DB2.

• Use a development tool to build a data entry screen that stores data in
Paradox.

For a complete list of the databases supported by DTK, refer to the release
notes that accompany the product.

All database operations are performed by sending Structured Query
Language (SQL) statements to the API. SQL is a standard database
language supported by many database systems. For database systems that
do not support SQL, DTK operates directly on the database files to execute
the SQL statements.

The advantage of supporting SQL for all database systems is that you can
build one application that can access data from any database DTK supports.
You don’t have to rewrite your application for each database system. You can
test your application on a local database system and later run it on a different,
server-based database system.

Distributing INTERSOLV’s Database Drivers

With your DTK applications, you are allowed to distribute, royalty free, the
files your application needs to run. These are the DTK’s:

• API library (for example, QELIB.DLL in Windows)

• Graphical Interface library (for example, QEGUInn.DLL in Windows)

Go To
Chapter 1 Getting Started

Installing DTK 3

DataDirect Developer’s Toolkit Programmer’s Guide

• SQL-support library (for example, QESQLnn.DLL in Windows)

• Utilities library (for example, QEUTLnn.DLL in Windows)

For Windows, Windows 95, and Windows NT, you can also distribute, royalty
free, the Query Builder library (for example, QEQRYnn.DLL in Windows) and
a context-sensitive help file that is called by the Query Builder
(QRYBLDR.HLP)

Please see the README file for your platform for a specific list of the files you
can distribute royalty-free.

You cannot distribute INTERSOLV ODBC drivers included with the
DataDirect Developer's Toolkit. ODBC Drivers are included only for
development and testing purposes. For distributing your application and
ODBC drivers, you can follow either of the following procedures:

• Purchase DataDirect ODBC Drivers from INTERSOLV for distribution with
your developed application

• Distribute your application without drivers royalty free and require your
customers to purchase the drivers

Either you or your customer can purchase a single driver or multiple copies of
a single driver, as well as the entire DataDirect ODBC Pack from
INTERSOLV. If would like to obtain a distribution license, please call 1-800-
876-3101 for more information.

Installing DTK

Refer to the installation instructions that accompany this version of DTK for
information on:

• System requirements
• Running the Setup program
• Setting installation options

Go To
Chapter 1 Getting Started

Building a DTK Application 4

DataDirect Developer’s Toolkit Programmer’s Guide

Building a DTK Application

This section describes the workings of a DTK application and the various
functions it calls. It contains the following:

• “What Can You Do with DTK?,” next, lists the features that DTK provides
for use in your database applications.

• “What Is a DTK Application?” on page 6 shows a sample written in C to
illustrate the major parts of a DTK application.

• “Sample Programs” on page 9 describes the SAMPLE.EXE program
provided with DTK and the sample routines it includes, which are reprinted
throughout the chapters of Part I.

What Can You Do with DTK?

DTK provides a multi-database API that works with any database driver that
complies with Microsoft’s Open Database Connectivity (ODBC) standard.
With DTK, you can write applications that are usable with any database
system. Porting your application to another database system can be as easy
as changing a single line of code.

DTK also manages all data-type conversion for you. DTK’s data-retrieval
functions automatically convert the native data type for a column into one of
DTK’s eight standard data types, removing any data conversion
considerations that might affect portability. For situations where you need to
use the native data types, DTK provides that capability.

DTK makes it easy to implement powerful features in your applications. With
DTK, your applications can

• Be written using any development tool that can call a DLL, so you can
continue to use your development tools. DTK lets you expand your
capabilities while protecting your investment—don’t worry about having to
write new code or spend time learning new products.

Go To
Chapter 1 Getting Started

Building a DTK Application 5

DataDirect Developer’s Toolkit Programmer’s Guide

• Query the system with DTK’s data dictionary functions to determine what
data sources, databases, tables, and stored procedures are available.

• Execute SQL statements on all database systems, even non-SQL
database systems.

• Retrieve names, data types, and other information about the columns
returned by Select statements.

• Scroll backward and forward through the records returned by a Select
statement, even in databases that do not support backward scrolling. You
can also position to a specific record by using its number.

• Update and delete records without issuing the SQL statements normally
required to do so. DTK’s current-record functions generate the appropriate
statement for you. You can also insert a record that contains null values
for columns that can be filled in later.

• Use transactions to group database operations so that they can be
executed or canceled as a unit. The database drivers included with DTK
let you use transactions even when connected to databases that do not
support them.

• Provide your users with a Query By Example (QBE) option that lets them
define retrieval conditions in the fields where those records are displayed.

• Use parameters for creating multipurpose SQL queries. DTK’s parameter
functions let you create queries containing parameters in their Where
clauses. With these functions, you can create queries that use the results
of previous queries and that can be modified by end users at runtime.

• Search the Select statement’s result set to find records matching certain
conditions using a single function.

• Include the Query Builder tool, which lets your users point and click to
create Select statements—even if they don’t know SQL.

• Parse the Where, Having, Group By, Order By, and Compute By clause,
or other database-specific condition clauses from a Select statement.

Go To
Chapter 1 Getting Started

Building a DTK Application 6

DataDirect Developer’s Toolkit Programmer’s Guide

• Rely on DTK’s enhanced error handling functions when checking for
errors and warning messages from the database system.

• Optimize the application’s performance to suit the types of tasks it
performs and database systems it uses.

• Call stored procedures and handle their results with functions designed
specifically for that purpose.

• Take advantage of Microsoft’s ODBC standard for portability among client/
server database systems. All DTK applications are ODBC-compliant. Your
DTK application can function with any ODBC-compliant database driver,
regardless of the vendor that supplies it.

What Is a DTK Application?

A DTK application is any application that calls the DTK API to interact with a
database. Such an application can be written in any programming language
or environment that operates under Windows or OS/2.

The following C program shows part of a typical DTK application.

qeSTATUS bindfetch () {

/* This routine demonstrates how to use the bind functions to fetch data * /
/* from Select statements directly into program variables. * /

 qeHANDLE hdbc = 0; /* Handle to database connection * /
 qeHANDLE hstmt = 0; /* Handle to SQL statement execution * /
 qeSTATUS res_code; /* Result code from DTK functions * /
 char last_name [11] ;
 long last_name_len = 11 ;
 float salary ;
 long salary_len = sizeof(salary) ;

/* Call qeLibInit to initialize DTK, check for errors. * /
 res_code = qeLibInit () ;
 if (res_code != qeSUCCESS) return (res_code) ;

/* Call qeConnect to connect to a data source. Check to see * /
/* if hdbc == 0, which indicates that the connection failed. * /

Go To
Chapter 1 Getting Started

Building a DTK Application 7

DataDirect Developer’s Toolkit Programmer’s Guide

 hdbc = qeConnect ("DSN=QEDBF") ;
 if (hdbc == 0) return (err_handler (hdbc, hstmt)) ;

/* Call qeExecSQL to execute the select statement. Check if hstmt == 0, * /
/* which indicates that the statement did not execute successfully. * /
 hstmt = qeExecSQL (hdbc, "Select last_name, salary from emp") ;
 if (hstmt == 0) return (err_handler (hdbc, hstmt)) ;

/* Bind the result columns to program variables. * /
 res_code = qeBindColChar (hstmt, 1, last_name, &last_name_len, "") ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

 res_code = qeBindColFloat (hstmt, 2, &salary, &salary_len) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Fetch the records from the select statement. * /
 while (qeFetchNext (hstmt) == qeSUCCESS) {
 MessageBox (hWnd, last_name, "Bind Fetch", MB_OK) ;
 }

/* Check for errors, EOF is ok. * /
 res_code = qeErr () ;
 if ((res_code != qeSUCCESS) && (res_code != qeEOF))
 return (err_handler (hdbc, hstmt)) ;
/* Close the SQL statement. * /
 res_code = qeEndSQL (hstmt) ;
 hstmt = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeDisconnect to disconnect from a data source. * /
 res_code = qeDisconnect (hdbc) ;
 hdbc = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeLibTerm to free memory allocated by DTK. * /
 res_code = qeLibTerm () ;
 MessageBox (hWnd, "Sample succeeded.", "Bind Fetch", MB_OK) ;
 return (res_code) ;

}

qeSTATUS err_handler (qeHANDLE hdbc, qeHANDLE hstmt) {

/* This routine functions as an error handler for the demonstration * /
/* routines. It displays an error message in a message box, terminates * /

Go To
Chapter 1 Getting Started

Building a DTK Application 8

DataDirect Developer’s Toolkit Programmer’s Guide

/* the active statement, closes the connection, ends the DTK session, * /
/* and returns the result code from the most recent DTK call. * /

 qeSTATUS res_code; /* Result code from DTK functions * /

 res_code = qeErr (); /* Get the DTK error number * /
 if (res_code > 0) /* Display an error message * /
 MessageBox (hWnd, qeErrMsg (), "Sample Failed", MB_OK) ;
 else { /* Display error number for negative result codes * /
 char buf[10] ;
 MessageBox (hWnd, itoa (res_code, buf, 10), "Sample Failed", MB_OK) ;
 }
 if (hstmt != 0) qeEndSQL (hstmt); /* End statement if active * /
 if (hdbc != 0) qeDisconnect (hdbc); /* Close connection if open * /
 qeLibTerm (); /* Last call to the DTK API * /
 return (res_code) ;
}

This sample illustrates the processes common to most DTK applications:

Initializing and terminating DTK tasks. This is discussed in Chapter 2,
“Connecting to Databases,” on page 19.

Connecting and disconnecting with the database system. This is also
discussed in Chapter 2, “Connecting to Databases,” on page 19.

Executing SQL statements. This is discussed in Chapter 3, “Executing SQL
Statements,” on page 25.

Fetching records and their values. This is discussed in Chapter 4, “Retrieving
and Converting Data,” on page 37.”

Other DTK capabilities and functions not covered in this sample are
discussed in the following chapters:

Chapter 3, “Executing SQL Statements,” on page 25 also describes the
parameter-binding functions that let you use dynamic and user-defined
conditions in the Where clause of SQL statements.

Chapter 4, “Retrieving and Converting Data,” on page 37 also describes the
functions that extract column values from the tables in the current SQL
statement.

Go To
Chapter 1 Getting Started

Building a DTK Application 9

DataDirect Developer’s Toolkit Programmer’s Guide

Chapter 5, “Modifying Data,” on page 71 describes the current-record
functions that let you add, change, or delete records in the database without
issuing SQL statements.

Chapter 6, “Using Transaction Functions,” on page 81 describes the functions
that group database operations so that they can be executed or canceled as
a unit.

Chapter 7, “Error Handling and Debugging,” on page 117 describes the
functions that report errors and that trace the execution of DTK functions.

Chapter 8, “QBE and Query Builder Functions,” on page 127 describes the
functions that let you implement Query By Example and the Query Builder
tool in your application’s user interface.

Chapter 9, “Utility Functions,” on page 143 describes DTK’s data dictionary
functions, which return information on the sources to which you are
connected, as well as the functions for parsing SQL statements and
converting DTK’s connection handles in order to call ODBC functions directly.

Sample Programs

The DTK disks include a number of sample DTK applications, including the
SAMPLE.EXE program described in the following section.

Running SAMPLE.EXE

The code samples in this book are taken from the program SAMPLE.EXE,
which is included on the DTK diskette. You can run SAMPLE.EXE to both
view and execute each example used in Part I. All of the samples are written
in C.

Go To
Chapter 1 Getting Started

Building a DTK Application 10

DataDirect Developer’s Toolkit Programmer’s Guide

Running this sample program is a good way to get started with DTK. It
provides a drop-down menu of DTK examples.

To load an example, select it from this menu.

Go To
Chapter 1 Getting Started

Building a DTK Application 11

DataDirect Developer’s Toolkit Programmer’s Guide

When you’ve chosen an example, you can run it by clicking the Run Code
button.

Go To
Chapter 1 Getting Started

Building a DTK Application 12

DataDirect Developer’s Toolkit Programmer’s Guide

Note: You can copy text from this window to another Windows program that
handles text as follows:

1 Drag the mouse to highlight the sample code.

2 Press CTRL + INSERT to copy the highlighted text to the clipboard.

3 Click in the application where you want to place the sample code.

4 Press SHIFT + INSERT to paste the copied sample.

If you are running Windows or Presentation Manager in a high-resolution
mode, some lines of sample code displayed by SAMPLE.EXE will be longer
than the display window. If you find this annoying, and don’t want to change
your resolution, you can use this method to copy the samples to Notepad or
some other application for better viewing.

Go To
Chapter 1 Getting Started

Building a DTK Application 13

DataDirect Developer’s Toolkit Programmer’s Guide

The Example List menu lets you choose among the following samples:

• Connecting to a Database
Initializes DTK, connects and disconnects from a database system, and
terminates DTK. This sample is listed in Chapter 2, “Connecting to
Databases,” on page 19.

• Executing SQL Update Statements
Issues a SQL Update statement directly via a DTK function call. This
sample is listed in Chapter 3, “Executing SQL Statements,” on page 25.

• Using Parameters in Update Statements
Uses the parameter binding functions that let you create dynamic SQL
statements to which your users can supply values. This sample is listed in
Chapter 3, “Executing SQL Statements,” on page 25.

• Reading Records Using qeBindCol
Fetches and reads record values from the database using DTK’s column
binding functions. This sample is listed in Chapter 4, “Retrieving and
Converting Data,” on page 37.

• Reading Records Using qeVal
Fetches and reads record values from the database using DTK’s value
extracting functions. This sample is listed in Chapter 4, “Retrieving and
Converting Data,” on page 37.

• Getting Column Information
Uses one of DTK’s column information functions to get data types for each
column returned by a Select statement. This sample is listed in Chapter 4,
“Retrieving and Converting Data,” on page 37.

• Using Current Record Operations
Changes values in the database using DTK’s current record functions.
This sample is listed in Chapter 5, “Modifying Data,” on page 71.

• Using Query By Example
Uses the QBE functions to retrieve a record with a first name value
beginning with “T.” This sample is listed in Chapter 8, “QBE and Query
Builder Functions,” on page 127.

Go To
Chapter 1 Getting Started

Building a DTK Application 14

DataDirect Developer’s Toolkit Programmer’s Guide

• Using the Query Builder
Calls the Query Builder, an interface that lets users point and click to
create SQL statements. This sample is listed in Chapter 8, “QBE and
Query Builder Functions,” on page 127.

• Using Transactions
Uses DTK functions to group database modifications into transactions.
This sample is listed in Chapter 6, “Using Transaction Functions,” on page
81.

• Getting Data Dictionary Information
Uses one of DTK’s data dictionary functions to return all of the ODBC-
defined data sources available to the application. This sample is listed in
Chapter 9, “Utility Functions,” on page 143.

• Parsing SQL Statements
Retrieves the Where clause of a SQL statement. This sample is listed in
Chapter 9, “Utility Functions,” on page 143.

• Tracing DTK Calls
Uses the functions that let you trace DTK and ODBC calls. This sample is
listed in Chapter 7, “Error Handling and Debugging,” on page 117.

Running Other Sample Programs

In addition to the SAMPLE.EXE program, several other sample programs are
included on the DTK disks. These sample programs were installed with DTK
if you selected the option to do so when running the Setup program.

To see a list of these programs, open the README.HLP file that was installed
in your DTK directory. You can double-click on this file from the File Manager
to view it. The help window that appears includes short descriptions of each
sample program.

If you did not install the sample programs when installing DTK, you can rerun
the Setup program from the first DTK disk to install them without reinstalling
DTK.

Go To
Chapter 1 Getting Started

Solving Problems and Getting Technical Support 15

DataDirect Developer’s Toolkit Programmer’s Guide

Solving Problems and Getting Technical Support

INTERSOLV gives you a variety of options for choosing the kind of technical
support that fits your needs.

Product Documentation

This product provides both printed manuals and online Help files. Take time
to explore these information sources; they are designed to help you learn
how to use the product and also serve as reference material for daily use.

This manual describes DTK’s functionality and provides reference
information. The INTERSOLV database driver reference that accompanies it
covers the database drivers included with the product; see this book for
driver-specific information about system requirements, connection string
options, and the particular implementation of SQL.

Technical Support for Registered Users

Please register your product immediately by sending in the registration card
enclosed in your product box. Upon registration, you are automatically
entitled to the following services:

• FaxPLUS can send you the latest marketing and technical information on
INTERSOLV products, 24 hours a day, seven days a week. Call FaxPLUS
from any touch-tone phone, and have your fax number ready. When
calling FaxPLUS, you can learn how the system works, order individual
documents, or order a catalog of documents. The FaxPLUS number is 1-
800-432-3984.

• INTERSOLV’s CompuServe forum offers 24-hour access to information.
You can download files for review or installation, and share information
with other users. To use this forum, type GO INTERSOLV. If you do not
know your local access number for CompuServe, call 1-800-848-8990.

Go To
Chapter 1 Getting Started

Solving Problems and Getting Technical Support 16

DataDirect Developer’s Toolkit Programmer’s Guide

ServiceDirect is our solution for ensuring ongoing success with your
INTERSOLV product. With ServiceDirect coverage, you are entitled to:

For more
information about
these services, call
INTERSOLV’s
ServiceDirect
Department at
(800) 443-1601.

• Answerline Services. Technical experts are available through the toll-free
Answerline number to share their experience in using INTERSOLV
products.

• Product Maintenance Releases. Maintenance releases provide periodic
enhancements to current products with more frequent updates.

• New Product Releases. You can leverage your investment by updating
your current technology with new product releases, which provide
enhanced functionality.

• Technical Bulletins. These bulletins provide product-specific tips,
techniques, and technical routines to keep you proficient in current
products.

• The INTERLINK Customer Newsletter. INTERLINK keeps you informed
about current products, support and services, courses, user groups, and
conferences.

Our Implementation Services Group offers a wide range of services that
include customized training, installation and tuning, mentoring, ODBC-
compliant application testing, and consulting. Contact the Implementation
Services Group by phone at (800) 443-1601 or by fax at (301) 230-3314.

Our Educational Services Department offers a wide range of prescheduled
classes. Call 1-800-443-1601 to obtain more information on these classes.

Before You Call

Before you call for technical support, please try to learn as much as you can
about the problems you are experiencing. Our Technical Support
representatives can address your problems much faster if you have all the
information they need when you call.

Go To
Chapter 1 Getting Started

Solving Problems and Getting Technical Support 17

DataDirect Developer’s Toolkit Programmer’s Guide

To streamline the problem-solving process, follow these steps before calling
INTERSOLV Answerline:

• Gather basic information about your system to help us understand the
environment in which you are working.

• Identify the category of your product usage so that you can effectively
prepare for telephone support.

• Troubleshoot to learn more about the nature of the problem.

Calling for Technical Support

If you live in North America, call INTERSOLV Answerline at (800) 443-1601.
Technical support representatives can take your call from 8:30 a.m. to 8 p.m.
EST.

If you live in another location, call the international distributor nearest you. Be
sure to read the online Help for support information and requirements that are
specific to your geographic location.

Go To
Chapter 1 Getting Started

Solving Problems and Getting Technical Support 18

DataDirect Developer’s Toolkit Programmer’s Guide

DataDirect Developer’s Toolkit Programmer’s Guide

Go To

2 Connecting to Databases

This chapter discusses the database connection functions and the DTK
initialization and termination functions.

The following sample code shows how to initialize DTK, connect and
disconnect from a database system, and terminate DTK. To load this sample
in the SAMPLE.EXE program, choose Connecting to a Database from the
Example List.

qeSTATUS connect () {

/* This routine connects to the dBASE driver, and then disconnects. * /

 qeHANDLE hdbc = 0; /* Handle to database connection * /
 qeHANDLE hstmt = 0; /* Handle to SQL statement execution * /
 qeSTATUS res_code; /* Result code from DTK functions * /

/* Call qeLibInit to initialize DTK, check for errors. * /
 res_code = qeLibInit () ;
 if (res_code != qeSUCCESS) return (res_code) ;

/* Call qeConnect to connect to a data source. Check to see * /
/* if hdbc == 0, which indicates that the connection failed. * /
 hdbc = qeConnect ("DSN=QEDBF") ;
 if (hdbc == 0) return (err_handler (hdbc, hstmt)) ;

/* Insert code here to execute SQL statements, fetch records, etc. * /

/* Call qeDisconnect to disconnect from a data source. * /
 res_code = qeDisconnect (hdbc) ;
 hdbc = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;
/* Call qeLibTerm to free memory allocated by DTK. * /
 res_code = qeLibTerm () ;
 MessageBox (hWnd, "Sample succeeded.", "Connect", MB_OK) ;
 return (res_code) ;
}
qeSTATUS err_handler (qeHANDLE hdbc, qeHANDLE hstmt) {

Go To
Chapter 2 Connecting to Databases

Connecting to a Database 20

DataDirect Developer’s Toolkit Programmer’s Guide

/* This routine functions as an error handler for the demonstration * /
/* routines. It displays an error message in a message box, terminates * /
/* the active statement, closes the connection, ends the DTK session, * /
/* and returns the result code from the most recent DTK call. * /

 qeSTATUS res_code; /* Result code from DTK functions * /

 res_code = qeErr (); /* Get the DTK error number * /
 if (res_code > 0) /* Display an error message * /
 MessageBox (hWnd, qeErrMsg (), "Sample Failed", MB_OK) ;
 else { /* Display error number for negative result codes * /
 char buf[10] ;
 MessageBox (hWnd, itoa (res_code, buf, 10), "Sample Failed", MB_OK) ;
 }
 if (hstmt != 0) qeEndSQL (hstmt); /* End statement if active * /
 if (hdbc != 0) qeDisconnect (hdbc); /* Close connection if open * /
 qeLibTerm (); /* Last call to the DTK API * /
 return (res_code) ;
}

The qeConnect, qeDisconnect, qeLibInit, and qeLibTerm functions used in
this example are described in the following sections.

Connecting to a Database

Before you can send SQL statements to a database system to be executed,
you must open a connection to the database system.

Table 2-1 lists the functions DTK provides for establishing and closing a
database connection:

Go To
Chapter 2 Connecting to Databases

Connecting to a Database 21

DataDirect Developer’s Toolkit Programmer’s Guide

The qeConnect function connects your application to a database system. The
parameters to qeConnect identify the database system. qeConnect returns a
handle to a database connection, or hdbc. The hdbc identifies the connection
and is a parameter to other functions.

When using a database system that lets you store tables in separate
databases, you can set the default database for your application with a call to
qeSetDB. Once qeSetDB sets the default database, all subsequent SQL
statements will be sent to that database.

The qeDisconnect function closes a connection. The parameter to
qeDisconnect is the hdbc returned by qeConnect. Once you have called
qeDisconnect, you cannot perform any other functions on this connection.

You can have several connections open simultaneously. For example, to
copy records from a Paradox file to an Oracle database, you would use one
connection to Paradox and a second one to Oracle.

Note: You connect to a database system (such as dBASE, Paradox, Oracle,
SQL Server), not to a specific file or table. The SQL statements identify the
files or tables that are to be accessed.

Table 2-1. Functions that Establish or Close Database Connections

Function Result
qeConnect Opens a database system connection.

qeGetLoginTimeout Returns the current login timeout value.

qeSetLoginTimeout Sets the login timeout. The default is 15 seconds.

qeSetDB Sets the default database for the application.

Go To
Chapter 2 Connecting to Databases

Initializing and Terminating DTK 22

DataDirect Developer’s Toolkit Programmer’s Guide

Initializing and Terminating DTK

Two DTK functions, qeLibInit and qeLibTerm, specify the beginning and end
of a DTK program. If you write a multi-threaded application, you should call
these functions to initialize and terminate each thread of execution. Table 2-2
lists the functions.

qeLibInit should be the first DTK function that your application calls. Calling
qeLibInit ensures that DTK will allocate the memory resources that it needs.
Calling qeLibTerm ensures that those memory resources are freed as soon
as they are no longer needed.

Table 2-2. Functions that Initialize and Terminate DTK Programs

Function Result
qeLibInit Initializes DTK.

qeLibTerm Terminates DTK.

Go To
Chapter 2 Connecting to Databases

Getting Setup and Version Information 23

DataDirect Developer’s Toolkit Programmer’s Guide

Getting Setup and Version Information

Table 2-3 lists the functions DTK provides for retrieving setup information and
version numbers:

Table 2-3. Functions that Retrieve Setup Information and Version
Numbers

Function Result
qeSetupInfo and
qeSetupInfoBuf

The information entered when DTK was installed.

qeVerNum and
qeVerNumBuf

The number of the DTK version you are using.

Go To
Chapter 2 Connecting to Databases

Getting Setup and Version Information 24

DataDirect Developer’s Toolkit Programmer’s Guide

DataDirect Developer’s Toolkit Programmer’s Guide

Go To

3 Executing SQL Statements

This chapter describes the use of DTK’s SQL execution and statement
parameter functions in the following sections:

• “Executing SQL Statements,” next, describes DTK’s SQL statement
preparation and execution functions.

• “Using Statement Parameters” on page 28 describes the functions that let
you use parameters within the Where clause of SQL statements.

• “Using Stored Procedures” on page 33 describes the functions that let you
use input and input/output parameters in stored procedures.

• “Join Behavior in DTK” on page 35 describes how DTK behaves when
working with records from joined tables.

Executing SQL Statements

The following sample code shows one way to execute a SQL statement from
DTK.

To load this sample in the SAMPLE.EXE program, choose Executing SQL
Update Statements from the Example List.

qeSTATUS dml () {

/* This routine demonstrates how to execute an SQL Update statement. * /

 qeHANDLE hdbc = 0; /* Handle to database connection * /
 qeHANDLE hstmt = 0; /* Handle to SQL statement execution * /
 qeSTATUS res_code; /* Result code from DTK functions * /
 long modrecs ;

Go To
Chapter 3 Executing SQL Statements

Executing SQL Statements 26

DataDirect Developer’s Toolkit Programmer’s Guide

/* Call qeLibInit to initialize DTK, check for errors. * /
 res_code = qeLibInit () ;
 if (res_code != qeSUCCESS) return (res_code) ;

/* Call qeConnect to connect to a data source. Check to see * /
/* if hdbc == 0, which indicates that the connection failed. * /
 hdbc = qeConnect ("DSN=QEDBF") ;
 if (hdbc == 0) return (err_handler (hdbc, hstmt)) ;

/* Call qeExecSQL to execute the update statement. Check if hstmt == 0, * /
/* which indicates that the statement did not execute successfully. * /
 hstmt = qeExecSQL (hdbc, "Update emp set first_name = 'Joe' where first_name
= 'Richard'") ;
 if (hstmt == 0) return (err_handler (hdbc, hstmt)) ;

/* Find out how many records were affected by the statement. * /
 modrecs = qeNumModRecs (hstmt) ;
 if (qeErr () != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Close the statement. * /
 res_code = qeEndSQL (hstmt) ;
 hstmt = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeDisconnect to disconnect from a data source. * /
 res_code = qeDisconnect (hdbc) ;
 hdbc = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeLibTerm to free memory allocated by DTK. * /
 res_code = qeLibTerm () ;
 MessageBox (hWnd, "Sample succeeded.", "SQL Update Statement", MB_OK) ;
 return (res_code) ;
}

/* err_handler routine goes here. * /

This sample on page 25 shows how to use the qeExecSQL, qeEndSQL and
qeNumModRecs functions.

Go To
Chapter 3 Executing SQL Statements

Executing SQL Statements 27

DataDirect Developer’s Toolkit Programmer’s Guide

 Table 3-1 shows the entire set of DTK SQL statement execution functions.

Once you have opened a connection, you can send SQL statements to the
underlying database system. The qeExecSQL function prepares and
executes a SQL statement. The parameters to qeExecSQL are the hdbc of

Table 3-1. Functions that Execute SQL Statements

Function Action
qeExecSQL Prepares and executes a SQL statement.

qeSQLPrepare Prepares a SQL statement for execution.

qeSQLExecute Executes a statement that was prepared with
qeSQLPrepare.

qeSetSQL Places a partial statement in the SQL buffer.

qeAppendSQL Appends text to the SQL buffer.

qeMoreResults Begins a new result set from stored procedures or
multiple SQL statements.

qeNumModRecs Returns the number of records modified by a SQL
statement.

qeEndSQL Ends the execution of a SQL statement. It is important
to call qeEndSQL to free system resources.

qeSetQueryTimeout Sets the time to wait for a SQL statement to execute
before returning to the application.

qeGetQueryTimeout Returns the time to wait for a SQL statement to
execute before returning to the application.

qeSetOneHstmtPerHdbcOp
tions

Provides control over DTK behavior when connected
to databases that support only one statement per
connection.

qeGetOneHstmtPerHdbcOp
tions

Returns the flag settings that determine DTK behavior
when connected to databases that support only one
statement per connection.

Go To
Chapter 3 Executing SQL Statements

Using Statement Parameters 28

DataDirect Developer’s Toolkit Programmer’s Guide

the connection to use and the SQL statement. qeExecSQL returns a handle
for the statement (hstmt). The hstmt identifies the statement and is a
parameter to other functions that operate on the statement.

When the SQL statement is a Select statement, qeExecSQL does not return
the resulting records. The records are read using the data fetching functions
described in Chapter 5, “Modifying Data,” on page 71.

The qeSQLPrepare and qeSQLExecute functions are provided for when you
want your application to process a SQL statement. For example, to issue a
SQL statement containing parameters, you first call qeSQLPrepare to
prepare the statement—place it in the statement buffer and return a handle to
it (hstmt). You use qeSQLExecute to execute the statement once the
parameters are bound or set by the parameter functions discussed in the next
section.

The qeEndSQL function terminates a statement and frees the system
resources allocated to it. The parameter you supply to qeEndSQL is the
hstmt returned by qeExecSQL or qeSQLPrepare. Once you have called
qeEndSQL, you cannot perform any other functions on this statement.

Some macro languages (like Excel) limit the length of character strings,
which makes it impossible to send a complete SQL statement to qeExecSQL.
For these languages, use the qeSetSQL and qeAppendSQL functions to
send the SQL statement in parts.

Using Statement Parameters

DTK provides functions that allow you to use parameters in SQL statements.
By using parameters instead of values in a SQL statement, you can improve
the performance of your applications.

The sample on page 29 shows a SQL statement that uses parameters. To
load this sample in the SAMPLE.EXE program, choose Using Parameters in
Update Statements from the Example List.

Go To
Chapter 3 Executing SQL Statements

Using Statement Parameters 29

DataDirect Developer’s Toolkit Programmer’s Guide

qeSTATUS params () {

/* This routine demonstrates the use of bound parameters in SQL Update * /
/* statements. * /

 qeHANDLE hdbc = 0; /* Handle to database connection * /
 qeHANDLE hstmt = 0; /* Handle to SQL statement execution * /
 qeSTATUS res_code; /* Result code from DTK functions * /
 char new_name[31], old_name[31] ;
 long new_name_len = 30, old_name_len = 30 ;

/* Call qeLibInit to initialize DTK, check for errors. * /
 res_code = qeLibInit () ;
 if (res_code != qeSUCCESS) return (res_code) ;

/* Call qeConnect to connect to a data source. Check to see * /
/* if hdbc == 0, which indicates that the connection failed. * /
 hdbc = qeConnect ("DSN=QEDBF") ;
 if (hdbc == 0) return (err_handler (hdbc, hstmt)) ;

/* Call qeSQLPrepare to prepare the update statement. The Update statement * /
/* will change the first_name of an employee. Check if hstmt == 0, * /
/* which indicates that the function did not succeed. * /
 hstmt = qeSQLPrepare (hdbc, "Update emp set first_name = ? where first_name
= ?") ;
 if (hstmt == 0) return (err_handler (hdbc, hstmt)) ;

/* Bind the parameters to local variables that contain the parameter values. * /
 res_code = qeBindParamChar (hstmt, 1, new_name, &new_name_len) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

 res_code = qeBindParamChar (hstmt, 2, old_name, &old_name_len) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Set the parameters. * /
 lstrcpy (new_name, "Joe") ;
 new_name_len = lstrlen (new_name) ;
 lstrcpy (old_name, "Tim") ;
 old_name_len = lstrlen (old_name) ;

/* Execute the statement. * /
 res_code = qeSQLExecute (hstmt) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

Go To
Chapter 3 Executing SQL Statements

Using Statement Parameters 30

DataDirect Developer’s Toolkit Programmer’s Guide

/* Note: To make repeated updates, you simply change the new_name and * /
/* old_name variables and call qeSQLExecute. */
/* Close the statement. * /
 res_code = qeEndSQL (hstmt) ;
 hstmt = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeDisconnect to disconnect from a data source. * /
 res_code = qeDisconnect (hdbc) ;
 hdbc = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeLibTerm to free memory allocated by DTK. * /
 res_code = qeLibTerm () ;
 MessageBox (hWnd, "Sample succeeded.", "Binding Parameters", MB_OK) ;
 return (res_code) ;
}

/* err_handler routine goes here. * /

This sample shows how to use the qeSQLPrepare, qeBindParamChar, and
qeSQLExecute functions. Table 3-2 lists the entire set of DTK SQL statement
parameter functions.

Table 3-2. Functions to Use with SQL-Statement Input Parameters

Function Results

qeBindParamBinary Binds a parameter to a binary variable.

qeBindParamChar Binds a parameter to a character variable.

qeBindParamDate Binds a parameter to a date variable.

qeBindParamDateTime Binds a parameter to a date-time variable.

qeBindParamDecimal Binds a parameter to a decimal variable.

qeBindParamDouble Binds a parameter to a double-precision floating-
point variable.

qeBindParamFloat Binds a parameter to a floating-point variable.

qeBindParamInt Binds a parameter to a 2-byte integer variable.

qeBindParamLong Binds a parameter to a 4-byte integer variable.

Go To
Chapter 3 Executing SQL Statements

Using Statement Parameters 31

DataDirect Developer’s Toolkit Programmer’s Guide

These functions let you create parameterized queries—queries in which
certain criteria are supplied by the user or by other processes within the
program.

qeBindParamTime Binds a parameter to a time variable.

qeClearParam Clears the value of a parameter.

qeNumParams Returns the number of parameters that
appeared in the statement.

qeParamNum Returns the number of the parameter
corresponding to a specified name.

qeSetParamBinary Sets the value of a binary parameter.

qeSetParamChar Sets the value of a character parameter.

qeSetParamDate Sets the value of a date parameter.

qeSetParamDateTime Sets the value of a date-time parameter.

qeSetParamDecimal Sets the value of a decimal parameter.

qeSetParamDouble Sets the value of a double-precision floating-
point parameter.

qeSetParamFloat Sets the value of a floating-point parameter.

qeSetParamInt Sets the value of a 2-byte integer parameter.

qeSetParamIOType Sets a parameter’s input/output (IO) type.

qeSetParamLong Sets the value of a 4-byte integer parameter.

qeSetParamTime Sets the value of a time parameter.

qeSetParamNull Sets the value of a parameter.

Table 3-2. Functions to Use with SQL-Statement Input Parameters (cont.)

Function Results

Go To
Chapter 3 Executing SQL Statements

Using Statement Parameters 32

DataDirect Developer’s Toolkit Programmer’s Guide

To use parameters in a SQL statement, first call the qeSQLPrepare function,
which takes as an argument a SQL statement string that contains question
marks (?) to identify the position of the parameters in the statement.
qeSQLPrepare returns the handle to the statement (hstmt) that you use in
other DTK calls. The question marks in the statement may be followed by a
name for the parameter. You can refer to the parameters either by name or by
their order in the SQL statement. To use named parameters, you must call
qeParamNum to convert parameter names to numbers.

A parameter can be one of three types: input, output, or input/output. An input
parameter passes a value to the SQL statement, an output parameter stores
a result from an executed SQL statement, and an input/output parameter
does both. Input/output and output parameters are used only with stored
procedures (see “Using Stored Procedures” on page 33). DTK needs to know
whether a parameter is an input, output, or input/output parameter. To set the
parameter input/output (I/O) type for each parameter, use the function
qeSetParamIOType, which should be called for every parameter in new code.

Note: If qeSetParamIOType is not called, DTK assumes the parameter is an
input parameter. Thus, existing code that works with input parameters will
continue to run without any changes.

Two sets of functions are provided for setting parameter values. The
qeSetParam functions assign a value directly to a parameter. The
qeBindParam functions bind the parameter to a buffer that holds the value. In
both sets of functions, the second argument is a number representing the
position of the parameter. The qeClearParam function removes assigned
values from the parameters. The qeNumParams function returns the number
of parameters in the statement.

After you have assigned values to all parameters in the statement, call
qeSQLExecute to execute the statement.

Go To
Chapter 3 Executing SQL Statements

Using Stored Procedures 33

DataDirect Developer’s Toolkit Programmer’s Guide

Using Stored Procedures

As discussed in “Using Statement Parameters” on page 28, DTK provides
functions that let you use parameters in SQL statementsthat are written in
your code, and values must be provided for statement parameters before the
SQL statements are processed. Because the parameters in source-code
SQL statements always provide input values, they are considered input
parameters.

Some database systems let you store compiled sequences of SQL
statements directly in the database; these SQL statements are called stored
procedures. As with the SQL statements in your source code, stored
procedures frequently use input parameters.

Many, though not all, of the database systems that support stored procedures
let you use output parameters with the procedure. An output parameter is a
parameter that stores a result of the SQL statement execution. In some
situations, the same parameter might provide an input value, and then be
used to return a result. In that case, the parameter is considered an input/
output parameter.

To reference a stored procedure in DTK, use a qeSQLPrepare function’s
second argument to pass a call to the stored procedure, then use the
qeSQLExecute function to execute the stored procedure. For example,

hdbc = qeConnect (“DSN=QEDBF”) ;
hstmt = qeSQLPrepare (hdbc, “{call DeptName(?)}”) ;
. . .
res_code = qeSQLExecute(hstmt) ;

calls a stored procedure named DeptName.

In a stored procedure, DTK needs to know whether a parameter is an input,
output, or input/output parameter. To set the parameter input/output (I/O)
type, use qeSetParamIOType, which you must call for each parameter.

Go To
Chapter 3 Executing SQL Statements

Using Stored Procedures 34

DataDirect Developer’s Toolkit Programmer’s Guide

The qeBindParam functions set the data type of input, output, or input/output
parameters. You must call a qeBindParam function for each parameter. For
input parameters, the value in the buffer is used for execution of the SQL
statement or stored procedures. For output parameters, the value generated
for the parameter from the stored procedure is placed into the buffer.

When an application is not binding parameters, the DTK has a set of
qeGetParam functions to retrieve parameter values of output parameters
after the qeSQLExecute is complete. These functions are similar to the qeVal
functions.

The qeBindParam and qeSetParam functions tell DTK the data type of each
parameter; however, when the qeBindParam functions are not being used,
the qeSetParam functions are called to set input and input/output parameters
but not output parameters. To set the data type and size of output
parameters, use qeSetParamDataType.

Table 3-3 lists the set of DTK functions that support output and input/output
parameters in stored procedures.

Table 3-3. Functions that Support Stored-Procedure I/O Parameters

Function Results
qeSetParamIOType Sets a parameter’s I/O type.

qeSetParamDataType Sets the data type of a stored procedure’s output
parameters.

qeGetParamBinary and
qeGetParamBinaryBuf

Return an output or input/output parameter’s
value as a binary value.

qeGetParamBit Returns an output or input/output parameter’s
value as a bit in a 2-byte integer.

qeGetParamChar and
qeGetParamCharBuf

Return a character string containing the value
from an output or input/output parameter.

qeGetParamDate and
qeGetParamDateBuf

Return an output or input/output parameter’s
value as a date value.

qeGetParamDateTime and
qeGetParamDateTimeBuf

Return an output or input/output parameter’s
value as a date-time value.

Go To
Chapter 3 Executing SQL Statements

Join Behavior in DTK 35

DataDirect Developer’s Toolkit Programmer’s Guide

Join Behavior in DTK

A join combines two or more database tables in one SQL Select statement.
The joined tables must share a common column having values that can be
compared to join the records in each table. For example, the following Select
statement creates a join of the tables EMP and DEPT:

SELECT first_name, last_name, dept, dept_name
FROM emp,dept WHERE emp.dept = dept.dept_i d

The EMP and DEPT tables can be joined because the DEPT and DEPT_ID
columns contain department ID values that join the records for each
employee with those for each department.

qeGetParamDecimal and
qeGetParamDecimalBuf

Return an output or input/output parameter’s
value as a decimal value.

qeGetParamDouble Returns an output or input/output parameter’s
value as a double-precision floating point number.

qeGetParamFloat Returns an output or input/output parameter’s
value as a single-precision floating point number.

qeGetParamInt Returns an output or input/output parameter’s
value as a 2-byte integer.

qeGetParamLong Returns an output or input/output parameter’s
value as a 4-byte integer.

qeGetParamTime and
qeGetParamTimeBuf

Return an output or input/output parameter’s
value as a time value.

Table 3-3. Functions that Support Stored-Procedure I/O Parameters

Function Results

Go To
Chapter 3 Executing SQL Statements

Join Behavior in DTK 36

DataDirect Developer’s Toolkit Programmer’s Guide

DTK allows you to issue SQL statements that join multiple tables in the same
database system. The joins are performed by the database system, not by
DTK, so you cannot join tables from different database systems. For systems
that separate tables into multiple databases, DTK can join tables in separate
databases if the database system supports such joins.

DTK allows you to update records returned from joined tables, but you cannot
insert or delete them.

DataDirect Developer’s Toolkit Programmer’s Guide

Go To

4 Retrieving and Converting Data

This chapter describes the DTK functions that retrieve record and column
information, as well as the functions that convert the data types of database
values. It contains the following sections:

• “Fetching Records” on page 37 describes the qeFetch functions, which
retrieve records from a Select statement’s result set, the qeBindCol
functions, which bind column values to variable buffers, and the qeVal
functions, which retrieve individual column values.

• “Getting Column Information” on page 47 describes the qeCol functions,
which retrieve information describing the columns returned by a Select
statement.

• “Converting Data Types” on page 50 lists the data conversion functions
that DTK provides.

• “Data Types in DTK” on page 53 discusses data type usage and
conventions in DTK, as well as specific considerations for handling some
data types.

• “Format Strings” on page 59 lists the format strings available for formatting
your data when using the data-type conversion functions.

Fetching Records

DTK lets you use two different techniques to read records from databases.

The preferred technique uses the qeBindCol functions to bind variables to
each of the columns in the Select statement prior to calling a qeFetch
function. Each time a record is fetched, the variables are automatically filled
with the column values and their lengths.

Go To
Chapter 4 Retrieving and Converting Data

Fetching Records 38

DataDirect Developer’s Toolkit Programmer’s Guide

Another technique is to use the qeVal functions to read each column value
separately after calling a qeFetch function. Using this method, you must call
the same set of qeVal functions after fetching each record. Using the qeVal
functions is slower than using the qeBindCol functions. However, some
macro and script languages do not permit you to use functions like qeBindCol
that pass pointers to integer variables.

The following sample uses the column binding method. To load this sample in
the SAMPLE.EXE program, choose Reading Records Using qeBindCol
from the Example List.

qeSTATUS bindfetch () {

/* This routine demonstrates how to use the bind functions to fetch data * /
/* from Select statements directly into program variables. * /

 qeHANDLE hdbc = 0; /* Handle to database connection * /
 qeHANDLE hstmt = 0; /* Handle to SQL statement execution * /
 qeSTATUS res_code; /* Result code from DTK functions * /
 char last_name [11] ;
 long last_name_len = 11 ;
 float salary ;
 long salary_len = sizeof(salary) ;

/* Call qeLibInit to initialize DTK, check for errors. * /
 res_code = qeLibInit () ;
 if (res_code != qeSUCCESS) return (res_code) ;
/* Call qeConnect to connect to a data source. Check to see * /
/* if hdbc == 0, which indicates that the connection failed. * /
 hdbc = qeConnect ("DSN=QEDBF") ;
 if (hdbc == 0) return (err_handler (hdbc, hstmt)) ;

/* Call qeExecSQL to execute the select statement. Check if hstmt == 0, * /
/* which indicates that the statement did not execute successfully. * /
 hstmt = qeExecSQL (hdbc, "Select last_name, salary from emp") ;
 if (hstmt == 0) return (err_handler (hdbc, hstmt)) ;

/* Bind the result columns to program variables. * /
 res_code = qeBindColChar (hstmt, 1, last_name, &last_name_len, "") ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

 res_code = qeBindColFloat (hstmt, 2, &salary, &salary_len) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

Go To
Chapter 4 Retrieving and Converting Data

Fetching Records 39

DataDirect Developer’s Toolkit Programmer’s Guide

/* Fetch the records from the select statement. * /
 while (qeFetchNext (hstmt) == qeSUCCESS) {
 MessageBox (hWnd, last_name, "Bind Fetch", MB_OK) ;
 }

/* Check for errors, EOF is ok. * /
 res_code = qeErr () ;
 if ((res_code != qeSUCCESS) && (res_code != qeEOF))
 return (err_handler (hdbc, hstmt)) ;

/* Close the SQL statement. * /
 res_code = qeEndSQL (hstmt) ;
 hstmt = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeDisconnect to disconnect from a data source. * /
 res_code = qeDisconnect (hdbc) ;
 hdbc = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeLibTerm to free memory allocated by DTK. * /
 res_code = qeLibTerm () ;
 MessageBox (hWnd, "Sample succeeded.", "Bind Fetch", MB_OK) ;
 return (res_code) ;
}
/* err_handler routine goes here. * /

This example uses the qeFetchNext function to retrieve each record from the
result set, and uses the column binding function qeBindColChar to get the
values from each record.

The column binding functions are described in “Binding Data to Columns” on
page 41.

Go To
Chapter 4 Retrieving and Converting Data

Fetching Records 40

DataDirect Developer’s Toolkit Programmer’s Guide

Table 4-1 lists the set of DTK data fetching functions.

Table 4-1. Functions that Fetch Data

Function Result
qeFetchNext Retrieves the next record returned by the hstmt.

qeFetchPrev Retrieves the previous record returned by the hstmt.

qeFetchRandom Retrieves a specified record returned by the hstmt.

qeFetchNumRecs Returns the number of records chosen by the Select
statement.

qeSetSelectOptions Specifies the following options:

Whether your application only reads forward through
the records resulting from a Select statement, or also
needs to position to records that have already been
read.

Whether DTK will write records in the result set to log
files when connected to databases for which it is not
necessary to do so.

The level of fetching that is possible after a
transaction ends.

qeGetSelectOptions Returns whether previous and random fetching is
enabled for the current database connection,
whether DTK will use log files when connected to
databases for which it is not necessary to do so, and
the level of fetching that is possible after a
transaction ends.

qeFetchLogClose Closes the log file used with DTK’s fetching
functions.

qeSetMaxRows Sets the maximum number of rows that a statement
will return.

qeGetMaxRows Returns the maximum number of rows that a
statement will return.

Go To
Chapter 4 Retrieving and Converting Data

Fetching Records 41

DataDirect Developer’s Toolkit Programmer’s Guide

The qeFetchNext, qeFetchPrev, and qeFetchRandom functions retrieve a
record from the database and make it the current record in DTK.

DTK lets you use two different techniques to read column values from
databases.

• The first technique uses the qeBindCol functions to bind column values to
variable buffers (see “Binding Data to Columns,” next).

• The second technique uses the qeVal functions to retrieve individual
column values following each call to qeFetchNext (see “Using qeVal
Functions” on page 43).

Because some database systems do not support the previous and random
record fetching provided by qeFetchPrev and qeFetchRandom, DTK provides
this capability when connected to such databases by saving the results of a
Select statement in a log file. The qeSetSelectOptions function lets you set
the level of fetching and log file usage that DTK provides to a specified
connection. When DTK uses a log file, you can close the log file by calling
qeFetchLogClose.

When the SQL statement is a Select statement or stored procedure,
qeFetchNumRecs returns the number of records in the result set. You can
use the qeFetchNumRecs function only when previous and random fetching
is enabled. You can set a maximum number of records that a Select
statement can return by calling qeSetMaxRows.

Binding Data to Columns

Use the qeBindCol functions to obtain maximum performance. Call the
qeBindCol functions to bind variables in your program to each of the columns
returned by the Select statement. Each subsequent call to a qeFetch function
fills your variables with the column values. The maximum data size bound by
qeBindCol functions is 64K.

Many macro and script languages, including Visual Basic, do not support the
qeBindCol functions.

Go To
Chapter 4 Retrieving and Converting Data

Fetching Records 42

DataDirect Developer’s Toolkit Programmer’s Guide

Table 4-2 lists the functions that bind data to columns.

The qeBindCol function performs no data type conversion. Before calling
qeBindCol, you can call qeColType to determine the data type of a column’s
values. The values put in your variables by qeFetchNext, qeFetchPrev, or
qeFetchRandom will be of this type.

Use the other six qeBindCol functions as needed to convert the data type of
the column.

You can also call qeColWidth before calling a qeBindCol function in order to
determine the maximum size (in bytes) of a column’s values. You can use this
width to allocate variables large enough to hold the largest values.

Table 4-2. Functions that Bind Data to Columns

Function Result
qeBindCol Specifies value and length variables that receive a

column’s value and length each time a record is
fetched.

qeBindColChar Similar to qeBindCol. Data is converted to a
character string, using a format string if supplied.

qeBindColDecimal Similar to qeBindCol. Data is converted to a decimal
value with the specified precision and scale.

qeBindColDouble Similar to qeBindCol. Data is converted to a double-
precision floating-point value.

qeBindColFloat Similar to qeBindCol. Data is converted to a single-
precision floating-point value.

qeBindColInt Similar to qeBindCol. Data is converted to a 2-byte
integer.

qeBindColLong Similar to qeBindCol. Data is converted to a 4-byte
integer.

Go To
Chapter 4 Retrieving and Converting Data

Fetching Records 43

DataDirect Developer’s Toolkit Programmer’s Guide

When character or date-time values are retrieved by a qeFetch function, a
zero terminator byte is added to the end of the values. This is the C-language
convention supported by most macro languages.

For the character data types, the maximum size may be very large. The
variable you bind to a column can be smaller than the maximum size.
However, the length variable (pointed to by len_ptr) must contain the actual
length of the variable you are binding. For example, you need to allocate a
21-byte variable to retrieve values from a column defined as VARCHAR (20).

Each time you call a qeFetch function, DTK compares the length of the
column’s value to the length of the variable you bound to the column. If the
value is longer than the variable you bound, the value is truncated to the size
of your variable and your length variable is set to qeTRUNCATION (-1). It is
not necessary to set the length variable before calling a qeFetch function.

When a qeFetch function is called and a column’s value is null, its length
variable is set to qeNULL_DATA (-2).

Make all calls to qeBindCol functions before the first call to qeFetchNext,
qeFetchPrev, or qeFetchRandom. Each time you call a qeFetch function,
another record will be read and its values placed in the buffers specified by
the calls to qeBindCol.

Important: When you use the qeBindCol functions, you must call a
qeBindCol function for every column in the Select statement, in the order they
occur in the statement. If you omit any columns, an error will be returned by
your first call to a qeFetch function.

Using qeVal Functions

The qeVal functions retrieve column values following each call to
qeFetchNext. The following example uses this method. To load this sample in
the SAMPLE.EXE program, choose Reading Records Using qeVAL from
the Example List.

The example on page 44 also shows how to call DTK functions in a loop to
read all records in a database.

Go To
Chapter 4 Retrieving and Converting Data

Fetching Records 44

DataDirect Developer’s Toolkit Programmer’s Guide

qeSTATUS valfetch () {

/* This routine demonstrates how to fetch data from SELECT statements using * /
/* the qeVal functions. * /

 qeHANDLE hdbc = 0; /* Handle to database connection * /
 qeHANDLE hstmt = 0; /* Handle to SQL statement execution * /
 qeSTATUS res_code; /* Result code from DTK functions * /
 qeLPSTR last_name ;
 qeLPSTR nameptr ;
 float salary ;

/* Call qeLibInit to initialize DTK, check for errors. * /
 res_code = qeLibInit () ;
 if (res_code != qeSUCCESS) return (res_code) ;

/* Call qeConnect to connect to a data source. Check to see * /
/* if hdbc == 0, which indicates that the connection failed. * /
 hdbc = qeConnect ("DSN=QEDBF") ;
 if (hdbc == 0) return (err_handler (hdbc, hstmt)) ;

/* Call qeExecSQL to execute the select statement. If hstmt == 0, * /
/* then the statement did not execute successfully. * /
 hstmt = qeExecSQL (hdbc, "Select last_name, salary from emp") ;
 if (hstmt == 0) return (err_handler (hdbc, hstmt)) ;

/* Fetch the records from the select statement, and get the individual * /
/* column values. * /
 while (qeFetchNext (hstmt) == qeSUCCESS) {

 nameptr = qeValChar (hstmt, 1, "", 0) ;
 if (qeErr () != qeSUCCESS && qeErr () != qeNULL_DATA) break ;
 MessageBox (hWnd, nameptr, "Val Fetch", MB_OK) ;

 salary = qeValFloat (hstmt, 2) ;
 if (qeErr () != qeSUCCESS && qeErr () != qeNULL_DATA) break ;
 }

/* Check for errors, EOF is ok. * /
 res_code = qeErr () ;
 if ((res_code != qeSUCCESS) && (res_code != qeEOF))
 return (err_handler (hdbc, hstmt)) ;
/* Close the SQL statement. * /
 res_code = qeEndSQL (hstmt) ;

Go To
Chapter 4 Retrieving and Converting Data

Fetching Records 45

DataDirect Developer’s Toolkit Programmer’s Guide

 hstmt = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeDisconnect to disconnect from a data source. * /
 res_code = qeDisconnect (hdbc) ;
 hdbc = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeLibTerm to free memory allocated by DTK. * /
 res_code = qeLibTerm () ;
 MessageBox (hWnd, "Sample succeeded.", "Val Fetch", MB_OK) ;
 return (res_code) ;
}

/* err_handler routine goes here. * /

The qeVal functions that return values from the current record are listed in
Table 4-3.

Table 4-3. Functions that Return Values from the Current Record

Function Result
qeDataLen Reports the length of a value retrieved by a qeVal

function.

qeValChar and
qeValCharBuf

Return a column’s value as a character string.

qeValMultiChar and
qeValMultiCharBuf

Return the values of multiple columns as a single
character string.

qeValDecimal and
qeValDecimalBuf

Return a column’s value as a decimal number (BCD)

qeValInt Returns a column’s value as a 2-byte integer.

qeValLong Returns a column’s value as a 4-byte integer.

qeValFloat Returns a column’s value as a floating-point number.

qeValDouble Returns a column’s value as a double-precision
floating-point number.

Go To
Chapter 4 Retrieving and Converting Data

Fetching Records 46

DataDirect Developer’s Toolkit Programmer’s Guide

After calling a qeVal function, you can call qeDataLen to obtain the length in
bytes (or characters) of the value.

Performance can be improved by retrieving more than one column at a time.
You can call qeValMultiChar and qeValMultiCharBuf to simultaneously
retrieve multiple column values.

The tradeoffs of using the qeBindCol functions versus the qeVal functions are
discussed in “Comparing qeBindCol and qeVal Techniques” on page 46.

Comparing qeBindCol and qeVal Techniques

You cannot mix the two techniques for reading records. If you use qeBindCol
functions, you cannot call any of the qeVal functions.

The advantages of using the qeBindCol functions are as follows:

• Records can be read faster.

• You need to call a qeBindCol function only one time for each column you
are retrieving, as opposed to calling a qeVal function for each column
every time you fetch another record. This greatly decreases the
processing overhead so performance is improved.

• They allow the use of the qePutUsingBindColumns function.

The advantages of using the qeVal functions are as follows:

• They are easier to use from most macro and script languages. Some
languages will not allow you to send a pointer to a 4-byte long integer
variable as a parameter to a function as is required by the qeBindCol
functions.

• The qeValChar and qeValCharBuf functions can return large values in
pieces. If the maximum size of a column is very large, 60,000 characters
for example, the qeValChar function lets you retrieve the value in smaller
pieces—up to 1000 characters at a time. If you use qeBindCol functions,
you must declare a variable of the maximum size you want to receive. If

Go To
Chapter 4 Retrieving and Converting Data

Getting Column Information 47

DataDirect Developer’s Toolkit Programmer’s Guide

you declare a variable smaller than the maximum size, you will not get the
entire value.

Getting Column Information

The column definition functions allow you to get information about the
columns returned by a Select statement. For example, if your Select
statement is

SELECT * FROM em p

then you may not know the names, data types, or number of columns
returned. The column definition functions allow you to get this information.

The following sample shows how to use the qeCol functions to get
information about the columns returned by a Select statement. To load this
sample in the SAMPLE.EXE program, choose Getting Column Information
from the Example List.

qeSTATUS colinfo () {

/* This routine demonstrates how to use the qeCol functions functions to * /
/* get information about the columns returned by a Select statement. * /

 qeHANDLE hdbc = 0; /* Handle to database connection * /
 qeHANDLE hstmt = 0; /* Handle to SQL statement execution * /
 qeSTATUS res_code; /* Result code from DTK functions * /
 short col_count, col ;
 qeLPSTR col_name_ptr ;

/* Call qeLibInit to initialize DTK, check for errors. * /
 res_code = qeLibInit () ;
 if (res_code != qeSUCCESS) return (res_code) ;

/* Call qeConnect to connect to a data source. Check to see * /
/* if hdbc == 0, which indicates that the connection failed. * /
 hdbc = qeConnect ("DSN=QEDBF") ;
 if (hdbc == 0) return (err_handler (hdbc, hstmt)) ;

Go To
Chapter 4 Retrieving and Converting Data

Getting Column Information 48

DataDirect Developer’s Toolkit Programmer’s Guide

/* Call qeExecSQL to execute the select statement. Check if hstmt == 0, * /
/* which indicates that the statement did not execute successfully. * /
 hstmt = qeExecSQL (hdbc, "Select * from emp") ;
 if (hstmt == 0) return (err_handler (hdbc, hstmt)) ;
/* Get the column names returned by the Select statement * /
 for (col_count = qeNumCols (hstmt), col = 1; col_count--; col++) {
 if (qeErr () != qeSUCCESS)
 return (err_handler (hdbc, hstmt)) ;

 col_name_ptr = qeColName (hstmt, col) ;
 if (qeErr () != qeSUCCESS)
 return (err_handler (hdbc, hstmt)) ;
 MessageBox (hWnd, col_name_ptr, "Column Name", MB_OK) ;
 }

/* Close the SQL statement. * /
 res_code = qeEndSQL (hstmt) ;
 hstmt = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeDisconnect to disconnect from a data source. * /
 res_code = qeDisconnect (hdbc) ;
 hdbc = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeLibTerm to free memory allocated by DTK. * /
 res_code = qeLibTerm () ;
 MessageBox (hWnd, "Sample succeeded.", "Bind Fetch", MB_OK) ;
 return (res_code) ;
}

/* err_handler routine goes here. * /

Go To
Chapter 4 Retrieving and Converting Data

Getting Column Information 49

DataDirect Developer’s Toolkit Programmer’s Guide

Table 4-4 lists the qeCol functions that return information about the columns
in the Select statement.

Each function has an hstmt parameter to identify the SQL statement. All
functions except qeNumCols also have a column number as a parameter
identifying the column whose information is to be returned.

Table 4-4. Functions that Return Select-Statement Column Info.

Function Returns
qeNumCols The number of columns in the statement.The number

of columns in the statement.

qeColName and
qeColNameBuf

A column’s name.

qeColAlias and
qeColAliasBuf

A column’s alias.

qeColExpr and
qeColExprBuf

A column’s expression.

qeColType A column’s data type.

qeColDBType The database’s native type for the requested column.

qeColDBTypeName
and
qeColDBTypeNameBuf

 The database’s native type name for the requested
column.

qeColWidth A column’s maximum width in bytes.

qeColPrecision A decimal column’s precision.

qeColScale A decimal column’s scale.

qeColTypeAttr Whether a column is updatable, nullable, searchable,
unsigned, autoincremented, or type Money,
depending on the attribute you specify.

qeColDateStart A date-time column’s starting offset.

qeColDateEnd A date-time column’s ending offset.

Go To
Chapter 4 Retrieving and Converting Data

Converting Data Types 50

DataDirect Developer’s Toolkit Programmer’s Guide

qeColName returns the column name, unless the column is an expression. If
the column is an expression, qeColName returns null.

qeColAlias returns an alias if one exists, otherwise it returns null.

qeColExpr returns an expression if there is one, otherwise it will return the
same value for the column as would qeColName.

Converting Data Types

Each column in a table has a data type. The data type determines the type of
information that can be stored in the column: character strings, integer
numbers, floating-point numbers, dates, etc. See “Data Types in DTK” on
page 53 for more information on data types.

DTK provides a number of data type conversion functions. These functions,
discussed in detail in Appendix A, “Data Conversion Functions,” on page 493,
allow you to convert values from any of the eight standard data types to any
other data type.

In addition to converting data types, the functions listed in Table 4-5 can be
used to format numbers and date-time values into character strings, and
convert character string values to numbers or dates.

Table 4-5. Functions that Convert Data Types

Function Converts
qeBinToHex
qeBinToHexBuf

Binary value to hexadecimal value.

qeCharToDate
qeCharToDateBuf

Character string to date.

qeCharToDecimal
qeCharToDecimalBuf

Character string to decimal numbers.

Go To
Chapter 4 Retrieving and Converting Data

Converting Data Types 51

DataDirect Developer’s Toolkit Programmer’s Guide

qeCharToDouble Character string to double-precision floating-point
number.

qeCharToFloat Character string to floating-point number.

qeCharToInt Character string to 2-byte integer.

qeCharToLong Character string to 4-byte integer.

qeDateToChar
qeDateToCharBuf

Date to character string.

qeDateToDouble Date to double-precision Julian value.

qeDateToLong Date to 4-byte integer Julian value.

qeDecimalToChar
qeDecimalToCharBuf

Decimal number to character string.

qeDecimalToDouble Decimal number to double-precision floating-point
number.

qeDecimalToFloat Decimal number to floating-point number.

qeDecimalToInt Decimal number to 2-byte integer.

qeDecimalToLong Decimal number to 4-byte integer.

qeDoubleToChar
qeDoubleToCharBuf

Double-precision floating-point number to character
string.

qeDoubleToDecimal
qeDoubleToDecimalBuf

Double-precision floating-point number to decimal
number.

qeDoubleToFloat Double-precision floating-point number to floating-point
number.

qeDoubleToInt Double-precision floating-point number to 2-byte integer.

qeDoubleToLong Double-precision floating-point number to 4-byte integer.

qeFloatToChar
qeFloatToCharBuf

Floating-point number to character string.

qeFloatToDecimal
qeFloatToDecimalBuf

Floating-point number to decimal number.

Table 4-5. Functions that Convert Data Types (cont.)

Function Converts

Go To
Chapter 4 Retrieving and Converting Data

Converting Data Types 52

DataDirect Developer’s Toolkit Programmer’s Guide

Those functions that convert to or from character strings include a format
string parameter to control formatting. See “Format Strings” on page 59 for
more information.

The following section describes how DTK handles data types.

qeFloatToDouble Floating-point number to double-precision floating-point
number.

qeFloatToInt Floating-point number to 2-byte integer.

qeFloatToLong Floating-point number to 4-byte integer.

qeHextoBin
qeHexToBinBuf

Hexadecimal value to binary value.

qeIntToChar
qeIntToCharBuf

Integer to character string.

qeIntToDecimal
qeIntToDecimalBuf

Integer to decimal number.

qeIntToDouble Integer to double-precision floating-point number.

qeIntToFloat Integer to floating-point number.

qeIntToLong 2-byte integer to 4-byte integer.

qeLongToChar
qeLongToCharBuf

4-byte integer to character string.

qeLongToDecimal
qeLongToDecimalBuf

4-byte integer to decimal number.

qeLongToDouble 4-byte integer to double-precision floating-point number.

qeLongToFloat 4-byte integer to floating-point number.

qeLongToInt 4-byte integer to 2-byte integer.

Table 4-5. Functions that Convert Data Types (cont.)

Function Converts

Go To
Chapter 4 Retrieving and Converting Data

Data Types in DTK 53

DataDirect Developer’s Toolkit Programmer’s Guide

Data Types in DTK

Different database systems support different data types for their columns.
DTK maps the various data types into one of eight standard data types:

Identifier Data Type

1 Fixed-length character string*

2 character string*

3 Decimal number (BCD)

4 Long integer (4-byte)

5 Integer (2-byte)

6 Single-precision floating-point numbers (4-byte)

7 Double-precision floating-point numbers (8-byte)

8 Date-time (26-byte character string)

* These data types can also be used for binary data. See “Blobs and Memos”
on page 57 for more information.

DTK returns all values as one of these eight data types.

If you call qeExecSQL to execute a Select statement such as

SELECT last_name, salary, hire_date FROM em p

you can use the qeColType function to get the data type of each of the
columns being returned. LAST_NAME’s data type will be 1 or 2 since it is a
character string, SALARY may be any type from 3 to 7 depending on how it is
stored, and HIRE_DATE will be type 8.

You sometimes need to know the exact data type used in the underlying
database system. Database systems support data types that are variations of
one of the eight standard data types. Some database systems include logical

Go To
Chapter 4 Retrieving and Converting Data

Data Types in DTK 54

DataDirect Developer’s Toolkit Programmer’s Guide

data types, binary strings, money, etc. In each case, DTK automatically
converts the data to one of the eight data types. To determine the database’s
data type for a column, use qeColDBType, qeColDBTypeName, or
qeColDBTypeNameBuf. These functions return the native data type for one
column in a SQL Select statement. The DataDirect ODBC Drivers Reference
lists the native data types of each system.

Fixed and Variable Character Strings

The difference between fixed (type 1) and variable (type 2) character string
data types is whether trailing blanks are added to values. For example,
suppose a LAST_NAME column is declared with a limit of 12 characters
(bytes) and the name Smith is stored. If the column is fixed length, the value
is returned as 'Smith ' (Smith followed by 7 blanks). If the column is
variable length, the value is returned as 'Smith' with no trailing blanks. Both
types of character string are terminated with a zero-terminator character (a C
language convention).

Date-Time Values

Date-time values are 26-byte character strings having the following format:

YYYY-MM-DD HH:MM:SS.SSSSS S

Hour values are expressed in terms of a 24-hour clock. See “Binary and
Date-Time Constants” on page 56 for information on handling date-time
values with DTK.

For date-time columns, the qeColDateStart and qeColDateEnd functions
return offsets identifying the relevant part of the date-time value. For
example, if the column contains date values with no time, qeColDateStart
returns 0 and qeColDateEnd returns 9, indicating that only the first 10
characters in the date-time value are relevant. The only combinations of
values returned by these functions are as follows.

Go To
Chapter 4 Retrieving and Converting Data

Data Types in DTK 55

DataDirect Developer’s Toolkit Programmer’s Guide

See Appendix A, “Data Conversion Functions,” on page 493 for complete
descriptions of these functions.

Decimal Number Format

Many database systems store numbers using a proprietary decimal format.
DTK retrieves these numbers and converts them, if necessary, into a
standard decimal format. DTK uses a Binary-Coded Decimal (BCD) format.

The BCD format stores two digits per byte. In each byte, the first digit is in the
top 4 bits of the byte, and the second digit in the lower 4 bits. The sign of the
number is stored in the lower 4 bits of the last byte. The hexadecimal value
0xC is the sign for positive numbers, and 0xD is the sign for negative
numbers.

Decimal numbers are defined by their precision and scale. Precision is the
number of digits that can be stored in the number. You can determine the
length in bytes of a decimal number by its precision. The formula is

bytes = (precision+2)/ 2

If a decimal number has an even precision, the upper 4 bits of the first byte
are not used, and the first digit is in the lower 4 bits of the first byte. In all
cases, the last byte contains the last digit in the upper 4 bits and the sign in
the lower 4 bits.

The scale specifies the actual position of the decimal point in the number.
The scale is the number of digits to move the decimal point to the left of the
sign. You can also think of scale as the number of digits right of the decimal
point.

Value qeColDateStart qeColDateEnd

Date-Time 0 15, 18, 22, or 25

Date 0 9

Time 11 18, 22, or 25

Go To
Chapter 4 Retrieving and Converting Data

Data Types in DTK 56

DataDirect Developer’s Toolkit Programmer’s Guide

For example, if the precision=4, scale=2, value=12.34, then the bytes contain
the following hexadecimal values:

01 23 4 C

The qeColPrecision and qeColScale functions return the precision and scale
of decimal columns.

Binary and Date-Time Constants

Database systems vary as to how you specify date-time constants and binary
constants in SQL statements. For example, to compare date values in a
Where clause, dBASE uses

hire_date > {01/27/95 }

and Oracle uses

hire_date > to_date('01/27/95','MM/DD/YY')

If your applications need to access more than one database system, these
differences can cause problems.

DTK supports database-independent syntax for date-time and binary
constants so you don’t have to modify your programs for the different
database systems.

The database-independent syntax for the date example is

hire_date > [d'1995-01-27 00:00:00.000000']

Go To
Chapter 4 Retrieving and Converting Data

Data Types in DTK 57

DataDirect Developer’s Toolkit Programmer’s Guide

The constant is enclosed in square brackets. The letter code, which is case-
sensitive, indicates the data type. The letter code is followed by a character
string enclosed in single quotes. The following table lists the codes:

For date-time codes, the character string must be in the full 26-character
standard date format described earlier in “Date-Time Values” on page 54. All
26 characters must be present whether the code is d, t, or dt.

For the binary code, the character string must be the binary value
represented as a hexadecimal string. For example,

UPDATE tab SET binvar=[b'0F4A512A8C']
WHERE prikey = 11 1

Blobs and Memos

Many databases support a binary data type designed for storing large
amounts of text or image data. These data types are frequently called memos
or blobs. Although DTK does not provide functions specifically designed for
retrieving and writing such data, you can do so using repeated calls to DTK
functions.

There are two methods you can use to read binary data:

• Use qeValChar or qeValCharBuf. These functions read data in chunks of
up to 64K (actually, 65280 bytes). Whenever these functions fail to read all
of the available data in a column, qeDataLen returns qeTRUNCATION (–
1). Another call to the qeVal function will return the next piece of data. By
using a loop that checks for truncation after each call to one of these
functions, you can easily read very large values.

Code Data Type

d Date

t Time

dt Date and time

b Binary

Go To
Chapter 4 Retrieving and Converting Data

Data Types in DTK 58

DataDirect Developer’s Toolkit Programmer’s Guide

• Use qeBindColChar. Because you cannot call this function more than
once for a single value, you are limited to 64K as the maximum size of the
value returned. However, this function enables you to fetch multiple binary
values under the 64K limit without repeated calls to the qeBindCol
functions.

The reason that there are no equivalent functions for binary data types is that
the only difference would be the absence of the zero byte that terminates the
data being read.

For writing binary data, two methods are available:

• Use SQL parameters. For example, if you had a long, free-form text
column called INTERESTS stored as binary data, you could issue the
following statement with qeExecSQL:

UPDATE emp SET interests = ?
WHERE emp_id = D10 1

You could then write the value with the qeBindParamBinary or
qeSetParamBinary function. You cannot write values larger than 64K.

• Use current record functions. When you have an open Select statement,
you can change the column value using the qePutBinary and
qeRecUpdate functions. Again, you cannot write values larger than 64K.

Because all of these methods use functions that handle a maximum value
length of 64K (65280 bytes), that is the maximum value size you can handle
except when reading values with repeated calls to qeValChar or
qeValCharBuf, in which case there is no limit.

Null Values

Many database systems have the concept of a null value. A null value for a
database column means that the record contains no value for this column.
When you retrieve a value, you cannot determine if the value is null. For
example, qeValInt always returns a valid integer value, since every possible
value is valid.

Go To
Chapter 4 Retrieving and Converting Data

Format Strings 59

DataDirect Developer’s Toolkit Programmer’s Guide

To determine if a qeVal function returned a null value, you must call
qeDataLen or qeWarning. qeDataLen returns the length of the value returned
by the qeVal function in bytes (or characters). If qeDataLen or qeWarning
return qeNULL_DATA (-2), then the value returned by the qeVal function was
null.

Logical Values

Some database systems support logical (true/false) data types. DTK returns
values of this type as numbers: 0 for False, and 1 for True.

Format Strings

When you use qeValChar or qeValCharBuf to get column values as character
strings, or when you use the data conversion functions to convert values to
character strings (like qeDoubleToChar, qeLongToChar), DTK allows you to
specify a format string that is used to format the value.

Also, when you use the data conversion functions to convert a character
string to a numeric value, DTK allows you to specify a format string to show
how the character string is formatted.

The following table shows some examples of format strings that are
described in the following sections.

Format String Value Formatted Value

$#,##0.00 100.5 $100.50

0 $0.00

2500.25 $2,500.25

-145.10337 -$145.10

$#,##0.00;($#,##0.00) 100.50365 $100.50

-145.10 ($145.10)

Go To
Chapter 4 Retrieving and Converting Data

Format Strings 60

DataDirect Developer’s Toolkit Programmer’s Guide

Numeric Format Strings

Format strings allow you to format numeric values with dollar signs, thousand
separators, scientific notation, percents, etc. You can format positive
numbers and negative numbers differently.

Numeric format strings can have one or two sections, separated by a
semicolon. If the format string has one section, then positive and negative
values use the same format. A negative sign is automatically inserted for
negative numbers. If there are two sections, the first section is for positive
numbers and the second for negative numbers.

$#,##0.00"CR";$#,##0.00"DB" 1125.9 $1,125.90CR

-2500 $2,500.00DB

0[S/1000] 12375 12

199 0

GN 147 147

1.875 1.875

mm/dd/yy Jan 15, 1996 01/15/96

mm/dd/yyyy Jan 9, 1996 01/09/1996

m/d/yy Jan 9, 1996 1/9/96

dd.mm.yy Jan 9, 1996 09.01.96

Mmm d, yyyy Jan 9, 1996 Jan 9, 1996

dd-MMM-yy Jan 9, 1996 09-JAN-96

Mmmm d, yyyy Jan 9, 1996 January 9, 1996

hh:mm:ss 4:53:10 PM 16:53:10

hh:mm:ss AM/PM 4:53:10 PM 04:53:10 PM

mm/dd/yy hh:mm:ss Jan 9, 1996 9:43 01/09/96 09:43:00

Format String Value Formatted Value

Go To
Chapter 4 Retrieving and Converting Data

Format Strings 61

DataDirect Developer’s Toolkit Programmer’s Guide

The symbols in the format strings determine the way the values are to be
formatted. Some of the symbols refer to strings specified in the International
section of the Control Panel. You can change these strings by running the
Control Panel program provided with Windows or OS/2. In the Control Panel,
click on the International icon to see and change these strings.

The following table describes the symbols allowed in a numeric format string.

Format String Value Formatted Value

0.00 100.5
-145.1

100.50
-145.10

0.00;(0.00) 100.5
-145.1

100.50
(145.10)

Symbol Description

$ Output the currency string. The currency string is specified in
the International section of the Control Panel.

. Output the decimal point character. The decimal point
character is specified in the International section of the
Control Panel.

, Output the thousand’s separator character. The thousand’s
separator character is specified in the International section
of the Control Panel.

Output a digit. If there is no digit to output in the position,
output nothing. For example, if the format string is "###.# #",
12.3 is formatted as "12.3", 125.22475 is formatted as
"125.2 2", 0 is formatted as ".", and 1500 is formatted as
"1500.".

Note: If the value has more digits to the left of the decimal
than there are symbols in the format string, the format string
is automatically extended to the left. However, if the value
has more digits to the right of the decimal point than appear
in the format string, the value is rounded into the last digit.

Go To
Chapter 4 Retrieving and Converting Data

Format Strings 62

DataDirect Developer’s Toolkit Programmer’s Guide

0 Output a digit. If there is no digit to output in the position,
output a zero. For example, if the format string is "000.0 0",
12.3 is formatted as "012.3 0", 125.22475 is formatted as
"125.2 2", 0 is formatted as "000.0 0", and 1500 is formatted
as "1500.0 0".

Note: See note for “#” symbol.

? Output a digit. If there is no digit to output in the position,
output a space character. For example, if the format string is
"???.? ?", 12.3 is formatted as " 12.3 ", 125.22457 is
formatted as "125.2 2", 0 is formatted as " . ", and 1500
is formatted as "1500. "

Note: See note for “#” symbol.

% Output the value as a percent. The value is multiplied by 100
and the percent character (%) is output. For example, if the
format string is "#0%", 0.15 is formatted as "15%".

e+ e- Output using scientific notation. e+ outputs the sign of the
exponent only if it is negative, e- always outputs the sign of
the exponent. For example, if the format string is
"0.00e+# 0", the value 12500 is formatted as "1.25e0 4", and
.005 is formatted as "5.00e-0 3". If the format string is
"0.00e-# 0", the value 12500 is formatted as "1.25e+0 4",
and the value .005 is formatted as "5.0e-0 3".

Note: You can also use E+ or E- in the format string. This
causes the “E” to be uppercase in the formatted value.

Symbol Description

Go To
Chapter 4 Retrieving and Converting Data

Format Strings 63

DataDirect Developer’s Toolkit Programmer’s Guide

–+()
space

Output plus or minus signs, parentheses, or blank spaces.
These characters are often used to distinguish positive and
negative values. For example, if the format string is
"+0.00;–0.0 0", 12.3 is formatted as "+12.3 0", and –1.1 is
formatted as "–1.10". Blank spaces are output in the
position you specify.

Note: These are the only characters that can be included in
numeric format strings to be output directly. To output other
characters or strings, use the “\” symbol or enclose the
characters in quotation marks.

\ Output the character following the backslash. For example, if
the format string is "0.00 \t\o\n\ s", the value 1.25 is
formatted as "1.25 ton s".

"string" Output the string. The quotation marks are not output. For
example, if the format string is "0.00 "tons"", the value 1.25
is formatted as "1.25 ton s".

'string' Output the string. The quotation marks are not output. For
example, if the format string is "0.00 'tons '", the value
1.25 is formatted as "1.25 ton s".

GN General format for numbers. This is the format used if no
format string is given. For example, if the format string is
"GN", 12.3 is formatted as "12.3", 125.22475 is formatted as
"125.2247 5", 0 is formatted as "0", and -1500 is formatted as
"-1500".

Note: If you use GN, the only other symbols you can use in
the format string are those enclosed in brackets; for
example, [US].

GF General fixed format for numbers. The “Number Format” in
the International section of the Control Panel is used.

Note: If you use GF, the only other symbols you can use in
the format string are those enclosed in brackets; for
example, [US].

Symbol Description

Go To
Chapter 4 Retrieving and Converting Data

Format Strings 64

DataDirect Developer’s Toolkit Programmer’s Guide

Date-time formats allow you to control which parts of the date or time are to
be output, their order, and whether to spell out months and days.

GC General currency format for numbers. The "Currency
Format" in the International section of the Control Panel is
used.

Note: If you use GC, the only other symbols you can use in
the format string are those enclosed in brackets; for
example, [US].

[S/n]
[S*n]

Scale the number before it is output. "[S/n]" divides the
number by ‘n’ before it is formatted. "[S*n]" multiplies the
number by ‘n’ before it is formatted. ‘n’ must be a power of
10 (10, 100, 1000, etc.). For example, if the format string is
"#0.00[S/1000]", 12340 is formatted as "12.34".

[US] The information specified in the International section of the
Control Panel is ignored. Instead, the United States defaults
are substituted (periods for decimal points, commas for
thousand separators, and $ for the currency symbol). For
example, if the format string is "$#,##0.00[US]", 1234.56 is
formatted as "$1,234.5 6", regardless of the International
settings in the Control Panel.

Symbol Description

Go To
Chapter 4 Retrieving and Converting Data

Format Strings 65

DataDirect Developer’s Toolkit Programmer’s Guide

The following table describes the symbols allowed in a date-time format
string.:

Symbol Description

m mm Output the month’s number (1-12). If the
month’s number is less than 10, “m” does not
output the leading 0, and “mm” outputs the
leading 0.

mmm Output the month’s three-letter abbreviation.
Whether the M’s are upper or lowercase
determines whether the abbreviation is upper
or lowercase:

mmm jan

Mmm Jan

MMM JAN

mmmm Output the month’s full name. Whether the M’s
are upper or lowercase determines whether the
name is upper or lowercase:

mmmm january

Mmmm January

MMMM JANUARY

d dd Output the day of the month’s number (1-31). If
the day’s number is less than 10, “d” does not
output the leading 0, and “dd” outputs the
leading 0.

Go To
Chapter 4 Retrieving and Converting Data

Format Strings 66

DataDirect Developer’s Toolkit Programmer’s Guide

ddd Output the day of the week’s three-letter
abbreviation. Whether the D’s are upper or
lowercase determines whether the abbreviation
is upper or lowercase:

ddd sun

Ddd Sun

DDD SUN

dddd Output the day of the week’s full name.
Whether the D’s are upper or lowercase
determines whether the name is upper or
lowercase:

dddd sunday

Dddd Sunday

DDDD SUNDAY

yy yyyy Output the year’s number. For “yy,” only the last
two digits of the year are output. For “yyyy,” the
four-digit year is output.

h hh Output the hour of the day (0-23). If the hour’s
number is less than 10, “h” does not output the
leading 0, and “hh” outputs the leading 0.

Note: Whether a 12-hour or 24-hour clock is
used depends on whether the “AM/PM” symbol
is used.

Symbol Description

Go To
Chapter 4 Retrieving and Converting Data

Format Strings 67

DataDirect Developer’s Toolkit Programmer’s Guide

m mm i ii Output the minute of the hour (0-59). You can
use “m” or “i” for minute. If you use “m,” the
previous date-time component must be an hour
symbol to avoid confusion with the month
symbol. If the minute’s number is less than 10,
“m” or “i” do not output the leading zero, and
“mm” or “ii” outputs the leading 0.

ss.ssssss Output the second of the hour (0-59). You can
use one or two “s” symbols to the left of the
decimal point. If one “s” is used, a leading zero
is not output for seconds less than 10. The
decimal point and the “s” symbols to the right of
the decimal point are optional. They are used
to output fractions of seconds. You can use up
to 6 “s” symbols to the right of the decimal.

am/pm a/p Output the “am” or “pm” string. These strings
are specified in the International section of the
Control Panel. Whether the symbol is upper or
lowercase determines whether the string is
upper or lowercase:

am/pm “am” or “pm” is output

AM/PM “AM” or “PM” is output

You can also use the symbol “a/p.” This causes
the first letter of the strings to be output. If you
use a/p, “a” or “p” is output. With A/P, “A” or “P”
output.

Note: If this symbol is used, a 12-hour clock is
assumed. The hour symbols output hour
numbers between 1 and 12.

Symbol Description

Go To
Chapter 4 Retrieving and Converting Data

Format Strings 68

DataDirect Developer’s Toolkit Programmer’s Guide

J Output the Julian value for the date-time. The
Julian value is a numeric value giving the date
as the number of days since 4712 BC, and the
time as a fraction of a day.

/ - . : , space Output the character. These characters are
used to separate the parts of a date or time.

Note: These are the only characters that can
be included in date format strings to be output
directly. To output other characters or strings,
use the “\” symbol or enclose the characters in
quotation marks

\ Output the character following the backslash.
For example, if the format string is "hh:mm:ss
\G\M\ T", the value 10:05:12 AM is formatted as
"10:05:12 GM T".

"string" Output the string. The quotation marks are not
output. For example, if the format string is
"hh:mm:ss "GMT"", the value 10:05:12 AM is
formatted as "10:05:12 GM T".

'string' Output the string. The quotation marks are not
output. For example, if the format string is
"hh:mm:ss 'GMT '", the value 10:05:12 AM is
formatted as "10:05:12 GM T".

GD General format for dates. This is the format
used if no format string is given. The “Short
Date Format” in the International section of the
Control Panel is used.

Note: The only other symbols you can use with
GD are those enclosed in brackets; for
example, [US].

Symbol Description

Go To
Chapter 4 Retrieving and Converting Data

Format Strings 69

DataDirect Developer’s Toolkit Programmer’s Guide

GDT General format for dates with times. The “Time
Format” in the International section of the
Control Panel is appended to the “Short Date
Format.”

Note: The only other symbols you can use with
GDT are those enclosed in brackets; for
example, [US].

GL General long format for dates. The “Long Date
Format” in the International section of the
Control Panel is used.

Note: The only other symbols you can use with
GL are those enclosed in brackets; for
example, [US].

GLT General long format for dates with times. The
“Time Format” in the International section of the
Control Panel is appended to the “Long Date
Format.”

Note: The only other symbols you can use with
GLT are those enclosed in brackets; for
example, [US].

GT General format for time. The “Time Format” in
the International section of the Control Panel is
used.

Note: Do not combine any other formatting
symbols with GT.

[US] The information specified in the International
section of the Control Panel is not used.
Instead, the United States defaults are
substituted. You should use this symbol only
with GD, GDT, GL, or GLT. For example, if the
format string is "GD[US]", July 15, 1995, is
formatted as "07/15/95".

Symbol Description

Go To
Chapter 4 Retrieving and Converting Data

Format Strings 70

DataDirect Developer’s Toolkit Programmer’s Guide

DataDirect Developer’s Toolkit Programmer’s Guide

Go To

5 Modifying Data

Once you have executed a SQL Select statement, DTK lets you position to
individual records and update or delete the current record, or insert new
records. This method of modifying the current record is often more
convenient than having to generate the appropriate SQL Insert, Update, or
Delete statement. This chapter describes the column (qePut) and record
(qeRec) functions that perform current-record operations in DTK, and
discusses DTK’s use of unique keys in performing these operations.

Current-Record Functions

After you execute a SQL Select statement, you can use the qeFetch
functions to position to specific records. The record you are positioned on is
called the current record.

Two sets of functions affect the current record. The qePut functions assign
new values to the individual columns of the current record. The qeRec
functions modify or get information about the current record.

The sample on page 72 shows the use of the qePut and qeRec functions,
which operate on the current record of an hstmt resulting from executing a
Select statement. The sample uses these functions to insert, update, and
delete records. The base Select statement for this example is

SELECT first_name, last_name FROM em p

In the example, the first record is read and its first name value is changed to
“Gerald,” the second record is deleted, and a new record employee record is
inserted before the first record.

To load this sample in the SAMPLE.EXE program, choose Using Current
Record Operations from the Example List.

Go To
Chapter 5 Modifying Data
Current-Record Functions 72

DataDirect Developer’s Toolkit Programmer’s Guide

qeSTATUS recordop () {

/* This routine demonstrates the use of the qeRec functions. These * /
/* functions operate on the current record of an hstmt resulting from * /
/* executing a Select statement. * /

 qeHANDLE hdbc = 0; /* Handle to database connection * /
 qeHANDLE hstmt = 0; /* Handle to SQL statement execution * /
 qeSTATUS res_code; /* Result code from DTK functions * /

/* Call qeLibInit to initialize DTK, check for errors * /
 res_code = qeLibInit () ;
 if (res_code != qeSUCCESS) return (res_code) ;

/* Call qeConnect to connect to a data source. Check to see * /
/* if hdbc == 0, which indicates that the connection failed. * /
 hdbc = qeConnect ("DSN=QEDBF") ;
 if (hdbc == 0) return (err_handler (hdbc, hstmt)) ;

/* Call qeExecSQL to execute the select statement. Check if hstmt == 0, * /
/* which indicates that the statement did not execute successfully. * /
 hstmt = qeExecSQL (hdbc, "Select first_name, last_name from emp") ;
 if (hstmt == 0) return (err_handler (hdbc, hstmt)) ;

/* Position to the first record. * /
 res_code = qeFetchNext (hstmt) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Update the employee's first name to Gerald. * /
 res_code = qePutChar (hstmt, 1, "", "Gerald") ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;
 res_code = qeRecUpdate (hstmt) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Position on second record and delete it. * /
 res_code = qeFetchNext (hstmt) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;
 res_code = qeRecDelete (hstmt) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Create a new record, make it record number 2 in the result set. * /
/* Set the new employee's name to Ed Allen. The call to qeRecUpdate * /
/* will insert the record into the database table. * /
 res_code = qeRecNew (hstmt, 2) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

Go To
Chapter 5 Modifying Data
Current-Record Functions 73

DataDirect Developer’s Toolkit Programmer’s Guide

 res_code = qePutChar (hstmt, 1, "", "Ed") ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

 res_code = qePutChar (hstmt, 2, "", "Allen") ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

 res_code = qeRecUpdate (hstmt) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Close the statement. * /
 res_code = qeEndSQL (hstmt) ;
 hstmt = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeDisconnect to disconnect from a data source. * /
 res_code = qeDisconnect (hdbc) ;
 hdbc = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeLibTerm to free memory allocated by DTK. * /
 res_code = qeLibTerm () ;
 MessageBox (hWnd, "Sample succeeded.", "Current Record", MB_OK) ;
 return (res_code) ;
}

/* err_handler routine goes here. * /

This sample also shows how to use the qePutChar, qeRecNew,
qeRecUpdate, and qeRecDelete functions to modify the database.

The following sections provide information on these and other current-record
functions.

Go To
Chapter 5 Modifying Data
Current-Record Functions 74

DataDirect Developer’s Toolkit Programmer’s Guide

Column Functions

Once your application has positioned to a record using the qeFetch functions,
you can change the values of the columns of the current record using the
qePut functions. Table 5-1 lists the qePut functions.

qePut functions take as arguments the hstmt of the active SQL Select
statement, the number of the column being updated, and the new value.
qePut functions change the values in the current record buffer but not the
values in the database. In order to modify the database, you must first modify
the values with qePut functions and then call qeRecUpdate. To insert a new
record, first call qeRecNew to clear the field values for the new record, use
the qePut functions to assign values to the new record’s columns, then call
qeRecUpdate to add the new record to the database.

Table 5-1. Functions that Change Column Values in the Current Record

Function Result
qePutBinary Updates a column with a binary value.

qePutChar Updates a column with a character value.

qePutDecimal Updates a column with a decimal value.

qePutDouble Updates a column with a double-precision floating-
point value.

qePutFloat Updates a column with a floating-point value.

qePutInt Updates a column with a 2-byte integer.

qePutLong Updates a column with a 4-byte integer.

qePutNull Updates a column to have the value null.

qePutUsingBindColumns Updates columns with the values placed in bind
buffers by the qeBindCol functions.

Go To
Chapter 5 Modifying Data
Current-Record Functions 75

DataDirect Developer’s Toolkit Programmer’s Guide

Whenever you move off of the current record, the auto-updating options that
are set via the qeSetAutoUpdate function affect what happens to values you
have changed using the qePut functions. See the following section for more
information.

Record Functions

Once your application has positioned to a record using the qeFetch functions,
you can perform operations on the current record using the qeRec
functions.Table 5-2 shows the set of qeRec functions.

Table 5-2. Functions that Operate on the Current Record

Function Result
qeRecNew Creates a new record that can be inserted by a call to

qeRecUpdate.

qeRecUpdate Updates or inserts a record with the new values set
using qePut functions.

qeRecDelete Deletes the current record.

qeRecUndo Discards all changes to a record that have not been
sent to the database.

qeRecState Returns the state of the current record.

qeRecLock Locks the current record during a transaction.

qeSetLockOptions Controls the locking behavior for a statement.

qeGetLockOptions Returns the locking behavior in effect for a
statement.

qeRecNum Returns the current record number.

qeRecSetKey Declares whether the specified column is part of a
unique key for a record.

qeRecGetKey Reports whether a column is part of the unique key.

qeSetAutoUpdate Determines what happens when the hstmt is moved
to a new record before changed values have been
updated or inserted.

Go To
Chapter 5 Modifying Data
Current-Record Functions 76

DataDirect Developer’s Toolkit Programmer’s Guide

The qeRec functions require an active SQL Select statement and therefore
have an hstmt as a parameter. You can activate a Select statement by calling
qeExecSQL or by calling qeSQLPrepare followed by qeSQLExecute. The
qeRec functions operate on the current record. The current record is
determined by the most recent call to a qeFetch function, qeRecNew, or
qeRecFind.

To insert a new record, call qeRecNew to clear the field values and make the
new record the current record, call the qePut functions to set the values in the
new record, and then call qeRecUpdate to insert the record into the
database.

To update a record, call the qePut functions to change the value of one or
more columns, and then call qeRecUpdate to update the record in the
database.

To delete a record, call qeRecDelete to delete the current record from the
database.

When inserting or updating a record, if you call qeRecUndo before the call to
qeRecUpdate, all of the changes to the column values made by the qePut
functions will be undone. If qeRecNew has been called to create a new
record, the new record will be discarded.

qeGetAutoUpdate Returns the auto update setting specified in the last
call to qeSetAutoUpdate.

qeApplyAll Updates all records that have not been explicitly
updated by calls to qeRecUpdate.

qeUndoAll Discards changes to all records that have not been
explicitly updated by calls to qeRecUpdate.

Table 5-2. Functions that Operate on the Current Record (cont.)

Function Result

Go To
Chapter 5 Modifying Data
Current-Record Functions 77

DataDirect Developer’s Toolkit Programmer’s Guide

qeRecState returns the state of the current record. The state indicates
whether the current record is a record read from the database or a new
record, and whether one or more column values have been changed by calls
to the qePut functions.

qeRecState also indicates whether DTK is currently positioned on a record or
between records. qeRecState returns a state of qeSTATE_NOREC whenever
the current position is between records. This state occurs following calls to
qeRollback and after encountering EOF conditions. When in this state,
record-oriented operations (qePut, qeRecUpdate, etc.) fail until you call a
qeFetch function to reposition DTK on a valid record. qeRecNum returns a
valid record number during this state, so you should always call qeRecState
before calling qeRecNum to ensure proper record positioning.

qeRecLock obtains a shared lock on the current record. This function can
only be used if a transaction has been started by a previous call to
qeBeginTran. The shared lock is held until the transaction ends by a call to
qeCommit or qeRollback.

qeRecNum returns the current record number. Each record retrieved from a
Select statement is assigned a record number starting with 1. You can
position to a record by calling qeFetchRandom and specifying the desired
record number.

qeRecSetKey and qeRecGetKey specify which columns of the Select
statement are to be used to identify the current record in the database. If you
call qeRecLock, qeRecUpdate, or qeRecDelete, first call qeRecSetKey on
the columns of your Select statement that together uniquely identify each
record. See “Unique Keys” on page 78 for more information.

Use qeSetAutoUpdate to specify what DTK does when you move off of the
current record before its values are updated in the database; that is, when the
current record—which was create via qeRecNew or changed using the qePut
functions—is not updated via qeRecUpdate before the user changes the
current record. If qeSetAutoUpdate is set to qeAUTOUPD_UPDATE (3), then
DTK automatically performs the qeRecUpdate function when the current
record changes. If qeSetAutoUpdate is set to qeAUTOUPD_DEFER (2), then
DTK saves the changes to the current record—not the database—before
moving to another record. If qeSetAutoUpdate is set to

Go To
Chapter 5 Modifying Data

Unique Keys 78

DataDirect Developer’s Toolkit Programmer’s Guide

qeAUTOUPD_DISCARD (1), DTK discards all changes made when you
move off of a record that has not been updated. The qeGetAutoUpdate
function returns which option is set.

If qeSetAutoUpdate is set to qeAUTOUPD_DEFER, you can use the DTK
hstmt as a temporary record storage. For example, you can create several
records by calling qeRecNew and set their column values by calling qePut
functions. Or, you can modify a number of records by positioning to them
using the qeFetch functions and changing them by calling qePut functions.
You can position to any record by calling the qeFetch functions, and the new
records and the changed records will be maintained by DTK, but the changes
are not sent to the database until you call qeRecUpdate. When you position
to a record, you can use the qeRecState function to determine whether it is
new or has been changed. You can call qeApplyAll to apply all of the changed
records to the database. You can call qeUndoAll to discard all of the changes
made to all records.

Unique Keys

The qeRecSetKey and qeRecGetKey functions identify the columns of the
Select statement that are used to uniquely identify the current record in the
database.

For some database systems, DTK generates SQL Update and Delete
statements to perform the qeRecUpdate and qeRecDelete functions. SQL
statements may also be generated to perform the qeRecLock function. In
these cases, DTK must generate a Where clause that uniquely identifies the
record in the database corresponding to the current record.

To generate these Where clauses, DTK adds a condition for each column that
you designate as a key by calling qeRecSetKey.

For example, in an employee table containing a unique employee ID field
(EMP_ID), you can designate the employee ID field as the key field by calling
qeRecSetKey. Then when DTK needs to generate a Where clause to identify
a record, it generates a Where clause of the form “Where EMP_ID=xxxxx”,

Go To
Chapter 5 Modifying Data

Unique Keys 79

DataDirect Developer’s Toolkit Programmer’s Guide

where xxxxx is the employee ID value for the current record. If there is no
employee ID field in the employee table, you could specify both the
LAST_NAME and FIRST_NAME columns as key columns. In this case DTK
uses both values in the Where clause to identify the current record.

If you do not call qeRecSetKey and DTK needs to generate a Where clause
to find the current record, it will create a default key that includes all of the
columns in the Select statement that can be used. Depending on the columns
in the Select statement, the generated Where clause may or may not
uniquely identify the current record. For example, if the Select statement is

SELECT last_name FROM em p

then the only field available to include in the Where clause is LAST_NAME.
Since last names are typically not unique, the Where clauses will not uniquely
identify records. Depending on the database system, some data types may
not be allowed in Where clauses. DTK will not generate Where clauses
containing columns that are not allowed in Where clauses.

DTK does not generate a default key until you call qeRecDelete,
qeRecUpdate, qeRecLock, or qeUniqueWhereClause, function for the
current hstmt. Until you call one of these functions (or qeRecSetKey), there
will be no key for the hstmt—every column will return 0 (False) on calls to
qeRecGetKey. If you call qeRecSetKey to set the key before calling one of
the other “default key” functions listed above, the default key is never
generated; instead, the key you specified is used.

Because DTK cannot guarantee that the Where clauses generated for
qeRecUpdate or qeRecDelete uniquely identify one record, these calls may
in fact affect more than one record, or no records. Your application should call
qeNumModRecs to determine the number of records affected.

Go To
Chapter 5 Modifying Data

Unique Keys 80

DataDirect Developer’s Toolkit Programmer’s Guide

DataDirect Developer’s Toolkit Programmer’s Guide

Go To

6 Using Transaction Functions

This chapter describes functions that let you group database operations into
transactions. It also describes the functions that set the fetching, logging, and
locking options that DTK provides. It contains the following sections:

• “Transaction Functions,” next, describes the DTK functions used to
implement transactions.

• “Transactions, Locking, and Logging” on page 84 describes the concept of
transactions and many important concepts related to locking and logging
within transactions. If you are not familiar with these concepts, you should
read this section first.

Transaction Functions

DTK provides functions that let you group sets of database changes into
transactions. A transaction is a set of database operations that can be
committed or rolled back (undone) as a single unit.

The sample program on page 81 shows the use of transactions to roll back
changes made by an SQL Update statement. To load this sample in the
SAMPLE.EXE program, choose Using Transactions from the Example List.

qeSTATUS trans () {

/* This routine demonstrates the use of transactions to rollback changes * /
/* made by an SQL Update statement. * /

 qeHANDLE hdbc = 0; /* Handle to database connection * /
 qeHANDLE hstmt = 0; /* Handle to SQL statement execution * /
 qeSTATUS res_code; /* Result code from DTK functions * /

/* Call qeLibInit to initialize DTK, check for errors. * /
 res_code = qeLibInit () ;

Go To
Chapter 6 Using Transaction Functions

Transaction Functions 82

DataDirect Developer’s Toolkit Programmer’s Guide

 if (res_code != qeSUCCESS) return (res_code) ;

/* Call qeConnect to connect to a data source. Check to see * /
/* if hdbc == 0, which indicates that the connection failed. * /
 hdbc = qeConnect ("DSN=QEDBF") ;
 if (hdbc == 0) return (err_handler (hdbc, hstmt)) ;

/* Start a transaction. * /
 res_code = qeBeginTran (hdbc) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeExecSQL to execute the update statement. Check if hstmt == 0, * /
/* which indicates that the statement did not execute successfully. * /
 hstmt = qeExecSQL (hdbc, "Update emp set first_name = 'Richard' where
first_name = 'Joe'") ;
 if (hstmt == 0) return (err_handler (hdbc, hstmt)) ;

/* Rollback the transaction. * /
 res_code = qeRollback (hdbc) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Close the statement. * /
 res_code = qeEndSQL (hstmt) ;
 hstmt = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeDisconnect to disconnect from a data source. * /
 res_code = qeDisconnect (hdbc) ;
 hdbc = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;
/* Call qeLibTerm to free memory allocated by DTK. * /
 res_code = qeLibTerm () ;
 MessageBox (hWnd, "Sample succeeded.", "Transactions", MB_OK) ;
 return (res_code) ;
}

/* err_handler routine goes here. * /

Go To
Chapter 6 Using Transaction Functions

Transaction Functions 83

DataDirect Developer’s Toolkit Programmer’s Guide

The functions listed in Table 6-1 let you use transactions in your applications:

Table 6-1. Functions that Support Transactions

Function Result
qeBeginTran Begins a SQL transaction.

qeCommit Ends a transaction by committing all changes to the
database.

qeRollback Ends a transaction by rolling back all changes to the
database.

qeGetSupportedIsolati
onLevels

Returns the set of isolation levels supported by the
database system.

qeSetIsolationLevel Sets the isolation level to any of the ones supported by the
database system.

qeGetIsolationLevel Returns the default isolation level provided by the database
system.

qeSetSelectOptions Specifies the following options:

The level of fetching that is possible after a transaction
ends.

Whether your application only reads forward through the
records resulting from a Select statement, or also needs to
position to records that have already been read.

Whether DTK will write records in the result set to log files
when connected to databases for which it is not necessary
to do so.

qeGetSelectOptions Returns whether previous and random fetching is enabled
for the current database connection, whether DTK will use
log files when connected to databases for which it is not
necessary to do so, and the level of fetching that is possible
after a transaction ends.

Go To
Chapter 6 Using Transaction Functions

Transactions, Locking, and Logging 84

DataDirect Developer’s Toolkit Programmer’s Guide

The qeGetSupportedIsolationLevels, qeSetIsolationLevel, and
qeGetIsolationLevel functions let you control the isolation level that the
database system provides to your transactions. For information on isolation
levels and using them, see “Isolation Levels” on page 85.

The qeSetSelectOptions and qeGetSelectOptions functions provide control
over DTK behavior relative to fetching and the use of log files during and after
transactions see “Logging” on page 89 and “Controlling Statement
Persistence” on page 92 for information on using these functions.

Transactions, Locking, and Logging

This section explains the concept of database transactions. It also explains
the concepts of locking and logging as they apply to DTK.

Transactions

A transaction is a set of database operations that are grouped into a single
unit. In a transaction, multiple database operations are combined so that if a
problem occurs at some point during the process, the entire transaction can
be canceled and the individual operations that were completed can be
undone. Such cancellation marks the end of the transaction, and is called a
rollback. The way to end a successful transaction is with a commit, which
accepts the changes made during the transaction and makes them
permanent in the database.

The qeBeginTran function starts a transaction. The qeRollback function ends
the transaction and discards all database changes made during the
transaction. The qeCommit function ends the transaction and makes all
changes permanent in the database.

Whenever you are not within a transaction—that is, have not called
qeBeginTran to begin a transaction, or have just called qeCommit or
qeRollback to end one, you are in auto-commit mode. In auto-commit mode,

Go To
Chapter 6 Using Transaction Functions

Transactions, Locking, and Logging 85

DataDirect Developer’s Toolkit Programmer’s Guide

each database operation you perform is immediately processed by the
database system and the changes are immediately committed. You cannot
rollback or undo the changes.

Transactions are closely linked to the concepts of locking and isolation levels,
which are described in the following sections.

Locking

Locking is a vital activity in multi-user databases, where different users can
try to access or modify the same records concurrently. While such concurrent
database activity is desirable, it can create problems. Without locking, for
example, if two users try to modify the same record at the same time, they
might encounter problems ranging from retrieving bad data to deleting data
that the other user needs. However, if the first user to access a record is able
to lock that record—temporarily prevent other users from modifying it—such
problems can be avoided. Locking provides a way to manage concurrent
database access while minimizing the various problems it can cause.

Some locks are automatically acquired by the database system as it
processes SQL statements. DTK users can explicitly lock records by calling
qeRecLock.

Isolation Levels

An isolation level represents a particular locking strategy employed in the
database system to improve data consistency. The higher the isolation level,
the more complex the locking strategy behind it.

Go To
Chapter 6 Using Transaction Functions

Transactions, Locking, and Logging 86

DataDirect Developer’s Toolkit Programmer’s Guide

The isolation level provided by the database determines whether a
transaction will encounter the following behaviors in data consistency:

Isolation levels represent the database system’s ability to prevent these
behaviors. There are four isolation levels defined by ANSI: read uncommitted
(0), read committed (1), repeatable read (2), and serializable (3). In
ascending order (0–3), these isolation levels provide an increasing amount of
data consistency to the transaction. At the lowest level, all three behaviors
can occur. At the highest level, none of them can occur. The success of each
level in preventing these behaviors is due to the locking strategies that they
employ, which are as follows:

Dirty reads User 1 modifies a row. User 2 reads the same row
before User 1 commits. User 1 performs a rollback.
User 2 has read a row that has never really existed
in the database. User 2 may base decisions on
false data.

Non-repeatable
reads

User 1 reads a row but does not commit. User 2
modifies or deletes the same row and then
commits. User 1 rereads the row and finds it has
changed (or has been deleted).

Phantom reads User 1 uses a search condition to read a set of
rows, but does not commit. User 2 inserts one or
more rows that satisfy this search condition, then
commits. User 1 rereads the rows using the search
condition, and discovers rows that were not
present before.

Read uncommitted (0) Locks are obtained on modifications to the
database and held until end of transaction (EOT).
Reading from the database does not involve any
locking.

Read committed (1) Locks are acquired for reading and modifying the
database. Locks are released after reading but
locks on modified objects are held until EOT.

Go To
Chapter 6 Using Transaction Functions

Transactions, Locking, and Logging 87

DataDirect Developer’s Toolkit Programmer’s Guide

The following table shows what data consistency behaviors can occur at
each isolation level:

Support for each isolation level depends on the database system. Many
databases do not support all four levels. Refer to the DataDirect ODBC
Drivers Reference for the isolation levels supported by each database. Your
applications can find out what isolation levels the current database system
supports by calling qeGetSupportedIsolationLevels. DTK uses the default

Repeatable read (2) Locks are obtained for reading and modifying the
database. Locks on all modified objects are held
until EOT. Locks obtained for reading data are
held until EOT. Locks on non-modified access
structures (indexes, hashing structures, etc.) are
released after reading.

Serializable (3) All data read or modified is locked until EOT. All
access structures that are modified are locked
until EOT. Access structures used by the query
are locked until EOT.

Some databases provide an additional isolation
level, Versioning (4). This isolation level is
actually a different implementation of isolation
level 3, serializable, but provides greater
concurrency through the use of non-locking
“record versioning” protocols.

Level Dirty reads
Non-
repeatable
reads

Phantom
reads

0, Read uncommitted Yes Yes Yes

1, Read committed No Yes Yes

2, Repeatable read No No Yes

3, Serializable No No No

Go To
Chapter 6 Using Transaction Functions

Transactions, Locking, and Logging 88

DataDirect Developer’s Toolkit Programmer’s Guide

isolation level provided by the database unless you specifically request one
with the qeSetIsolationLevel function. A call to qeGetIsolationLevel returns
the current isolation level.

While higher isolation levels provide better data consistency, this consistency
can be costly in terms of the concurrency provided to individual users.
Concurrency is the ability of multiple users to access and modify data
simultaneously. As isolation levels increase, so does the chance that the
locking strategy used will create problems in concurrency. Put another way:
the higher the isolation level, the more locking involved, and the more time
users may spend waiting for data to be freed by another user. Because of this
inverse relationship between isolation levels and concurrency, you must
carefully consider how people use the database before choosing an isolation
level. You must weigh the trade-offs between data consistency and
concurrency and decide which is more important to your users.

Isolation levels are also a consideration when DTK uses a log file to enable
backward and random record fetching. See “Logging and Isolation Levels”
on page 90 for more information.

Locking Modes and Granularity

Different database systems employ various locking modes, but they have two
basic ones in common: shared and exclusive. Shared locks can be held on a
single object by multiple users. If one user has a shared lock on a record,
then a second user can also get a shared lock on that same record. However,
the second user cannot get an exclusive lock on that record. Exclusive locks
are exclusive to the user that obtains them. If one user has an exclusive lock
on a record, then a second user cannot get either type of lock on the same
record.

Performance and concurrency can also be affected by the locking granularity
used in the database system. The locking granularity determines the size of
an object that is locked in a database. For example, many database systems
let you lock an entire table, as well as individual records. An intermediate
level of locking, page-level locking, is also common. A page contains one or
more records and is typically the amount of data read from the disk in a single

Go To
Chapter 6 Using Transaction Functions

Transactions, Locking, and Logging 89

DataDirect Developer’s Toolkit Programmer’s Guide

disk access. The major disadvantage of page-level locking is that if one user
locks a record, a second user may not be able to lock other records because
they are stored on the same page as the locked record.

Using qeRecLock

The qeRecLock function explicitly locks the current record. qeRecLock works
only if called within a transaction; otherwise, it returns an error. All locks are
freed by a call to qeCommit or qeRollback.

qeRecLock enables you to control the locking strategies rather than
depending on the database system. For example, by calling qeRecLock after
fetching a record, you lock that record until the end of the transaction. This
eliminates the possibility of a non-repeatable read, which is the same as if
your transaction had operated at isolation level 2 (repeatable read).

See “Logging and qeRecLock” on page 91 for information on using
qeRecLock with a log file.

Logging

Most SQL database systems provide only a fetch next function; neither
previous nor random fetches are permitted. The qeSetSelectOptions function
lets you specify random and previous fetching, as well as forward fetching.
For database systems that do not support random or previous fetching, DTK
provides the capability by saving each record read in a temporary log file that
is stored in your TEMP directory (specified by the “SET TEMP=” line in your
DOS AUTOEXEC.BAT or OS/2 CONFIG.SYS file). DTK allows your
application to randomly fetch records by reading them back from the log file.

Because many database systems don’t provide a function that returns the
number of records selected, DTK provides the qeFetchNumRecs function for
this purpose. To call this function you must have enabled random and
previous fetching using the qeSetSelectOptions function. Since DTK may
need to read and count the records in order to return this information, log files
may be required to save the records. These log files are deleted when
qeEndSQL is called.

Go To
Chapter 6 Using Transaction Functions

Transactions, Locking, and Logging 90

DataDirect Developer’s Toolkit Programmer’s Guide

Some database systems automatically terminate Select statements when a
transaction ends, preventing you from reading records following a commit or
rollback unless you re-execute the statement. DTK lets you avoid this
limitation. The qeSetSelectOptions function lets you specify what happens to
active Select statements when a transaction ends. If you enable the option to
continue reading records after a transaction ends, and the underlying
database system does not support it, DTK saves the records in log files.

Since an application can have only a limited number of files open at any time
(20 is the DOS/Windows default), you may exceed the limit if your application
has other files open or if you have several Select statements active at the
same time. You can call qeFetchLogClose to close the temporary log file
used by a statement. DTK automatically reopens the file when you call a
qeFetch function.

DTK creates and maintains log files containing saved records whenever you
use qeSetSelectOptions to enable capabilities that aren’t provided directly by
the underlying database system. When log files are used to save records
retrieved by a Select statement, DTK reads records from the log file as much
as possible instead of re-reading them from the database system. This use of
log files creates important considerations regarding locking and isolation
levels. The following sections describe these considerations.

Logging and Isolation Levels

Because DTK reads record values from the log file whenever possible, the
isolation level provided by the database system affects the accuracy of the
data in the log file. Some isolation levels allow records that are saved in the
log file to be changed in the database by another user, causing the values in
the log file to be different from those in the database. The lower the isolation

Go To
Chapter 6 Using Transaction Functions

Transactions, Locking, and Logging 91

DataDirect Developer’s Toolkit Programmer’s Guide

level, the greater the possibility of this kind of behavior. The level of
consistency provided by each isolation level during a transaction is as
follows:

Isolation level 3 provides the best degree of consistency when log files are
used. If it is not possible or desirable to use isolation level 3 (or level 4,
Versioning), you can call qeRecLock after fetching each record to ensure
consistency between the log file and the database. The next section
describes how this method prevents consistency problems.

Logging and qeRecLock

Because DTK reads record values from the log file whenever possible, you
may want call qeRecLock on each fetch to ensure consistency between the
log file and the database, especially if the isolation level is 0 or 1.

qeRecLock always acquires a lock on the current record. Optionally, this
function will either warn you when the locked record has changed or
automatically refresh the copy in the log file with the corresponding values
from the database so that the values you see are always current. The
qeSetLockOptions function lets you choose one of the following options:

0, 1 Records in the log file may not match records in the database.

2 Records in the log file will match those in the database, but there
may be new records that have been inserted in the database that
aren’t present in the log file.

3 The log file will always match the database.

Constant Value Description

qeLOCK_NO_OPTIONS 0 Default; DTK neither compares nor
refreshes the record in the log file.

Go To
Chapter 6 Using Transaction Functions

Transactions, Locking, and Logging 92

DataDirect Developer’s Toolkit Programmer’s Guide

Emulated Transactions

Some database systems do not support transactions. When using the
DataDirect ODBC Drivers Reference drivers for these database systems,
DTK transparently emulates transactions so that your application can call
qeBeginTran, qeCommit, and qeRollback for these database systems. This
emulation is not supported when using third-party database drivers.

Controlling Statement Persistence

Sometimes database systems do not maintain the Select statement’s result
set beyond the end of a transaction. In such databases, after you issue a
commit or rollback you can no longer fetch records using the current hstmt
because the database can no longer provide a point of reference for the
fetch. However, if you are using DTK’s logging to enable random and
previous record fetching, you don’t experience this problem. The log file
tracks the current record, so DTK always knows where it is in the database.
Because of this ability, you may want to force the use of log files, even if the
database you are using doesn’t require their use for random and previous
record fetching. You can do this by calling qeSetSelectOptions with the
qeLOG_ALWAYS option (0x0010).

The qeSetSelectOptions function provides additional control over logging and
statement persistence by letting you specify the level of statement
persistence that DTK provides at the end of transactions. By default
(qeSELECT_PERSIST, 0x0060), DTK will read all of the records that you

qeLOCK_COMPARE 1 When locking, DTK compares the
record in the log file to the
corresponding record in the database,
and raises a warning if they are
different.

qeLOCK_REFRESH 2 When locking, DTK automatically
refreshes the record in the log file with
new column values.

Constant Value Description

Go To
Chapter 6 Using Transaction Functions

Transactions, Locking, and Logging 93

DataDirect Developer’s Toolkit Programmer’s Guide

have not yet fetched into the log file, allowing you to continue updating the
entire result set. If you do not need DTK to read all the records but want to
continue working with the records you’ve already fetched, set the
qeSELECT_TRUNCATE flag (0x0040). If you don’t want DTK to save any
records in the log file when a transaction ends, set the
qeSELECT_INVALIDATE flag (0x0020). Because these settings affect what
happens when changes are committed, they also affect statement
persistence when in auto-commit mode. Because auto-commit mode
represents an implicit commit of each change you make, whatever you
choose to have happen at the end of a transaction will also happen whenever
a change is made in auto-commit mode. Therefore, if you intend to use auto-
commit mode and change multiple records returned by a statement, you
should use the default setting of qeSELECT_PERSIST.

Go To
Chapter 6 Using Transaction Functions

Transactions, Locking, and Logging 94

DataDirect Developer’s Toolkit Programmer’s Guide

DataDirect Developer’s Toolkit Programmer’s Guide

Go To

7 Error Handling and Debugging

This chapter describes DTK’s error-handling and debugging functions. The
last two sections describe problems that do not return errors.

The following example shows tracing enabled in a DTK program, as well as
the error handling routine used for all samples in SAMPLE.EXE. The trace
files it creates are listed in the section “Debugging Your Applications.” To load
this sample in the SAMPLE.EXE program, choose Tracing DTK Calls from
the Example List.

qeSTATUS trace () {

/* This routine demonstrates the use of the tracing facilities. * /

 qeHANDLE hdbc = 0; /* Handle to database connection * /
 qeHANDLE hstmt = 0; /* Handle to SQL statement execution * /
 qeSTATUS res_code; /* Result code from DTK functions * /
 long modrecs ;

/* Call qeLibInit to initialize DTK, check for errors. * /
 res_code = qeLibInit () ;
 if (res_code != qeSUCCESS) return (res_code) ;

/* Turn tracing on, set options to trace everything. * /
 res_code = qeTraceOn ("c:\qelib\trace.txt") ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

 res_code = qeSetTraceOptions (qeTRACE_NON_VAL_CALLS + qeTRACE_USER +
 qeTRACE_VAL_CALLS + qeTRACE_ODBC) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;
/* Call qeConnect to connect to a data source. Check if hdbc == 0, which * /
/* indicates that the connection failed. * /
 hdbc = qeConnect ("DSN=QEDBF") ;
 if (hdbc == 0) return (err_handler (hdbc, hstmt)) ;

/* Set the ODBC tracefile. * /
 res_code = qeSetDriverTracefile (hdbc, "c:\qelib\odbc.txt") ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

Go To
Chapter 7 Error Handling and Debugging

118

DataDirect Developer’s Toolkit Programmer’s Guide

/* Call qeExecSQL to execute the update statement. Check if hstmt == 0, * /
/* which indicates that the statement did not execute successfully. * /
 hstmt = qeExecSQL (hdbc, "Update emp set first_name = 'Joe' where first_name
= 'Richard'") ;
 if (hstmt == 0) return (err_handler (hdbc, hstmt)) ;

/* Find out how many records were affected by the statement. * /
 modrecs = qeNumModRecs (hstmt) ;
 if (qeErr () != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Close the statement. * /
 res_code = qeEndSQL (hstmt) ;
 hstmt = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeDisconnect to disconnect from a data source. * /
 res_code = qeDisconnect (hdbc) ;
 hdbc = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Close the tracefiles. * /
 res_code = qeTraceOff () ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;
/* Call qeLibTerm to free memory allocated by DTK. * /
 res_code = qeLibTerm () ;
 MessageBox (hWnd, "Sample succeeded.", "Trace Functions", MB_OK) ;
 return (res_code) ;
}

/* err_handler routine goes here. * /

The following sections describe the use of DTK’s error-handling and
debugging functions.

Go To
Chapter 7 Error Handling and Debugging

Handling Errors and Warnings 119

DataDirect Developer’s Toolkit Programmer’s Guide

Handling Errors and Warnings

DTK provides the error handling functions listed in Table 7-1.

DTK allows various methods of error checking, because every DTK function
can detect errors in its execution. Many DTK functions return an error status
result code as the value returned by their execution. Similarly, functions that
return a handle to the database connection (hdbc) or SQL statement (hstmt)
return a value of zero if they do not execute successfully. Also, the qeErr
function is available to report the result code of the last function that
executed. qeErr reports the status of all DTK functions.

All DTK functions that return result codes, including qeErr, report the same
set of status constants. A result code of zero from these functions indicates
that they succeeded (qeSUCCESS). A non-zero result indicates that an error
or warning occurred. When checking the result code value, you can use
either the constant name (such as qeSUCCESS) or explicit value (like 0).

A result code of qeSUCCESS_WITH_INFO (1) means that the function was
successful, but returned warning information. When this occurs, call
qeWarning to get the warning information. You should also call qeWarning
whenever qeErr returns qeNO_DATA_WITH_INFO (2).

Table 7-1. Error Handling Functions

Function Returns
qeErr The result code of the last DTK function you called.

qeDBErr The database error resulting from the last DTK function.

qeErrMsg and
qeErrMsgBuf

The error message generated by the last DTK function you
called.

qeWarning The DTK or database warning generated by the last DTK
function you called.

Go To
Chapter 7 Error Handling and Debugging

Debugging Your Applications 120

DataDirect Developer’s Toolkit Programmer’s Guide

qeWarning returns warnings, including the qeTRUNCATION and
qeNULL_DATA warnings. If a function results in both an error and a warning,
qeErr will report only the error, so you should call qeWarning in your error-
handling routines to see if any warnings were issued.

You can call qeErrMsg or qeErrMsgBuf to get the error message associated
with the result code. DTK error messages contain up to 512 characters.
When you call either of these functions, your programs must be able to
handle these messages. When you call qeErrMsgBuf, the variable you pass
as the parameter must be large enough to hold 512 characters.

If the error is detected by the underlying database system, the database
system’s error code can be retrieved with qeDBErr. For example, if you are
using Oracle and Oracle detects an error, qeErr returns qeDBSYS_ERROR
(4), qeDBErr returns the Oracle error code, and qeErrMsg returns the text of
the message. The Oracle error codes are described in the Oracle
documentation set.

Note: It is very important that you check for errors following every call to a
DTK function. Ignoring errors in your programs may result in your program or
a DTK function causing a General Protection Fault (GPF).

Debugging Your Applications

DTK provides tracing functions that let you log calls to the functions for
database connection and SQL execution.

When tracing is on, all parameters sent to DTK functions, as well as all values
they return, are written to an ASCII file. You can look at this file to see where
errors in your program exist.

This sample application at the beginning of this chapter returns the trace file
shown on page 121, named TRACE.TXT.

Go To
Chapter 7 Error Handling and Debugging

Debugging Your Applications 121

DataDirect Developer’s Toolkit Programmer’s Guide

qeTraceOn (c:\qelib\trace.txt)
qeTraceOn returns (0)
qeSetTraceOptions (23)
qeSetTraceOptions returns (0)
qeConnect (DSN=QEDBF)
qeConnect returns (1)
qeSetDriverTracefile (1, c:\qelib\odbc.txt)
qeSetDriverTracefile returns (0)
qeExecSQL (1, Update emp set first_name = 'Joe' where
first_name = 'Richard')
qeExecSQL returns (2)
qeNumModRecs (2)
qeNumModRecs returns (0)
qeEndSQL (2)
qeEndSQL returns (0)
qeDisconnect (1)
qeDisconnect returns (0)
qeTraceOff ()

The sample also returns an ODBC trace file named ODBC.TXT.

SQLAllocStmt(hdbc116F0000, phstmt08DF0000) ;
SQLPrepare(hstmt08DF0000, "Update emp set
first_name = 'Joe' where first_name = 'Richard'", 62) ;
SQLExecute(hstmt08DF0000) ;
SQLNumResultCols(hstmt08DF0000, pccol) ;
SQLRowCount(hstmt08DF0000, pcrow) ;
SQLMoreResults(hstmt08DF0000) ;
SQLFreeStmt(hstmt08DF0000, 1) ;
SQLDisconnect(hdbc116F0000) ;

Go To
Chapter 7 Error Handling and Debugging

Debugging Your Applications 122

DataDirect Developer’s Toolkit Programmer’s Guide

DTK provides the trace functions listed inTable 7-2; these functions let you
log calls to the database connection functions and SQL execution functions:

When tracing is on, all parameters sent to DTK functions, as well as all values
they return, are written to an ASCII file. You can look at this file to see where
errors in your program exist. DTK continues to write to the trace file until you
call qeTraceOff.

Tracing Statement and Connection Errors

The trace file created by the qeTrace functions provides the best method for
discovering errors in the following:

• Connection strings passed to the database via qeConnect

• SQL statements passed via qeExecSQL and qeSQLExecute

Table 7-2. Functions that Log Calls to Database-Connection and
SQL-Execution Functions

Function Result
qeTraceOn Starts tracing calls to the DTK API by writing

debugging information to a trace file.

qeTraceOff Closes the trace file opened by qeTraceOn and
discontinues the tracing of calls to the DTK API.

qeSetDriverTracefile Specifies a file as the driver trace file.

qeSetTraceOptions Sets the type of information that is sent to the trace
file.

qeGetTraceOptions Returns the type of information that is sent to the trace
file.

qeTraceUser Sends a string to the trace file.

Go To
Chapter 7 Error Handling and Debugging

Debugging Your Applications 123

DataDirect Developer’s Toolkit Programmer’s Guide

The two sections that follow show how such errors affect the contents of the
DTK trace file.

Trace files resulting from each type of error are compared to the following
trace file text, which was created by the DTK tracing example at the
beginning of the chapter:

qeTraceOn (c:\qelib\trace.txt)
qeTraceOn returns (0)
qeSetTraceOptions (23)
qeSetTraceOptions returns (0)
qeConnect (DSN=QEDBF)
qeConnect returns (1)
qeSetDriverTracefile (1, c:\qelib\odbc.txt)
qeSetDriverTracefile returns (0)
qeExecSQL (1, Update emp set first_name = 'Joe' where
first_name = 'Richard')
qeExecSQL returns (2)
qeNumModRecs (2)
qeNumModRecs returns (0)
qeEndSQL (2)
qeEndSQL returns (0)
qeDisconnect (1)
qeDisconnect returns (0)
qeTraceOff ()

Calling qeExecSQL with an Invalid SQL Statement

Suppose that the program that created the preceding trace file contained a
qeExecSQL call like this:

hstmt = qeExecSQL (hdbc, "Updte emp set first_name =
'Joe' where first_name = 'Richard'") ;

Note that the Update keyword in the statement parameter is misspelled. This
error results in the trace file shown on page 124.

Go To
Chapter 7 Error Handling and Debugging

Debugging Your Applications 124

DataDirect Developer’s Toolkit Programmer’s Guide

qeTraceOn ("c:\qelib\trace.txt")
qeTraceOn returns (0)
qeSetTraceOptions (23)
qeSetTraceOptions returns (0)
qeConnect ("DSN=QEDBF")
qeConnect returns (1)
qeSetDriverTracefile (1, "c:\qelib\odbc.txt")
qeSetDriverTracefile returns (0)
qeExecSQL (1, "Updte emp set first_name = 'Joe' where
first_name = 'Richard'")
qeExecSQL returns (0)
qeExecSQL DBErr is (3800)
qeErr returns (4)
qeErr DBErr is (3800)
qeErrMsg returns ("[INTERSOLV][ODBC dBase
driver][dBase]Only SELECT, INSERT, UPDATE, DELETE,
CREATE, and DROP statements are supported.")
qeDisconnect (1)
qeDisconnect returns (0)

This trace file shows that qeExecSQL returned a zero (0), which indicates an
error. qeErr returns 4 (qeDBSYS_ERR), which indicates that the error was
reported by the database. The 3800 code returned by qeDBErr was reported
by the ODBC dBASE driver DLL. qeErrMsg reports the corresponding text of
this message.

Note: Since the qeExecSQL statement results in an error, none of the
subsequent DTK function calls appear in the trace file.

Calling qeConnect with an Invalid Connection String

For this example, suppose that the qeConnect call contains an invalid
connection string (a typographical error is made when entering the data
source name attribute; it should be DSN rather than DSM).

hdbc = qeConnect ("DSM=QEDBF") ;

Go To
Chapter 7 Error Handling and Debugging

Debugging Your Applications 125

DataDirect Developer’s Toolkit Programmer’s Guide

The trace file reads as follows:

qeTraceOn ("c:\qelib\trace.txt")
qeTraceOn returns (0)
qeSetTraceOptions (23)
qeSetTraceOptions returns (0)
qeConnect ("DSM=QEDBF")
qeConnect returns (0)
qeErr returns (2106)
qeErrMsg returns ("Connection string must contain a
DSN=<driver_name>: DSM=QEDBF")

The invalid call to qeConnect returned a zero (0), which indicates a
connection could not be made.

Note: Since the qeConnect statement results in an error, none of the
subsequent DTK function calls appear in the trace file.

Go To
Chapter 7 Error Handling and Debugging

Debugging Your Applications 126

DataDirect Developer’s Toolkit Programmer’s Guide

DataDirect Developer’s Toolkit Programmer’s Guide

Go To

8 QBE and Query Builder
Functions

This chapter describes the DTK functions that allow you to add flexible
querying features to your applications. With these functions you can design
applications that let your users dynamically control which records will be
retrieved, find records based on values in their fields, or even specify
complete SQL Select statements to determine the data to be retrieved. DTK
has two sets of functions that allow you to add a Query By Example (QBE)
interface or a Query Builder interface to your application.

This chapter contains the following sections:

• “Using Query By Example and Finding Records” on page 127 describes
the concepts and techniques related to the QBE interface.

• “Using QBE Functions” on page 130 describes the QBE functions and
their usage.

• “Using Query Builder Functions” on page 132 describes the functions that
use the Query Builder interface and the query file (QEF) format.

• “The Query Builder Interface” on page 136 explains the query builder
interface and some of the features it provides.

Using Query By Example and Finding Records

Query By Example (QBE) is a way to let users of your application dynamically
change the Where clause of SQL Select statements.

Go To
Chapter 8 QBE and Query Builder Functions

Using Query By Example and Finding Records 128

DataDirect Developer’s Toolkit Programmer’s Guide

For example, assume your base Select statement is

SELECT last_name, first_name, salary, hire_date
FROM emp ORDER BY last_nam e

and you want to enable users of your application to limit the employee
records that will be returned. To implement a QBE interface, you could
display a window containing an edit box for each of the four fields, and let the
user enter values in each edit box. When the user clicks the OK button, you
could use the values in each edit box to generate the Where clause in the
Select statement.

For example, if the user entered “S” in the LAST_NAME edit box, you could
add

WHERE last_name LIKE 'S% '

to the base Select statement. Similarly, you could add additional conditions to
the Where clause as the user enters values in the other edit boxes.

The QBE functions serve as tools that make it easier for your program to
modify the Where clause of Select statements.

DTK also enables your program to specify conditions on the column values.
For example, assume your program's base Select statement is

SELECT last_name, first_name FROM emp
ORDER BY last_nam e

This may return a large number of records. You may want to let users position
to the first record having a last name that starts with an “S” without changing
the Select statement. DTK provides functions that allow you to position to
records based on field values.

The following code gives you a framework for using the QBE functions in your
application. The base Select statement in this example is

SELECT first_name, last_name FROM em p

Go To
Chapter 8 QBE and Query Builder Functions

Using Query By Example and Finding Records 129

DataDirect Developer’s Toolkit Programmer’s Guide

The example uses DTK’s QBE functions to add a condition that returns only
those employees whose first name begins with a T, then reads the records
and displays the first name values in message boxes. To load this sample in
the SAMPLE.EXE program, choose Using Query By Example from the
Example List.

qeSTATUS qbe () {

/* This routine demonstrates the use of Query By Example (QBE). * /

 qeHANDLE hdbc = 0; /* Handle to database connection * /
 qeHANDLE hstmt = 0; /* Handle to SQL statement execution * /
 qeSTATUS res_code; /* Result code from DTK functions * /
 qeLPSTR first_name ;
/* Call qeLibInit to initialize DTK, check for errors. * /
 res_code = qeLibInit () ;
 if (res_code != qeSUCCESS) return (res_code) ;

/* Call qeConnect to connect to a data source. Check to see * /
/* if hdbc == 0, which indicates that the connection failed. * /
 hdbc = qeConnect ("DSN=QEDBF") ;
 if (hdbc == 0) return (err_handler (hdbc, hstmt)) ;

/* Select first & last names from emp. */
 hstmt = qeExecSQL (hdbc, "select first_name, last_name from emp") ;
 if (hstmt == 0) return (err_handler (hdbc, hstmt)) ;

/* Set a condition to search for all first names starting with 'T'. * /
 res_code = qeRecSetConditionChar (hstmt, 1, qeFIND_LIKE, "T%", "" FALSE) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Re-Execute the Select statement incorporating the QBE conditions. * /
 res_code = qeSQLxecute (hstmt) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;
/* Fetch and display the first names of the records found. */
 while (qeFetchNext (hstmt) == qeSUCCESS) {
 first_name = qeValChar (hstmt, 1, "", 0) ;
 if (qeErr () != qeSUCCESS && qeErr () != qeNULL_DATA) break ;
 MessageBox (hWnd, first_name, "Query By Example", MB_OK) ;
 }
 if ((qeErr () !=qeSUCCESS) && (qeErr () != qeEOF))
 return (err_handler (hdbc, hstmt)) ;
/* Close the statement. * /
 res_code = qeEndSQL (hstmt) ;

Go To
Chapter 8 QBE and Query Builder Functions

Using QBE Functions 130

DataDirect Developer’s Toolkit Programmer’s Guide

 hstmt = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeDisconnect to disconnect from a data source. * /
 res_code = qeDisconnect (hdbc) ;
 hdbc = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeLibTerm to free memory allocated by DTK. * /
 res_code = qeLibTerm () ;
 MessageBox (hWnd, "Sample succeeded.", "QBE Conditions", MB_OK) ;
 return (res_code) ;
}

/* err_handler routine goes here. * /

Using QBE Functions

The Query By Example (QBE) and Find functions make it easier for you to
write a program that enables users to change query conditions at runtime and
position to records using field values.

Table 8-1 lists the DTK functions that provide these capabilities.

Table 8-1. Functions that Change Query Conditions at Runtime

Function Results
qeQBEPrepare Prepares a statement containing QBE search

conditions.

qeRecClearConditions Clears a statement’s search conditions.

qeRecSetConditionBinary Adds a search condition to the statement having a
binary value to compare.

qeRecSetConditionChar Adds a search condition to the statement having a
character value to compare.

qeRecSetConditionDecimal Adds a search condition to the statement having a
decimal value to compare.

Go To
Chapter 8 QBE and Query Builder Functions

Using QBE Functions 131

DataDirect Developer’s Toolkit Programmer’s Guide

All QBE functions require an active SQL Select statement and therefore
require an hstmt as a parameter. You can activate a Select statement by
calling either qeExecSQL, qeSQLPrepare, or qeQBEPrepare.

The qeRecSetCondition functions specify the conditions to be added to the
Where clause. These functions have a parameter that identifies the column of
the Select statement that receives the condition, an operator parameter that
specifies the SQL relational operator to be used, and the value that is to be
compared against.

qeRecClearConditions removes all conditions that have been specified.

After the conditions have been set, a call to qeQBEPrepare adds to the
Select statement’s Where clause and prepares the resulting statement. You
must then call qeSQLExecute to execute this statement. Subsequent calls to
the qeFetch functions retrieve the records that result from the modified Select
statement.

qeRecSetConditionDouble Adds a search condition to the statement having a
double-precision floating-point value to compare.

qeRecSetConditionFloat Adds a search condition to the statement having a
floating-point value to compare.

qeRecSetConditionInt Adds a search condition to the statement having a
2-byte integer value to compare.

qeRecSetConditionLong Adds a search condition to the statement having a
4-byte integer value to compare.

qeRecSetConditionNull Adds a search condition to the statement having a
value to compare of null.

qeRecFind Locates the row matching the qeRecSetCondition
search criteria.

Table 8-1. Functions that Change Query Conditions at Runtime (cont.)

Function Results

Go To
Chapter 8 QBE and Query Builder Functions

Using Query Builder Functions 132

DataDirect Developer’s Toolkit Programmer’s Guide

To find records using their field values, you execute Select statements and
set conditions just as you do for QBE. However, instead of calling
qeQBEPrepare, you call qeRecFind. qeRecFind does not change the Where
clause or re-execute the Select statement. Instead, it locates a record in the
result set that matches the specified conditions and makes it the current
record. When using qeRecFind, you can specify whether you want to position
to the first or last record that matches the conditions, or whether you want to
search for the next or previous record that matches the conditions.

Using Query Builder Functions

DTK’s Query Builder functions provide a simple way for users to create SQL
Select statements. Calling qeQryBuilder in your application (available only in
Windows, Windows 95, and Windows NT) displays a window that allows your
users to create or modify Select statements by pointing and clicking. Your
users can manipulate Select statements even if they have no knowledge of
SQL.

The following sample code allows the user to enter a Select statement with
the Query Builder, executes the resulting statement, and then reads and
displays the values in the first column returned by the statement. To load this
sample in the SAMPLE.EXE program, choose Using the Query Builder
from the Example List.

qeSTATUS querybuilder () {

/* This routine demonstrates the execution of the Query Builder from within * /
/* a DTK program. * /

 qeHANDLE hdbc = 0; /* Handle to database connection * /
 qeHANDLE hstmt = 0; /* Handle to SQL statement execution * /
 qeSTATUS res_code; /* Result code from DTK functions * /
 qeHANDLE hqry = 0; /* Handle to query object * /

/* Call qeLibInit to initialize DTK, check for errors. * /
 res_code = qeLibInit () ;
 if (res_code != qeSUCCESS) return (res_code) ;

Go To
Chapter 8 QBE and Query Builder Functions

Using Query Builder Functions 133

DataDirect Developer’s Toolkit Programmer’s Guide

/* Call qeConnect to connect to a data source. Check to see * /
/* if hdbc == 0, which indicates that the connection failed. * /
 hdbc = qeConnect ("DSN=QEDBF") ;
 if (hdbc == 0) return (err_handler (hdbc, hstmt)) ;

/* Allocate a query structure to be used for Query Builder calls. * /
 hqry = qeQryAllocate (hdbc, "") ;
 if (hqry == 0) return (err_handler (hdbc, hstmt)) ;

/* Run the query builder. The resulting statement will be stored in hqry. * /
 res_code = qeQryBuilder (hqry, hWnd ,
 qeQRY_BIG_ICONS + qeQRY_TABLES + qeQRY_VIEWS, qeQRY_DEFAULT) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;
/* Prepare & execute the statement created in the query builder. * /
 hstmt = qeQryPrepare (hqry) ;
 if (hstmt == 0) return (err_handler (hdbc, hstmt)) ;

 res_code = qeSQLExecute (hstmt) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Free query structure. * /
 res_code = qeQryFree (hqry) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeDisconnect to disconnect from a data source. * /
 res_code = qeDisconnect (hdbc) ;
 hdbc = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeLibTerm to free memory allocated by DTK. * /
 res_code = qeLibTerm () ;
 MessageBox (hWnd, "Sample succeeded.", "Query Builder", MB_OK) ;
 return (res_code) ;
}

/* err_handler routine goes here. * /

Go To
Chapter 8 QBE and Query Builder Functions

Using Query Builder Functions 134

DataDirect Developer’s Toolkit Programmer’s Guide

Table 8-2 lists the functions DTK provides for using the Query Builder tool.

Table 8-2. Functions that Support the Query Builder Tool

Function Result
qeQryAllocate Builds a query based on a string containing a

SQL statement.

qeQryFree Frees the memory associated with an hqry.

qeQryGetFileName and
qeQryGetFileNameBuf

Returns the file name associated with the
query represented in hqry.

qeQryGetFileOffset Returns the offset of the extra information
within the query file that is associated with
the query.

qeQryGetHdbc Returns the hdbc associated with the query
represented by hqry.

qeQryGetNumParams Returns the number of parameters
associated with the query represented by
hqry.

qeQryGetParamDefault and
qeQryGetParamDefaultBuf

Returns the default value of a parameter
associated with the specified query.

qeQryGetParamFormat and
qeQryGetParamFormatBuf

Returns the format string to be applied to the
value of a parameter associated with the
specified query.

qeQryGetParamName and
qeQryGetParamNameBuf

Returns the name of a parameter associated
with the specified query.

qeQryGetParamPrompt and
qeQryGetParamPromptBuf

Returns the prompt for a parameter
associated with the specified query.

qeQryGetParamType Returns the type of a parameter associated
with the specified query.

qeQryGetStmt and
qeQryGetStmtBuf

Returns the statement associated with the
query represented in hqry.

qeQryOpenQueryFile Builds a handle to a query based on the
contents of the query file.

Go To
Chapter 8 QBE and Query Builder Functions

Using Query Builder Functions 135

DataDirect Developer’s Toolkit Programmer’s Guide

The Query Builder functions operate on query objects. A query object is
created by a call to either qeQryAllocate or qeQryOpenQueryFile and is freed
by a call to qeQryFree. qeQryAllocate and qeQryOpenQueryFile return a
handle to the query object (hqry) that identifies the query object in other

qeQryGetSource and
qeQryGetSourceBuf

Returns the data source name used in a
query (.QEF) file.

qeQrySetSource Sets the data source name used in a query
file.

qeQrySetHdbc Resets the hdbc from a query file with the
current hdbc.

qeQrySaveQueryFile Writes a query to a query file.

qeQrySetFileName Sets the file name for a query file.

qeQrySetNumParams Sets the number of parameters associated
with the query represented by hqry.

qeQrySetParamDefault Sets the default value of a parameter
associated with the specified query.

qeQrySetParamFormat Sets the format string for a parameter
associated with the specified query.

qeQrySetParamName Sets the name of a parameter associated
with the specified query.

qeQrySetParamPrompt Sets the prompt for a parameter associated
with the specified query.

qeQrySetParamType Sets the type of a parameter associated with
the specified query.

qeQrySetStmt Sets the statement associated with the
specified query.

qeQryBuilder Runs the Query Builder.

qeQryPrepare Prepares a SQL statement for execution.

Table 8-2. Functions that Support the Query Builder Tool (cont.)

Function Result

Go To
Chapter 8 QBE and Query Builder Functions

The Query Builder Interface 136

DataDirect Developer’s Toolkit Programmer’s Guide

Query Builder functions. qeQryAllocate allows you to specify an optional
Select statement for the new query object. qeQryOpenQueryFile reads a
Select statement from a query file (.QEF extension) that has been previously
created by DTK, INTERSOLV DataDirect Explorer, or another INTERSOLV
product.

Once you have a query object, calling qeQryBuilder creates a window that
displays the query object’s current Select statement, if any. After the user
changes the Select statement, clicking OK closes the window and updates
the query object with the modified Select statement.

The attributes of the query object can be read or changed by calling the
qeQryGet and qeQrySet functions. A query file can be generated from the
query object by calling qeQrySaveQueryFile.

You can execute the Select statement contained in a query object by calling
qeQryPrepare followed by qeSQLExecute.

The Query Builder window also allows users to define parameters for the
Select statement. If parameters have been defined, calling qeSQLExecute
causes DTK to display a dialog box requesting the values to be substituted
for the parameters. You can determine the number of parameters that have
been defined by calling qeQryGetNumParams. You can read or change
parameter definitions by calling the qeQryGetParam and qeQrySetParam
functions.

The Query Builder Interface

When your program calls qeQryBuilder, DTK creates windows that let your
users create or modify Select statements. These windows don’t display the
actual text of the Select statement; instead, they split the Select statement
into various parts and display the parts in separate list boxes. Presenting the
Select statement this way enables users to modify Select statements using
the Query Builder’s point and click interface—without having to learn the SQL
language.

Go To
Chapter 8 QBE and Query Builder Functions

The Query Builder Interface 137

DataDirect Developer’s Toolkit Programmer’s Guide

When qeQryBuilder is called, the first window displayed depends on whether
a Select statement is already defined for the query object. If there is no Select
statement, the first window displayed allows the user to choose one or more
tables that are to be included in the Select statement.

Once the user chooses a table and clicks the OK button, the main Query
Builder window appears. This is the first window displayed if the query object
contains a Select statement when qeQryBuilder is called. It has menu and
icon bars across the top, and a status bar across the bottom.

Menu
Icon Bar

Status Bar

Go To
Chapter 8 QBE and Query Builder Functions

The Query Builder Interface 138

DataDirect Developer’s Toolkit Programmer’s Guide

In this window, the separate parts of the Select statement appear in the
following list boxes:

To modify the information in one of these boxes, the user can either click on
the box, use the corresponding command in the Query menu, or click the
corresponding icon on the icon bar. The Query Builder then displays a dialog
box which lets the user change the information in the list box. A Help button in
each of these dialog boxes displays detailed information on how to use them.

Once all changes have been made, clicking the OK button changes the
Select statement in the query object to reflect the changes. Clicking Cancel
discards all changes leaving the query object unchanged.

Query Builder Icons

The following icons are available when you are using the Query Builder:

Three additional boxes may be displayed—a Table Joins box, a Group By
box, and a Having box. The Table Joins box appears when the user defines a
join among database tables. The other two boxes appear when a Group By
clause is defined.

The Table icon allows you to define the database tables from which fields will
be selected.

The Joins icon allows you to specify how to relate tables. This is valid only if
you have specified more than one database table for the query.

Tables Lists the database tables from which records will be
retrieved (From clause).

Fields Lists the fields of the database table to be displayed (the
column expressions).

Sort order Lists sort orders for the records (Order By clause).

Conditions Lists conditions used to specify which records are to be
displayed (Where clause).

Go To
Chapter 8 QBE and Query Builder Functions

The Query Builder Interface 139

DataDirect Developer’s Toolkit Programmer’s Guide

The Field icon allows you to specify which fields of the table you want
retrieved.

The Sort icon allows you to specify the fields by which you want the records
sorted.

The Conditions icon allows you to specify conditions (for example, display all
employees who have an annual salary greater than $30,000).

The Groupings icon allows you to group sets of records and to define
aggregate functions to compute (for example, average the salaries in each
department).

The Having icon allows you to specify additional conditions for groups of
records (for example, retrieve only the departments that have an average
salary of more than $20,000). You can have a Having clause only if you have
already defined a Group By clause.

The Edit Query Text icon displays the SQL Select statement that corresponds
to the current query definition. You can edit the statement from this screen.

The Validity Check icon checks the syntax of a SQL Select statement that
you have modified and reports any errors.

Edit Query Text Icons

The next six icons are available only when you are in the Edit Query Text
screen.

The Cut icon removes a highlighted section of text from the screen and
places it onto the clipboard.

The Copy icon copies a highlighted section of text from the screen to the
clipboard.

The Paste icon pastes clipboard contents onto the screen in front of the
cursor or replaces the highlighted section with the contents of the clipboard.

The Find icon searches and moves the cursor to the text that you specify.

Go To
Chapter 8 QBE and Query Builder Functions

The Query Builder Interface 140

DataDirect Developer’s Toolkit Programmer’s Guide

The Find Next icon finds the next occurrence of the specified text.

The Replace icon searches for the specified text and replaces it with different
text that you have specified.

The Preferences menu contains options you can set. The three options are:

Use Database to Validate If set, the Query Builder uses the database
system to validate the query conditions as
you build them. If not set, the Query Builder
does not use the database system to check
for errors, so you may construct conditions
that have errors when you execute the
query. The default is to validate.

Large/Small Icons This option determines whether large or
small icons are displayed on the icon bar.
Large icons are the default.

Sample Values from Database This option determines whether database
values are displayed when you are defining
field conditions. The default is to display
values.

Query Builder Parameters

The Query Builder supports parameters in Select statements. For example,
you can use the Query Builder to generate the following Select statement:

Select * from emp where salary > ?sa l

A subsequent call to qeSQLExecute will display the following dialog box:

Go To
Chapter 8 QBE and Query Builder Functions

The Query Builder Interface 141

DataDirect Developer’s Toolkit Programmer’s Guide

The user is prompted for a salary value to substitute for the ?sal parameter.
This value is used when qeSQLExecute is called to execute the statement.

To build a Select statement with a parameter, you modify the Where clause
by clicking the Conditions list box in the Query Builder’s main window.

This causes the Conditions dialog box to appear:

The easiest way to specify a condition is to choose a field from the drop-down
Field Expression list, choose an operator from the drop-down Operator list,
and choose or type a value for the Value Expression box. Once the condition
is complete, click the Insert button to insert it in the list box labeled
Conditions.

For example, to create the condition “salary > ?sal,” you could do the
following:

1 Choose SALARY from the drop-down Field Expression list.

2 Choose > from the drop-down Operator list.

3 Click in the Value Expression box.

Go To
Chapter 8 QBE and Query Builder Functions

The Query Builder Interface 142

DataDirect Developer’s Toolkit Programmer’s Guide

4 Click the Add Parameter button.

The following dialog box appears, allowing you to define the parameter:

5 Enter the name of the parameter, sal in our example, in the Name box.
Optionally, supply the following information:

• A Label for the parameter value

• A Default Value for the parameter

• A Format String used to describe how date, time, or numeric values
will be entered by the user.

The qeQryPrepare function uses this information when displaying the dialog
box in which the user enters the parameter value.

These steps can be repeated to add additional parameters to the condition.

If a query object’s Select statement contains parameters, the attributes of the
parameters can be read or modified using the qeQryGetParam and
qeQrySetParam functions. The number of parameter can be read or modified
using the qeQryGetNumParams and qeQrySetNumParams functions.

DataDirect Developer’s Toolkit Programmer’s Guide

Go To

9 Utility Functions

• This chapter describes the following DTK functions:

• “Using Data Dictionary Functions,” next, describes the functions that
query the system to determine what data sources, databases, table, and
stored procedures are available.

• “Parsing SQL Statements” on page 147 describes the functions that parse
the Where, Having, Group By, Order By, and Compute By clause, or other
database-specific condition clauses from a SQL Select statement.

• “ODBC Handle Conversion” on page 149 describes the functions that
convert DTK handles to ODBC handles for direct addressing of the ODBC
API.

Using Data Dictionary Functions

Many database systems have information available about the data that is
stored in them. This data can include information about the databases,
tables, columns, indexes, keys, and privileges associated with the data. DTK
returns this information as if it were a result set from a query, returning
records that have a fixed format for each type of information requested.

The sample program on page 143 shows how to call the data dictionary
functions. To load this sample in the SAMPLE.EXE program, choose Getting
Data Dictionary Information from the Example List.

qeSTATUS datadict () {

/* This routine demonstrates calls to qeSources, a data dictionary routine * /
/* that returns an hstmt whose result set contains a list of the available * /
/* database system sources. * /

Go To
Chapter 9 Utility Functions

Using Data Dictionary Functions 144

DataDirect Developer’s Toolkit Programmer’s Guide

 qeHANDLE hdbc = 0; /* Handle to database connection * /
 qeHANDLE hstmt = 0; /* Handle to SQL statement execution * /
 qeSTATUS res_code; /* Result code from DTK functions * /
 char source [qeSRC_MAX_LEN+1] ;
 long source_len = qeSRC_MAX_LEN+1 ;
 char extension [qeSRC_MAX_LEN+1] ;
 long extension_len = qeSRC_MAX_LEN+1 ;
 short source_hdbc ;
 long source_hdbc_len = sizeof (source_hdbc) ;
 char remark [qeSRC_REMARK_MAX_LEN+1] ;
 long remark_len = qeSRC_REMARK_MAX_LEN+1 ;

/* Call qeLibInit to initialize DTK, check for errors * /
 res_code = qeLibInit () ;
 if (res_code != qeSUCCESS) return (res_code) ;

/* Note: you do not have to be connected to get the list of Sources * /

/* Get an hstmt whose result set contains records that describe each Source. * /
 hstmt = qeSources (1) ;
 if (hstmt == 0) return (err_handler (hdbc, hstmt)) ;

/* Bind local variables to the columns returned for each record * /
 res_code = qeBindColChar (hstmt, 1, source, &source_len, "") ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

 res_code = qeBindColChar (hstmt, 2, extension, &extension_len, "") ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

 res_code = qeBindColInt (hstmt, 3, &source_hdbc, &source_hdbc_len) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

 res_code = qeBindColChar (hstmt, 4, remark, &remark_len, "") ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;
/* Fetch rows and display each source name in a message box. * /
 while (qeFetchNext (hstmt) == qeSUCCESS) {
 MessageBox (hWnd, source, "Data Dictionary: qeSources", MB_OK) ;
 }
 if ((qeErr () != qeSUCCESS) && (qeErr () != qeEOF))
 return (err_handler (hdbc, hstmt)) ;

/* Close the data dictionary statement. * /
 res_code = qeEndSQL (hstmt) ;
 hstmt = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

Go To
Chapter 9 Utility Functions

Using Data Dictionary Functions 145

DataDirect Developer’s Toolkit Programmer’s Guide

/* Call qeLibTerm to free memory allocated by DTK. * /
 res_code = qeLibTerm () ;
 MessageBox (hWnd, "Sample succeeded.", "Data Dictionary", MB_OK) ;
 return (res_code) ;
}

/* err_handler routine goes here. * /

This example shows how to get ODBC data source information using the
qeSources function.

For database systems that support indexing, the qeIndexes function returns
information on the set of indexes for a table. An index is a storage structure
that provides quick access to a table’s rows based on the values of one or
more columns in the row. It is analogous to the index in a book: it stores data
values in ascending or descending order, and each index value contains a
pointer to the value’s location within the table. Thus, if the database system
needs to search for a value on a column that has been indexed, the database
system does not search the table itself, whose rows are in random order;
rather, it quickly searches the ordered index, locates the value, and then
follows the index pointers to locate the row or rows that contain a value that
meets the search criteria. (If the column has not been indexed, the database
system must sequentially scan each row in the table and evaluate the
column’s value; to ensure it finds all values that meet the search criteria, it
needs to scan the entire table, which could be time-consuming.)

For database systems that support primary keys, the qePrimaryKeys function
returns information on the set of columns that compose a table’s primary
keys. A primary key is a column or combination of columns whose values
uniquely identify each row in the table. For example, an EMP_ID column
might uniquely identify each row in an EMP table and could be defined as the
table’s primary key. If a single column cannot uniquely identify each row, a
combination of columns can be defined as the primary key. For example, a
PARTS table might contain PART_NO and MFR columns. In this case, the
part number might not uniquely identify rows since two manufacturers might
use the same part number, but the combination of PART_NO and MFR might
be better for the table’s primary key.

Go To
Chapter 9 Utility Functions

Using Data Dictionary Functions 146

DataDirect Developer’s Toolkit Programmer’s Guide

For database systems that support foreign keys, the qeForeignKeys function
returns information on the set of columns that compose a table’s foreign keys.
A foreign key is a column in one table whose values are derived from the
primary key in another table. For example, a SALESREP table might include
a column for SALES_TERR, which contains values identifying sales
territories. These territory values might match the values in a TERRITORY
field, which has been defined as the primary key in a TERRITORIES table.

Table 9-1 lists the entire set of data dictionary functions.

Table 9-1. Data Dictionary Functions

Function Returns
qeColumns Information on the set of column definitions for a

table.

qeDatabases Information on the set of databases that can be
accessed.

qeForeignKeys Information on the set of columns that compose a
table’s foreign keys.

qeIndexes Information on the set of indexes for a table.

qePrimaryKeys Information on the set of columns that compose a
table’s primary keys.

qeProcedureColumns Information that describes the parameters to a stored
procedure and the result columns for that procedure.
The rows may be retrieved subject to the same
restrictions as qeTables (and other DTK procedures
which return result sets).

qeSources Information on the database Sources (systems) that
can be accessed.

qeTables Information on the available database tables.

qeTypeInfo Information about the types supported on a particular
database.

qeGetTableCaching Returns the caching setting specified in the last call to
qeSetTableCaching.

Go To
Chapter 9 Utility Functions

Parsing SQL Statements 147

DataDirect Developer’s Toolkit Programmer’s Guide

Except for qeGetTableCaching, qeSetTableCaching, and
qeSetCacheFileName, these functions return an hstmt. The records for the
hstmt can be read using qeFetchNext, and column values can be retrieved
using the qeVal or qeBindCol functions. After all processing is completed on
the returned hstmt, qeEndSQL must be called to terminate the hstmt.

Parsing SQL Statements

DTK’s parsing functions allow you to return useful information from the active
SQL statement.

The following sample shows how to use the parsing functions. To load this
sample in the SAMPLE.EXE program, choose Parsing SQL Statements
from the Example List.

qeSTATUS parse () {

/* This routine demonstrates the functions which return individual clauses * /
/* from a SELECT statement. * /

 qeHANDLE hdbc = 0; /* Handle to database connection * /
 qeHANDLE hstmt = 0; /* Handle to SQL statement execution * /
 qeSTATUS res_code; /* Result code from DTK functions * /
 qeLPSTR clause ;

qeSetTableCaching Controls whether table information is cached after
calls to qeTables.

qeSetCacheFileName Sets the file name to be used when caching table
names.

Table 9-1. Data Dictionary Functions (cont.)

Function Returns

Go To
Chapter 9 Utility Functions

Parsing SQL Statements 148

DataDirect Developer’s Toolkit Programmer’s Guide

/* Call qeLibInit to initialize DTK, check for errors. * /
 res_code = qeLibInit () ;
 if (res_code != qeSUCCESS) return (res_code) ;

/* Call qeConnect to connect to a data source. Check to see * /
/* if hdbc == 0, which indicates that the connection failed. * /
 hdbc = qeConnect ("DSN=QEDBF") ;
 if (hdbc == 0) return (err_handler (hdbc, hstmt)) ;

/* Call qeExecSQL to execute the update statement. Check if hstmt == 0, * /
/* which indicates that the statement did not execute successfully. * /
 hstmt = qeSQLPrepare (hdbc, "select * from emp where first_name = ?") ;
 if (hstmt == 0) return (err_handler (hdbc, hstmt)) ;

/* Set the statement parameters. * /
 res_code = qeSetParamChar (hstmt, 1, "Joe", 20) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Execute the statement. * /
 res_code = qeSQLExecute (hstmt) ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Get the Where clause. * /
 clause = qeClauseGet (hstmt, qeCLAUSE_WHERE) ;
 if (qeErr () != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;
 MessageBox (hWnd, clause, "Parsing", MB_OK) ;

/* Close the statement. * /
 res_code = qeEndSQL (hstmt) ;
 hstmt = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeDisconnect to disconnect from a data source. * /
 res_code = qeDisconnect (hdbc) ;
 hdbc = 0 ;
 if (res_code != qeSUCCESS) return (err_handler (hdbc, hstmt)) ;

/* Call qeLibTerm to free memory allocated by DTK. * /
 res_code = qeLibTerm () ;
 MessageBox (hWnd, "Sample succeeded.", "Parse Functions", MB_OK) ;
 return (res_code) ;
}

/* err_handler routine goes here. * /

Go To
Chapter 9 Utility Functions

ODBC Handle Conversion 149

DataDirect Developer’s Toolkit Programmer’s Guide

DTK’s parsing functions allow you to return useful information from the active
SQL statement. These functions take the hstmt as a parameter and return the
information listed in Table 9-2.

qeUniqueWhereClause and qeUniqueWhereClauseBuf use the columns
specified by qeRecSetKey if that function is called, otherwise they generate
the list of columns on their own.

ODBC Handle Conversion

These functions convert between DTK handles and ODBC handles, allowing
you to call the ODBC driver directly.

ODBC makes available a routine called SQLGetInfo. The DTK functions
qeGetODBCInfoChar, qeGetODBCInfoCharBuf, and qeGetODBCInfoLong
make it easier to access SQLGetInfo. See the sections on these functions in

Table 9-2. Functions that Parse the Active SQL Statement

Function Returns
qeClauseGet and
qeClauseGetBuf

A clause from a Select statement.

qeNativeSQL and
qeNativeSQLBuf

The SQL string as translated by the driver.

qeUniqueWhereClause and
qeUniqueWhereClauseBuf

A Where clause that uniquely identifies the
current record in an active Select statement.

Go To
Chapter 9 Utility Functions

ODBC Handle Conversion 150

DataDirect Developer’s Toolkit Programmer’s Guide

Part II for lists of the SQLGetInfo constants they support. There is no
guarantee that every database driver will support all of the SQLGetInfo
options available.

Important: The ODBC handle conversion routines are potentially dangerous.
Using the ODBC hdbc to change the state of the ODBC connection may
create situations that trap. In particular, there is no guarantee of proper
behavior when the qeSetODBCHdbc function is called, because DTK cannot
know any information about the hstmt or hdbc involved. Use at your own risk.

Table 9-3. Functions that Access SQLGetInfo

Function Result
qeGetODBCInfoChar and
qeGetODBCInfoCharBuf

Returns information about an ODBC connection.

qeGetODBCInfoLong Returns information about an ODBC connection.

qeGetODBCHenv Returns the ODBC environment handle
associated with the instance of DTK.

qeGetODBCHstmt Returns the ODBC hstmt that corresponds to the
DTK hstmt.

qeGetODBCHdbc Returns the ODBC hdbc that corresponds to the
DTK hdbc.

qeSetODBCHdbc Sets the ODBC hdbc that corresponds to the DTK
hdbc.

DataDirect Developer’s Toolkit Programmer’s Guide

Go To

Part 2: Function Reference
10 DTK Functions

This chapter provides a complete, alphabetical reference to the DTK
functions. It begins by describing parameter conventions employed in the
functions.

Parameter Conventions

Each DTK function has parameters that must be included when you call the
functions. The values you send as parameters determine the function’s
behavior.

Parameter Data Types

DTK’s parameter conventions have been designed to work with every
Windows and OS/2 product that has a macro or script language with the
ability to call functions in DLLs. Only a limited number of types are used for
parameters. Also, the DTK functions do not change the values of the
parameters. Each function has one result, its return value.

The types used as parameters and return types are as follows:

Type Description C data type

INT16 2-byte integer short

INT32 4-byte integer long

FLOAT32 floating-point number float

Go To
Chapter 10 DTK Functions

Functions That Return Pointers 152

DataDirect Developer’s Toolkit Programmer’s Guide

The pointer data types are used in cases where you must pass a pointer to
the value. In general, this is handled automatically by the macro or script
language.

Some DTK functions return a pointer to a value (such as qeValChar). Some
macro and script languages do not allow functions to return pointers. These
functions, and considerations for using them, are described in the following
section.

Functions That Return Pointers

For DTK functions that return a character string or a decimal number, two
forms of the functions are provided (like qeValChar and qeValCharBuf). The
first form returns a pointer to the resulting value. The second form (the
function name ending in Buf) has an additional parameter which is a pointer
to a buffer in which DTK is to put the value.

When a DTK function returns a pointer (as does qeValChar), the pointer
refers to a buffer allocated by DTK. DTK allocates global memory and locks it
to obtain the pointer value, and returns that pointer. Your program should then
copy the value to its own variables.

FLOAT64 double-precision floating-point number double

PTRSTR pointer to a string variable char far *

PTRINT16 pointer to a 2-byte integer variable short far *

PTRINT32 pointer to a 4-byte integer variable long far *

PTRFLT32 pointer to a floating-point variable float far *

PTRFLT64 pointer to a double-precision floating-
point variable

double far *

Type Description C data type

Go To
Chapter 10 DTK Functions

Functions that Vary by Data Type or Column Type 153

DataDirect Developer’s Toolkit Programmer’s Guide

DTK maintains one buffer per process. Each time a DTK function is called,
the contents of the buffer may change, or the buffer memory may be freed.
Therefore, be sure to copy character string or decimal values before you call
another DTK function from the same process.

If you are running two different programs, such as ToolBook and Excel, and
both programs are calling DTK functions, they are separate processes and
do not share the same buffers.

If you use the second form of the functions (like qeValCharBuf), then your
program must allocate a buffer and pass a pointer to the buffer as a
parameter to the DTK function. In this case make sure that the size of the
buffer you allocate is large enough to hold the value returned by the function.

If you get an error on a call to a “Buf” function, the information written to the
buffer by the call may not to be trusted. You may want to include a routine in
your error-handling procedure to flush the buffer of such data.

Functions that Vary by Data Type or Column Type

This manual sometimes collectively refers to a set of functions whose names
vary by data type or by column type, but it does not specifically identify the
name of functions in the set. For example, it might refer to the qeVal
functions; however, there is no function named qeVal, although there is a
qeValChar, a qeValInt, a qeValLong, and so on.

To give you a better idea of the specific functions that might be referenced
this way, the following sections list some but not all of the functions that are
sometimes referenced by a collective term.

Go To
Chapter 10 DTK Functions

Functions that Vary by Data Type or Column Type 154

DataDirect Developer’s Toolkit Programmer’s Guide

qeBindCol functions

A set of functions referred to as the qeBindCol functions specify value and
length variables that receive a column’s value and length each time a record
is fetched. The qeBindCol function performs no data type conversion on the
value being bound; other functions in the set convert the data to the data type
suggested by the function name.

The qeBindCol functions are:

• qeBindCol
• qeBindColChar
• qeBindColDecimal
• qeBindColDouble
• qeBindColFloat
• qeBindColInt
• qeBindColLong

qeCol functions

A set of functions referred to as the qeCol functions return information about
a specified column.

The qeCol functions are:

• qeColAlias and qeColAliasBuf
• qeColDateEnd
• qeColDateStart
• qeColDBType
• qeColDBTypeName and qeColDBTypeNameBuf
• qeColExpr and qeColExprBuf
• qeColName and qeColNameBuf
• qeColPrecision
• qeColScale
• qeColType
• qeColTypeAttr
• qeColumns
• qeColWidth

Go To
Chapter 10 DTK Functions

Functions that Vary by Data Type or Column Type 155

DataDirect Developer’s Toolkit Programmer’s Guide

qePut functions

A set of functions referred to as the qePut functions update columns with
values that match the column’s data type.

The qePut functions are:

• qePutBinary
• qePutChar
• qePutDecimal
• qePutDouble
• qePutFloat
• qePutInt
• qePutLong
• qePutNull
• qePutUsingBindColumns

qeRecSetCondition functions

A set of functions referred to as the qeRecSetCondition functions add a
search condition to a statement; the comparison value’s data type matches
the data type of the column being compared against the condition.

The qeRecSetCondition functions are:

• qeRecSetConditionBinary
• qeRecSetConditionChar
• qeRecSetConditionDecimal
• qeRecSetConditionDouble
• qeRecSetConditionFloat
• qeRecSetConditionInt
• qeRecSetConditionLong
• qeRecSetConditionNull

Go To
Chapter 10 DTK Functions

Functions 156

DataDirect Developer’s Toolkit Programmer’s Guide

qeVal functions

A set of functions referred to as the qeVal functions return column values
whose data types match the data type suggested by the function names.

The qeVal functions are:

• qeValChar and qeValCharBuf
• qeValDecimal and qeValDecimalBuf
• qeValDouble
• qeValFloat
• qeValInt
• qeValLong
• qeValMultiChar and qeValMultiCharBuf

Functions

The following sections describe the syntax, parameters, and usage of each
DTK database function.

DTK version 2.x includes functions that will be obsolete in future versions.
These functions are listed in Appendix E, “Compatibility Issues,” on page
553.

DTK also provides a set of data conversion functions that are described
separately in Appendix A, “Data Conversion Functions,” on page 493.

Go To
Chapter 10 DTK Functions

qeAppendSQL 157

DataDirect Developer’s Toolkit Programmer’s Guide

qeAppendSQL

qeAppendSQL appends text to the SQL buffer.

Syntax int16 res_code qeAppendSQ L (int16 hdbc, ptrstr
partial_stmt)

Description Some macro languages cannot send an entire SQL statement to qeExecSQL
due to limits in the lengths of strings they support. For example, Excel strings
are limited to 255 characters. Since many Select statements are longer than
255 characters, Excel cannot send long Select statements to qeExecSQL.

Internally, DTK maintains one SQL buffer per hdbc.

SQL replaces the contents of the SQL buffer with the partial statement sent
as a parameter. Each subsequent call to qeAppendSQL appends text to the
SQL buffer. Once the complete SQL statement has been sent to the DTK
API, you can call qeSQLPrepare (with “” as the sql_stmt value) or
qeExecSQL to use the SQL statement saved in the SQL buffer.

Parameters hdbc is the handle to the database connection returned by qeConnect.

partial_stmt is the character string to append to the contents of the SQL
buffer. It must contain part of a SQL statement.

res_code is the result code returned by qeAppendSQL, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeAppendSQL 158

DataDirect Developer’s Toolkit Programmer’s Guide

Example To send a SQL Server database a Select statement in sections and execute
it:

hdbc = qeConnect ("DSN=QESS;UID=sa;SRVR=PION1") ;
...
res_code = qeSetSQL (hdbc, "SELECT *") ;
res_code = qeAppendSQL (hdbc, " FROM emp") ;
res_code = qeAppendSQL (hdbc, " ORDER BY last_name")
hstmt = qeExecSQL (hdbc, "") ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeExecSQL, qeSetSQL.

Go To
Chapter 10 DTK Functions

qeApplyAll 159

DataDirect Developer’s Toolkit Programmer’s Guide

qeApplyAll

qeApplyAll updates the database with all deferred record changes.

Syntax int16 res_code qeApplyAl l (int16 hstmt)

Description When qeSetAutoUpdate is set to qeAUTOUPD_DEFER (2) to enable record
changes to be deferred—saved but not updated in the database, qeApplyAll
updates the database with all changes that have been performed on the
statement.

You can call qeNumModRecs to determine the number of records affected.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

res_code is the result code returned by qeApplyAll, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
res_code = qeSetAutoUpdate (hdbc, qeAUTOUPD_DEFER) ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;

res_code = qeFetchNext (hstmt) ;
res_code = qePutChar (hstmt, 1, "", "Rachel") ;
res_code = qeFetchNext (hstmt) ;
res_code = qePutChar (hstmt, 1, "", "Eddie") ;
res_code = qeFetchNext (hstmt) ;

res_code = qeApplyAll (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeSetAutoUpdate, qeUndoAll.

Go To
Chapter 10 DTK Functions

qeBeginTran 160

DataDirect Developer’s Toolkit Programmer’s Guide

qeBeginTran

qeBeginTran begins a database transaction.

Syntax int16 res_code qeBeginTra n (int16 hdbc)

Description qeBeginTran starts a transaction on a database connection. Once a
transaction begins, the SQL Insert, Update, and Delete statements that are
executed using qeExecSQL are not committed to the database until
qeCommit is called.

qeCommit saves the changes that have been made since qeBeginTran was
called and frees all database locks.

Alternatively, qeRollback discards the changes that have been made since
qeBeginTran was called and frees all database locks.

Parameters hdbc is the handle to the database connection returned by qeConnect.

res_code is the result code returned by qeBeginTran, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example To commit changes made to a SQL Server database:

hdbc = qeConnect ("DSN=QESS;UID=sa;SRVR=PION1") ;
...
res_code = qeBeginTran (hdbc) ;
hstmt = qeExecSQL (hdbc ,

"UPDATE emp SET salary = salary * 1.1") ;
res_code = qeEndSQL (hstmt) ;
res_code = qeCommit (hdbc) ;
res_code = qeDisconnect (hdbc) ;

Notes If you execute an Insert, Update, or Delete statement without first calling
qeBeginTran, the database changes are automatically committed and no
database locks are held.

Go To
Chapter 10 DTK Functions

qeBeginTran 161

DataDirect Developer’s Toolkit Programmer’s Guide

You cannot have more than one simultaneous transaction active on a
database connection. Once you call qeBeginTran, you must call either
qeCommit or qeRollback before you call qeBeginTran again on the same
database connection.

Once you call qeBeginTran, you must call either qeCommit or qeRollback
before you call qeDisconnect. Calling qeDisconnect with an active
transaction results in an error.

See Also qeCommit, qeRollback.

Go To
Chapter 10 DTK Functions

qeBindCol 162

DataDirect Developer’s Toolkit Programmer’s Guide

qeBindCol

qeBindCol specifies value and length variables that receive a column’s value
and length each time a record is fetched.

Syntax int16 res_code qeBindCo l (
int16 hstmt,
int16 col_num,
ptrstr value_ptr,
ptrint32 len_ptr)

Description qeBindCol specifies the value and length variables in your program that are
to receive a column’s value and length each time a record is fetched.

qeBindCol performs no data type conversion on the value being bound, so it
is most useful for binding where no conversion is necessary.

You must bind all columns in the statement in the order they occur.

Parameters hstmt is the handle to the statement returned by qeExecSQL, qeSQLPrepare,
or data dictionary function calls.

col_num is the column number whose variables are specified. The first
column number is 1.

value_ptr points to the variable that is to receive the column’s value when a
record is fetched.

len_ptr points to the variable that is to receive the column value’s length when
a record is fetched. You can use this variable to determine whether a fetch
retrieves truncated or null data (qeNULL_DATA (-2) and qeTRUNCATION (-
1) may be returned). Also, when qeBindCol is called, this variable must
contain the size of the value_ptr variable in bytes.

res_code is the result code returned by qeBindCol, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeBindCol 163

DataDirect Developer’s Toolkit Programmer’s Guide

Example To get the first and last names of each employee in the dBASE employee file:

char last_name[11] ;
long ln_length ;
char first_name[9] ;
long fn_length ;
hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT first_name, last_name

FROM emp") ;
fn_length = 9 ;
qeBindCol (hstmt, 1, first_name, &fn_length) ;
ln_length = 11 ;
qeBindCol (hstmt, 2, last_name, &ln_length) ;
while (qeFetchNext (hstmt) == 0) {

/* qeFetchNext has automatically filled * /
/* first_name and last_name with the * /
/* values from the record, and fn_length * /
/* and ln_length with the lengths of the * /
/* two values. * /

...
}
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeFetchNext, qeFetchPrev, qeFetchRandom, qeVal functions.

Go To
Chapter 10 DTK Functions

qeBindColChar 164

DataDirect Developer’s Toolkit Programmer’s Guide

qeBindColChar

qeBindColChar specifies value and length variables that receive a column’s
value and length each time a record is fetched.

Syntax int16 res_code qeBindColCha r (
int16 hstmt,
int16 col_num,
ptrstr value_ptr,
ptrint32 len_ptr,
ptrstr fmt_string)

Description qeBindColChar specifies the value and length variables in your program that
are to receive a column’s value and length each time a record is fetched.
Data is converted to a character string, using a format string if supplied.

You must bind all columns in the statement in the order they occur.

Parameters hstmt is the handle to the statement returned by qeExecSQL, qeSQLPrepare,
or data dictionary function calls.

col_num is the column number whose variables are specified. The first
column number is 1.

value_ptr points to the variable that is to receive the null-terminated character
string value for the column when a record is fetched.

len_ptr points to the variable that is to receive the column value’s length when
a record is fetched. You can use this variable to determine whether a fetch
retrieves truncated or null data (qeNULL_DATA (-2) and qeTRUNCATION (-
1) may be returned). Also, when qeBindColChar is called, this variable must
contain the size of the value_ptr variable in bytes.

fmt_string is a string used to control formatting of dates and numbers into a
character string.

Go To
Chapter 10 DTK Functions

qeBindColChar 165

DataDirect Developer’s Toolkit Programmer’s Guide

res_code is the result code returned by qeBindColChar, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example char fname[31], lname[31] ;

hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT first_name ,

last_name FROM emp") ;
fnamelen = 30 ;
lnamelen = 30 ;
res_code = qeBindColChar (hstmt, 1, fname, &fnamelen,
"");
res_code = qeBindColChar (hstmt, 2, lname, &lnamelen,
"");
while (qeFetchNext (hstmt) == qeSUCCESS) {

strcpy (name, fname) ;
strcat (name, lname) ;

}
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeBindColDecimal 166

DataDirect Developer’s Toolkit Programmer’s Guide

qeBindColDecimal

qeBindColDecimal specifies value and length variables that receive a
column’s value and length each time a record is fetched.

Syntax int16 res_code qeBindColDecima l (
int16 hstmt,
int16 col_num,
ptrstr value_ptr,
ptrint32 len_ptr,
int16 precision,
int1 6 scale)

Description qeBindColDecimal specifies value and length variables that receive a
column’s value and length each time a record is fetched. Data is converted to
a decimal value with the specified precision and scale.

You must bind all columns in the statement in the order they occur.

Parameters hstmt is the handle to the statement returned by qeExecSQL, qeSQLPrepare,
or data dictionary function calls.

col_num is the column number whose variables are specified. The first
column number is 1.

value_ptr points to the variable that is to receive the column’s value when a
record is fetched.

len_ptr points to the variable that is to receive the column value’s length when
a record is fetched. You can use this variable to determine whether a fetch
retrieves truncated or null data (qeNULL_DATA (-2) and qeTRUNCATION (-
1) may be returned).

precision is the number of significant digits in the result.

scale specifies the location of the decimal point in the result.

Go To
Chapter 10 DTK Functions

qeBindColDecimal 167

DataDirect Developer’s Toolkit Programmer’s Guide

res_code is the result code returned by qeBindColDecimal, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example char salary[10] ;

hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT salary FROM emp") ;
salarylen = 10 ;
res_code = qeBindColDecimal (hstmt, 1, salary,

&salarylen, 9, 2) ;
while (qeFetchNext (hstmt) == qeSUCCESS) {
/* salary now holds the value of the SALARY * /
/* field of the current record. * /
...
}
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeBindColDouble 168

DataDirect Developer’s Toolkit Programmer’s Guide

qeBindColDouble

qeBindColDouble specifies value and length variables that receive a
column’s value and length each time a record is fetched.

Syntax int16 res_code qeBindColDoubl e (
int16 hstmt,
int16 col_num,
ptrflt64 value_ptr,
ptrint32 len_ptr)

Description qeBindColDouble specifies value and length variables that receive a
column’s value and length each time a record is fetched. Data is converted to
a double-precision floating-point value.

You must bind all columns in the statement in the order they occur.

Parameters hstmt is the handle to the statement returned by qeExecSQL, qeSQLPrepare,
or data dictionary function calls.

col_num is the column number whose variables are specified. The first
column number is 1.

value_ptr points to the variable that is to receive the column’s value when a
record is fetched.

len_ptr points to the variable that is to receive the column value’s length when
a record is fetched. You can use this variable to determine whether a fetch
retrieves truncated or null data (qeNULL_DATA (-2) and qeTRUNCATION (-
1) may be returned).

res_code is the result code returned by qeBindColDouble, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeBindColDouble 169

DataDirect Developer’s Toolkit Programmer’s Guide

Example double salary ;

hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT salary FROM emp") ;
salarylen = 8 ;
res_code = qeBindColDouble (hstmt, 1, &salary ,

&salarylen) ;
while (qeFetchNext (hstmt) == 0) {
/* salary now holds the value of the SALARY * /
/* field of the current record. * /
...
}
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeBindColFloat 170

DataDirect Developer’s Toolkit Programmer’s Guide

qeBindColFloat

qeBindColFloat specifies value and length variables that receive a column’s
value and length each time a record is fetched.

Syntax int16 res_code qeBindColFloa t (
int16 hstmt,
int16 col_num,
ptrflt32 value_ptr,
ptrint32 len_ptr)

Description qeBindColFloat specifies value and length variables that receive a column’s
value and length each time a record is fetched. Data is converted to a single-
precision floating-point value.

You must bind all columns in the statement in the order they occur.

Parameters hstmt is the handle to the statement returned by qeExecSQL, qeSQLPrepare,
or data dictionary function calls.

col_num is the column number whose variables are specified. The first
column number is 1.

value_ptr points to the variable that is to receive the column’s value when a
record is fetched.

len_ptr points to the variable that is to receive the column value’s length when
a record is fetched. You can use this variable to determine whether a fetch
retrieves truncated or null data (qeNULL_DATA (-2) and qeTRUNCATION (-
1) may be returned).

res_code is the result code returned by qeBindColFloat, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeBindColFloat 171

DataDirect Developer’s Toolkit Programmer’s Guide

Example float salary ;

hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT salary FROM emp") ;
salarylen = 8 ;
res_code = qeBindColFloat (hstmt, 1, &salary,
&salarylen) ;
while (qeFetchNext (hstmt) == 0) {
/* salary now holds the value of the SALARY * /
/* field of the current record. * /
...
}
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeBindColInt 172

DataDirect Developer’s Toolkit Programmer’s Guide

qeBindColInt

qeBindColInt specifies value and length variables that receive a column’s
value and length each time a record is fetched.

Syntax int16 res_code qeBindColIn t (
int16 hstmt,
int16 col_num,
ptrint16 value_ptr,
ptrint32 len_ptr)

Description qeBindColInt specifies value and length variables that receive a column’s
value and length each time a record is fetched. Data is converted to a 2-byte
integer.

You must bind all columns in the statement in the order they occur.

Parameters hstmt is the handle to the statement returned by qeExecSQL, qeSQLPrepare,
or data dictionary function calls.

col_num is the column number whose variables are specified. The first
column number is 1.

value_ptr points to the variable that is to receive the column’s value when a
record is fetched.

len_ptr points to the variable that is to receive the column value’s length when
a record is fetched. You can use this variable to determine whether a fetch
retrieves truncated or null data (qeNULL_DATA (-2) and qeTRUNCATION (-
1) may be returned).

res_code is the result code returned by qeBindColInt, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeBindColInt 173

DataDirect Developer’s Toolkit Programmer’s Guide

Example int salary ;

hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT salary FROM emp") ;
salarylen = 2 ;
res_code = qeBindColInt (hstmt, 1, &salary, &salarylen) ;
while (qeFetchNext (hstmt) == 0) {
/* salary now holds the value of the SALARY * /
/* field of the current record. * /
...
}
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeBindColLong 174

DataDirect Developer’s Toolkit Programmer’s Guide

qeBindColLong

qeBindColLong specifies value and length variables that receive a column’s
value and length each time a record is fetched.

Syntax int16 res_code qeBindColLon g (
int16 hstmt,
int16 col_num,
ptrint32 value_ptr,
ptrint32 len_ptr)

Description qeBindColLong specifies value and length variables that receive a column’s
value and length each time a record is fetched. Data is converted to a 4-byte
integer.

You must bind all columns in the statement in the order they occur.

Parameters hstmt is the handle to the statement returned by qeExecSQL, qeSQLPrepare,
or data dictionary function calls.

col_num is the column number whose variables are specified. The first
column number is 1.

value_ptr points to the variable that is to receive the column’s value when a
record is fetched.

len_ptr points to the variable that is to receive the column value’s length when
a record is fetched. You can use this variable to determine whether a fetch
retrieves truncated or null data (qeNULL_DATA (-2) and qeTRUNCATION (-
1) may be returned).

res_code is the result code returned by qeBindColLong, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeBindColLong 175

DataDirect Developer’s Toolkit Programmer’s Guide

Example long salary ;

hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT salary FROM emp") ;
salarylen = 4 ;
res_code = qeBindColLong (hstmt, 1, &salary, &salarylen) ;

while (qeFetchNext (hstmt) == 0) {
/* salary now holds the value of the SALARY * /
/* field of the current record. * /
...
}
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeBindParamBinary 176

DataDirect Developer’s Toolkit Programmer’s Guide

qeBindParamBinary

qeBindParamBinary binds a parameter to a binary buffer.

Syntax int16 res_code qeBindParamBinar y (
int16 hstmt,
int16 param_num,
ptrstr param_val,
ptrint32 param_len)

Description qeBindParamBinary binds the value of a parameter in a SQL statement to a
buffer that holds a binary value. It also binds a variable that holds the length
of the param_val buffer at qeSQLExecute time.

For input and input/output parameters, you must place the value of the
parameter into the buffer before executing the statement. The DTK uses this
parameter value in place of the parameter itself in execution of the SQL
statement or stored procedure. For stored procedure output and input/output
parameters, the value assigned to the parameter during the execution of the
stored procedure is placed in this buffer by the DTK.

Before calling qeBindParamBinary, you must call qeSQLPrepare to prepare
the SQL statement for which you are supplying parameters. You must give
values to all input and input/output parameters before calling qeSQLExecute.

DTK saves the value and length pointer; they must be valid when you call
qeSQLExecute. This parameter continues to point to this value until
qeSetParamNull or a qeSetParam or qeBindParam function is called again
for this parameter. All parameters with the same name as the one identified
by param_num are affected.

Set param_len to the maximum size of the binary value before calling
qeBindParamBinary.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be set.

Go To
Chapter 10 DTK Functions

qeBindParamBinary 177

DataDirect Developer’s Toolkit Programmer’s Guide

param_val points to the value of the parameter. For input parameters,
param_val points to the buffer that holds the value to be assigned to the
parameter. For output parameters, param_val points to the buffer that holds
the value assigned to the parameter by the stored procedure after
qeSQLExecute is called. For an input/output parameter, param_val plays
both roles.

param_len points to a LONG variable that holds the length of param_val
when qeSQLExecute is called. For input parameters, if you set param_len to
qeNULL_DATA, the parameter is set to null when you call qeSQLExecute.
For output parameters, param_len holds the length of the parameter value
after qeSQLExecute is called. Also for output parameters, param_len can be
used to determine whether the data is NULL or truncated (qeNULL_DATA (-
2) and qeTRUNCATION (-1) may be returned).

res_code is the result code returned by the function, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "INSERT INTO em p

MEMO) VALUES (?)") ;
bin_length = 10000; /* Max length of bindata * /
res_code = qeBindParamBinary (hstmt, 1, bindata ,

&bin_length) ;
/* Set bindata to your binary data. * /
...
bin_length = 4323; /* # of bytes of binary data passed * /
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeBindParamChar 178

DataDirect Developer’s Toolkit Programmer’s Guide

qeBindParamChar

qeBindParamChar binds a parameter to a character buffer.

Syntax int16 res_code qeBindParamCha r (
int16 hstmt,
int16 param_num,
ptrstr param_val,
ptrint32 param_len)

Description qeBindParamChar binds the value of a parameter in a SQL statement to a
buffer that holds a character value.

For input and input/output parameters, you must place the value of the
parameter into the buffer before executing the statement. The DTK uses this
parameter value in place of the parameter itself in execution of the SQL
statement or stored procedure. For stored procedure output and input/output
parameters, the value assigned to the parameter during the execution of the
stored procedure is placed in this buffer by the DTK.

Before calling qeBindParamChar, you must call qeSQLPrepare to prepare
the SQL statement for which you are supplying parameters. You must give
values to all input and input/output parameters before calling qeSQLExecute.

DTK saves the value and length pointer; they must be valid when you call
qeSQLExecute. This parameter continues to point to this value until
qeSetParamNull or a qeSetParam or qeBindParam function is called again
for this parameter. All parameters with the same name as the one identified
by param_num are affected.

Set param_len to the maximum size of the character value (the length of the
associated column) before calling qeBindParamChar. This setting determines
whether the buffer that holds the parameter is of varying character or long
varying character type. If param_len is less than or equal to the largest
character string allowed by the database, then the parameter is varying
character type. If greater, it is long varying character type.

Go To
Chapter 10 DTK Functions

qeBindParamChar 179

DataDirect Developer’s Toolkit Programmer’s Guide

Important: A mismatch between the parameter type and the database
column type (varying character versus long varying character) may cause
unusual problems for some database drivers, for which no errors are
returned.

Before calling qeSQLExecute, you must reassign the value of param_len to
that of the length of param_val.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be set.

param_val points to the value of the parameter. For input parameters,
param_val points to a buffer that holds the character value to be assigned to
the parameter when qeSQLExecute is called. For output parameters,
param_val points to the buffer that holds the character value assigned to the
parameter by the stored procedure after qeSQLExecute is called. For an
input/output parameter, param_val plays both roles.

param_len points to a 4-byte long integer variable. When qeBindParamChar
is called, param_len must hold the length of the column associated with the
parameter. However, before calling qeSQLExecute, you must reassign the
value of param_len to that of the length of param_val. For input parameters, if
you set param_len to qeNULL_DATA, the parameter is set to null when you
call qeSQLExecute. For output parameters, param_len holds the length of
the parameter value after qeSQLExecute is called. Also for output
parameters, param_len can be used to determine whether the data is NULL
or truncated (qeNULL_DATA (-2) and qeTRUNCATION (-1) may be
returned).

res_code is the result code returned by the function, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeBindParamChar 180

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect (“DSN=QEORA;DLG=2”) ;

/* ?IdToName inputs the employee’s id and output’ s
 the name of the employee’s dept. * /
hstmt = qeSQLPrepare (hdbc, “{CALL GetEmployeeDep t
 (?IdToName)}”) ;
char_len = 10 ;
res_code = qeBindParamChar (hstmt, 1, dept, &char_len) ;
res_code = qeSetParamIOType (hstmt, 1, qePARAM_INOUT) ;
strcpy (dept, “E10297”) ;
res_code = qeSQLExecute (hstmt) ;

/* The name of the employee’s department (?IdToName) i s
 in the dept buffer* /
res_code = qeEndSQL(hstmt) ;
res_code = qeDisconnect (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeBindParamDate 181

DataDirect Developer’s Toolkit Programmer’s Guide

qeBindParamDate

qeBindParamDate binds a parameter to a date buffer.

Syntax int16 res_code qeBindParamDat e (
int16 hstmt,
int16 param_num,
ptrstr param_val,
ptrint32 param_len)

Description qeBindParamDate binds the value of a parameter in a SQL statement to a
buffer that holds a date value.

For input and input/output parameters, you must place the value of the
parameter into the buffer before executing the statement. The DTK uses this
parameter value in place of the parameter itself in execution of the SQL
statement or stored procedure. For stored procedure output and input/output
parameters, the value assigned to the parameter during the execution of the
stored procedure is placed in this buffer by the DTK.

Before calling qeBindParamDate, you must call qeSQLPrepare to prepare
the SQL statement for which you are supplying parameters. You must give
values to all input and input/output parameters before calling qeSQLExecute.

DTK saves the value and length pointer; they must be valid when you call
qeSQLExecute. This parameter continues to point to this value until
qeSetParamNull or a qeSetParam or qeBindParam function is called again
for this parameter. All parameters with the same name as the one identified
by param_num are affected.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be set.

param_val points to the value of the parameter. For input parameters,
param_val points to a buffer that holds the 26-byte date value to be assigned
to the parameter when qeSQLExecute is called. For output parameters,

Go To
Chapter 10 DTK Functions

qeBindParamDate 182

DataDirect Developer’s Toolkit Programmer’s Guide

param_val points to the buffer that holds the date value assigned to the
parameter by the stored procedure after qeSQLExecute is called. For an
input/output parameter, param_val plays both roles.

param_len is the date precision of the value assigned to this parameter. Set it
to 10 before calling qeBindParamDate. For input parameters, if you set
param_len to qeNULL_DATA, the parameter is set to null when you call
qeSQLExecute. For output parameters, param_len holds the length of the
parameter value after qeSQLExecute is called. Also for output parameters,
param_len can be used to determine whether the data is NULL or truncated
(qeNULL_DATA (-2) and qeTRUNCATION (-1) may be returned).

res_code is the result code returned by the function, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM em p

WHERE hire_date = ?") ;
date_len = 10 ;
res_code = qeBindParamDate (hstmt, 1, hire_date,
&date_len) ;
strcpy (hire_date, "1983-06-01 00:00:00:000000") ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeBindParamDateTime 183

DataDirect Developer’s Toolkit Programmer’s Guide

qeBindParamDateTime

qeBindParamDateTime binds a parameter to a date-time buffer.

Syntax int16 res_code qeBindParamDateTim e (
int16 hstmt,
int16 param_num,
ptrstr param_val,
ptrint32 param_len)

Description qeBindParamDateTime binds the value of a parameter in a SQL statement to
a buffer that holds a date-time value.

For input and input/output parameters, you must place the value of the
parameter into the buffer before executing the statement. The DTK uses this
parameter value in place of the parameter itself in execution of the SQL
statement or stored procedure. For stored procedure output and input/output
parameters, the value assigned to the parameter during the execution of the
stored procedure is placed in this buffer by the DTK.

Before calling qeBindParamDateTime, you must call qeSQLPrepare to
prepare the SQL statement for which you are supplying parameters. You
must give values to all input and input/output parameters before calling
qeSQLExecute.

DTK saves the value and length pointer; they must be valid when you call
qeSQLExecute. This parameter continues to point to this value until
qeSetParamNull or a qeSetParam or qeBindParam function is called again
for this parameter. All parameters with the same name as the one identified
by param_num are affected.

Parameters hstmt is the handle to the statement returned by qeExecSQL.

param_num is the position of the parameter to be set.

param_val points to the value of the parameter. For input parameters,
param_val points to a buffer that will hold the 26-byte date-time value
assigned to the parameter when qeSQLExecute is called. For output

Go To
Chapter 10 DTK Functions

qeBindParamDateTime 184

DataDirect Developer’s Toolkit Programmer’s Guide

parameters, param_val points to the buffer that holds the date-time value
assigned to the parameter by the stored procedure after qeSQLExecute is
called. For an input/output parameter, param_val plays both roles.

param_len is the date-time precision of the value assigned to this parameter.
Set it to 16, 19, 23, or 26 before calling qeBindParamDateTime. For input
parameters, if you set param_len to qeNULL_DATA, the parameter is set to
null when you call qeSQLExecute. For output parameters, param_len holds
the length of the parameter value after qeSQLExecute is called. Also for
output parameters, param_len can be used to determine whether the data is
NULL or truncated (qeNULL_DATA (-2) and qeTRUNCATION (-1) may be
returned).

res_code is the result code returned by the function, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM em p

WHERE hire_date = ?") ;
dt_len = 26 ;
res_code = qeBindParamDateTime (hstmt, 1 ,

hire_date, &dt_len) ;
strcpy (hire_date, "1983-06-01 12:00:00:000000") ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeBindParamDecimal 185

DataDirect Developer’s Toolkit Programmer’s Guide

qeBindParamDecimal

qeBindParamDecimal binds a parameter to a decimal buffer.

Syntax int16 res_code qeBindParamDecima l (
int16 hstmt,
int16 param_num,
ptrstr param_val,
ptrint32 param_len,
int16 scale)

Description qeBindParamDecimal binds the value of a parameter in a SQL statement to a
buffer that holds a decimal value. The value is formatted based on the values
of precision and scale.

For input and input/output parameters, you must place the value of the
parameter into the buffer before executing the statement. The DTK uses this
parameter value in place of the parameter itself in execution of the SQL
statement or stored procedure. For stored procedure output and input/output
parameters, the value assigned to the parameter during the execution of the
stored procedure is placed in this buffer by the DTK.

Before calling qeBindParamDecimal, you must call qeSQLPrepare to prepare
the SQL statement for which you are supplying parameters. You must give
values to all input and input/output parameters before calling qeSQLExecute.

DTK saves the value and length pointer; they must be valid when you call
qeSQLExecute. This parameter continues to point to this value until
qeSetParamNull or a qeSetParam or qeBindParam function is called again
for this parameter. All parameters with the same name as the one identified
by param_num are affected.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be set.

Go To
Chapter 10 DTK Functions

qeBindParamDecimal 186

DataDirect Developer’s Toolkit Programmer’s Guide

param_val points to the value of the parameter. For input parameters,
param_val points to a buffer that holds the value to be assigned to the
parameter. For output parameters, param_val points to the buffer that holds
the value assigned to the parameter by the stored procedure after
qeSQLExecute is called. For an input/output parameter, param_val plays
both roles.

param_len is the number of bytes in the decimal value. Set it before calling
qeBindParamDecimal. For input parameters, if you set param_len to
qeNULL_DATA, the parameter will be set to null when you call
qeSQLExecute. For output parameters, param_len holds the length of the
parameter value after qeSQLExecute is called. Also for output parameters,
param_len can be used to determine whether the data is NULL or truncated
(qeNULL_DATA (-2) and qeTRUNCATION (-1) may be returned).

scale specifies the location of the decimal point in the decimal value.

res_code is the result code returned by the function, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM em p

WHERE salary = ?") ;
num_length = 7 ;
res_code = qeBindParamDecimal (hstmt, 1 ,

num_data, &num_length, 2) ;
qeCharToDecimalBuf (num_data, 7, 2, "320000", "") ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeBindParamDouble 187

DataDirect Developer’s Toolkit Programmer’s Guide

qeBindParamDouble

qeBindParamDouble binds a parameter to a double-precision floating-point
buffer.

Syntax int16 res_code qeBindParamDoubl e (
int16 hstmt,
int16 param_num,
ptrflt64 param_val,
ptrint32 param_len)

Description qeBindParamDouble binds the value of a parameter in a SQL statement to a
buffer that holds a double-precision floating-point value.

For input and input/output parameters, you must place the value of the
parameter into the buffer before executing the statement. The DTK uses this
parameter value in place of the parameter itself in execution of the SQL
statement or stored procedure. For stored procedure output and input/output
parameters, the value assigned to the parameter during the execution of the
stored procedure is placed in this buffer by the DTK.

Before you call qeBindParamDouble, you must call qeSQLPrepare to
prepare the SQL statement for which you are supplying parameters. You
must give values to all input and input/output parameters before calling
qeSQLExecute.

DTK saves the value and length pointer; they must be valid when you call
qeSQLExecute. This parameter continues to point to this value until
qeSetParamNull or a qeSetParam or qeBindParam function is called again
for this parameter. All parameters with the same name as the one identified
by param_num are affected.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be set.

Go To
Chapter 10 DTK Functions

qeBindParamDouble 188

DataDirect Developer’s Toolkit Programmer’s Guide

param_val points to the value of the parameter. For input parameters,
param_val points to a buffer to hold the double-precision floating-point value
to be assigned to the parameter. For output parameters, param_val points to
the buffer that holds the double-precision floating-point value assigned to the
parameter by the stored procedure after qeSQLExecute is called. For an
input/output parameter, param_val plays both roles.

param_len lets you set the double-precision floating-point parameter to null.
For assigning a double-precision floating-point parameter value, set
param_len to 0 before calling qeBindParamDouble. For input parameters, if
you set param_len to qeNULL_DATA, the parameter is set to null when you
call qeSQLExecute. For output parameters, param_len holds the length of
the parameter value after qeSQLExecute is called. Also for output
parameters, param_len can be used to determine whether the data is NULL
or truncated (qeNULL_DATA (-2) and qeTRUNCATION (-1) may be
returned).

res_code is the result code returned by the function, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM em p

WHERE salary = ?") ;
num_length = 0 ;
res_code = qeBindParamDouble (hstmt, 1, num_data,

&num_length) ;
num_data = 32000.00 ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeBindParamFloat 189

DataDirect Developer’s Toolkit Programmer’s Guide

qeBindParamFloat

qeBindParamFloat binds a parameter to a single-precision floating-point
buffer.

Syntax int16 res_code qeBindParamFloa t (
int16 hstmt,
int16 param_num,
ptrflt32 param_val,
ptrint32 param_len)

Description qeBindParamFloat binds the value of a parameter in a SQL statement to a
buffer that will hold a single-precision floating-point value.

For input and input/output parameters, you must place the value of the
parameter into the buffer before executing the statement. The DTK uses this
parameter value in place of the parameter itself in execution of the SQL
statement or stored procedure. For stored procedure output and input/output
parameters, the value assigned to the parameter during the execution of the
stored procedure is placed in this buffer by the DTK.

Before calling qeBindParamFloat, you must call qeSQLPrepare to prepare
the SQL statement for which you are supplying parameters. You must give
values to all input and input/output parameters before calling qeSQLExecute.

DTK saves the value and length pointer; they must be valid when you call
qeSQLExecute. This parameter continues to point to this value until
qeSetParamNull or a qeSetParam or qeBindParam function is called again
for this parameter. All parameters with the same name as the one identified
by param_num are affected.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be set.

param_val points to the value of the parameter. For input parameters,
param_val points to a buffer to hold the single-precision floating-point value to
be assigned to the parameter. For output parameters, param_val points to

Go To
Chapter 10 DTK Functions

qeBindParamFloat 190

DataDirect Developer’s Toolkit Programmer’s Guide

the buffer that holds the single-precision floating-point value assigned to the
parameter by the stored procedure after qeSQLExecute is called. For an
input/output parameter, param_val plays both roles.

param_len lets you set the floating-point parameter to null. For assigning a
floating-point parameter value, set param_len to 0 before calling
qeBindParamFloat. For input parameters, if you set param_len to
qeNULL_DATA, the parameter is set to null when you call qeSQLExecute.
For output parameters, param_len holds the length of the parameter value
after qeSQLExecute is called. Also for output parameters, param_len can be
used to determine whether the data is NULL or truncated (qeNULL_DATA (-
2) and qeTRUNCATION (-1) may be returned).

res_code is the result code returned by the function, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM em p

WHERE salary = ?") ;
num_length = 0 ;
res_code = qeBindParamFloat (hstmt, 1, num_data ,

&num_length) ;
num_data = 32000.00 ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeBindParamInt 191

DataDirect Developer’s Toolkit Programmer’s Guide

qeBindParamInt

qeBindParamInt binds a parameter to a 2-byte integer buffer.

Syntax int16 res_code qeBindParamIn t (
int16 hstmt,
int16 param_num,
ptrint16 param_val,
ptrint32 param_len)

Description qeBindParamInt binds the value of a parameter in a SQL statement to a
buffer that will hold a 2-byte integer value.

For input and input/output parameters, you must place the value of the
parameter into the buffer before executing the statement. The DTK uses this
parameter value in place of the parameter itself in execution of the SQL
statement or stored procedure. For stored procedure output and input/output
parameters, the value assigned to the parameter during the execution of the
stored procedure is placed in this buffer by the DTK.

Before calling qeBindParamInt, you must call qeSQLPrepare to prepare the
SQL statement for which you are supplying parameters. You must give
values to all input and input/output parameters before calling qeSQLExecute.

DTK saves the value and length pointer; they must be valid when you call
qeSQLExecute. This parameter continues to point to this value until
qeSetParamNull or a qeSetParam or qeBindParam function is called again
for this parameter. All parameters with the same name as the one identified
by param_num are affected.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be set.

param_val points to the value of the parameter. For input parameters,
param_val points to a buffer to hold the 2-byte integer value to be assigned to
the parameter. For output parameters, param_val points to the buffer that

Go To
Chapter 10 DTK Functions

qeBindParamInt 192

DataDirect Developer’s Toolkit Programmer’s Guide

holds the 2-byte integer value assigned to the parameter by the stored
procedure after qeSQLExecute is called. For an input/output parameter,
param_val plays both roles.

param_len lets you set the 2-byte integer parameter to null. For assigning a
integer parameter value, set param_len to 0 before calling qeBindParamInt.
For input parameters, if you set param_len to qeNULL_DATA, the parameter
is set to null when you call qeSQLExecute. For output parameters,
param_len holds the length of the parameter value after qeSQLExecute is
called. Also for output parameters, param_len can be used to determine
whether the data is NULL or truncated (qeNULL_DATA (-2) and
qeTRUNCATION (-1) may be returned).

res_code is the result code returned by the function, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM em p

WHERE salary = ?") ;
num_length = 0 ;
res_code = qeBindParamInt (hstmt, 1, num_data,

&num_length) ;
num_data = 32000 ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeBindParamLong 193

DataDirect Developer’s Toolkit Programmer’s Guide

qeBindParamLong

qeBindParamLong binds a parameter to a 4-byte integer buffer.

Syntax int16 res_code qeBindParamLon g (
int16 hstmt,
int16 param_num,
ptrint32 param_val,
ptrint32 param_len)

Description qeBindParamLong binds the value of a parameter in a SQL statement to a
buffer that will hold the 4-byte integer value when the statement is executed.

For input and input/output parameters, you must place the value of the
parameter into the buffer before executing the statement. The DTK uses this
parameter value in place of the parameter itself in execution of the SQL
statement or stored procedure. For stored procedure output and input/output
parameters, the value assigned to the parameter during the execution of the
stored procedure is placed in this buffer by the DTK.

Before calling qeBindParamLong, you must call qeSQLPrepare to prepare
the SQL statement for which you are supplying parameters. You must give
values to all input and input/output parameters before calling qeSQLExecute.

DTK saves the value and length pointer; they must be valid when you call
qeSQLExecute. This parameter continues to point to this value until
qeSetParamNull or a qeSetParam or qeBindParam function is called again
for this parameter. All parameters with the same name as the one identified
by param_num are affected.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be set.

param_val points to the value of the parameter. For input parameters,
param_val points to a buffer to hold the 4-byte integer value to be assigned to
the parameter. For output parameters, param_val points to the buffer that

Go To
Chapter 10 DTK Functions

qeBindParamLong 194

DataDirect Developer’s Toolkit Programmer’s Guide

holds the 4-byte integer value assigned to the parameter by the stored
procedure after qeSQLExecute is called. For an input/output parameter,
param_val plays both roles.

param_len lets you set the 4-byte integer parameter to null. For assigning a
4-byte integer parameter value, set param_len to 0 before calling
qeBindParamLong. For input parameters, if you set param_len to
qeNULL_DATA, the parameter is set to null when you call qeSQLExecute.
For output parameters, param_len holds the length of the parameter value
after qeSQLExecute is called. Also for output parameters, param_len can be
used to determine whether the data is NULL or truncated (qeNULL_DATA (-
2) and qeTRUNCATION (-1) may be returned).

res_code is the result code returned by the function, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM em p

WHERE salary = ?") ;
num_length = 0 ;
res_code = qeBindParamLong (hstmt, 1, num_data,

&num_length) ;
num_data = 32000 ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeBindParamTime 195

DataDirect Developer’s Toolkit Programmer’s Guide

qeBindParamTime

qeBindParamTime binds a parameter to a time buffer.

Syntax int16 res_code qeBindParamTim e (
int16 hstmt,
int16 param_num,
ptrstr param_val,
ptrint32 param_len)

Description qeBindParamTime binds the value of a parameter in a SQL statement to a
buffer that will hold the 26-byte time value when the statement is executed.

For input and input/output parameters, you must place the value of the
parameter into the buffer before executing the statement. The DTK uses this
parameter value in place of the parameter itself in execution of the SQL
statement or stored procedure. For stored procedure output and input/output
parameters, the value assigned to the parameter during the execution of the
stored procedure is placed in this buffer by the DTK.

Before calling qeBindParamTime you must call qeSQLPrepare to prepare the
SQL statement for which you are supplying parameters. You must give
values to all input and input/output parameters before calling qeSQLExecute.

DTK saves the value and length pointer; they must be valid when you call
qeSQLExecute. This parameter continues to point to this value until
qeSetParamNull or a qeSetParam or qeBindParam function is called again
for this parameter. All parameters with the same name as the one identified
by param_num are affected.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be set.

param_val points to the value of the parameter. For input parameters,
param_val points to a buffer to hold the 26-byte time value to be assigned to
the parameter. For output parameters, param_val points to the buffer that

Go To
Chapter 10 DTK Functions

qeBindParamTime 196

DataDirect Developer’s Toolkit Programmer’s Guide

holds the time value assigned to the parameter by the stored procedure after
qeSQLExecute is called. For an input/output parameter, param_val plays
both roles.

param_len is the date-time precision of the value assigned to this parameter.
Set it to 19 before calling qeBindParamTime. For input parameters, if you set
param_len to qeNULL_DATA, the parameter is set to null when you call
qeSQLExecute. For output parameters, param_len holds the length of the
parameter value after qeSQLExecute is called. Also for output parameters,
param_len can be used to determine whether the data is NULL or truncated
(qeNULL_DATA (-2) and qeTRUNCATION (-1) may be returned).

res_code is the result code returned by the function, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM em p

WHERE hire_date = ?") ;
time_len = 19 ;
res_code = qeBindParamTime (hstmt, 1, hire_date,
&time_len) ;
strcpy (hire_date, "0000-00-00 03:14:12:000000") ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeClauseGet and qeClauseGetBuf 197

DataDirect Developer’s Toolkit Programmer’s Guide

qeClauseGet and qeClauseGetBuf

These functions return a clause from a Select statement.

Syntax ptrstr xxx_clause qeClauseGe t (
int16 hstmt,
int16 which_clause)

int16 res_code qeClauseGetBu f (
int16 hstmt,
int16 which_clause,
ptrstr clause_buf)

Description qeClauseGet returns a pointer to the clause string. This string is stored in a
buffer maintained by DTK. You must copy the string out of this buffer before
you call another DTK function, because the next function may use the same
buffer.

With qeClauseGetBuf, you pass in a pointer to a buffer you have allocated.
The clause string is put in the buffer. You must make sure that the buffer is
large enough to hold the returned string.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

which_clause specifies which clause is to be returned, and is one of the
following:

Constant Value Description

qeCLAUSE_WHERE 1 Return Where clause.

qeCLAUSE_HAVING 2 Return Having clause.

qeCLAUSE_GROUPBY 3 Return Group By clause.

qeCLAUSE_ORDERBY 4 Return Order By clause.

qeCLAUSE_COMPUTEBY 5 Return Compute By clause.

Go To
Chapter 10 DTK Functions

qeClauseGet and qeClauseGetBuf 198

DataDirect Developer’s Toolkit Programmer’s Guide

xxx_clause is the clause returned by qeClauseGet.

clause_buf is a pointer to a user-allocated buffer for the clause returned by
qeClauseGetBuf.

res_code is the result code returned by qeClauseGetBuf, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM em p

WHERE last_name = 'Woltman'") ;
where_clause = qeClauseGet (hstmt, qeCLAUSE_WHERE) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

qeCLAUSE_FROM 6 Return From clause.

qeCLAUSE_OTHER 7 Return other, database-specific
clause.

Constant Value Description

Go To
Chapter 10 DTK Functions

qeClearParam 199

DataDirect Developer’s Toolkit Programmer’s Guide

qeClearParam

qeClearParam clears the value of a parameter in a SQL statement.

Syntax int16 res_code qeClearPara m (int16 hstmt, int16
param_num)

Description qeClearParam clears the value of a parameter that was set by a qeSetParam
function, or unbinds a parameter that was bound by a qeBindParam function.

Before calling qeClearParam, you must call qeSQLPrepare to prepare the
SQL statement for which you are supplying parameters. You must reassign
values to all cleared parameters before calling qeSQLExecute or DTK returns
an error.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be cleared.

res_code is the result code returned by the function, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM em p

WHERE last_name = ?") ;
char_len = 10 ;
res_code = qeBindParamChar (hstmt, 1, lname, &char_len) ;
strcpy (lname, "Bennett") ;
res_code = qeClearParam (hstmt, 1) ;
/* Must set param again before executing * /
char_len = 10 ;
res_code = qeBindParamChar (hstmt, 1, lname, &char_len) ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeColAlias and qeColAliasBuf 200

DataDirect Developer’s Toolkit Programmer’s Guide

qeColAlias and qeColAliasBuf

These functions return the alias for the requested column.

Syntax ptrstr col_alias qeColAlia s (
int16 hstmt,
int16 col_num)

int16 res_code qeColAliasBu f (
int16 hstmt,
ptrstr col_alias,
int16 col_num)

Description qeColAlias returns a pointer to the column alias string. This string is stored in
a buffer maintained by DTK. You must copy the string out of this buffer before
you call another DTK function, because the next function may use the same
buffer.

With qeColAliasBuf, you pass in a pointer to a buffer you have allocated. The
string is put in the buffer. You must make sure that the buffer is large enough
to hold the returned string.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_alias points to a buffer to hold the resulting column alias.

col_num is the column number for which an alias will be returned. The first
column number is 1.

res_code is the result code returned by qeColAliasBuf, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeColAlias and qeColAliasBuf 201

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM emp") ;
col_alias = qeColAlias (hstmt, 2) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeColDateEnd 202

DataDirect Developer’s Toolkit Programmer’s Guide

qeColDateEnd

qeColDateEnd returns the offset of the end of a date-time value.

Syntax int16 end_offset qeColDateEn d (int16 hstmt, int16
col_num)

Description qeColDateEnd returns the offset to the last significant character of the value
in a date-time column. Date-time values are 26-byte character strings
formatted as

YYYY-MM-DD HH:MM:SS.SSSSS S

This format is used for date, time, or date-time values. The end offset is the
(0-origin) offset to the last significant character in the value. For example, if
the column contains date values without the time, the end offset is 9, the
offset to the second D (see “Date-Time Values” on page 54).

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the column number whose offset is to be returned. The first
column number is 1.

end_offset is the returned offset.

Go To
Chapter 10 DTK Functions

qeColDateEnd 203

DataDirect Developer’s Toolkit Programmer’s Guide

Example To get the ending offset of the HIRE_DATE column in the dBASE employee
file:

hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT hire_date FROM emp") ;
end_offset = qeColDateEnd (hstmt, 1) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeColDateStart.

Go To
Chapter 10 DTK Functions

qeColDateStart 204

DataDirect Developer’s Toolkit Programmer’s Guide

qeColDateStart

qeColDateStart returns the offset of the start of a date-time value.

Syntax int16 start_offset qeColDateStar t (int16 hstmt, int16
col_num)

Description qeColDateStart returns the offset to the first significant character of the value
in a date-time column. Date-time values are 26-byte character strings
formatted as

YYYY-MM-DD HH:MM:SS.SSSSS S

This format is used for date, time, or date-time values. The starting offset is
the (0-origin) offset to the first significant character in the value. For example,
if the column contains date values without the time, the start offset is 0, the
offset to the first Y (see “Date-Time Values” on page 54).

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the column number whose offset is to be returned. The first
column number is 1.

start_offset is the returned offset (0-origin).

Go To
Chapter 10 DTK Functions

qeColDateStart 205

DataDirect Developer’s Toolkit Programmer’s Guide

Example To get the starting offset of the HIRE_DATE column in the dBASE employee
file:

hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT hire_date FROM emp") ;
start_offset = qeColDateStart (hstmt, 1) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeColDateEnd.

Go To
Chapter 10 DTK Functions

qeColDBType 206

DataDirect Developer’s Toolkit Programmer’s Guide

qeColDBType

qeColDBType returns the database system’s data type.

Syntax int16 col_type qeColDBTyp e (int16 hstmt, int16 col_num)

Description qeColDBType returns the underlying database system’s data type for a
column in a SQL Select statement.

DTK returns column values in one of eight standard data types. The column’s
DTK data type is returned by qeColType.

Each database system supported by DTK uses different data types. DTK
maps the database system data types to one of the eight data types. In some
cases you may want the underlying database system’s data type in addition
to the DTK data type. qeColDBType returns the database system’s data type.
These are listed in the database driver reference.

See Appendix E, “Compatibility Issues,” on page 553 for more information.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the column number whose name is to be returned. The first
column number is 1.

col_type is the returned data type.

Example To get the database system’s data type of the first column in the dBASE
employee file:

hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
col_type = qeColDBType (hstmt, 1) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeColDBTypeName and qeColDBTypeNameBuf 207

DataDirect Developer’s Toolkit Programmer’s Guide

qeColDBTypeName and qeColDBTypeNameBuf

These functions fill in the buffer with the database’s native data type name for
the requested column.

Syntax ptrstr type_name qeColDBTypeNam e (
int16 hstmt,
int16 col_num)

int16 res_code qeColDBTypeNameBu f (
int16 hstmt,
ptrstr type_name,
int16 col_num)

Description qeColDBTypeName returns a pointer to the data type string. This string is
stored in a buffer maintained by DTK. You must copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

With qeColDBTypeNameBuf, you pass in a pointer to a buffer you have
allocated. The string is put in the buffer. You must make sure that the buffer is
large enough to hold the returned string.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

type_name points to a buffer to hold the resulting type name.

col_num is the column number whose information is to be replaced. The first
column number is 1.

res_code is the result code returned by qeColDBTypeNameBuf, which
returns the same set of result codes as qeErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeColDBTypeName and qeColDBTypeNameBuf 208

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM emp") ;
type_name = qeColDBTypeName (hstmt, 2) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeColExpr and qeColExprBuf 209

DataDirect Developer’s Toolkit Programmer’s Guide

qeColExpr and qeColExprBuf

These functions return the expression for the requested column.

Syntax ptrstr col_expr qeColExp r (
int16 hstmt,
int16 col_num)

int16 res_code qeColExprBu f (
int16 hstmt,
ptrstr col_expr,
int16 col_num)

Description qeColExpr returns a pointer to the expression string. This string is stored in a
buffer maintained by DTK. You must copy the string out of this buffer before
you call another DTK function, because the next function may use the same
buffer.

With qeColExprBuf, you pass in a pointer to a buffer you have allocated. The
string is put in the buffer. You must make sure that the buffer is large enough
to hold the returned string.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_expr points to a buffer to hold the resulting column expression.

col_num is the column number for which an expression will be returned. The
first column number is 1.

res_code is the result code returned by qeColExprBuf, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeColExpr and qeColExprBuf 210

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM emp") ;
col_expr = qeColExpr (hstmt, 2) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeColName and qeColNameBuf 211

DataDirect Developer’s Toolkit Programmer’s Guide

qeColName and qeColNameBuf

qeColName and qeColNameBuf return the name of a column.

Syntax ptrstr col_name qeColNam e (int16 hstmt, int16 col_num)

int16 res_code qeColNameBu f (
int16 hstmt,
ptrstr col_name,
int16 col_num)

Description qeColName and qeColNameBuf return the name of one column in a SQL
Select statement.

qeColName returns a pointer to the column name string. This string is stored
in a buffer maintained by DTK. You must copy the string out of this buffer
before you call another DTK function, because the next function may use the
same buffer.

With qeColNameBuf, you pass in a pointer to a buffer you have allocated.
The string is put in the buffer. You must make sure that the buffer is large
enough to hold the returned string.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the column number whose name is to be returned. The first
column number is 1.

col_name is the returned column name. Column name is “” for expressions in
the SQL Select statement. For example, the column name of the column in
the following Select statement is “”.

SELECT last_name + first_name FROM em p

res_code is the result code returned by qeColNameBuf, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeColName and qeColNameBuf 212

DataDirect Developer’s Toolkit Programmer’s Guide

Example To get the column name of the first column in the dBASE employee file:

hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
col_name = qeColName (hstmt, 1) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeColPrecision 213

DataDirect Developer’s Toolkit Programmer’s Guide

qeColPrecision

qeColPrecision returns the number of digits in a decimal column.

Syntax int16 precision qeColPrecisio n (int16 hstmt, int16
col_num)

Description qeColPrecision returns the number of digits in a decimal column.

Decimal columns (type 3) are defined by the total number of digits in their
values (precision), and the number of digits right of the decimal point (scale).

For example, precision=8, scale=2 means that the values have 8 digits total,
2 to the right of the decimal point and 6 to the left of the decimal point.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the number of the column for which you want a precision value
returned. The first column number is 1. If this column is not a decimal column,
the function returns an error.

precision is the returned number of digits for the column.

Example To get the precision of the SALARY column in the dBASE employee file:

hdbc = qeConnec t ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT salary FROM emp") ;
precision = qeColPrecision (hstmt, 1) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeColScale.

Go To
Chapter 10 DTK Functions

qeColScale 214

DataDirect Developer’s Toolkit Programmer’s Guide

qeColScale

qeColScale returns the number of digits to the right of the decimal point in a
decimal column.

Syntax int16 scale qeColScal e (int16 hstmt, int16 col_num)

Description qeColScale returns the number of digits to the right of the decimal point in a
decimal column.

Decimal columns (type 3) are defined by the total number of digits in their
values (precision), and the number of digits right of the decimal point (scale).

For example, precision=8, scale=2 means that the values have 8 digits total,
2 to the right of the decimal point and 6 to the left of the decimal point.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the number of the column for which you want a scale value
returned. The first column number is 1. If this column is not a decimal column,
the function returns an error.

scale is the returned number of digits right of the decimal point for the
column.

Example To get the scale of the SALARY column in the dBASE employee file:

hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT salary FROM emp") ;
scale = qeColScale (hstmt, 1) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeColPrecision.

Go To
Chapter 10 DTK Functions

qeColType 215

DataDirect Developer’s Toolkit Programmer’s Guide

qeColType

qeColType returns the data type for a column in a SQL Select statement.

Syntax int16 col_type qeColTyp e (int16 hstmt, int16 col_num)

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the number of the column for which a data type is to be returned.
The first column number is 1.

col_type is the returned data type. This is the data type used in DTK for the
database values, as follows:

Constant Value Description

qeCHAR 1 Fixed length character string

qeVARCHAR 2 Variable length character string

qeDECIMAL 3 Decimal number (BCD)

qeINTEGER 4 Long integer (4-byte)

qeSMALLINT 5 Integer (2-byte)

qeFLOAT 6 Floating-point number (4-byte)

qeDOUBLEPRECISION 7 Double-precision floating-point
number (8-byte)

qeDATETIME 8 Date-time (26-byte character string)

Go To
Chapter 10 DTK Functions

qeColType 216

DataDirect Developer’s Toolkit Programmer’s Guide

Example To get the column type of the first column in the dBASE employee file:

hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
col_type = qeColType (hstmt, 1) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Notes When you retrieve column values using the qeVal functions, you do not have
to use the qeVal function that matches the data type returned by qeColType.
The qeVal functions automatically convert the value to the desired data type.
For example, if qeColType returns 3, meaning a decimal number, you can
retrieve the values using qeValDouble to get the value as a double-precision
floating-point number, or qeValChar to get the value as a character string.

See “Data Types in DTK” on page 53 for more information.

See Also qeVal functions.

Go To
Chapter 10 DTK Functions

qeColTypeAttr 217

DataDirect Developer’s Toolkit Programmer’s Guide

qeColTypeAttr

qeColTypeAttr returns whether a column has a specified attribute.

Syntax int16 result qeColTypeAtt r (
int16 hstmt,
int16 col_num,
int16 attribute)

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the number of the column for which a data type is to be returned.
The first column number is 1.

attribute is the specific attribute for which you are checking. You must specify
one of the following attributes:

Attribute Value Description

qeATTRIBUTE_
UPDATABLE

1 Reports whether a column is updatable. Possible
result values are

qeCOL_READ_ONLY 0
The column cannot be updated.

qeCOL_WRITEABLE 1
The column can be updated.

qeCOL_UNKNOWN 100
The function cannot report whether the column is
searchable.

qeATTRIBUTE_
UNSIGNED

4 Returns whether the column is signed or
unsigned. Possible result values are

qeCOL_SIGNED 0
The column is signed.

qeCOL_UNSIGNED 1
The column is unsigned.

Go To
Chapter 10 DTK Functions

qeColTypeAttr 218

DataDirect Developer’s Toolkit Programmer’s Guide

qeATTRIBUTE_
MONEY

5 Returns whether the column is of type Money.
Possible result values are

qeCOL_NOT_MONEY 0
The column is not of type Money.

qeCOL_MONEY 1
The column is of type Money.

qeATTRIBUTE_
AUTO_INCRE

6 Returns whether the column is automatically
incremented on update or insert.

qeCOL_NOT_AUTO_INCRE 0
The column is not automatically incremented.

qeCOL_AUTO_INCRE 1
The column is automatically incremented.

qeATTRIBUTE_N
ULLABLE

2 Returns whether the column is nullable. Possible
result values are

qeCOL_NOT_NULLABLE 0
The column cannot be null.

qeCOL_NULLABLE 1
The column can be null.

qeCOL_UNKNOWN 100
The function cannot report whether the column is
nullable.

Attribute Value Description

Go To
Chapter 10 DTK Functions

qeColTypeAttr 219

DataDirect Developer’s Toolkit Programmer’s Guide

result contains a constant returned by the function that reports the status of
the specified attribute in column col_num. See the description of attribute for
possible values.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
nullable = qeColTypeAttr (hstmt, 1,
qeATTRIBUTE_NULLABLE) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

qeATTRIBUTE_
SEARCHABLE

3 Reports whether a column can be used in a SQL
Where clause to search for specific records.
Possible result values are

qeCOL_UNSEARCHABLE 0
The column cannot appear in the Where clause.

qeCOL_LIKE_ONLY 1
The column can appear in the Where clause only
when used with the LIKE operator.

qeCOL_ALL_EXCEPT_LIKE 2
The column can appear in the Where clause
except with the LIKE operator.

qeCOL_SEARCHABLE 3
The column can appear anywhere within the
Where clause.

qeCOL_UNKNOWN 100
The function cannot report whether the column is
searchable.

Attribute Value Description

Go To
Chapter 10 DTK Functions

qeColumns 220

DataDirect Developer’s Toolkit Programmer’s Guide

qeColumns

qeColumns returns information on the set of column definitions for a table.

Syntax int16 hstmt qeColumn s (int16 hdbc, ptrstr table_name)

Description qeColumns creates a statement execution (hstmt) that returns information on
the set of column definitions for a table. qeColumns returns one record per
column. Each record contains the following columns:

You retrieve this information like you would other database values—using the
qeVal, qeBindCol, and qeFetch functions.

Column Type Description

Table Qualifier Char(128) Table qualifier.

Table User Char(128) Table user.

Table Name Char(128) Table name.

Column Char(128) Column name.

Type Int16 Data type (DTK types).

Width Int32 Width in bytes.

DB Type Int16 Database data type.

DB Type Name Char(128) Data source-dependent data type name.

Attr1 Int16 Precision for decimal types, date start
position for dates, null otherwise.

Attr2 Int16 Scale for decimal types, date end position for
dates, null otherwise.

Nullable Int16 Whether column can be null. Values:
qeCOL_NULLABLE,
qeCOL_NOT_NULLABLE,
qeCOL_UNKNOWN.

Remarks Char(256) Comments (if available).

Go To
Chapter 10 DTK Functions

qeColumns 221

DataDirect Developer’s Toolkit Programmer’s Guide

Parameters hdbc is a handle to a database connection obtained from qeConnect.

table_name is the table whose columns are to be returned.

hstmt is the handle to the statement returned by qeColumns.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeColumns (hdbc, "emp.dbf") ;
while (qeFetchNext (hstmt) == qeSUCCESS) {

...
/* Get info about columns. * /

...
}
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeColWidth 222

DataDirect Developer’s Toolkit Programmer’s Guide

qeColWidth

qeColWidth returns the width of a column.

Syntax int32 col_width qeColWidt h (int16 hstmt, int16 col_num)

Description qeColWidth returns the column width of one column in a SQL Select
statement. The column width is the size, in bytes, of the longest value that
may be stored in this column.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the column number whose width is to be returned. The first
column number is 1.

col_width is the returned column width.

Example To get the column width of the first column in the dBASE employee file:

hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
col_width = qeColWidth (hstmt, 1) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Notes For character and date-time types, qeColWidth returns the maximum number
of characters for a column including the zero terminator byte. Therefore the
returned width is 1 greater than the maximum value length. If you are defining
a variable or allocating a buffer to hold these values, you must take into
account the zero terminator byte that is added by the qeValChar,
qeValCharBuf, or qeBindCol functions.

Go To
Chapter 10 DTK Functions

qeColWidth 223

DataDirect Developer’s Toolkit Programmer’s Guide

When you use qeValChar to retrieve values whose type is Integer, Long
Integer, Float, Double Float, Decimal, or Date-Time, you must consider that
qeColWidth returns the width of the stored values, not the number of
characters returned by qeValChar. The number of characters returned by
qeValChar is determined by the format string you use.

See “Data Types in DTK” on page 53 and “Format Strings” on page 59, as
well as Appendix E, “Compatibility Issues,” on page 553 for more information.

See Also qeColType.

Go To
Chapter 10 DTK Functions

qeCommit 224

DataDirect Developer’s Toolkit Programmer’s Guide

qeCommit

qeCommit ends a database transaction and commits all changes to the
database made during the transaction.

Syntax int16 res_code qeCommi t (int16 hdbc)

Description qeCommit commits all changes that have been made using Insert, Update, or
Delete statements on the connection since qeBeginTran was called. You
must call qeBeginTran to start a transaction before you can call qeCommit to
save all changes.

qeCommit also frees all locks that have been held in the database system.

Parameters hdbc is the handle to the database connection returned by qeConnect.

res_code is the result code returned by qeCommit, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example To commit changes made to a SQL Server database:

hdbc = qeConnect ("DSN=QESS;UID=sa;SRVR=PION1") ;
...
res_code = qeBeginTran (hdbc) ;
hstmt = qeExecSQL (hdbc ,

"UPDATE emp SET salary=salary*1.1") ;
res_code = qeEndSQL (hstmt) ;
res_code = qeCommit (hdbc) ;
res_code = qeDisconnect (hdbc) ;

See Also qeBeginTran, qeRollback.

Go To
Chapter 10 DTK Functions

qeConnect 225

DataDirect Developer’s Toolkit Programmer’s Guide

qeConnect

qeConnect opens a connection to a database system to allow SQL
statements to be executed.

Syntax int16 hdbc qeConnec t (ptrstr con_string)

Description qeConnect opens a connection to a database system to allow SQL
statements to be executed.

You can have several connections open simultaneously to different database
systems, or simultaneous connections to the same database system, if
supported by the database system you are using. Refer to the INTERSOLV
database driver reference for more information on specific database systems.

Parameters con_string is a connection string identifying the database system and any
additional logon information. The connection string has the form:

“DSN=data source name[;attribute=value[;attribute=value]...]”

The attributes required by each database system vary. See the INTERSOLV
database driver reference for the attributes supported by specific databases.
DTK recognizes the following attributes for all database systems:

Attribute Description

DSN The name of the data source defined in the
ODBC.INI file.

DLG When DLG=1, displays a logon dialog box that
allows user input of connection string
information. When DLG=2, displays a logon
dialog box only when the connection string
supplied via qeConnect is insufficient to log on to
the data source.

Go To
Chapter 10 DTK Functions

qeConnect 226

DataDirect Developer’s Toolkit Programmer’s Guide

hdbc is the returned handle to the database connection. This identifies the
connection and is a parameter to other functions. If the hdbc is 0, the
connection could not be opened.

DRV For compatibility with QELIB 1.0, this value is
used if a data source name (DSN) is not present
in the connection string. DTK changes it to the
data source name.

UID The user ID or name.

PWD The password.

MODIFYSQL Used by DTK to ensure compatibility between
the SQL used in the application and the SQL
used in the database system. When set to 1 (the
default), the database driver expects ODBC-
compliant syntax, which it will modify as
necessary for the underlying database system.
When set to 0, the database driver expects and
supports the native syntax of the underlying
database system. This enables you to continue
using applications developed with the SQL
supported by the QELIB 1.0 database drivers.

ALLOWLOCKS If enabled (set to 1), ensures that the isolation
level chosen via qeSetIsolationLevel will support
locking. May reduce performance. SQLBase is
the only database system currently affected by
this option.

REREADAFTERUPDATE If enabled (set to 1), DTK rereads a record from
the database after updating it. This is useful for
getting the correct value of auto-updated
columns such as timestamps.

REREADAFTERINSERT If enabled (set to 1), DTK rereads a record from
the database after inserting it. This is useful for
getting the correct value of auto-updated
columns such as timestamps.

Attribute Description

Go To
Chapter 10 DTK Functions

qeConnect 227

DataDirect Developer’s Toolkit Programmer’s Guide

Example To connect to dBASE files:

hdbc = qeConnect ("DSN=QEDBF") ;
...
res_code = qeDisconnect (hdbc) ;

To connect to SQL Server:

hdbc = qeConnect ("DSN=QESS;SRVR=PION1;UID=sa;PWD=magic")
...
res_code = qeDisconnect (hdbc) ;

See Also qeDisconnect.

Go To
Chapter 10 DTK Functions

qeDatabases 228

DataDirect Developer’s Toolkit Programmer’s Guide

qeDatabases

qeDatabases returns information on the set of databases that can be
accessed from a connection.

Syntax int16 hstmt qeDatabase s (int16 hdbc)

Description qeDatabases creates a statement execution handle (hstmt) that returns
information on the set of databases that can be accessed by a specific
database connection.

qeDatabases returns one record per database. Each record contains the
following columns:

You retrieve this information like you would other database values—using the
qeVal, qeBindCol, and qeFetch functions.

Note: If you call this function when connected to a flat-file database such as
Btrieve, dBASE, Paradox, Excel, or text files, it does not return a result.

Parameters hdbc is a handle to a database connection obtained from qeConnect.

hstmt is the handle to the statement returned by qeDatabases.

Example hdbc = qeConnect ("DSN=QEORA;DLG=1") ;
hstmt = qeDatabases (hdbc) ;
while (qeFetchNext (hstmt) == qeSUCCESS) {

...get info about databases.. .
}
res_code = qeDisconnect (hdbc) ;

Column Type Description

Database Char(128) A database name.

Remarks Char(256) Comments (if available).

Go To
Chapter 10 DTK Functions

qeDataLen 229

DataDirect Developer’s Toolkit Programmer’s Guide

qeDataLen

qeDataLen returns the length of a value retrieved by a qeVal function.

Syntax int32 len qeDataLe n (int16 hstmt)

Description qeDataLen returns the length from the previous call to a qeVal function.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

len is the returned column value length in bytes. If the column value was null,
qeNULL_DATA (-2) is returned. If the column value was truncated,
qeTRUNCATION (-1) is returned.

Example To get the first column’s value and its length for each record in the dBASE
employee file:

hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
while (qeFetchNext (hstmt) == 0) {

value = qeValChar (hstmt,1,"",0) ;
val_len = qeDataLen (hstmt) ;

...
}
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Notes If your database system can store null values, you should follow every call to
a qeVal function with a call to qeDataLen to determine if the value is null. See
“Null Values” on page 58 for more information. If the call to qeDataLen follows
a call to qeValChar or qeValCharBuf, a return value of qeTRUNCATION (-1)
means that the entire column value was not returned. This occurs if a non-
zero max_len was specified on the qeVal function and the length of the

Go To
Chapter 10 DTK Functions

qeDataLen 230

DataDirect Developer’s Toolkit Programmer’s Guide

column value is greater than max_len, or if a zero max_len was specified and
the length of the column value is greater than 1000 characters. See
qeValChar and qeValCharBuf for more information.

See Also qeVal functions.

Go To
Chapter 10 DTK Functions

qeDBErr 231

DataDirect Developer’s Toolkit Programmer’s Guide

qeDBErr

qeDBErr returns the database error resulting from the last DTK function.

Syntax int32 db_code qeDBEr r ()

Description qeDBErr returns the underlying database system’s error code resulting from
the last DTK function you called.

The purpose of this function is to allow you to get the error numbers
generated by database systems such as Oracle or SQL Server.

If a database system detects an error, qeErr returns a number indicating that
an error occurred. If qeErr returns qeDBSYS_ERROR (4), meaning that the
error was reported by the database system, then you can call qeDBErr to get
a database system error number. Use the database system error number
when you consult the database system’s documentation. You can also call
qeErrMsg to get the underlying database system error message text.

qeDBErr is not a substitute for qeErr. First call qeErr to determine if the
function succeeded. If qeErr returns qeDBSYS_ERROR (4), then you can
call qeDBErr to determine if a database error number is associated with the
error and call qeErrMsg to get the error message text.

Parameters db_code is the returned error number from the underlying database system.
If 0, no database system error was reported.

When qeErr returns qeDBSYS_ERROR (4), qeDBErr may return 0. This
result means that the underlying database system does not have a separate
error code.

Go To
Chapter 10 DTK Functions

qeDBErr 232

DataDirect Developer’s Toolkit Programmer’s Guide

Example To execute a Select statement on a dBASE file, checking for errors after each
function call:

hdbc = qeConnect ("DSN=QEDBF") ;
if (qeErr () == 0) {

hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
if (qeErr () == 0) {

...
res_code = qeEndSQL (hstmt) ;

}
else if (qeErr () == qeDBSYS_ERROR)

db_err = qeDBErr () ;
res_code = qeDisconnect (hdbc) ;

}
else

db_err = qeDBErr ()

See Also qeErr, qeErrMsg and qeErrMsgBuf, qeDBErr.

Go To
Chapter 10 DTK Functions

qeDisconnect 233

DataDirect Developer’s Toolkit Programmer’s Guide

qeDisconnect

qeDisconnect closes a database connection.

Syntax int16 res_code qeDisconnec t (int16 hdbc)

Description qeDisconnect closes a connection to a database system. You should close all
connections before your program terminates to free system resources.

Parameters hdbc is the handle to the database connection returned by qeConnect.

res_code is the result code returned by qeDisconnect, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
...
res_code = qeDisconnect (hdbc) ;

See Also qeConnect.

Go To
Chapter 10 DTK Functions

qeEndSQL 234

DataDirect Developer’s Toolkit Programmer’s Guide

qeEndSQL

qeEndSQL ends the execution of a SQL statement.

Syntax int16 res_code qeEndSQ L (int16 hstmt)

Description qeEndSQL ends the execution of a SQL statement. It is important to call
qeEndSQL to free system resources.

Note that qeDisconnect closes all statements for the connection.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

res_code is the result code returned by qeEndSQL, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example To execute a select statement on a dBASE file:

hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeExecSQL.

Go To
Chapter 10 DTK Functions

qeErr 235

DataDirect Developer’s Toolkit Programmer’s Guide

qeErr

qeErr returns the result code of the last DTK function.

Syntax int16 res_code qeEr r ()

Description qeErr returns the result code of the last DTK function you called.

You should call qeErr immediately after calling any other DTK function that
does not return a result code (for example, a qeVal function). You should
determine whether any errors have occurred before using the results of a
function or before calling other DTK functions.

Parameters res_code is the returned result or error code. If res_code is qeSUCCESS (0),
the last DTK function called completed without error. If res_code contains a 4-
or 5-digit error code, you can call qeErrMsg to get the DTK error message
text. If the result code is qeDBSYS_ERROR (4), then a call to qeErrMsg
returns the underlying database system error message text. When the result
code is qeDBSYS_ERROR (4), you can also call qeDBErr to get the
underlying database system error code.

The following table lists the result codes returned by qeErr.

Constant Value Description

qeLOCK_NO_REC -6 A lock was attempted, but either no record
was selected by the primary key, the
record has been deleted by another user,
or another user has changed the value of
a key field.

qeEOF -5 EOF. Returned by qeFetchNext,
qeFetchPrev, or qeFetchRandom when
there is no record to return.

qeUSER_CANCELED -4 User canceled out of the logon dialog box.

qeOUT_OF_MEMORY -3 Windows or OS/2 is out of memory. This is
usually fatal.

Go To
Chapter 10 DTK Functions

qeErr 236

DataDirect Developer’s Toolkit Programmer’s Guide

See Appendix D, “Result and Error Message Codes,” on page 537 for a list of
the 4- or 5-digit error codes returned by qeErr and their corresponding
messages.

Example To execute a select statement on a dBASE file, checking for errors after each
function call:

hdbc = qeConnect ("DSN=QEDBF") ;
if (qeErr () == qeSUCCESS) {

hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
if (qeErr () == qeSUCCESS) {

...
res_code = qeEndSQL (hstmt) ;

}
res_code = qeDisconnect (hdbc) ;

}

See Also qeErrMsg and qeErrMsgBuf, qeDBErr.

qeSUCCESS 0 Success.

qeSUCCESS_WITH_
INFO

1 Success with information (warning).

qeNO_DATA_WITH_
INFO

2 EOF with additional information (usually
ESC during a fetch).

qeDBSYS_ERROR 4 Database system error. Call qeDBErr to
retrieve the database system’s error
number.

qeLIBSYS_ERROR 5 Returned when the system cannot locate
the DTK Dynamic Link Library.

Constant Value Description

Go To
Chapter 10 DTK Functions

qeErrMsg and qeErrMsgBuf 237

DataDirect Developer’s Toolkit Programmer’s Guide

qeErrMsg and qeErrMsgBuf

These functions return the text associated with the error or warning
generated by the last DTK function you called.

Syntax ptrstr err_msg qeErrMsg ()

int16 res_code qeErrMsgBuf (ptrstr err_msg)

Description qeErrMsg and qeErrMsgBuf return the text associated with the error or
warning generated by the last DTK function you called. These functions are
usually called after you have called qeErr to determine if there is an error
message.

Because this function returns a pointer, it has two forms (see “Parameter
Conventions” on page 151).

When you use qeErrMsg, the function returns a pointer to the string. The
string is stored in a buffer maintained by DTK. Copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

When you use qeErrMsgBuf, you pass in a pointer to a buffer you have
allocated. The string is put in the buffer. Make sure the buffer is large enough
to hold the returned string.

Parameters err_msg is the returned error or warning message text. Error messages may
contain up to 512 characters. It is important that the variable you pass as the
parameter is declared large enough to hold 512 characters. err_msg can also
contain multiple errors or warnings of under 512 bytes.

res_code is the result code returned by qeErrMsgBuf, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeErrMsg and qeErrMsgBuf 238

DataDirect Developer’s Toolkit Programmer’s Guide

Example To execute a Select statement on a dBASE file, checking for errors after each
function call, and getting the message text if an error occurs:

hdbc = qeConnect ("DSN=QEDBF") ;
if (qeErr () == 0) {

hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
if (qeErr () == 0) {

...
res_code = qeEndSQL (hstmt) ;

}
else

msg = qeErrMsg () ;
res_code = qeDisconnect (hdbc) ;

}
else

msg = qeErrMsg () ;

See Also qeErr, qeDBErr.

Go To
Chapter 10 DTK Functions

qeExecSQL 239

DataDirect Developer’s Toolkit Programmer’s Guide

qeExecSQL

qeExecSQL executes a SQL statement.

Syntax int16 hstmt qeExecSQL (int16 hdbc, ptrstr sql_stmt)

Description qeExecSQL executes a SQL statement. The SQL statement may be a
Select, Insert, Update, or Delete statement, or any other valid statement for
the database system.

Parameters hdbc is the handle to the database connection returned by qeConnect.

sql_stmt is the SQL statement to be executed. If sql_stmt is a zero-length
string (the empty string, “”), DTK executes the SQL statement sent using the
qeSetSQL and qeAppendSQL functions.

hstmt is the returned handle to the statement execution. This identifies the
statement and is a parameter to other functions. If hstmt is 0, the statement
could not be executed.

Example To execute a Select statement on a dBASE file:

hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Notes For Select statements, use the qeCol functions to get information about the
columns in the statement, the qeFetch functions to retrieve records, and the
qeVal functions to retrieve column values.

For all statements, call qeEndSQL to terminate execution of the statement.

Go To
Chapter 10 DTK Functions

qeExecSQL 240

DataDirect Developer’s Toolkit Programmer’s Guide

See Also qeAppendSQL, qeEndSQL, qeSetSQL, qeCol functions, qeFetchNext,
qeFetchPrev, qeFetchRandom, qeSetSelectOptions, qeNumCols, and the
qeVal functions.

Go To
Chapter 10 DTK Functions

qeFetchLogClose 241

DataDirect Developer’s Toolkit Programmer’s Guide

qeFetchLogClose

qeFetchLogClose closes the log files used by DTK’s fetching functions.

Syntax int16 res_code qeFetchLogClose (int16 hstmt)

Description qeFetchLogClose closes the temporary log files used to support the
qeFetchPrev, qeFetchRandom, and qeFetchNumRecs functions. Temporary
files are created only if qeSetSelectOptions has been called with options that
require them.

See qeSetSelectOptions for more information.

qeFetchLogClose does not delete the temporary log files. DTK automatically
reopens the files when you call qeFetchNext, qeFetchPrev, qeFetchRandom,
or qeFetchNumRecs.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

res_code is the result code returned by qeFetchLogClose, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeFetchLogClose 242

DataDirect Developer’s Toolkit Programmer’s Guide

Example To close the temporary log files while fetching records from the employee
database file:

hdbc=qeConnect ("DSN=QESS;UID=sa;SRVR=PION1") ;
res_code = qeSetSelectOptions (hdbc, qeLOG_ALWAYS) ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
while (qeFetchNext (hstmt) == 0) {

...
res_code = qeFetchLogClose (hstmt) ;

}
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeSetSelectOptions.

Go To
Chapter 10 DTK Functions

qeFetchNext 243

DataDirect Developer’s Toolkit Programmer’s Guide

qeFetchNext

qeFetchNext retrieves the next record from the database.

Syntax int16 res_code qeFetchNext (int16 hstmt)

Description qeFetchNext retrieves the next record from a database system. If this is the
first call to qeFetchNext following qeExecSQL, this function retrieves the first
record. The retrieved record becomes the current record.

If a qeBindCol function was not called before qeFetchNext, this function gets
a record from the database system and stores it in DTK’s current record
buffer. The record is not returned to your application. To get the column
values from the current record, use the qeVal functions.

If a qeBindCol function was called before qeFetchNext, this function gets a
record from the database system and puts the column values into the
variables specified by the qeBindCol function.

If qeSetAutoUpdate has been called to enable auto-updating, and changes
have been made to the current record via calls to qePut functions, a call to
qeFetchNext updates the current record.

A result of qeEOF (-5) is returned if an attempt is made to read past the last
record returned by the Select statement.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

res_code is the result code returned by qeFetchNext, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeFetchNext 244

DataDirect Developer’s Toolkit Programmer’s Guide

Example To fetch all records from the employee database file:

hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
while (qeFetchNext (hstmt) == 0) {
...
}
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeVal functions, qePut functions, qeBindCol functions, qeFetchPrev,
qeFetchRandom, qeSetSelectOptions.

Go To
Chapter 10 DTK Functions

qeFetchNumRecs 245

DataDirect Developer’s Toolkit Programmer’s Guide

qeFetchNumRecs

qeFetchNumRecs returns the number of records chosen by the Select
statement.

Syntax int32 num_recs qeFetchNumRecs (int16 hstmt)

Description qeFetchNumRecs returns the number of records chosen by the Select
statement. This function can be used only if qeSetSelectOptions has been
called to enable it.

To determine the number of records selected, DTK fetches all rows from the
result set. If you have not enabled backward fetching, calling
qeFetchNumRecs causes an error to be returned. If you have selected a
large number of records, this function may work slowly, and may create large
temporary log files.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

num_recs is the number of records selected by the SQL statement.

Example To get the number of records in the employee database file:

hdbc = qeConnect ("DSN=QEDBF") ;
res_code = qeSetSelectOptions (hdbc, qeFETCH_ANY_DIR) ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
num_recs = qeFetchNumRecs (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeSetSelectOptions.

Go To
Chapter 10 DTK Functions

qeFetchPrev 246

DataDirect Developer’s Toolkit Programmer’s Guide

qeFetchPrev

qeFetchPrev retrieves the previous record from the database.

Syntax int16 res_code qeFetchPrev (int16 hstmt)

Description qeFetchPrev retrieves the previous record from a database system. The
retrieved record becomes the current record. This function can be used only if
qeSetSelectOptions has been called to enable it.

If a qeBindCol function was not called before fetching records, this function
gets a record from the database system and stores it in DTK’s current record
buffer. The record is not returned to your application. To get the column
values from the current record, use the qeVal functions.

If a qeBindCol function was called, this function gets a record from the
database system and puts the column values into the variables specified by
the qeBindCol function.

If qeSetAutoUpdate has been called to enable auto-updating, and changes
have been made to the current record via calls to qePut functions, a call to
qeFetchPrev updates the current record.

When qeFetchPrev attempts to fetch a record before the first record returned
by the Select statement, it returns a result of qeEOF (-5).

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

res_code is the result code returned by qeFetchPrev, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeFetchPrev 247

DataDirect Developer’s Toolkit Programmer’s Guide

Example To fetch a record that has already been read from the employee database
file:

hdbc = qeConnect ("DSN=QEDBF") ;
res_code = qeSetSelectOptions (qeFETCH_ANY_DIR) ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeFetchNext (hstmt) ;
/* This is repeated to read other records * /
...
res_code = qeFetchPrev (hstmt) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeVal functions, qePut functions, qeBindCol functions, qeFetchNext,
qeFetchRandom, qeSetSelectOptions.

Go To
Chapter 10 DTK Functions

qeFetchRandom 248

DataDirect Developer’s Toolkit Programmer’s Guide

qeFetchRandom

qeFetchRandom retrieves a designated record from the database.

Syntax int16 res_code qeFetchRandom (int16 hstmt, int32 rec_num)

Description qeFetchRandom retrieves a designated record from a database system,
which becomes the current record. This function returns EOF if the
designated record is not in the result set.

This function can be used only if qeSetSelectOptions has been called to
enable it.

If a qeBindCol function was not called before fetching records, this function
gets a record from the database system and stores it in DTK’s current record
buffer. The record is not returned to your application. To get the column
values from the current record, use the qeVal functions.

If a qeBindCol function was called, this function gets a record from the
database system and puts the column values into the variables specified by
the qeBindCol function.

If qeSetAutoUpdate has been called to enable auto-updating, and changes
have been made to the current record via calls to qePut functions, a call to
qeFetchRandom updates the current record.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

rec_num is the record number to be read. The first record is 1.

res_code is the result code returned by qeFetchRandom, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeFetchRandom 249

DataDirect Developer’s Toolkit Programmer’s Guide

Example To fetch the last record from the employee database file:

hdbc = qeConnect ("DSN=QEDBF") ;
res_code = qeSetSelectOptions (qeFETCH_ANY_DIR) ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
num_recs = qeFetchNumRecs (hstmt) ;
res_code = qeFetchRandom (hstmt, num_recs) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeVal functions, qePut functions, qeBindCol functions, qeFetchNext,
qeFetchPrev, qeSetSelectOptions.

Go To
Chapter 10 DTK Functions

qeForeignKeys 250

DataDirect Developer’s Toolkit Programmer’s Guide

qeForeignKeys

qeForeignKeys creates a statement execution (hstmt) that returns
information on the set of columns that compose a table’s foreign keys.

Syntax int16 hstmt = qeForeignKeys (
int16 hdbc,
ptrstr pk_table_name,
ptrstr fk_table_name)

Description qeForeignKeys returns one record per column in the primary key. Each
record contains the following columns:

Column Type Description

PK Table Qualifier Char(128) Primary key table qualifier. May be NULL.

PK Table User Char(128) Primary key table user. May be NULL.

PK Table Name Char(128) Primary key table name.

PK Column Name Char(128) Primary key column name.

FK Table Qualifier Char(128) Foreign key table qualifier. May be NULL.

FK Table User Char(128) Foreign key table user. May be NULL.

FK Table Name Char(128) Foreign key table name.

FK Column Name Char(128) Foreign key column name.

Sequence No Int16 Column sequence number, which is the
number of this column within the foreign
key. For example, for the foreign key
LAST_NAME, FIRST_NAME, the
Sequence No would be 1 in the row
returned for LAST_NAME and 2 in the row
returned for FIRST_NAME.

Go To
Chapter 10 DTK Functions

qeForeignKeys 251

DataDirect Developer’s Toolkit Programmer’s Guide

Not all database systems support foreign keys. You should include error-
checking code to handle those database systems that do not.

Parameters hstmt is the handle to the statement returned by qeForeignKeys.

hdbc is the handle to a database connection obtained from qeConnect.

pk_table_name is the table whose primary keys are to be returned.

fk_table_name is the table whose foreign keys are to be returned.

Example hdbc = qeConnect (“DSN=QESS;DLG=1”) ;
hstmt = qeForeignKeys (hdbc, “DEPT”, “EMP”);
while (qeFetchNext (hstmt) == qeSUCCESS) {

/* Get info about Foreign Keys * /
}

See Also qePrimaryKeys.

Update Action Int16 Action applied to the foreign key when an
UPDATE is performed. Values:

0 = qeCascade

1 = qeRestrict

2 = qeSetNull

Delete Action Int16 Action applied to the foreign key when a
DELETE is performed. Values:

0 = qeCascade

1 = qeRestrict

2 = qeSetNull

FK Index Name Char(128) Foreign key name. NULL if not applicable
to the data source.

PK Index Name Char(128) Primary key name. NULL if not applicable
to the data source.

Column Type Description

Go To
Chapter 10 DTK Functions

qeGetAutoUpdate 252

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetAutoUpdate

qeGetAutoUpdate returns the auto-update setting.

Syntax int16 option qeGetAutoUpdate (int16 hdbc)

Parameters option reports whether DTK automatically generates Update or Insert
statements when you move off a changed or inserted row. It has one of the
following values:

hdbc is the handle to the database connection returned by qeConnect.

Example hdbc = qeConnect ("DSN=QEDBF") ;
AutoUpdate = qeGetAutoUpdate (hdbc) ;
/* Value will be default of qeAUTOUPD_DISCARD * /
res_code = qeDisconnect (hdbc) ;

See Also qeSetAutoUpdate.

Constant Value Action

qeAUTOUPD_DISCARD 1 DTK discards changes or insertions.
This is the default.

qeAUTOUPD_DEFER 2 DTK saves the changes but does not
update the database. This option
enables you to use the qeApplyAll and
qeUndoAll functions.

qeAUTOUPD_UPDATE 3 DTK updates the changed or inserted
record.

Go To
Chapter 10 DTK Functions

qeGetIsolationLevel 253

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetIsolationLevel

qeGetIsolationLevel returns the isolation level for the connection.

Syntax int16 level qeGetIsolationLevel(int16 hdbc)

Parameters level is the isolation level currently set in the database. It has one of the
following values:

Constant Value Description

qeISO_READ_
UNCOMMITTED

0x0001 Read uncommitted (0) isolation level.
Locks are obtained on modifications to
the database and held until end of
transaction (EOT). Reading from the
database does not involve any locking.

qeISO_READ_
COMMITTED

0x0002 Read committed (1) isolation level.
Locks are acquired for reading and
modifying the database. Locks are
released after reading but locks on
modified objects are held until EOT.

qeISO_REPEATABLE_R
EAD

0x0004 Repeatable read (2) isolation level.
Locks are obtained for reading and
modifying the database. Locks on all
modified objects are held until EOT.
Locks obtained for reading data are held
until EOT. Locks on non-modified access
structures (indexes, hashing structures,
etc.) are released after reading.

Go To
Chapter 10 DTK Functions

qeGetIsolationLevel 254

DataDirect Developer’s Toolkit Programmer’s Guide

hdbc is the handle to the database connection returned by qeConnect.

Example hdbc = qeConnect ("DSN=QESS") ;
levels = qeGetSupportedIsolationLevels (hdbc) ;
cur_level = qeGetIsolationLevel (hdbc) ;
if (levels & qeISO_READ_COMMITTED)

res_code = qeSetIsolationLevel (hdbc,
qeISO_READ_COMMITTED) ;

res_code = qeDisconnect (hdbc) ;

See Also qeSetIsolationLevel.

qeISO_SERIALIZABLE 0x0008 Serializable (3) isolation level. All data
read or modified is locked until EOT. All
access structures that are modified are
locked until EOT. Access structures used
by the query are locked until EOT.

qeISO_VERSIONING 0x0010 Versioning (4) isolation level. Similar to
isolation level 3, serializable, but
provides greater concurrence through
the use of non-locking “record
versioning” protocols.

Constant Value Description

Go To
Chapter 10 DTK Functions

qeGetLockOptions 255

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetLockOptions

qeGetLockOptions returns the current lock options.

Syntax int16 option qeGetLockOptions (int16 hdbc)

Parameters option is the current lock options setting. It has one of the following values:

hdbc is the handle to the database connection returned by qeConnect.

Example hdbc = qeConnect ("DSN=QEDBF") ;
lock_options = qeGetLockOptions (hdbc) ;
/* This will return 0 (the default, * /
/* no lock options set. * /
res_code = qeDisconnect (hdbc) ;

See Also qeSetLockOptions.

Constant Value Description

qeLOCK_NO_OPTIONS 0 Default; DTK neither compares nor
refreshes the record in the log file.

qeLOCK_COMPARE 1 When locking, DTK compares the record
in the log file to the corresponding record
in the database, and raises a warning if
they are different.

qeLOCK_REFRESH 2 When locking, DTK automatically
refreshes the record in the log file with
new column values.

Go To
Chapter 10 DTK Functions

qeGetLoginTimeout 256

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetLoginTimeout

qeGetLoginTimeout returns the login timeout.

Syntax int32 timeout qeGetLoginTimeout ()

Description qeGetLoginTimeout returns the login timeout, in seconds.

Parameters timeout is the login timeout set in the last call to qeSetLoginTimeout. If the
login timeout has not been set, qeGetLoginTimeout returns the default.

Example timeout = qeGetLoginTimeout () ;
/* Default is 0, which indicates to wait indefinitely * /

See Also qeSetLoginTimeout.

Go To
Chapter 10 DTK Functions

qeGetMaxRows 257

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetMaxRows

qeGetMaxRows returns either the current value of the maximum number of
rows that should be returned for the query as specified in the last call to
qeSetMaxRows, or it returns the default of 0.

Syntax int32 max_rows qeGetMaxRows (int16 hdbc)

Parameters max_rows is the maximum number of rows that should be returned for the
query as specified in the last call to qeSetMaxRows. If qeSetMaxRows has
not been called, the default of 0 is returned, indicating that all rows are to be
returned.

hdbc is the handle to the database connection returned by qeConnect.

Example /* Return all rows from the query. * /
hdbc = qeConnect ("DSN=QEDBF") ;
max_rows = qeGetMaxRows (hdbc) ;
/* Returns 0, indicating no limit on rows returned. * /
res_code = qeDisconnect (hdbc) ;

See Also qeSetMaxRows.

Go To
Chapter 10 DTK Functions

qeGetODBCHdbc 258

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetODBCHdbc

qeGetODBCHdbc returns the ODBC hdbc that corresponds to the DTK hdbc.

Important: This function is potentially dangerous. Using the ODBC hdbc to
change the state of the ODBC connection may create situations that trap.
Use at your own risk.

Syntax int32 ODBCHdbc qeGetODBCHdbc (int16 hdbc)

Parameters hdbc is the handle to the database connection returned by qeConnect.

ODBCHdbc is the handle used as a pointer to information about the ODBC
connection.

Example hdbc = qeConnect ("DSN=QESS") ;
odbc_hdbc = qeGetODBCHdbc (hdbc) ;
...
/* Use odbc_hdbc in direct calls to ODBC functions. * /
...
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeGetODBCHenv 259

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetODBCHenv

qeGetODBCHenv returns the ODBC environment handle associated with the
instance of DTK.

Syntax int32 ODBCHenv qeGetODBCHenv ()

Description qeGetODBCHenv returns the ODBC environment handle associated with the
instance of DTK.

The ODBCHenv is a handle to the implied environment that is created
between calls to qeLibInit and qeLibTerm. When you call qeLibInit, DTK
closes any currently allocated ODBCHenv and opens a new one. A call to
qeLibTerm closes this ODBCHenv. Therefore, the current ODBCHenv
becomes invalid when you call either qeLibInit or qeLibTerm.

Important: This function is potentially dangerous. Using the ODBC hdbc to
change the state of the ODBC connection may create situations that trap.
Use at your own risk.

Parameters ODBCHenv is an environment handle used as a pointer to information about
the ODBC environment.

Example res_code = qeLibInit () ;
odbc_henv = qeGetODBCHenv () ;
...
/* Use odbc_henv in direct calls to ODBC functions. * /
...
res_code = qeLibTerm () ;

Go To
Chapter 10 DTK Functions

qeGetODBCHstmt 260

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetODBCHstmt

qeGetODBCHstmt returns the ODBC hstmt that corresponds to the DTK
hstmt.

Important: This function is potentially dangerous. Using the ODBC hdbc to
change the state of the ODBC connection may create situations that trap.
Use at your own risk.

Syntax int32 ODBCHstmt qeGetODBCHstmt (int16 hstmt)

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

ODBCHstmt is the handle used as a pointer to information about the ODBC
statement.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM dept") ;
odbc_hstmt = qeGetODBCHstmt (hstmt) ;
...
/* Use odbc_hstmt in direct calls to ODBC functions. * /
...
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeGetODBCInfoChar and qeGetODBCInfoCharBuf 261

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetODBCInfoChar and qeGetODBCInfoCharBuf

These functions return information about an ODBC connection.

Syntax ptrstr char_val qeGetODBCInfoCha r (
int16 hdbc,
int16 option)

int16 res_code qeGetODBCInfoCharBu f (
int16 hdbc,
int16 option,
ptrstr char_val)

Description qeGetODBCInfoChar returns a pointer to the information string. This string is
stored in a buffer maintained by DTK. You must copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

With qeGetODBCInfoCharBuf, you pass in a pointer to a buffer you have
allocated. The information string is put in the buffer. You must make sure that
the buffer is large enough to hold the returned string.

Go To
Chapter 10 DTK Functions

qeGetODBCInfoChar and qeGetODBCInfoCharBuf 262

DataDirect Developer’s Toolkit Programmer’s Guide

Parameters hdbc is a connection returned from qeConnect.

option is either one of the following constants, or one of the constants defined
by ODBC for use with the ODBC SQLGetInfo function that returns a
character string.

Constant Value Description

qeINFO_DRIVER_VER 7 A character string specifying the
version, and optionally a description,
of the driver. The form is aa.bb.cccc,
where aa is the major version, bb is
the minor version, and cccc is the
release version.

qeINFO_SEARCH_
PATTERN_ESCAPE

14 A character string specifying the
escape character the driver supports
for the pattern-matching characters
underscore (_) and percent (%).

qeINFO_DATA_SOURCE_R
EAD_ONLY

25 A character string: Y if the data
source is read only; otherwise N.

qeINFO_EXPRESSIONS_
IN_ORDERBY

27 A character string: Y if the data
source supports ORDER BY
expressions; N if not.

qeINFO_IDENTIFIER_
QUOTE_CHAR

29 The character string that surrounds a
delimited identifier; blank if none.

qeINFO_OUTER_JOINS 38 A character string: Y if the data
source supports outer joins and the
driver supports the ODBC outer join
request syntax; N if not.

qeINFO_OWNER_TERM 39 A character string that contains the
data source vendor’s name for an
owner; for example, “owner” or
“Authorization ID.”

qeINFO_PROCEDURE_
TERM

40 A character string that contains the
data source vendor’s name for a
procedure; for example, “database
procedure” or “stored procedure.”

Go To
Chapter 10 DTK Functions

qeGetODBCInfoChar and qeGetODBCInfoCharBuf 263

DataDirect Developer’s Toolkit Programmer’s Guide

char_val is a pointer to a string that is the connection information.

res_code is the result code returned by qeGetInfoCharBuf, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QESS") ;
version = qeGetODBCInfoChar (hdbc, qeINFO_DRIVER_VER) ;
res_code = qeDisconnect (hdbc) ;

qeINFO_QUALIFIER_
NAME_SEPARATOR

41 A character string that contains the
separators the data source uses
between the qualifier name and the
qualified name element.

qeINFO_TABLE_TERM 45 A character string that contains the
data source vendor’s name for a
table; for example, “table” or “file.”

qeINFO_QUALIFIER_
TERM

42 A character string that contains the
data source vendor’s name for a
qualifier; for example, “database” or
“directory.”

Constant Value Description

Go To
Chapter 10 DTK Functions

qeGetODBCInfoLong 264

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetODBCInfoLong

qeGetODBCInfoLong returns information about an ODBC connection.

Syntax int32 long_val qeGetODBCInfoLong (int16 hdbc, int16
option)

Parameters hdbc is a connection returned from qeConnect.

option is one of the following constants, or any other constant defined by
ODBC for use with the ODBC SQLGetInfo function that returns a 4-byte
integer.

Constant Value Description

qeINFO_ACTIVE_
CONNECTIONS

0 An integer specifying the number of
active hdbcs that the driver can
support. Zero indicates no specified
limit or the limit is unknown.

qeINFO_ACTIVE_
STATEMENTS

1 An integer specifying the number of
active hstmts that the driver can
support for an hdbc. Zero indicates
no specified limit or the limit is
unknown.

qeINFO_IDENTIFIER_
CASE

28 An integer indicating the forms of
names:

1 =must be uppercase
2 = must be lowercase
3 = case sensitive; can contain
upper and lowercase
4 =not case sensitive

qeINFO_MAX_
COLUMN_NAME_LEN

30 An integer specifying the maximum
length of a column name.

qeINFO_MAX_
CURSOR_NAME_LEN

31 An integer specifying the maximum
length of a cursor name.

Go To
Chapter 10 DTK Functions

qeGetODBCInfoLong 265

DataDirect Developer’s Toolkit Programmer’s Guide

qeINFO_MAX_
OWNER_NAME_LEN

32 An integer specifying the maximum
length of an owner name.

qeINFO_MAX_
PROCEDURE_NAME_LEN

33 An integer specifying the maximum
length of a procedure name. Zero
means procedures are not
supported.

qeINFO_MAX_
QUALIFIER_NAME_LEN

34 An integer specifying the maximum
length of a qualifier name. Zero
means qualifier names are not
supported.

qeINFO_MAX_TABLE_
NAME_LEN

35 An integer specifying the maximum
length of a table name.

qeINFO_CONVERT_
FUNCTIONS

48 A mask enumerating the scalar
conversion functions supported by
the driver and data source. The
mask qeSQL_FN_CVT_CONVERT
determines which conversion
functions are supported.

Constant Value Description

Go To
Chapter 10 DTK Functions

qeGetODBCInfoLong 266

DataDirect Developer’s Toolkit Programmer’s Guide

qeINFO_NUMERIC_
FUNCTIONS

49 A mask enumerating the numeric
functions supported by the driver
and data source. The following
masks are used:

qeSQL_FN_NUM_ABS

qeSQL_FN_NUM_ACOS

qeSQL_FN_NUM_ASIN

qeSQL_FN_NUM_ATAN

qeSQL_FN_NUM_ATAN2

qeSQL_FN_NUM_CEILING

qeSQL_FN_NUM_COS

qeSQL_FN_NUM_COT

qeSQL_FN_NUM_EXP

qeSQL_FN_NUM_FLOOR

qeSQL_FN_NUM_LOG

qeSQL_FN_NUM_MOD

qeSQL_FN_NUM_RAND

qeSQL_FN_NUM_PI

qeSQL_FN_NUM_SIGN

qeSQL_FN_NUM_SIN

qeSQL_FN_NUM_SQRT

qeSQL_FN_NUM_TAN

Constant Value Description

Go To
Chapter 10 DTK Functions

qeGetODBCInfoLong 267

DataDirect Developer’s Toolkit Programmer’s Guide

qeINFO_STRING_
FUNCTIONS

50 A mask enumerating the scalar
string functions supported by the
driver and data source. The following
masks are used:

qeSQL_FN_STR_ASCII

qeSQL_FN_STR_CHAR

qeSQL_FN_STR_CONCAT

qeSQL_FN_STR_INSERT

qeSQL_FN_STR_LEFT

qeSQL_FN_STR_LTRIM

qeSQL_FN_STR_LENGTH

qeSQL_FN_STR_LOCATE

qeSQL_FN_STR_LCASE

qeSQL_FN_STR_REPEAT

qeSQL_FN_STR_REPLACE

qeSQL_FN_STR_RIGHT

qeSQL_FN_STR_RTRIM

qeSQL_FN_STR_SUBSTRING

qeSQL_FN_STR_UCASE

qeINFO_SYSTEM_
FUNCTIONS

51 At mask enumerating the scalar
string functions supported by the
driver and data source. The following
masks are used:

qeSQL_FN_SYS_USERNAME

qeSQL_FN_SYS_DBNAME

qeFN_SYS_IFNULL

Constant Value Description

Go To
Chapter 10 DTK Functions

qeGetODBCInfoLong 268

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QESS") ;
num_connects = qeGetODBCInfoLong (hdbc,

qeINFO_ACTIVE_CONNECTIONS) ;
res_code = qeDisconnect (hdbc) ;

qeINFO_TIMEDATE_
FUNCTIONS

52 A mask enumerating the scalar date
and time functions supported by the
driver and data source. The following
masks are used:

qeSQL_FN_TD_NOW

qeSQL_FN_TD_CURDATE

qeSQL_FN_TD_DAYOFMONTH

qeSQL_FN_TD_DAYOFWEEK

qeSQL_FN_TD_DAYOFYEAR

qeSQL_FN_TD_MONTH

qeSQL_FN_TD_QUARTER

qeSQL_FN_TD_WEEK

qeSQL_FN_TD_YEAR

qeSQL_FN_TD_CURTIME

qeSQL_FN_TD_HOUR

qeSQL_FN_TD_MINUTE

qeSQL_FN_TD_SECOND

Constant Value Description

Go To
Chapter 10 DTK Functions

qeGetOneHstmtPerHdbcOptions 269

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetOneHstmtPerHdbcOptions

qeGetOneHstmtPerHdbcOptions returns the settings that determine which
fetching commands and statement behaviors are allowed by DTK when
connected to statements that support only one statement per connection. For
more information, see Appendix C, “Coding for Single Statement Database
Systems,” on page 529.

Syntax int16 flags qeGetOneHstmtPerHdbcOption s (int16 hdbc)

Parameters flags is a set of option flags that specifies the read-ahead activity, statement
routing, and hstmt behavior in effect when DTK uses multiple connections to
databases that support only one statement per connection. It returns one
read-ahead, routing, and hstmt option from among the following:

Constant Value Description

qeREADAHEAD_AT_
EXEC

0x0001 DTK reads the statement’s entire result
set into the log file when the statement
executes.

qeREADAHEAD_AT_
UPDATE

0x0002 DTK reads the remainder of the result
set into the log file whenever a record
is locked, updated, or deleted. This is
the default read-ahead option.

qeREADAHEAD_
COMMIT_UPDATES

0x0003 DTK avoids all read-ahead activity by
requiring you to commit all updates
before fetching any more records.

qeROUTING_READ 0x0008 DTK routes this statement through a
connection used for read-only
statements.

qeROUTING_UPDATE 0x0010 DTK routes this statement through a
connection used for statements that
modify the database.

Go To
Chapter 10 DTK Functions

qeGetOneHstmtPerHdbcOptions 270

DataDirect Developer’s Toolkit Programmer’s Guide

hdbc is the handle to the database connection returned by qeConnect.

Example hdbc = qeConnect ("DSN=QESS") ;
options = qeGetOneHstmtPerHdbcOptions (hdbc) ;
res_code = qeDisconnect (hdbc) ;

qeROUTING_DEFAULT 0x0018 This option lets DTK decide which
connection to send the statement to.
This is the default routing option.

qeHSTMT_LOCAL 0x0020 Tells DTK that this hstmt cannot affect
any other active hstmt in the same
application.

qeHSTMT_NONLOCAL 0x0040 Tells DTK that this hstmt may affect
other hstmts in the same application.
This is the default hstmt behavior.

Constant Value Description

Go To
Chapter 10 DTK Functions

qeGetParamBinary and qeGetParamBinaryBuf 271

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetParamBinary and qeGetParamBinaryBuf

These functions are used with stored procedures and return an output or
input/output parameter’s value as a binary value.

Syntax ptrstr bin_val qeGetParamBinary (
int16 hstmt,
int16 param_num,
ptrint32 max_len)

int16 res_code qeGetParamBinaryBuf (
int16 hstmt,
ptrstr bin_val,
int16 param_num,
ptrint32 max_len)

Description qeGetParamBinary and qeGetParamBinaryBuf return the value of a stored
procedure’s output or input/output parameter as a binary value. If the
parameter’s data type is not binary, the value is converted to binary.

The qeGetParamBinary function returns a pointer to the binary value, which
is stored in a buffer maintained by DTK. Copy the value out of this buffer
before you call another DTK function, because the next function may use the
same buffer.

The qeGetParamBinaryBuf function passes a pointer to a buffer you have
allocated, and the value is put in the buffer. Make sure the buffer is large
enough to hold the returned value.

If the parameter’s data type is a character string (type 1 or 2) or a binary
value (type 101 or 102), you may specify the maximum length of data to be
returned.

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

Go To
Chapter 10 DTK Functions

qeGetParamBinary and qeGetParamBinaryBuf 272

DataDirect Developer’s Toolkit Programmer’s Guide

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter value to be returned.

max_len is the maximum number of characters returned if the parameter’s
data type is character string (type 1 or 2) or binary (type 101 or 102). If
max_len is zero, the entire string is returned (up to 1000 characters). If
max_len is not zero and the parameter’s data type is not 1, 2, 101, or 102, an
error is returned.

max_len is typically used either because your macro language limits
character strings to a size that is less than the size of the values of the
parameters, or because the parameter values are very large and you want to
retrieve only part of the value.

If the value of the parameter is too large to retrieve with one call to
qeGetParamBinary, you can call qeGetParamBinary again and again on the
same parameter to retrieve more of the value.

bin_val is the returned binary value.

res_code is the result code returned by qeGetParamBinaryBuf, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEORA;DLG=2") ;
hstmt = qeSQLPrepare (hdbc, "{call getPicture (?)}") ;
res_code = qeSetParamIOType (hstmt, 1, qePARAM_OUTPUT) ;
res_code = qeSetParamDataType (hstmt, 1, qeBINARY, 100,
0);
res_code = qeSQLExecute (hstmt) ;
binValue = qeGetParamBinary (hstmt, 1) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeGetParamBit 273

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetParamBit

qeGetParamBit is used with stored procedures and returns an output or
input/output parameter’s value as a bit in a 2-byte integer.

Syntax int16 bit_val qeGetParamBit (
int16 hstmt,
int16 param_num

Description qeGetParamBit returns the parameter’s value as a bit in a 2-byte integer. If
the parameter’s data type is not bit (type 110), the value is converted to this
data type.

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter value to be returned.

bit_val is the returned bit value.

Example hdbc = qeConnect ("DSN=QEORA;DLG=2") ;
hstmt = qeSQLPrepare (hdbc, "{call IsExempt (?)}") ;
res_code = qeSetParamIOType (hstmt, 1, qePARAM_OUTPUT) ;
res_code = qeSetParamDataType (hstmt, 1, qeBIT, 0, 0) ;
res_code = qeSQLExecute (hstmt) ;
bitValue = qeGetParamBit (hstmt, 1) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeGetParamChar and qeGetParamCharBuf 274

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetParamChar and qeGetParamCharBuf

These functions are used with stored procedures and return a character
string containing the value from an output or input/output parameter.

Syntax ptrstr char_val qeGetParamChar (
int16 hstmt,
int16 param_num,
ptrstr fmt_string,
ptrint32 max_len)

int16 res_code qeGetParamCharBuf (
int16 hstmt,
ptrstr char_val,
int16 param_num,
ptrstr fmt_string,
ptrint32 max_len)

Description qeGetParamChar and qeGetParamCharBuf return the value of a stored
procedure’s output or input/output parameter as a character string. If the
parameter’s data type is not character string, the value is converted to a
character string.

The qeGetParamChar function returns a pointer to the string, which is stored
in a buffer maintained by DTK. Copy the string out of this buffer before you
call another DTK function, because the next function may use the same
buffer.

The qeGetParamCharBuf function passes a pointer to a buffer you have
allocated, and the string is put in the buffer. Make sure the buffer is large
enough to hold the returned string.

Format number and date values by providing a format string (see “Format
Strings” on page 59).

If the parameter’s data type is a character string (type 1 or 2), you may
specify the maximum length of data to be returned.

Go To
Chapter 10 DTK Functions

qeGetParamChar and qeGetParamCharBuf 275

DataDirect Developer’s Toolkit Programmer’s Guide

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter value to be returned.

fmt_string is the format string.

max_len is the maximum number of characters returned if the parameter’s
data type is character string (type 1 or 2) or binary (type 101 or 102). If
max_len is zero, the entire string is returned (up to 1000 characters). If
max_len is not zero and the parameter’s data type is not 1, 2, 101, or 102, an
error is returned.

max_len is typically used either because your macro language limits
character strings to a size that is less than the size of the values of the
parameters, or because the parameter values are very large and you want to
retrieve only part of the value.

If the value of the parameter is too large to retrieve with one call to
qeGetParamChar, you can call qeGetParamChar again and again on the
same parameter to retrieve more of the value.

char_val is the returned character value.

res_code is the result code returned by qeGetParamCharBuf, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeGetParamChar and qeGetParamCharBuf 276

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEORA;DLG=2") ;
hstmt = qeSQLPrepare (hdbc, "{call GetDeptName (?)}") ;
res_code = qeSetParamIOType (hstmt, 1, qePARAM_OUTPUT) ;
res_code = qeSetParamDataType (hstmt, 1, qeCHAR, 10, 0) ;
res_code = qeSQLExecute (hstmt) ;
charValue = qeGetParamChar (hstmt, 1) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeValChar and qeValCharBuf.

Go To
Chapter 10 DTK Functions

qeGetParamDate and qeGetParamDateBuf 277

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetParamDate and qeGetParamDateBuf

These functions are used with stored procedures and return an output or
input/output parameter’s value as a date value.

Syntax ptrstr date_val qeGetParamDate (
int16 hstmt,
int16 param_num

int16 res_code qeGetParamDateBuf (
int16 hstmt,
ptrstr date_val,
int16 param_num

Description qeGetParamDate and qeGetParamDateBuf return the value of a stored
procedure’s output or input/output parameter as a date value. If the
parameter’s data type is not date, the value is converted to date.

The qeGetParamDate function returns a pointer to the date value, which is
stored in a buffer maintained by DTK. Copy the value out of this buffer before
you call another DTK function, because the next function may use the same
buffer.

The qeGetParamDateBuf function passes a pointer to a buffer you have
allocated, and the value is put in the buffer. Make sure the buffer is large
enough to hold the returned value.

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter value to be returned.

date_val is the returned date value.

Go To
Chapter 10 DTK Functions

qeGetParamDate and qeGetParamDateBuf 278

DataDirect Developer’s Toolkit Programmer’s Guide

res_code is the result code returned by qeGetParamDateBuf, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEORA;DLG=2") ;
hstmt = qeSQLPrepare (hdbc, "{call LastHireDate (?)}") ;
res_code = qeSetParamIOType (hstmt, 1, qePARAM_OUTPUT) ;
res_code = qeSetParamDataType (hstmt, 1, qeDATE, 0, 0) ;
res_code = qeSQLExecute (hstmt) ;
dateValue = qeGetParamDate (hstmt, 1) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeGetParamDateTime and qeGetParamDateTimeBuf 279

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetParamDateTime and qeGetParamDateTimeBuf

These functions are used with stored procedures and return an output or
input/output parameter’s value as a date-time value.

Syntax ptrstr datetime_val qeGetParamDateTime (
int16 hstmt,
int16 param_num

int16 res_code qeGetParamDateTimeBuf (
int16 hstmt,
ptrstr datetime_val,
int16 param_num

Description qeGetParamDateTime and qeGetParamDateTimeBuf return the value of a
stored procedure’s output or input/output parameter as a date-time value. If
the parameter’s data type is not date-time, the value is converted to date-
time.

The qeGetParamDateTime function returns a pointer to the date-time value,
which is stored in a buffer maintained by DTK. Copy the value out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

The qeGetParamDateTimeBuf function passes a pointer to a buffer you have
allocated, and the value is put in the buffer. Make sure the buffer is large
enough to hold the returned value.

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter value to be returned.

datetime_val is the returned date-time value.

Go To
Chapter 10 DTK Functions

qeGetParamDateTime and qeGetParamDateTimeBuf 280

DataDirect Developer’s Toolkit Programmer’s Guide

res_code is the result code returned by qeGetParamDateBuf, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEORA;DLG=2") ;
hstmt = qeSQLPrepare (hdbc, "{call LastHireDate (?)}") ;
res_code = qeSetParamIOType (hstmt, 1, qePARAM_OUTPUT) ;
res_code = qeSetParamDataType (hstmt, 1, qeDATETIME, 26,
0);
res_code = qeSQLExecute (hstmt) ;
datetimeValue = qeGetParamDateTime (hstmt, 1) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeGetParamDecimal and qeGetParamDecimalBuf 281

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetParamDecimal and qeGetParamDecimalBuf

These functions are used with stored procedures and return an output or
input/output parameter’s value as a decimal value.

Syntax ptrstr dec_val qeGetParamDecimal (
int16 hstmt,
int16 param_num,
int16 precision,
int16 scale

int16 res_code qeGetParamDecimalBuf (
int16 hstmt,
ptrstr dec_val,
int16 param_num,
int16 precision,
int16 scale

Description The qeGetParamDecimal function returns a pointer to the decimal value,
which is stored in a buffer maintained by DTK. Copy the value out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

The qeGetParamDecimalBuf passes a pointer to a buffer you have allocated,
and the value is put in the buffer. Make sure the buffer is large enough to hold
the returned value.

qeGetParamDecimal and qeGetParamDecimalBuf return the parameter
value as a decimal number. If the parameter’s data type is not a decimal
number, the value is converted to a decimal number (type 3).

If the parameter’s data type is a character string (type 1 or 2) and the
parameter’s value is not a number, 0 is returned.

Go To
Chapter 10 DTK Functions

qeGetParamDecimal and qeGetParamDecimalBuf 282

DataDirect Developer’s Toolkit Programmer’s Guide

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the number of the parameter whose value is to be returned.

precision is the total number of digits to be returned in the decimal value.

scale is the number of digits right of the decimal point to be returned in the
decimal value.

dec_val is the returned decimal value.

res_code is the result code returned by qeGetParamDecimalBuf, which
returns the same set of result codes as qeErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEORA;DLG=2") ;
hstmt = qeSQLPrepare (hdbc, "{call TotEmpSalary (?)}}") ;
res_code = qeSetParamIOType (hstmt, 1, qePARAM_OUTPUT) ;
res_code = qeSetParamDataType (hstmt, 1, qeDECIMAL, 10,
2);
res_code = qeSQLExecute (hstmt) ;
decValue = qeGetParamDecimal (hstmt, 1) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeValDecimal and qeValDecimalBuf.

Go To
Chapter 10 DTK Functions

qeGetParamDouble 283

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetParamDouble

qeGetParamDouble is used with stored procedures and returns an output or
input/output parameter’s value as a double-precision floating point number.

Syntax float64 param_val qeGetParamDouble (
int16 hstmt,
int16 param_num

Description qeGetParamDouble returns the parameter’s value as a double-precision
floating-point number. If the parameter’s data type is not double-precision
floating-point (type 7), the value is converted to this data type.

If the parameter’s data type is a character string (type 1 or 2) and the
parameter’s value is not a number, 0 is returned.

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the number of the parameter whose value is to be returned.

param_val is the returned value.

Go To
Chapter 10 DTK Functions

qeGetParamDouble 284

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEORA;DLG=2") ;
hstmt = qeSQLPrepare (hdbc, "{call TotEmpSalary (?)}") ;
res_code = qeSetParamIOType (hstmt, 1, qePARAM_OUTPUT) ;
res_code = qeSetParamDataType (

 hstmt, 1, qeDOUBLEPRECISION, 0, 0) ;
res_code = qeSQLExecute (hstmt) ;
dblValue = qeGetParamDouble (hstmt, 1) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeValDouble.

Go To
Chapter 10 DTK Functions

qeGetParamFloat 285

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetParamFloat

qeGetParamFloat is used with stored procedures and returns an output or
input/output parameter’s value as a single-precision floating point number.

Syntax float32 param_val qeGetParamFloat (
int16 hstmt,
int16 param_num

Description qeGetParamFloat returns the parameter’s value as a floating-point number. If
the parameter’s data type is not floating-point (type 6), the value is converted
to this data type.

If the parameter’s data type is character string (type 1 or 2) and the
parameter’s value is not a number, 0 is returned.

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the number of the parameter whose value is to be returned.

param_val is the returned value.

Go To
Chapter 10 DTK Functions

qeGetParamFloat 286

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEORA;DLG=2") ;
hstmt = qeSQLPrepare (hdbc, "{call TotEmpSalary (?)}") ;
res_code = qeSetParamIOType (hstmt, 1, qePARAM_OUTPUT) ;
res_code = qeSetParamDataType (hstmt, 1, qeFLOAT, 0, 0) ;
res_code = qeSQLExecute (hstmt) ;
floatValue = qeGetParamFloat (hstmt, 1) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeValFloat.

Go To
Chapter 10 DTK Functions

qeGetParamInt 287

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetParamInt

qeGetParamInt is used with stored procedures and returns an output or input/
output parameter’s value as a 2-byte integer.

Syntax int16 param_val qeGetParamInt (
int16 hstmt,
int16 param_num

Description qeGetParamInt returns the parameter’s value as a 2-byte integer. If the
parameter’s data type is not 2-byte integer (type 5), the value is converted to
this data type.

If the parameter’s data type is character string (type 1 or 2) and the
parameter’s value is not a number, 0 is returned.

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the number of the parameter whose value is to be returned.

param_val is the returned value.

Go To
Chapter 10 DTK Functions

qeGetParamInt 288

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEORA;DLG=2") ;
hstmt = qeSQLPrepare (hdbc, "{call TotNumEmp (?)}") ;
res_code = qeSetParamIOType (hstmt, 1, qePARAM_OUTPUT) ;
res_code = qeSetParamDataType (hstmt, 1, qeINTEGER, 0,0) ;
res_code = qeSQLExecute (hstmt) ;
intValue = qeGetParamInteger (hstmt, 1) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeValInt.

Go To
Chapter 10 DTK Functions

qeGetParamLong 289

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetParamLong

qeGetParamLong is used with stored procedures and returns an output or
input/output parameter’s value as a 4-byte integer.

Syntax int32 param_val qeGetParamLong (
int16 hstmt,
int16 param_num

Description qeGetParamLong returns the parameter’s value as a 4-byte integer. If the
parameter’s data type is not a 4-byte integer (type 4), the value is converted
to this data type.

If the parameter’s data type is character string (type 1 or 2) and the
parameter’s value is not a number, 0 is returned.

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the number of the parameter whose value is to be returned.

param_val is the returned value.

Go To
Chapter 10 DTK Functions

qeGetParamLong 290

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEORA;DLG=2") ;
hstmt = qeSQLPrepare (hdbc, "{call TotNumEmp (?)}") ;
res_code = qeSetParamIOType (hstmt, 1, qePARAM_OUTPUT) ;
res_code = qeSetParamDataType (hstmt, 1, qeLONG, 0, 0) ;
res_code = qeSQLExecute (hstmt) ;
longValue = qeGetParamLong (hstmt, 1) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc);hdbc = qeConnect
("DSN=QEORA;DLG=2") ;

See Also qeValLong.

Go To
Chapter 10 DTK Functions

qeGetParamTime and qeGetParamTimeBuf 291

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetParamTime and qeGetParamTimeBuf

These functions are used with stored procedures and return an output or
input/output parameter’s value as a time value.

Syntax ptrstr time_val qeGetParamTime (
int16 hstmt,
int16 param_num

int16 res_code qeGetParamTimeBuf (
int16 hstmt,
ptrstr time_val,
int16 param_num

Description qeGetParamTime and qeGetParamTimeBuf return the value of a stored
procedure’s output or input/output parameter as a time value. If the
parameter’s data type is not time, the value is converted to time.

The qeGetParamTime function returns a pointer to the time value, which is
stored in a buffer maintained by DTK. Copy the value out of this buffer before
you call another DTK function, because the next function may use the same
buffer.

The qeGetParamTimeBuf function passes a pointer to a buffer you have
allocated, and the value is put in the buffer. Make sure the buffer is large
enough to hold the returned value.

Not all database systems support stored procedures, and some that support
stored procedures do not support output parameters. You should include
error-checking code to handle those database systems that do not support
output and input/output parameters in stored procedures.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter value to be returned.

time_val is the returned time value.

Go To
Chapter 10 DTK Functions

qeGetParamTime and qeGetParamTimeBuf 292

DataDirect Developer’s Toolkit Programmer’s Guide

res_code is the result code returned by qeGetParamDateBuf, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hstmt = qeSQLPrepare (hdbc, "{call GetStartTime (?) }") ;
res_code = qeSetParamIOType (hstmt, 1, qePARAM_OUTPUT) ;
res_code = qeSetParamDataType (hstmt, 1, qeTIME, 0, 0) ;
res_code = qeSQLExecute (hstmt) ;
timeValue = qeGetParamTime (hstmt, 1) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeGetQueryTimeout 293

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetQueryTimeout

qeGetQueryTimeout returns the query timeout.

Syntax int32 timeout qeGetQueryTimeout (int16 hdbc)

Parameters timeout is the query timeout set in the last call to qeSetQueryTimeout. If a
query timeout has not been set, the default of 0 (wait indefinitely) is returned.

hdbc is the handle to the database connection returned by qeConnect.

Example hdbc = qeConnect ("DSN=QESS") ;
time_secs = qeGetQueryTimeout (hdbc) ;
/* Will return default of 0 (wait indefinitely). * /

See Also qeSetQueryTimeout.

Go To
Chapter 10 DTK Functions

qeGetSelectOptions 294

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetSelectOptions

qeGetSelectOptions returns the option flag settings that determine fetching
behavior during the current database connection. These options affect the
level of fetching allowed in the current connection, whether logging is used
when not made necessary by the database system, and the extent to which
the result set persists after a transaction ends.

Syntax int32 flags qeGetSelectOptions (int16 hdbc)

Parameters hdbc is a connection returned from qeConnect.

flags is the set of option flags, which can include the following:

Constant Value Description

qeFETCH_FORWARD_DIR 0x0001 Only forward fetching is allowed.
This is the default fetching behavior
option.

qeFETCH_ANY_DIR 0x0002 Random and previous fetching is
enabled.

qeLOG_IF_NEEDED 0x0008 Use log file only as needed to
enable previous and random
fetching. This is the default logging
behavior.

qeLOG_ALWAYS 0x0010 Force use of log file when it is not
required. (This does not activate
random fetching if it is not explicitly
set with qeFETCH_ANY_DIR).

qeSELECT_INVALIDATE 0x0020 Disable fetching at the end of
transaction (EOT). Calls made after
a commit or rollback to any function
except qeEndSQL cause an error.

Go To
Chapter 10 DTK Functions

qeGetSelectOptions 295

DataDirect Developer’s Toolkit Programmer’s Guide

These values can be combined by adding them together or joining them with
an OR clause.

Example hdbc = qeConnect ("DSN=QESS") ;
options = qeGetSelectOptions (hdbc) ;
res_code = qeDisconnect (hdbc) ;

See Also qeSetSelectOptions.

qeSELECT_TRUNCATE 0x0040 Truncate the result set at EOT. This
option lets you continue fetching
only those records that have
already been read from the
database (if qeFETCH_ANY_DIR
is set).

qeSELECT_PERSIST 0x0060 The result set persists at EOT. This
is the default behavior, which lets
you continue fetching from the
entire set of records returned by the
Select statement. To enable this
behavior for databases that
invalidate the hstmt at commit or
rollback, the records in the result
set that have not been fetched by
EOT are written to a log file.

Constant Value Description

Go To
Chapter 10 DTK Functions

qeGetSupportedIsolationLevels 296

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetSupportedIsolationLevels

qeGetSupportedIsolationLevels returns the isolation levels supported by the
database system.

Syntax int16 levels qeGetSupportedIsolationLevels (int16 hdbc)

Parameters hdbc is the handle to the database connection returned by qeConnect.

levels is the set of isolation levels supported by the database system. One of
the following flags is set for each isolation level supported:

Constant Value Description

qeISO_READ_
UNCOMMITTED

0x000
1

Read uncommitted (0) isolation level.
Locks are obtained on modifications to
the database and held until end of
transaction (EOT). Reading from the
database does not involve any locking.

qeISO_READ_
COMMITTED

0x000
2

Read committed (1) isolation level. Locks
are acquired for reading and modifying
the database. Locks are released after
reading but locks on modified objects are
held until EOT.

qeISO_REPEATABLE_
READ

0x000
4

Repeatable read (2) isolation level. Locks
are obtained for reading and modifying
the database. Locks on all modified
objects are held until EOT. Locks
obtained for reading data are held until
EOT. Locks on non-modified access
structures (indexes, hashing structures,
etc.) are released after reading.

Go To
Chapter 10 DTK Functions

qeGetSupportedIsolationLevels 297

DataDirect Developer’s Toolkit Programmer’s Guide

The isolation levels supported and default isolation level are database-
dependent.

Example hdbc = qeConnect ("DSN=QESS") ;
levels = qeGetSupportedIsolationLevels (hdbc) ;
cur_level = qeGetIsolationLevel (hdbc) ;
if (levels & qeISO_READ_COMMITTED)

res_code = qeSetIsolationLevel (hdbc,
qeISO_READ_COMMITTED) ;

res_code = qeDisconnect (hdbc) ;

See Also qeGetIsolationLevel, qeSetIsolationLevel.

qeISO_SERIALIZABLE 0x000
8

Serializable (3) isolation level. All data
read or modified is locked until EOT. All
access structures that are modified are
locked until EOT. Access structures used
by the query are locked until EOT.

qeISO_VERSIONING 0x001
0

Versioning (4) isolation level. Similar to
isolation level 3, serializable, but provides
greater concurrence through the use of
non-locking “record versioning” protocols.

Constant Value Description

Go To
Chapter 10 DTK Functions

qeGetTableCaching 298

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetTableCaching

qeGetTableCaching returns the caching setting specified in the last call to
qeSetTableCaching.

Syntax int16 setting qeGetTableCaching (int16 hdbc)

Parameters setting is one of the following:

hdbc is the handle to the database connection returned by qeConnect.

Example /* Cache_Permanent * /
hdbc = qeConnect ("DSN=QEDBF") ;
setting = qeGetTableCaching (hdbc) ;
res_code = qeDisconnect (hdbc) ;

See Also qeSetTableCaching.

Constant Value Description

qeCACHE_PERMANENT 1 Turn caching on, and have the cache
file remain after the connection
terminates. You must specify a file
name with the qeSetCacheFileName
function when using this option.

qeCACHE_SESSION 2 Turn caching on for this session. The
cache file is deleted when the
connection terminates. This is the
default.

qeCACHE_OFF 3 Turn caching off.

Go To
Chapter 10 DTK Functions

qeGetTraceOptions 299

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetTraceOptions

qeGetTraceOptions returns the current trace options.

Syntax int16 flags qeGetTraceOptions ()

Parameters flags is a set of option flags that defines the tracing options in effect. They can
be:

Example res_code = qeTraceOn ("\\trace.txt") ;
trc_val = qeGetTraceOptions () ;
hdbc = qeConnect ("DSN=QEDBF") ;
...
res_code = qeDisconnect (hdbc) ;
res_code = qeTraceOff () ;

See Also qeSetTraceOptions.

Constant Value Description

qeTRACE_NON_VAL_
CALLS

0x0001 Trace all non-qeVal calls.

qeTRACE_USER 0x0002 Trace strings sent via qeTraceUser.

qeTRACE_VAL_CALLS 0x0004 Trace qeVal calls and bound data at fetch
time.

qeTRACE_WINDOW 0x0008 Write all trace information (except ODBC
calls) to a trace window.

qeTRACE_ODBC 0x0010 Trace ODBC calls.

Go To
Chapter 10 DTK Functions

qeIndexes 300

DataDirect Developer’s Toolkit Programmer’s Guide

qeIndexes

qeIndexes creates a statement execution (hstmt) that returns information on
the set of indexes for a table.

Syntax int16 hstmt = qeIndexes (
int16 hdbc,
ptrstr table_name,
int16 flags)

Description qeIndexes returns one record for each column in each index. Each record
contains the following columns:

Column Type Description

Table Qualifier Char(128) Table qualifier. This is a path for file-based
databases. May be NULL.

Table User Char(128) Table user. May be NULL.

Table Name Char(128) Table name.

Nonunique Int16 Indicates whether every index entry must be
unique or not.

Values:

0 = FALSE if the index values must be unique.

1 = TRUE if the index values do not have to be
unique; can be nonunique.

Index Qualifier Char(128) Index qualifier. May be needed in a DROP
INDEX statement.

Index Name Char(128) Index name.

Index Type Int16 Type of index.

Values:

1 = qeINDEX_CLUSTERED

2 = qeINDEX_HASHED

3 = qeINDEX_OTHER

Go To
Chapter 10 DTK Functions

qeIndexes 301

DataDirect Developer’s Toolkit Programmer’s Guide

Not all database systems support indexes. You should include error-checking
code to handle those database systems that do not.

Parameters hstmt is the handle to the statement returned by qeIndexes.

hdbc is a handle to a database connection obtained from qeConnect.

table_name is the table whose indexes are to be returned.

Sequence No Int16 The number of this column within the index.
For example, for the index LAST_NAME,
FIRST_NAME, the Sequence No would be 1
in the row returned for LAST_NAME and 2 in
the row returned for FIRST_NAME.

Column Name Char(128) Column name.

Collation Char(1) Collating sequence.

Values:

A = qeINDEX_ASCENDING

D = qeINDEX_DESCENDING

NULL = qeINDEX_ORDER_UNKNOWN

Cardinality Int32 Number of unique values in index; may be
NULL

Pages Int32 Number of pages used to store index; may be
NULL

Filter Char(128) The filter condition when one exists.
Otherwise, the value is NULL. For example,
SALARY > 25000.

Column Type Description

Go To
Chapter 10 DTK Functions

qeIndexes 302

DataDirect Developer’s Toolkit Programmer’s Guide

flags is a set of option flags that control the values returned from qeIndexes.
Each of these options overrides the DTK default. They can be combined by
adding them together or joining them with an OR clause.

Example hdbc = qeConnect (“DSN=QESS;DLG=1”) ;
hstmt = qeIndexes (hdbc, “EMP”, qeACCURATE_STATS);
while (qeFetchNext (hstmt) == qeSUCCESS) {

/* Get info about Indexes * /
}

Constant Value Description

qeUNIQUE_INDEXES 0x0001 Return only unique indexes;
returning all indexes is default

qeACCURATE_STATS 0x0002 Always request statistics from
server, even if it takes a long time;
quick retrieval is the default.

Go To
Chapter 10 DTK Functions

qeLibInit 303

DataDirect Developer’s Toolkit Programmer’s Guide

qeLibInit

qeLibInit initializes a DTK program.

Syntax int16 res_code qeLibInit ()

Description qeLibInit initializes an individual DTK program by allocating memory for that
program. Whenever possible, programs that call the DTK API should call this
function before making any other calls.

If you write a multi-threaded application, you should call this function to
initialize each thread of execution.

Some programming structures make it impossible to call qeLibInit for every
instance of DTK calls. For example, a DLL shared by multiple applications
cannot know whether or not the calling application had already called
qeLibInit or qeLibTerm. Even so, by using these functions whenever possible
you can keep more memory available to your applications.

Parameters res_code is the result code returned by qeLibInit, which returns the same set
of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example res_code = qeLibInit () ;
...
res_code = qeLibTerm () ;

See Also qeLibTerm.

Go To
Chapter 10 DTK Functions

qeLibTerm 304

DataDirect Developer’s Toolkit Programmer’s Guide

qeLibTerm

qeLibTerm terminates a DTK program.

Syntax int16 res_code qeLibTerm ()

Description qeLibTerm terminates a DTK program and frees the memory allocated for
that program by the corresponding call to qeLibInit. Whenever possible,
programs that call the DTK API should call this function as the last DTK
function call.

If you write a multi-threaded application, you should call this function to
terminate each thread of execution.

Some programming structures make it impossible to call qeLibInit for every
instance of DTK calls. For example, a DLL shared by multiple applications
cannot know whether or not the calling application has already called
qeLibInit or qeLibTerm. Even so, by using these functions whenever possible
you can keep more memory available to your applications.

Parameters res_code is the result code returned by qeLibTerm, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example res_code = qeLibInit () ;
...
res_code = qeLibTerm () ;

See Also qeLibInit.

Go To
Chapter 10 DTK Functions

qeMoreResults 305

DataDirect Developer’s Toolkit Programmer’s Guide

qeMoreResults

qeMoreResults begins a new result set from statements or stored procedures
that return multiple result sets.

Syntax int16 res_code qeMoreResults (int16 hstmt)

Description qeMoreResults ends the current result set and starts a new one. If the
res_code is qeEOF, then there are no more result sets. Otherwise, hstmt
represents the new result set. Some drivers do not support this function.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

res_code is the result code returned by qeMoreResults, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QESS") ;
hstmt = qeExecSQL (hdbc, "sp_empdept") ;
/* sp_empdept is a stored procedure containing * /
/* "SELECT * FROM emp;SELECT * FROM dept" * /

while (qeFetchNext (hstmt) == qeSUCCESS) {
/* Get values from emp * /
...

}

res_code = qeMoreResults (hstmt) ;
if (res_code != EOF) {

while (qeFetchNext (hstmt) == qeSUCCESS) {
/* Get values from dept * /
...

}
}

Go To
Chapter 10 DTK Functions

qeMoreResults 306

DataDirect Developer’s Toolkit Programmer’s Guide

res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeProcedureColumns.

Go To
Chapter 10 DTK Functions

qeNativeSQL and qeNativeSQLBuf 307

DataDirect Developer’s Toolkit Programmer’s Guide

qeNativeSQL and qeNativeSQLBuf

These functions return the SQL string as translated by the driver.

Syntax ptrstr native_sql qeNativeSQL (int16 hstmt)

int16 res_code qeNativeSQLBuf (int16 hstmt, ptrstr
stmt_buf)

Description qeNativeSQL returns a pointer to the translated SQL string. This string is
stored in a buffer maintained by DTK. You must copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

With qeNativeSQLBuf, you pass in a pointer to a buffer you have allocated.
The translated SQL string is put in the buffer. You must make sure that the
buffer is large enough to hold the returned string.

This function depends on driver support and returns an error if the driver does
not support the ODBC function SQLNativeSql.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

stmt_buf points to an allocated buffer for the resulting statement.

res_code is the result code returned by qeNativeSQLBuf, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM em p

WHERE LAST_NAME = 'Woltman'") ;
native = qeNativeSQL (hstmt) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeNumCols 308

DataDirect Developer’s Toolkit Programmer’s Guide

qeNumCols

qeNumCols returns the number of columns present in a SQL Select
statement.

Syntax int16 num_cols qeNumCols (int16 hstmt)

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

num_cols is the returned number of columns. Its value is 0 if the statement is
not a Select statement.

Example To determine the number of columns in the dBASE employee file:

hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
num_cols = qeNumCols (hstmt) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeExecSQL.

Go To
Chapter 10 DTK Functions

qeNumModRecs 309

DataDirect Developer’s Toolkit Programmer’s Guide

qeNumModRecs

qeNumModRecs returns the number of records modified by the last function
called that modified the database.

Syntax int32 num_recs qeNumModRecs (int16 hstmt)

Description qeNumModRecs returns the number of records modified by a SQL Insert,
Update, or Delete statement, qeRecUpdate, qeRecDelete, qeApplyAll, or
auto-update operation.

Parameters hstmt is the handle to the statement returned by qeExecSQL.

num_recs is the returned number of records. Returns 0 if the statement is a
Select statement.

Example To determine the number of records modified by an Update statement to the
dBASE employee file:

hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "UPDATE emp.dbf SET
salary=salary*1.1 WHERE dept='D101'") ;
num_recs = qeNumModRecs (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeExecSQL.

Go To
Chapter 10 DTK Functions

qeNumParams 310

DataDirect Developer’s Toolkit Programmer’s Guide

qeNumParams

qeNumParams returns the number of parameters that appeared in the
statement.

Syntax int16 num_params qeNumParams (int16 hstmt)

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

num_params is the number returned by qeNumParams.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM em p

WHERE last_name = ?") ;
num_params = qeNumParams (hstmt); /* Will return 1 * /
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeParamNum 311

DataDirect Developer’s Toolkit Programmer’s Guide

qeParamNum

qeParamNum returns the number of the parameter corresponding to a
specified name.

Syntax int16 param_num qeParamNum (int16 hstmt, ptrstr
param_name)

Description qeParamNum returns the number of the parameter that corresponds to
param_name. Use this function to specify parameters by name in functions
that take parameters by number.

If a parameter name is used more than once in the statement, the position of
the first occurrence is returned. Setting or binding this position binds for all
parameters with the same name.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_name is the name of a parameter for hstmt.

param_num is the parameter number returned by qeParamNum. If the
parameter name does not correspond to any of the parameters in hstmt, its
value is 0.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM em p

WHERE last_name = ?last") ;
res_code = qeSetParamChar (hstmt,

qeParamNum (hstmt, "last"),"Smith", 10) ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeProcedureColumns 312

DataDirect Developer’s Toolkit Programmer’s Guide

qeProcedureColumns

qeProcedureColumns returns a description of the parameters to a specified
stored procedure and the result columns for that procedure.

Syntax int16 hstmt qeProcedureColumns (int16 hdbc, ptrstr
proc_name)

Description qeProcedureColumns returns an hstmt for a result set describing the
parameters to a stored procedure and the result columns for that procedure.
The resulting records contain the following columns:

Column Type Description

Procedure
Qualifier

Char(128) Procedure qualifier identifier

Procedure Owner Char(128) Procedure owner identifier

Procedure Name Char(128) Procedure identifier

Column Name Char(128) Procedure column identifier

Column Type Int16 Result type: qePARAM_UNKNOWN,
qePARAM_INPUT, qePARAM_INOUT,
qePARAM_OUT, qeRESULT_COL,
qeRETURN_VAL

Data Type Int16 Data type

DB Type Name Char(128) Data source-dependent type name

Width Int16 Data type size

Attr1 Int16 Precision for decimal types, date start
position for dates, null otherwise.

Attr2 Int16 Scale for decimal types, date end
position for dates, null otherwise.

Go To
Chapter 10 DTK Functions

qeProcedureColumns 313

DataDirect Developer’s Toolkit Programmer’s Guide

You retrieve this information like you would other database values—using the
qeVal, qeBindCol, and qeFetch functions.

Parameters hdbc is the handle to a connection returned by qeConnect.

proc_name is a name or pattern of the procedure to find. If the pattern is “%”
or “*”, all procedures are selected. You can also specify the qualifier name,
owner name, or both.

hstmt is the handle to the statement returned by qeProcedureColumns. Its
value is null if the database does not store the procedure.

Example hdbc = qeConnect ("DSN=QESS;DLG=1") ;
hstmt = qeProcedureColumns (hdbc, "sp_who") ;
while (qeFetchNext (hstmt) == qeSUCCESS) {

...
/* Get info about stored procedure columns. * /

...
}
res_code = qeDisconnect (hdbc) ;

See Also qeMoreResults.

Nullable Int16 Result type:
qeCOL_NULLABLE,
qeCOL_NOT_NULLABLE,
qeCOL_UNKNOWN

Remarks Char(256) Description of column (if available).

Column Type Description

Go To
Chapter 10 DTK Functions

qePrimaryKeys 314

DataDirect Developer’s Toolkit Programmer’s Guide

qePrimaryKeys

qePrimaryKeys creates a statement execution (hstmt) that returns
information on the set of columns that compose a table’s primary keys.

Syntax int16 hstmt = qePrimaryKeys (
int16 hdbc,
ptrstr table_name)

Description qePrimaryKeys returns one record per column in the primary key. Each
record contains the following columns:

Not all database systems support primary keys. You should include error-
checking code to handle those database systems that do not.

Parameters hstmt is the handle to the statement returned by qePrimaryKeys.

hdbc is a handle to a database connection obtained from qeConnect.

table_name is the table whose primary keys are to be returned.

Column Type Description

Table Qualifier Char(128) Table qualifier. This is a path for file-based
databases. May be NULL.

Table User Char(128) Table user. May be NULL.

Table Name Char(128) Table name.

Column Name Char(128) Column name.

Sequence No Int16 Column sequence number, which is the number
of this column within the primary key. For
example, for the primary key LAST_NAME,
FIRST_NAME, the Sequence No would be 1 in
the row returned for LAST_NAME and 2 in the
row returned for FIRST_NAME.

Index Name Char(128) Primary key name. NULL if not applicable to the
data source.

Go To
Chapter 10 DTK Functions

qePrimaryKeys 315

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect (“DSN=QESS;DLG=1”) ;
hstmt = qePrimaryKeys (hdbc, “EMP”);
while (qeFetchNext (hstmt) == qeSUCCESS) {

/* Get info about Primary Keys * /
}

See Also qeForeignKeys.

Go To
Chapter 10 DTK Functions

qePutBinary 316

DataDirect Developer’s Toolkit Programmer’s Guide

qePutBinary

qePutBinary updates a column with binary data bytes.

Syntax int16 res_code qePutBinary (
int16 hstmt,
int16 col_num,
ptrstr new_val,
int32 val_len)

Description qePutBinary updates a column value in the current record buffer with a
specified number of binary data bytes.

This function does not change the value in the database. The new value is
sent to the database when qeRecUpdate is called or if auto-updating has
been enabled for the hstmt and the current record position changes.

Parameters hstmt is the statement handle returned by qeExecSQL or qeSQLPrepare.

col_num is the column number whose field is to be modified. The first column
number is 1.

new_val is a buffer of binary data.

val_len is the number of bytes to use from the new_val buffer.

res_code is the result code returned by qePutBinary, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT interests FROM emp") ;
res_code = qeFetchNext (hstmt) ;
res_code = qePutBinary (hstmt, 1, bindata, bin_len) ;
res_code = qeRecUpdate (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qePutChar 317

DataDirect Developer’s Toolkit Programmer’s Guide

qePutChar

qePutChar updates a column with a character value.

Syntax int16 res_code qePutChar (
int16 hstmt,
int16 col_num,
ptrstr fmt_string,
ptrstr new_val)

Description qePutChar updates a column value in the current record buffer with a null-
terminated character value.

A format string can be used if formatting is desired and the column type is a
date/time or a number.

This function does not change the value in the database. The new value is
sent to the database when qeRecUpdate is called or if auto updating has
been enabled for the hstmt and the current record position changes.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the column number whose field is to be modified. The first column
number is 1.

fmt_string is a pointer to a null-terminated format string which controls the
formatting of dates and numbers.

new_val is a null-terminated character string which holds the new value for
the column.

res_code is the result code returned by qePutChar, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qePutChar 318

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT first_name FROM emp") ;
res_code = qeFetchNext (hstmt) ;

/* Update the record. * /
res_code = qePutChar (hstmt, 1, "", "Joe") ;
res_code = qeRecUpdate (hstmt) ;

res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qePutDecimal 319

DataDirect Developer’s Toolkit Programmer’s Guide

qePutDecimal

qePutDecimal updates a column with a decimal value.

Syntax int16 res_code qePutDecimal (
int16 hstmt,
int16 col_num,
int16 precision,
int16 scale,
ptrstr new_val)

Description qePutDecimal updates a column value in the current record buffer with a
decimal value.

This function does not change the value in the database. The new value is
sent to the database when qeRecUpdate is called or if auto updating has
been enabled for the hstmt and the current record position changes.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the column number whose field is to be modified. The first column
number is 1.

precision is the number of significant digits in the result.

scale is the number of digits to the right of the decimal point in the result.

new_val is a pointer to a string that holds the new value for the column.

res_code is the result code returned by qePutDecimal, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qePutDecimal 320

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT salary FROM emp") ;
res_code = qeFetchNext (hstmt) ;
/* Update the record. * /
res_code = qePutDecimal (hstmt, 1, 9, 2, dec_val) ;
res_code = qeRecUpdate (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qePutDouble 321

DataDirect Developer’s Toolkit Programmer’s Guide

qePutDouble

qePutDouble updates a column with a double-precision floating-point value.

Syntax int16 res_code qePutDouble (
int16 hstmt,
int16 col_num,
float64 new_val)

Description qePutDouble updates a column value in the current record buffer with a
double-precision floating-point value.

This function does not change the value in the database. The new value is
sent to the database when qeRecUpdate is called or if auto updating has
been enabled for the hstmt and the current record position changes.

Parameters hstmt is the statement handle returned by qeExecSQL or qeSQLPrepare.

col_num is the column number whose field is to be modified. The first column
number is 1.

new_val is a double-precision floating-point value which is the new value for
the column.

res_code is the result code returned by qePutDouble, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT salary FROM emp") ;
res_code = qeFetchNext (hstmt) ;
res_code = qePutDouble (hstmt, 1, 10000.50) ;
res_code = qeRecUpdate (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qePutFloat 322

DataDirect Developer’s Toolkit Programmer’s Guide

qePutFloat

qePutFloat updates a column with a single-precision floating-point value.

Syntax int16 res_code qePutFloat (
int16 hstmt,
int16 col_num,
float32 new_val)

Description qePutFloat updates a column value in the current record buffer with a single-
precision floating-point value.

This function does not change the value in the database. The new value is
sent to the database when qeRecUpdate is called or if auto updating has
been enabled for the hstmt and the current record position changes.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the column number whose field is to be modified. The first column
number is 1.

new_val is a single-precision floating-point value which is the new value for
the column.

res_code is the result code returned by qePutFloat, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT salary FROM emp") ;
res_code = qeFetchNext (hstmt) ;

res_code = qePutFloat (hstmt, 1, 10000.50) ;
res_code = qeRecUpdate (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qePutInt 323

DataDirect Developer’s Toolkit Programmer’s Guide

qePutInt

qePutInt updates a column with a 2-byte integer.

Syntax int16 res_code qePutInt (
int16 hstmt,
int16 col_num,
int16 new_val)

Description qePutInt updates a column value in the current record buffer with a 2 byte
signed integer.

This function does not change the value in the database. The new value is
sent to the database when qeRecUpdate is called or if auto updating has
been enabled for the hstmt and the current record position changes.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the column number whose field is to be modified. The first column
number is 1.

new_val is a 2-byte signed integer which is the new value for the column.

res_code is the result code returned by qePutInt, which returns the same set
of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT salary FROM emp") ;
res_code = qeFetchNext (hstmt) ;

res_code = qePutInt (hstmt, 1, 10000) ;
res_code = qeRecUpdate (hstmt) ;

res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qePutLong 324

DataDirect Developer’s Toolkit Programmer’s Guide

qePutLong

qePutLong updates a column with a 4-byte integer.

Syntax int16 res_code qePutLong (
int16 hstmt,
int16 col_num,
int32 new_val)

Description qePutLong updates a column value in the current record buffer with a 4-byte
integer.

This function does not change the value in the database. The new value is
sent to the database when qeRecUpdate is called or if auto updating has
been enabled for the hstmt and the current record position changes.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the column number whose field is to be modified. The first column
number is 1.

new_val is a 4-byte integer that is the new value for the column.

res_code is the result code returned by qePutLong, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT salary FROM emp") ;
res_code = qeFetchNext (hstmt) ;

res_code = qePutLong (hstmt, 1, 10000) ;
res_code = qeRecUpdate (hstmt) ;

res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qePutNull 325

DataDirect Developer’s Toolkit Programmer’s Guide

qePutNull

qePutNull updates a column to have the value null.

Syntax int16 res_code qePutNull (int16 hstmt, int16 col_num)

Description qePutNull updates a column value in the current record buffer to have the
value null.

This function does not change the value in the database. The new value is
sent to the database when qeRecUpdate is called or if auto updating has
been enabled for the hstmt and the current record position changes.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the column number whose field is to be modified. The first column
number is 1.

res_code is the result code returned by qePutNull, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT hire_date FROM emp") ;
res_code = qeFetchNext (hstmt) ;

res_code = qePutNull (hstmt, 1) ;
res_code = qeRecUpdate (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qePutUsingBindColumns 326

DataDirect Developer’s Toolkit Programmer’s Guide

qePutUsingBindColumns

qePutUsingBindColumns updates columns with the values in the bind
buffers.

Syntax int16 res_code qePutUsingBindColumns (int16 hstmt)

Description qePutUsingBindColumns updates column values in the current record with
the values in the bind buffers.

If the length value of the bound column is set to qeNO_DATA_CHANGE (-9),
then the column is not updated. You can use this function to put a value of
null by setting the bound column’s length value to qeNULL_DATA (-2).

This function does not change the value in the database. The new value is
sent to the database when qeRecUpdate is called or if auto updating has
been enabled for the hstmt and the current record position changes.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

res_code is the result code returned by qePutUsingBindColumns, which
returns the same set of result codes as qeErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qePutUsingBindColumns 327

DataDirect Developer’s Toolkit Programmer’s Guide

Example char first_name[9] ;
long fn_length ;

hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT first_name FROM emp") ;
fn_length = 9 ;
qeBindCol (hstmt, 1, first_name, &fn_length) ;
while (qeFetchNext (hstmt) == 0) {

/* qeFetchNext has automatically filled * /
/* first_name * /
/* * /
/* If the first name is David then change * /
/* to Dave and insert this new value. * /

if (strcmp (first_name, "David") == 0) {
strcpy (first_name, "Dave") ;
fn_length = 4 ;
}

qePutUsingBindColumns (hstmt) ;
res_code = qeRecUpdate (hstmt) ;

}
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeQBEPrepare 328

DataDirect Developer’s Toolkit Programmer’s Guide

qeQBEPrepare

qeQBEPrepare creates a new hstmt that contains the Where clause
conditions that were created for the original hstmt by calls to the
qeRecSetCondition functions.

Syntax int16 new_hstmt qeQBEPrepare (int16 old_hstmt)

Description qeQBEPrepare creates a new hstmt that contains the Where clause
conditions that were created for the original hstmt by calls to
qeRecSetCondition functions.

The new hstmt inherits the parameters from the original hstmt. Make
appropriate parameter routine calls to change these parameters.

After you have made one or more calls to qeRecSetCondition, call
qeQBEPrepare to add all the conditions to the Select statement’s Where
clause. Call qeSQLExecute to execute the resulting statement. Subsequent
calls to the qeFetch functions retrieve the records that result from the
modified Select statement.

Parameters new_hstmt is the handle to a SQL statement to which a Where clause
containing QBE conditions has been added.

old_hstmt is the handle to an existing SQL statement to which you want to
add a Where clause containing QBE conditions.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeRecSetConditionChar (hstmt, 1 ,

qeFIND_EQUAL, "David", "", FALSE) ;
new_hstmt = qeQBEPrepare (hstmt) ;
res_code = qeSQLExecute (new_hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeRecSetCondition functions, qeRecFind.

Go To
Chapter 10 DTK Functions

qeQryAllocate 329

DataDirect Developer’s Toolkit Programmer’s Guide

qeQryAllocate

qeQryAllocate builds a query based on a string containing a SQL statement.

Syntax int16 hqry qeQryAllocate (int16 hdbc, ptrstr statement)

Description qeQryAllocate builds a query based on statement, which may be null. It
returns a query handle (hqry), which may be used to communicate with the
Query Builder.

Parameters hqry is the handle to a query returned by qeQryAllocate.

hdbc is a handle to a database connection obtained from qeConnect.

statement is a pointer to a string containing a SQL statement. It may be Null if
no statement is to be associated with the returned hqry.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hqry = qeQryAllocate (hdbc,"SELECT * FROM emp.dbf");
if (hqry == 0)

res_code = qeQryBuilder (hqry,0,qeQRY_TABLES,
qeQRY_DEFAULT) ;

...
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQryBuilder, qeQryOpenQueryFile.

Go To
Chapter 10 DTK Functions

qeQryBuilder 330

DataDirect Developer’s Toolkit Programmer’s Guide

qeQryBuilder

qeQryBuilder runs the Query Builder.

Syntax int16 res_code qeQryBuilder (
int16 hqry,
int16 parent_window,
int16 flags,
int16 init_dialog)

Description qeQryBuilder runs the Query Builder, based on the query represented by
hqry. Any editing applied via the Query Builder affects this query.

An hqry can be obtained by calling qeQryAllocate or qeQryOpenQueryFile.

Parameters hqry is a handle to a query obtained from qeQryAllocate or
qeQryOpenQueryFile.

parent_window is a handle to the parent window of the calling application. It
may be 0.

flags is a set of option flags that control the behavior and appearance of the
Query Builder. Each of these options overrides the DTK default. They can be
combined by adding them together or joining them with an OR clause. They
include the following:

Constant Value Description

qeQRY_NO_COL_ALIAS 0x0001 Column aliases not allowed.

qeQRY_EXIT_AFTER_DLG 0x0002 Exit after first dialog box is exited.
Valid only if initial dialog specified.

qeQRY_ALLOW_SRC_
CHANGE

0x0004 Source can be changed in file
open box.

qeQRY_SYSTABLES 0x0008 List system tables in table dialog
box.

qeQRY_SYNONYMS 0x0010 List synonyms in table dialog box.

Go To
Chapter 10 DTK Functions

qeQryBuilder 331

DataDirect Developer’s Toolkit Programmer’s Guide

init_dialog specifies the initial dialog box to be displayed when the query
builder is called. Valid values are:

res_code is the result code returned by qeQryBuilder, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

qeQRY_TABLES 0x0020 List tables in table dialog box.

qeQRY_VIEWS 0x0040 List views in table dialog box.

qeQRY_NO_PARAMS 0x0080 Disallow parameters.

qeQRY_BIG_ICONS 0x0100 Use big icons in icon bar.

qeQRY_VALIDATE 0x0200 Validate SQL.

qeQRY_SAMPLE 0x0400 Show sample values in conditions
dialog box.

Constant Value Description

qeQRY_DEFAULT 1 Bring up the default initial dialog.

qeQRY_FILE 2 File dialog.

qeQRY_JOIN 3 Join dialog

qeQRY_SELECT 4 Select dialog.

qeQRY_ORDER 5 Order by dialog.

qeQRY_WHERE 6 Where dialog.

qeQRY_GROUP 7 Group by dialog.

qeQRY_HAVING 8 Having dialog.

qeQRY_TEXT 9 Edit query text dialog.

Constant Value Description

Go To
Chapter 10 DTK Functions

qeQryBuilder 332

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
if (hdbc == 0)

hqry = qeQryAllocate (hdbc,"");
if (hqry == 0)

res_code = qeQryBuilder (hqry,0,qeQRY_TABLES,
qeQRY_DEFAULT) ;

...
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQryAllocate, qeQryOpenQueryFile.

Go To
Chapter 10 DTK Functions

qeQryFree 333

DataDirect Developer’s Toolkit Programmer’s Guide

qeQryFree

qeQryFree frees the memory associated with an hqry. It is important to call
qeQryFree to free system resources when you are finished using an hqry.

Syntax int16 res_code qeQryFree (int16 hqry)

Parameters hqry is the handle to the query which is to be freed, which was obtained from
qeQryAllocate or qeQryOpenQueryFile.

res_code is the result code returned by qeQryFree, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hqry = qeQryAllocate (hdbc,"");
res_code = qeQryBuilder (hqry,0,qeQRY_TABLES,
qeQRY_DEFAULT) ;
...
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeQryGetFileName and qeQryGetFileNameBuf 334

DataDirect Developer’s Toolkit Programmer’s Guide

qeQryGetFileName and qeQryGetFileNameBuf

qeQryGetFileName and qeQryGetFileNameBuf return the file name, if any,
associated with the query represented in hqry.

Syntax ptrstr file_name qeQryGetFileName (int16 hqry)

int16 res_code qeQryGetFileNameBuf (int16 hqry,
ptrstr file_name)

Description qeQryGetFileName and qeQryGetFileNameBuf return the file name, if any,
associated with the query represented in hqry.

qeQryGetFileName returns a pointer to the file name string. This string is
stored in a buffer maintained by DTK. You must copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

With qeQryGetFileNameBuf, you pass in a pointer to a buffer you have
allocated. The file name string is put in the buffer. You must make sure that
the buffer is large enough to hold the returned string.

Parameters hqry is a handle to a query obtained from qeQryAllocate or
qeQryOpenQueryFile.

file_name points to a buffer to hold the returned file name.

res_code is the result code returned by qeQryGetFileNameBuf, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeQryGetFileName and qeQryGetFileNameBuf 335

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
hqry = qeQryOpenQueryFile ("query1.qef") ;
res_code = qeQrySetHdbc (hqry, hdbc);
...
res_code = qeQryGetFileNameBuf (hqry,file_name) ;
...
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQrySetFileName.

Go To
Chapter 10 DTK Functions

qeQryGetFileOffset 336

DataDirect Developer’s Toolkit Programmer’s Guide

qeQryGetFileOffset

qeQryGetFileOffset returns the offset of the extra information that is
associated with the query represented by hqry. This information is everything
in the query file except the query.

Syntax int32 file_offset qeQryGetFileOffset (int16 hqry)

Parameters file_offset is an integer that represents the position of the first byte after the
SQL statement in the query file.

hqry is a handle to a query obtained from qeQryAllocate or
qeQryOpenQueryFile.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hqry = qeQryOpenQueryFile ("query1.qef");
res_code = qeQrySetHdbc (hqry, hdbc);
file_offset = qeQryGetFileOffset (hqry) ;
if (file_offset == -1)

printf ("There is no extra information") ;
...
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeQryGetHdbc 337

DataDirect Developer’s Toolkit Programmer’s Guide

qeQryGetHdbc

qeQryGetHdbc returns the hdbc associated with the query represented by
hqry.

Syntax int16 hdbc qeQryGetHdbc (int16 hqry)

Parameters hqry is a handle to a query obtained from qeQryAllocate or
qeQryOpenQueryFile.

hdbc is the handle to a database connection returned by qeQryGetHdbc.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hqry = qeQryAllocate (hdbc,"");
...
hdbc_val = qeQryGetHdbc (hqry) ;
...
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeQryGetNumParams 338

DataDirect Developer’s Toolkit Programmer’s Guide

qeQryGetNumParams

qeQryGetNumParams returns the number of parameters in the query
represented by hqry.

Syntax int16 num_params qeQryGetNumParams (int16 hqry)

Parameters num_params is the number of parameters returned by
qeQryGetNumParams.

hqry is a handle to a query obtained from qeQryAllocate or
qeQryOpenQueryFile.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hqry = qeQryOpenQueryFile ("query1.qef");
res_code = qeQrySetHdbc (hqry, hdbc);
...
num_params = qeQryGetNumParams (hqry) ;
if (num_params != 0)
{

res_code = qeQrySetNumParams (hqry,1)
/* Code to set the parameter name, * /
/* prompt, format, default, and type * /

...
}
...
res_code = qeQrySaveQueryFile (hqry,"query2.qef") ;
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQrySetNumParams.

Go To
Chapter 10 DTK Functions

qeQryGetParamDefault and qeQryGetParamDefaultBuf 339

DataDirect Developer’s Toolkit Programmer’s Guide

qeQryGetParamDefault and qeQryGetParamDefaultBuf

These functions return the default value of a parameter associated with the
specified query.

Syntax ptrstr param_default qeQryGetParamDefault (
int16 hqry,
int16 param_num)

int16 res_code qeQryGetParamDefaultBuf (
int16 hqry,
int16 param_num,
ptrstr param_default)

Description qeQryGetParamDefault and qeQryGetParamDefaultBuf return the default
value of the param_numth parameter associated with the query represented
in hqry. This value is used for the parameter if the user does not provide one,
and is represented as a character string.

These functions return an error if you specify a param_num value greater
than the value returned by qeQryGetNumParams.

qeQryGetParamDefault returns a pointer to the default value string. This
string is stored in a buffer maintained by DTK. You must copy the string out of
this buffer before you call another DTK function, because the next function
may use the same buffer.

With qeQryGetParamDefaultBuf, you pass in a pointer to a buffer you have
allocated. The default value string is put in the buffer. You must make sure
that the buffer is large enough to hold the returned string.

Parameters hqry is a handle to a query obtained from qeQryAllocate or
qeQryOpenQueryFile.

param_num is the parameter number whose default is to be returned. The
first parameter number is 1.

param_default points to a buffer to hold the returned parameter default value.

Go To
Chapter 10 DTK Functions

qeQryGetParamDefault and qeQryGetParamDefaultBuf 340

DataDirect Developer’s Toolkit Programmer’s Guide

res_code is the result code returned by qeQryGetParamDefaultBuf, which
returns the same set of result codes as qeErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hqry = qeQryOpenQueryFile ("query1.qef");
res_code = qeQrySetHdbc (hqry, hdbc);
...
param_default = qeQryGetParamDefault (hqry, 1) ;
if (param_default == "20000")

res_code = qeQrySetParamDefault (hqry, 1, "22000") ;
...

res_code = qeQrySaveQueryFile (hqry, "query2.qef") ;
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQrySetParamDefault.

Go To
Chapter 10 DTK Functions

qeQryGetParamFormat and qeQryGetParamFormatBuf 341

DataDirect Developer’s Toolkit Programmer’s Guide

qeQryGetParamFormat and qeQryGetParamFormatBuf

These functions return the format string to be applied to the value of a
parameter associated with the specified query.

Syntax ptrstr param_fmt qeQryGetParamFormat (
int16 hqry,
int16 param_num)

int16 res_code qeQryGetParamFormatBuf (
int16 hqry,
int16 param_num,
ptrstr param_fmt)

Description qeQryGetParamFormat and qeQryGetParamFormatBuf return the format
string to be applied to the value of the param_numth parameter associated
with the query represented in hqry.

These functions return an error if you specify a param_num value greater
than the value returned by qeQryGetNumParams.

qeQryGetParamFormat returns a pointer to the format string. This string is
stored in a buffer maintained by DTK. You must copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

With qeQryGetParamFormatBuf, you pass in a pointer to a buffer you have
allocated. The format string is put in the buffer. You must make sure that the
buffer is large enough to hold the returned string.

Parameters hqry is a handle to a query obtained from qeQryAllocate or
qeQryOpenQueryFile.

param_num is the parameter number whose format string is to be returned.
The first parameter number is 1.

param_fmt points to a buffer to hold the returned parameter format string.

Go To
Chapter 10 DTK Functions

qeQryGetParamFormat and qeQryGetParamFormatBuf 342

DataDirect Developer’s Toolkit Programmer’s Guide

res_code is the result code returned by qeQryGetParamFormatBuf, which
returns the same set of result codes as qeErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hqry = qeQryOpenQueryFile ("query1.qef") ;
res_code = qeQrySetHdbc (hqry, hdbc);
...
param_fmt = qeQryGetParamFormat (hqry, 2) ;
...
res_code = qeQrySaveQueryFile (hqry, "query2.qef") ;
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQrySetParamDefault.

Go To
Chapter 10 DTK Functions

qeQryGetParamName and qeQryGetParamNameBuf 343

DataDirect Developer’s Toolkit Programmer’s Guide

qeQryGetParamName and qeQryGetParamNameBuf

These functions return the name of a parameter associated with the specified
query.

Syntax ptrstr param_name qeQryGetParamName (
int16 hqry,
int16 param_num)

int16 res_code qeQryGetParamNameBuf (
int16 hqry,
int16 param_num,
ptrstr param_name)

Description qeQryGetParamName and qeQryGetParamNameBuf return the parameter
name of the param_numth parameter associated with the query represented
in hqry.

These functions return an error if you specify a param_num value greater
than the value returned by qeQryGetNumParams.

qeQryGetParamName returns a pointer to the parameter name string. This
string is stored in a buffer maintained by DTK. You must copy the string out of
this buffer before you call another DTK function, because the next function
may use the same buffer.

With qeQryGetParamNameBuf, you pass in a pointer to a buffer you have
allocated. The parameter name string is put in the buffer. You must make
sure that the buffer is large enough to hold the returned string.

Parameters hqry is a handle to a query obtained from qeQryAllocate or
qeQryOpenQueryFile.

param_num is the parameter number whose name is to be returned. The first
parameter number is 1.

param_name points to a buffer to hold the returned parameter name.

Go To
Chapter 10 DTK Functions

qeQryGetParamName and qeQryGetParamNameBuf 344

DataDirect Developer’s Toolkit Programmer’s Guide

res_code is the result code returned by qeQryGetParamNameBuf, which
returns the same set of result codes as qeErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hqry = qeQryOpenQueryFile ("query1.qef") ;
res_code = qeQrySetHdbc (hqry, hdbc);
...
param_name = qeQryGetParamName (hqry,1) ;
/* If the parameter name <> "SALARY", then set it. * /
if (strcmp (param_name,"SALARY") != 0)

res_code = qeQrySetParamName (hqry,1,"SALARY") ;
...

res_code = qeQrySaveQueryFile (hqry,"query2.qef") ;
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQrySetParamName.

Go To
Chapter 10 DTK Functions

qeQryGetParamPrompt and qeQryGetParamPromptBuf 345

DataDirect Developer’s Toolkit Programmer’s Guide

qeQryGetParamPrompt and qeQryGetParamPromptBuf

These functions return the prompt for a parameter associated with the
specified query.

Syntax ptrstr param_prompt qeQryGetParamPrompt (
int16 hqry,
int16 param_num)

int16 res_code qeQryGetParamPromptBuf (
int16 hqry,
int16 param_num,
ptrstr param_prompt)

Description qeQryGetParamPrompt and qeQryGetParamPromptBuf return the prompt for
the param_numth parameter associated with the query represented in hqry.
This is the text that appears in the dialog box when the user is prompted to
enter a value for the parameter.

These functions return an error if you specify a param_num value greater
than the value returned by qeQryGetNumParams.

qeQryGetParamPrompt returns a pointer to the parameter prompt string. This
string is stored in a buffer maintained by DTK. You must copy the string out of
this buffer before you call another DTK function, because the next function
may use the same buffer.

With qeQryGetParamPromptBuf, you pass in a pointer to a buffer you have
allocated. The parameter prompt string is put in the buffer. You must make
sure that the buffer is large enough to hold the returned string.

Parameters hqry is a handle to a query obtained from qeQryAllocate or
qeQryOpenQueryFile.

param_num is the parameter number whose prompt is to be returned. The
first parameter number is 1.

param_prompt points to a buffer to hold the returned parameter prompt.

Go To
Chapter 10 DTK Functions

qeQryGetParamPrompt and qeQryGetParamPromptBuf 346

DataDirect Developer’s Toolkit Programmer’s Guide

res_code is the result code returned by qeQryGetParamPromptBuf, which
returns the same set of result codes as qeErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hqry = qeQryOpenQueryFile ("query1.qef") ;
res_code = qeQrySetHdbc (hqry, hdbc);
...
param_prompt = qeQryGetParamPrompt (hqry,2) ;
...
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQrySetParamPrompt.

Go To
Chapter 10 DTK Functions

qeQryGetParamType 347

DataDirect Developer’s Toolkit Programmer’s Guide

qeQryGetParamType

qeQryGetParamType returns the parameter type associated with the
specified query.

Syntax int16 param_type qeQryGetParamType (
int16 hqry,
int16 param_num)

Description qeQryGetParamType returns the parameter type of the param_numth
parameter associated with the query represented in hqry.

This function returns an error if you specify a param_num value greater than
the value returned by qeQryGetNumParams.

Parameters hqry is a handle to a query obtained from qeQryAllocate or
qeQryOpenQueryFile.

param_num is the parameter number whose type is to be returned. The first
parameter number is 1.

param_type is the parameter type returned by qeQryGetParamType. It can
have the following values:

• Char
• Numeric
• Date
• Time
• Date-time
• Logical

Go To
Chapter 10 DTK Functions

qeQryGetParamType 348

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
hqry = qeQryOpenQueryFile ("query1.qef") ;
res_code = qeQrySetHdbc (hqry, hdbc);
...
num_params = qeQryGetNumParams (hqry) ;
if (num_params >= 1)
{

for (i=1; i <= num_params; ++i)
{

param_type = qeQryGetParamType (hqry,i) ;
/* if param_type is Date or Time * /
/* then set to Date-Time * /
if (param_type == qeQRYPARM_DATE ||
param_type == qeQRYPARM_TIME)
res_code = qeQrySetParamType (hqry,i ,
qeQRYPARM_DATETIME)

}
}
...
res_code = qeQrySaveQueryFile (hqry,"query2.qef") ;
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQrySetParamType.

Go To
Chapter 10 DTK Functions

qeQryGetSource and qeQryGetSourceBuf 349

DataDirect Developer’s Toolkit Programmer’s Guide

qeQryGetSource and qeQryGetSourceBuf

These functions return the data source name used in the query file.

Syntax ptrstr source_name qeQryGetSource (int16 hqry)

int16 res_code qeQryGetSourceBuf (
int16 hqry,
ptrstr source_name)

Description qeQryGetSource returns a pointer to the data source name string. This string
is stored in a buffer maintained by DTK. You must copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

With qeQryGetSourceBuf, you pass in a pointer to a buffer you have
allocated. The source name string is put in the buffer. You must make sure
that the buffer is large enough to hold the returned string.

Calling qeQrySetHdbc to set the hdbc changes the source name specified in
the query file to the one used when the hdbc was created. This new source
name is the one returned by qeQryGetSource if it is called after
qeQrySetHdbc.

Parameters hqry is a query handle obtained from qeQryAllocate or qeQryOpenQueryFile.

source_name points to a buffer to hold the returned data source name string.

res_code is the result code returned by qeQryGetSourceBuf, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeQryGetSource and qeQryGetSourceBuf 350

DataDirect Developer’s Toolkit Programmer’s Guide

Example hqry = qeQryOpenQueryFile ("query1.qef") ;
hdbc = qeConnect ("DSN=QEDBF") ;
res_code = qeQrySetHdbc (hqry, hdbc) ;
...
source_name = qeQryGetSource (hqry) ;
...
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQrySetStmt.

Go To
Chapter 10 DTK Functions

qeQryGetStmt and qeQryGetStmtBuf 351

DataDirect Developer’s Toolkit Programmer’s Guide

qeQryGetStmt and qeQryGetStmtBuf

These functions return the statement associated with the query represented
by hqry.

Syntax ptrstr stmt qeQryGetStmt (int16 hqry)

int16 res_code qeQryGetStmtBuf (int16 hqry, ptrstr stmt)

Description qeQryGetStmt returns a pointer to the statement string. This string is stored
in a buffer maintained by DTK. You must copy the string out of this buffer
before you call another DTK function, because the next function may use the
same buffer.

With qeQryGetStmtBuf, you pass in a pointer to a buffer you have allocated.
The statement string is put in the buffer. You must make sure that the buffer is
large enough to hold the returned string.

Parameters hqry is a handle to a query obtained from qeQryAllocate or
qeQryOpenQueryFile.

stmt points to a buffer to hold the returned statement.

res_code is the result code returned by qeQryGetStmtBuf, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hqry = qeQryOpenQueryFile ("query1") ;
res_code = qeQrySetHdbc (hqry, hdbc);
...
stmt = qeQryGetStmt (hqry) ;
...
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQrySetStmt.

Go To
Chapter 10 DTK Functions

qeQryOpenQueryFile 352

DataDirect Developer’s Toolkit Programmer’s Guide

qeQryOpenQueryFile

qeQryOpenQueryFile builds a handle to a query based on the contents of the
query file.

Syntax int16 hqry qeQryOpenQueryFile (ptrstr pathname)

Description qeQryOpenQueryFile reads a query file and builds a handle to a query based
on the contents of that file.

The contents of the query file are made available via a series of functions that
access the parts of the query file.

Parameters hqry is the handle to a query returned by the function. Its value is 0 if the file
could not be opened and converted to an hqry.

pathname points to a string which holds a pathname to the query file.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hqry = qeQryOpenQueryFile ("query1") ;
res_code = qeQrySetHdbc (hqry, hdbc);
...
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQryBuilder, qeQryAllocate, qeQrySaveQueryFile.

Go To
Chapter 10 DTK Functions

qeQryPrepare 353

DataDirect Developer’s Toolkit Programmer’s Guide

qeQryPrepare

qeQryPrepare prepares a SQL statement, represented by a handle to a
query, for execution.

Syntax int16 hstmt qeQryPrepare (int16 hqry)

Description qeQryPrepare prepares the SQL statement represented by hqry for
execution.

The statement must subsequently be executed using qeSQLExecute.

Parameters hqry is a handle to a query obtained from qeQryAllocate or
qeQryOpenQueryFile.

hstmt is the handle to the statement returned by the function.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hqry = qeQryAllocate (hdbc, "SELECT * FROM EMP") ;
hstmt = qeQryPrepare (hqry) ;
res_code = qeSQLExecute (hstmt) ;
...
res_code = qeEndSQL (hstmt) ;
...
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeSQLExecute.

Go To
Chapter 10 DTK Functions

qeQrySaveQueryFile 354

DataDirect Developer’s Toolkit Programmer’s Guide

qeQrySaveQueryFile

qeQrySaveQueryFile writes a query to a query (.QEF) file.

Syntax int16 res_code qeQrySaveQueryFile (int16 hqry, ptrstr
pathname)

Description qeQrySaveQueryFile writes the query associated with the hqry as a query
(.QEF) file. If pathname is null, then hqry must have a name for the file
associated with it.

If the query was read from a query file initially, the contents of the file that do
not correspond to the query or its parameters are preserved.

Parameters hqry is a handle to a query.

pathname points to a string which holds a pathname for the query file to be
written. If null, the pathname is obtained from the hqry.

res_code is the result code returned by qeQrySaveQueryFile, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DRV=QEDBF") ;
hqry = qeQryOpenQueryFile ("query1.qef");
res_code = qeQrySetHdbc (hqry, hdbc);
...
res_code = qeQrySaveQueryFile (hqry, "newquery.qef") ;
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQryOpenQueryFile, qeQryAllocate, qeQryBuilder.

Go To
Chapter 10 DTK Functions

qeQrySetFileName 355

DataDirect Developer’s Toolkit Programmer’s Guide

qeQrySetFileName

qeQrySetFileName sets the file name of a query (.QEF) file associated with
hqry.

Syntax int16 res_code qeQrySetFileName (int16 hqry, ptrstr
file_name)

Parameters hqry is a handle to a query obtained from qeQryAllocate or
qeQryOpenQueryFile.

file_name points to a string with the new file name.

res_code is the result code returned by qeQrySetFileName, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DRV=QEDBF") ;
hqry = qeQryOpenQueryFile ("query1.qef");
res_code = qeQrySetHdbc (hqry, hdbc);
res_code = qeQryBuilder (hqry, 0,
qeQRY_TABLES,qeQRY_DEFAULT) ;
...
res_code = qeQrySetFileName (hqry, "qry.qef") ;
res_code = qeQrySaveQueryFile (hqry,"") ;
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQryGetFileName and qeQryGetFileNameBuf.

Go To
Chapter 10 DTK Functions

qeQrySetHdbc 356

DataDirect Developer’s Toolkit Programmer’s Guide

qeQrySetHdbc

qeQrySetHdbc sets the handle to the connection for the query represented
by hqry.

Syntax int16 res_code qeQrySetHdbc (int16 hqry, int16 hdbc)

Description qeQrySetHdbc sets the handle to the database connection for the query
represented by hqry.

Calling this function to set the hdbc changes the source name specified in the
query file to the one used when the connection was created. This new source
name is the one returned by qeQrySetSource, and is written in the header of
the query file created by qeQrySaveQueryFile.

Parameters hqry is a handle to a query obtained from qeQryOpenQueryFile.

hdbc is a handle to a database connection returned by qeConnect.

res_code is the result code returned by qeQrySetHdbc, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hqry = qeQryOpenQueryFile ("query1") ;
res_code = qeQrySetHdbc (hqry, hdbc);
...
param_name = qeQryGetParamName (hqry, 1) ;
if (strcmp (param_name, "SALARY") != 0)

res_code = qeQrySetParamName (hqry, 1, "SALARY") ;
...

res_code = qeQrySaveQueryFile (hqry, "query2") ;
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQryGetHdbc.

Go To
Chapter 10 DTK Functions

qeQrySetNumParams 357

DataDirect Developer’s Toolkit Programmer’s Guide

qeQrySetNumParams

qeQrySetNumParams sets the number of parameters associated with the
query represented by hqry.

Syntax int16 res_code qeQrySetNumParams (int16 hqry, int16
num_params)

Parameters hqry is a handle to a query obtained from qeQryAllocate or
qeQryOpenQueryFile.

num_params is the new number of parameters to be associated with the
query represented by hqry. If you increase the number of parameters, the
new parameters default to character type.

res_code is the result code returned by qeQrySetNumParams, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hqry = qeQryOpenQueryFile ("query1.qef");
res_code = qeQrySetHdbc (hqry, hdbc);
...
num_params = qeQryGetNumParams (hqry) ;
if (num_params == 0)
{

res_code = qeQrySetNumParams (hqry, 1)
/* code to set the Parameter name, * /
/* prompt, format, default, and type * /

...
}
...
res_code = qeQrySaveQueryFile (hqry, "query2.qef") ;
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQryGetNumParams.

Go To
Chapter 10 DTK Functions

qeQrySetParamDefault 358

DataDirect Developer’s Toolkit Programmer’s Guide

qeQrySetParamDefault

qeQrySetParamDefault sets the default value of a parameter associated with
the specified query.

Syntax int16 res_code qeQrySetParamDefault (
int16 hqry,
int16 param_num,
ptrstr param_default)

Description qeQrySetParamDefault sets the default parameter value of the param_numth
parameter associated with the query represented by hqry.

This function returns an error if you specify a param_num value greater than
the value returned by qeQryGetNumParams.

Parameters hqry is a query handle obtained from qeQryAllocate or qeQryOpenQueryFile.

param_num is the parameter number for which a default value is to be
set.The first parameter number is 1.

param_default points to a string that is the new parameter default value.

res_code is the result code returned by qeQrySetParamDefault, which
returns the same set of result codes as qeErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeQrySetParamDefault 359

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
hqry = qeQryOpenQueryFile ("query1") ;
res_code = qeQrySetHdbc (hqry, hdbc) ;
...
param_default = qeQryGetParamDefault (hqry, 1) ;
if (param_default == "20000")

res_code = qeQrySetParamDefault (hqry, 1, "22000") ;
...

res_code = qeQrySaveQueryFile (hqry, "query2") ;
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQryGetParamDefault and qeQryGetParamDefaultBuf.

Go To
Chapter 10 DTK Functions

qeQrySetParamFormat 360

DataDirect Developer’s Toolkit Programmer’s Guide

qeQrySetParamFormat

qeQrySetParamFormat sets the format string for a parameter associated with
the specified query.

Syntax int16 res_code qeQrySetParamFormat (
int16 hqry,
int16 param_num,
ptrstr param_fmt)

Description qeQrySetParamFormat sets the parameter format string to be applied to the
param_numth parameter associated with the query represented by hqry.

This function returns an error if you specify a param_num value greater than
the value returned by qeQryGetNumParams.

Parameters hqry is a handle to a query obtained from qeQryAllocate or
qeQryOpenQueryFile.

param_num is the parameter number for which a format string is to be set.
The first parameter number is 1.

param_fmt points to a string that is the new parameter format string.

res_code is the result code returned by qeQrySetParamFormat, which
returns the same set of result codes as qeErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeQrySetParamFormat 361

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DRV=QEDBF") ;
hqry = qeQryOpenQueryFile ("query1.qef");
res_code = qeQrySetHdbc (hqry, hdbc) ;
...
num_params = qeQryGetNumParams (hqry) ;
for (i=1; i<=num_params; ++i)
{

param_type = qeQryGetParamType (hqry, i) ;
/* If the parameter type is Date * /
if (param_type == 3)

res_code = qeQrySetParamFormat (hqry, i, "m/
d/yy") ;
}
...
res_code = qeQrySaveQueryFile (hqry, "query2.qef") ;
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQryGetParamFormat and qeQryGetParamFormatBuf.

Go To
Chapter 10 DTK Functions

qeQrySetParamName 362

DataDirect Developer’s Toolkit Programmer’s Guide

qeQrySetParamName

qeQrySetParamName sets the name of a parameter associated with the
specified query.

Syntax int16 res_code qeQrySetParamName (
int16 hqry,
int16 param_num,
ptrstr param_name)

Description qeQrySetParamName sets the parameter name of the param_numth
parameter associated with the query represented by hqry.

This function returns an error if you specify a param_num value greater than
the value returned by qeQryGetNumParams.

Parameters hqry is a handle to a query obtained from qeQryAllocate or
qeQryOpenQueryFile.

param_num is the number of the parameter for which the name is to be set.
The first parameter number is 1.

param_name points to a string that is the new parameter name.

res_code is the result code returned by qeQrySetParamName, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeQrySetParamName 363

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
hqry = qeQryOpenQueryFile ("query1") ;
res_code = qeQrySetHdbc (hqry, hdbc) ;
...
param_name = qeQryGetParamName (hqry, 1) ;
if (strcmp (param_name, "SALARY") != 0)

res_code = qeQrySetParamName (hqry, 1, "SALARY") ;
...

res_code = qeQrySaveQueryFile (hqry, "query2") ;
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQryGetParamName and qeQryGetParamNameBuf.

Go To
Chapter 10 DTK Functions

qeQrySetParamPrompt 364

DataDirect Developer’s Toolkit Programmer’s Guide

qeQrySetParamPrompt

qeQrySetParamPrompt sets the prompt for a parameter associated with the
specified query.

Syntax int16 res_code qeQrySetParamPrompt (
int16 hqry,
int16 param_num,
ptrstr param_prompt)

Description qeQrySetParamPrompt sets the parameter prompt of the param_numth
parameter associated with the query represented by hqry.

This function returns an error if you specify a param_num value greater than
the value returned by qeQryGetNumParams.

Parameters hqry is a handle to a query obtained from qeQryAllocate or
qeQryOpenQueryFile.

param_num is the number of the parameter for which a prompt is to be set.
The first parameter number is 1.

param_prompt points to a string that is the new parameter prompt.

res_code is the result code returned by qeQrySetParamPrompt, which
returns the same set of result codes as qeErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeQrySetParamPrompt 365

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
hqry = qeQryOpenQueryFile ("query1");
res_code = qeQrySetHdbc (hqry, hdbc) ;
...
res_code = qeQrySetParamPrompt (hqry, 1, "Salary") ;
...
res_code = qeQrySaveQueryFile (hqry, "query2") ;
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQryGetParamPrompt and qeQryGetParamPromptBuf.

Go To
Chapter 10 DTK Functions

qeQrySetParamType 366

DataDirect Developer’s Toolkit Programmer’s Guide

qeQrySetParamType

qeQrySetParamType sets the data type of a parameter associated with the
specified query.

Syntax int16 res_code qeQrySetParamType (
int16 hqry,
int16 param_num,
int16 param_type)

Description qeQrySetParamType sets the data type of the param_numth parameter
associated with the query represented by hqry.

This function returns an error if you specify a param_num value greater than
the value returned by qeQryGetNumParams.

Parameters hqry is a handle to a query obtained from qeQryAllocate or
qeQryOpenQueryFile.

param_num is the number of the parameter for which a type is to be set. The
first parameter number is 1.

param_type is the new data type. It can have the following values:

• Char
• Numeric
• Date
• Time
• Date-time
• Logical

res_code is the result code returned by qeQrySetParamType, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeQrySetParamType 367

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
hqry = qeQryOpenQueryFile ("query1.qef") ;
res_code = qeQrySetHdbc (hqry, hdbc) ;
...
num_params = qeQryGetNumParams (hqry) ;
if (num_params >= 1)
{

for (i=1; i <= num_params; ++i)
{

param_type = qeQryGetParamType (hqry, i) ;
/* if param_type is Date or Time * /
/* then set to Date-Time * /
if (param_type == qeQRYPARM_DATE ||
param_type == qeQRYPARM_TIME)
res_code = qeQrySetParamType (hqry, i ,
qeQRYPARM_DATETIME)

}
}
...
res_code = qeQrySaveQueryFile (hqry, "query2.qef") ;
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQryGetParamType.

Go To
Chapter 10 DTK Functions

qeQrySetStmt 368

DataDirect Developer’s Toolkit Programmer’s Guide

qeQrySetStmt

qeQrySetStmt sets the statement associated with the query represented by
hqry.

Syntax int16 res_code qeQrySetStmt (int16 hqry, ptrstr stmt)

Parameters hqry is a handle to a query obtained from qeQryAllocate or
qeQryOpenQueryFile.

stmt is a pointer to a variable containing the text of the statement to be set.

res_code is the result code returned by qeQrySetStmt, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hqry = qeQryOpenQueryFile ("query1.qef") ;
res_code = qeQrySetHdbc (hqry, hdbc) ;
...
res_code = qeQrySetStmt (hqry, "SELECT * FROM emp.dbf") ;
...
res_code = qeQrySaveQueryFile (hqry, "query2.qef") ;
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

See Also qeQryGetStmt and qeQryGetStmtBuf.

Go To
Chapter 10 DTK Functions

qeQrySetSource 369

DataDirect Developer’s Toolkit Programmer’s Guide

qeQrySetSource

qeQrySetSource sets the data source for the query represented by hqry.

Syntax int16 res_code qeQrySetSource (int16 hqry, ptrstr source)

Parameters hqry is a handle to a query obtained from qeQryAllocate or
qeQryOpenQueryFile.

source is a new data source for the query that will be saved in the query file.

res_code is the result code returned by qeQrySetSource, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QESS") ;
hqry = qeQryOpenQueryFile ("query1.qef") ;
res_code = qeQrySetSource (hqry, "QESS") ;
res_code = qeQrySaveQueryFile ("query2.qef") ;
res_code = qeQryFree (hqry) ;
res_code = qeDisconnect (hdbc) ;

Notes Calling qeQrySetHdbc causes DTK to reset the source name to that used by
the query file.

See Also qeQryGetSource and qeQryGetSourceBuf.

Go To
Chapter 10 DTK Functions

qeRecClearConditions 370

DataDirect Developer’s Toolkit Programmer’s Guide

qeRecClearConditions

qeRecClearConditions clears a statement’s search conditions.

Syntax int16 res_code qeRecClearConditions (int16 hstmt)

Description qeRecClearConditions clears all search conditions associated with a
statement.

This call is necessary only if search conditions have been previously set for a
statement with qeRecSetCondition functions. Newly created statements have
no search conditions.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

res_code is the result code returned by qeRecClearConditions, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeRecClearConditions 371

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeRecSetConditionChar (hstmt, 1,

qeFIND_EQUAL, "Tyler", "", FALSE) ;
new_hstmt = qeQBEPrepare (hstmt) ;
res_code = qeSQLExecute (new_hstmt) ;
while (qeFetchNext (new_hstmt) == qeSUCCESS)

...
/* Get values matching condition. * /

...
res_code = qeEndSQL (new_hstmt) ;

res_code = qeRecClearConditions (hstmt) ;
res_code = qeRecSetConditionChar (hstmt, 1,

qeFIND_NOT_EQUAL, "Tyler", "", FALSE) ;
new_hstmt = qeQBEPrepare (hstmt) ;
res_code = qeSQLExecute (new_hstmt) ;
while (qeFetchNext (new_hstmt) == qeSUCCESS)

...

/* Get values matching condition. * /
...

res_code = qeEndSQL (new_hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeRecDelete 372

DataDirect Developer’s Toolkit Programmer’s Guide

qeRecDelete

qeRecDelete deletes the current record.

Syntax int16 res_code qeRecDelete (int16 hstmt)

Description When you call qeRecDelete, DTK removes the current record from the buffer.
The next record fills the position of the deleted record, all subsequent records
advance by one, and the total number of records in the buffer decreases by
one. If the buffer contains 10 records and the hstmt is positioned on record 2,
then a call to qeRecDelete deletes record 2, record 3 becomes record 2, 4
becomes 3, etc., and the total count for the buffer becomes 9.

When qeRecDelete is invoked during a transaction, record deletions are
either written to the database by a call to qeCommit or aborted by a call to
qeRollback. Otherwise, deletions resulting from calls to qeRecDelete are
made instantly to the database.

After a record is deleted, the current record is positioned between the
previous record and the next record in the buffer. You must call qeFetchNext
after deleting a record to position on the next record.

You can call qeNumModRecs to determine the number of records deleted by
a call to qeRecDelete.

Calling this function causes DTK to generate a unique key if you have not
already defined one with qeRecSetKey.

qeRecDelete cannot delete records from joined tables.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

res_code is the result code returned by qeRecDelete, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeRecDelete 373

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeFetchNext (hstmt) ;
res_code = qeRecDelete (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Notes If you call qeRecDelete without having previously called a qeFetch function to
position the hstmt on a record, DTK returns an error. For example, if you call
qeExecSQL and then immediately call qeRecDelete on the new hstmt, DTK
cannot delete a record because the hstmt is still on record 0 (no record). In
order to delete a record, you must first call qeFetchNext to position the hstmt
on the first record in the buffer (record 1).

Important: To delete the current record, qeRecDelete generates a SQL
Delete statement that uses a Where clause to uniquely identify that record. If
this Where clause matches multiple records, qeRecDelete deletes all
matching records. You can recover from such invalid deletions by using
transactions and calling qeNumModRecs after each call to qeRecDelete to
verify that multiple records were not deleted. Calling qeRecLock before calls
to qeRecDelete also helps prevent multiple deletions, since qeRecLock uses
the same Where clause as qeRecDelete and returns a warning if it locks
multiple records.

See Also qeRecSetKey.

Go To
Chapter 10 DTK Functions

qeRecFind 374

DataDirect Developer’s Toolkit Programmer’s Guide

qeRecFind

qeRecFind positions to the next row matching the qeRecSetCondition search
criteria.

Syntax int32 result qeRecFind (int16 hstmt, int16 start_pos,
int16 flags)

Description qeRecFind attempts to find the next row matching the search criteria
specified by calls to the qeRecSetCondition functions.

If a matching row is found, it becomes the current position in the result set. If
not, the position is unchanged.

You can use qeRecFind along with the qeBindCol or qeVal functions to
retrieve the set of records that match the qeRecSetCondition search criteria.

Parameters result is the number of the row matching the search conditions. It is 0 if no
row was found.

hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

start_pos is the starting position for the search. There is no default; you must
specify one of the following values:

Constant Value Description

qeFIND_BEGIN 1 Start at the beginning of the result set.

qeFIND_END 2 Start at the end of the result set.

qeFIND_CURRENT 3 Start at the current record of the result set.

Go To
Chapter 10 DTK Functions

qeRecFind 375

DataDirect Developer’s Toolkit Programmer’s Guide

flags is a set of option flags that controls the way the search is performed:

These values can be combined by adding them together or joining them with
an OR clause.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeRecSetConditionChar (hstmt, 1 ,

qeFIND_EQUAL, "David", "", FALSE) ;
new_pos = qeRecFind (hstmt, qeFIND_BEGIN, 0) ;
/* The hstmt is now either on the same record * /
/* or on the first occurrence of a record * /
/* matching the condition set above. * /
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeRecSetCondition functions, qeQBEPrepare.

Constant Value Description

qeFIND_BACKWARD 0x0001 The search goes backwards. The
default is forward.

qeFIND_SKIP_ROW 0x0002 The search skips the current row if
start_pos = qeFIND_CURRENT. The
default is to start with the current row.

Go To
Chapter 10 DTK Functions

qeRecGetKey 376

DataDirect Developer’s Toolkit Programmer’s Guide

qeRecGetKey

qeRecGetKey reports whether a column is part of the key used by DTK.

Syntax int16 setting qeRecGetKey (int16 hstmt, int16 col_num)

Description qeRecGetKey returns whether DTK uses the specified column as part of a
key.

DTK does not generate a default key until qeRecUpdate, qeRecDelete,
qeRecLock, or qeUniqueWhereClause is called for the hstmt. Until you call
one of these functions (or specify a key by calling qeRecSetKey), hstmt will
have no key—every column specified in calls to qeRecGetKey returns False
(0).

See “Unique Keys” on page 78 for information on DTK’s use of unique keys.

Parameters setting is True (1) if the column is in the key; otherwise it is False (0).

hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the column number which is to be tested. The first column number
is 1.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
...
/* Check to see if LAST_NAME field is used * /
/* as part of the primary key. * /
set_val = qeRecGetKey (hstmt, 2) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeRecSetKey.

Go To
Chapter 10 DTK Functions

qeRecLock 377

DataDirect Developer’s Toolkit Programmer’s Guide

qeRecLock

qeRecLock locks the current record during a transaction.

Syntax int16 res_code qeRecLock (int16 hstmt)

Description qeRecLock attempts to lock the current record. It works only if a transaction is
currently active. Otherwise, it returns an error.

The lock is freed by a call to qeCommit or qeRollback.

If enabled by options passed to qeSetLockOptions, qeRecLock can compare
the record with the log file or refresh the log file.

If 0 records are locked qeRecLock returns an error (qeLOCK_NO_REC (-6)).
qeRecLock issues a warning if multiple records are locked
(qeLOCK_MULTI_REC (-7)) or the optional log file comparison fails
(qeLOCK_CHANGE_REC (-8)). This makes qeRecLock useful for ensuring
that only one record is affected by a call to qeRecDelete or qeRecUpdate.

Calling this function causes DTK to generate a unique key if you have not
already defined one with qeRecSetKey.

This function has no effect with some databases.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

res_code is the result code returned by qeRecLock, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeRecLock 378

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
res_code = qeBeginTran (hdbc) ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeFetchNext (hstmt) ;
res_code = qeRecLock (hstmt) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeCommit (hdbc) ;
res_code = qeDisconnect (hdbc) ;

See Also qeSetLockOptions, qeBeginTran, qeCommit, qeRollback.

Go To
Chapter 10 DTK Functions

qeRecNew 379

DataDirect Developer’s Toolkit Programmer’s Guide

qeRecNew

qeRecNew creates a buffer for a new record.

Syntax int16 res_code qeRecNew (int16 hstmt, int32 rec_num)

Description qeRecNew creates a buffer to be used for a new record. All column values
are initially set to null. The record can then be placed in the buffer by calls to
the qePut functions.

To insert the record, call qeRecUpdate. The record is also inserted when the
hstmt is moved to a different record number, and qeSetAutoUpdate is set to
qeAUTOUPD_UPDATE (3).

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

rec_num is the location where the new record is to be inserted. If random
fetching is enabled, rec_num can be any number from 1 to the last record
fetched plus 1. If random fetching is not enabled, rec_num must be the
current record number plus 1.

res_code is the result code returned by qeRecNew, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
res_code = qeBeginTran (hdbc) ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeRecNew (hstmt, 1) ;
res_code = qePutChar (hstmt, 1, "", "Mike") ;
res_code = qePutChar (hstmt, 2, "", "McGarrah") ;
res_code = qeRecUpdate (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeCommit (hdbc) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeRecNew 380

DataDirect Developer’s Toolkit Programmer’s Guide

Notes When auto-updating has not been enabled by qeSetAutoUpdate, if you call
qeRecNew and then move off of the current record before calling
qeRecUpdate, then the buffer created by the call to qeRecNew is destroyed.

See Also qeSetAutoUpdate.

Go To
Chapter 10 DTK Functions

qeRecNum 381

DataDirect Developer’s Toolkit Programmer’s Guide

qeRecNum

qeRecNum returns the number of the current record in the buffer.

Syntax int32 rec_num qeRecNum (int16 hstmt)

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

rec_num is the number of the current record in the buffer returned for this
statement execution. If there is no current record number—that is, when
qeRecState returns qeSTATE_NO_REC—then the hstmt is positioned
between rec_num and <rec_num + 1>. In this situation, a call to qeFetchPrev
returns the hstmt to rec_num, and a call to qeFetchNext increments rec_num
by 1.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeFetchNext (hstmt) ;
/* Return the record number of the current * /
/* record in the selected query. * /
res_code = qeRecNum (hstmt) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions
qeRecSetConditionBinary 382

DataDirect Developer’s Toolkit Programmer’s Guide

qeRecSetConditionBinary

qeRecSetConditionBinary adds a search condition to the statement having a
binary value to compare.

Syntax int16 res_code qeRecSetConditionBinary (
int16 hstmt,
int16 col_num,
int16 operator,
ptrstr value,
int32 length)

Description qeRecSetConditionBinary adds a search condition to the statement having a
binary value to compare.

For all operators except the IN operator, multiple search conditions for a
column are joined with a boolean AND (that is, all conditions must be true for
the row to match the search conditions).

For the IN operator, multiple search conditions for a column are joined with a
boolean OR (that is, at least one of the IN conditions must be true for the row
to match the search conditions).

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the number of the column on which a search condition is being
placed. The first column number is 1.

operator is the comparison operator and has one of the following values:

Constant Value Operator

qeFIND_LESS_THAN 1 <

qeFIND_LESS_THAN_
OR_EQ

2 <=

Go To
Chapter 10 DTK Functions
qeRecSetConditionBinary 383

DataDirect Developer’s Toolkit Programmer’s Guide

value points to the binary comparison value.

length is the length (in bytes) of the comparison value.

res_code is the result code returned by qeRecSetConditionBinary, which
returns the same set of result codes as qeErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
/* bindata contains the binary value for comparison. * /
res_code = qeRecSetConditionBinary (hstmt, 8 ,

qeFIND_NOT_EQUAL, bindata, 10000) ;
new_hstmt = qeQBEPrepare (hstmt) ;
res_code = qeSQLExecute (new_hstmt) ;
while (qeFetchNext (new_hstmt) == qeSUCCESS)

...
/* Get values matching condition. * /

...
res_code = qeEndSQL (new_hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

qeFIND_GREATER_
THAN

3 >

qeFIND_GREATER_
THAN_OR_EQ

4 >=

qeFIND_EQUAL 5 =

qeFIND_NOT_EQUAL 6 <>

qeFIND_IN 9 IN

Constant Value Operator

Go To
Chapter 10 DTK Functions

qeRecSetConditionChar 384

DataDirect Developer’s Toolkit Programmer’s Guide

qeRecSetConditionChar

qeRecSetConditionChar adds a search condition to the statement having a
character value to compare.

Syntax int16 res_code qeRecSetConditionChar (
int16 hstmt,
int16 col_num,
int16 operator,
ptrstr value,
ptrstr fmt_string,
int16 case_sens)

Description qeRecSetConditionChar adds a search condition to the statement having a
character value to compare.

For all operators except the IN operator, multiple search conditions for a
column are joined with a boolean AND (that is, all conditions must be true for
the row to match the search conditions).

For the IN operator, multiple search conditions for a column are joined with a
boolean OR (that is, at least one of the IN conditions must be true for the row
to match the search conditions).

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the number of the column on which a search condition is being
placed. The first column number is 1.

operator is the comparison operator and has one of the following values:

Constant Value Operator

qeFIND_LESS_THAN 1 <

qeFIND_LESS_THAN_
OR_EQ

2 <=

Go To
Chapter 10 DTK Functions

qeRecSetConditionChar 385

DataDirect Developer’s Toolkit Programmer’s Guide

value points to the comparison string.

fmt_string is a string used to control formatting of dates and numbers into a
character string.

case_sens determines if character comparisons are case-sensitive. Its value
must be TRUE for non-character columns.

res_code is the result code returned by qeRecSetConditionChar, which
returns the same set of result codes as qeErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

qeFIND_GREATER_
THAN

3 >

qeFIND_GREATER_
THAN_OR_EQ

4 >=

qeFIND_EQUAL 5 =

qeFIND_NOT_EQUAL 6 <>

qeFIND_LIKE 7 LIKE

qeFIND_NOT_LIKE 8 NOT LIKE

qeFIND_IN 9 IN

Constant Value Operator

Go To
Chapter 10 DTK Functions

qeRecSetConditionChar 386

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeFetchNext (hstmt) ;
res_code = qeRecSetConditionChar (hstmt, 2 ,

qeFIND_LIKE, "Dav%", "" , FALSE) ;
new_hstmt = qeQBEPrepare (hstmt) ;
res_code = qeSQLExecute (new_hstmt) ;
while (qeFetchNext (new_hstmt) == qeSUCCESS)

...
/* Get values matching condition. * /

...
res_code = qeEndSQL (new_hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions
qeRecSetConditionDecimal 387

DataDirect Developer’s Toolkit Programmer’s Guide

qeRecSetConditionDecimal

qeRecSetConditionDecimal adds a search condition to the statement having
a decimal value to compare.

Syntax int16 res_code qeRecSetConditionDecimal (
int16 hstmt,
int16 col_num,
int16 operator,
ptrstr value,
int16 precision,
int16 scale)

Description qeRecSetConditionDecimal adds a search condition to the statement having
a decimal value to compare.

For all operators except the IN operator, multiple search conditions for a
column are joined with a boolean AND (that is, all conditions must be true for
the row to match the search conditions).

For the IN operator, multiple search conditions for a column are joined with a
boolean OR (that is, at least one of the IN conditions must be true for the row
to match the search conditions).

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the number of the column on which a search condition is being
placed. The first column number is 1.

operator is the comparison operator and has one of the following values:

Constant Value Operator

qeFIND_LESS_THAN 1 <

qeFIND_LESS_THAN_OR_EQ 2 <=

qeFIND_GREATER_THAN 3 >

Go To
Chapter 10 DTK Functions
qeRecSetConditionDecimal 388

DataDirect Developer’s Toolkit Programmer’s Guide

value points to the decimal comparison value.

precision is the precision of the decimal value.

scale is the scale of the decimal value.

res_code is the result code returned by qeRecSetConditionDecimal, which
returns the same set of result codes as qeErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeRecSetConditionDecimal (hstmt, 5 ,

qeFIND_GREATER_THAN, dec_val, 8, 2) ;
new_hstmt = qeQBEPrepare (hstmt) ;
res_code = qeSQLExecute (new_hstmt) ;
while (qeFetchNext (new_hstmt) == qeSUCCESS)

...
/* Get values matching condition. * /

...
res_code = qeEndSQL (new_hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

qeFIND_GREATER_THAN_OR_EQ 4 >=

qeFIND_EQUAL 5 =

qeFIND_NOT_EQUAL 6 <>

qeFIND_IN 9 IN

Constant Value Operator

Go To
Chapter 10 DTK Functions
qeRecSetConditionDouble 389

DataDirect Developer’s Toolkit Programmer’s Guide

qeRecSetConditionDouble

qeRecSetConditionDouble adds a search condition to the statement having a
double-precision floating-point value to compare.

Syntax int16 res_code qeRecSetConditionDouble (
int16 hstmt,
int16 col_num,
int16 operator,
float64 value)

Description qeRecSetConditionDouble adds a search condition to the statement having a
double-precision floating-point value to compare.

For all operators except the IN operator, multiple search conditions for a
column are joined with a boolean AND (that is, all conditions must be true for
the row to match the search conditions).

For the IN operator, multiple search conditions for a column are joined with a
boolean OR (that is, at least one of the IN conditions must be true for the row
to match the search conditions).

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the number of the column on which a search condition is being
placed. The first column number is 1.

operator is the comparison operator and has one of the following values:

Constant Value Operator

qeFIND_LESS_THAN 1 <

qeFIND_LESS_THAN_OR_EQ 2 <=

qeFIND_GREATER_THAN 3 >

qeFIND_GREATER_THAN_OR_EQ 4 >=

Go To
Chapter 10 DTK Functions
qeRecSetConditionDouble 390

DataDirect Developer’s Toolkit Programmer’s Guide

value points to the double-precision floating-point comparison value.

res_code is the result code returned by qeRecSetConditionDouble, which
returns the same set of result codes as qeErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeRecSetConditionDouble (hstmt, 5 ,

qeFIND_GREATER_THAN, 20000.00) ;
new_hstmt = qeQBEPrepare (hstmt) ;
res_code = qeSQLExecute (new_hstmt) ;
while (qeFetchNext (new_hstmt) == qeSUCCESS)

...
/* Get values matching condition. * /

...
res_code = qeEndSQL (new_hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

qeFIND_EQUAL 5 =

qeFIND_NOT_EQUAL 6 <>

qeFIND_IN 9 IN

Constant Value Operator

Go To
Chapter 10 DTK Functions

qeRecSetConditionFloat 391

DataDirect Developer’s Toolkit Programmer’s Guide

qeRecSetConditionFloat

qeRecSetConditionFloat adds a search condition to the statement having a
single-precision floating-point value to compare.

Syntax int16 res_code qeRecSetConditionFloat (
int16 hstmt,
int16 col_num,
int16 operator,
float32 value)

Description qeRecSetConditionFloat adds a search condition to the statement having a
single-precision floating-point value to compare.

For all operators except the IN operator, multiple search conditions for a
column are joined with a boolean AND (that is, all conditions must be true for
the row to match the search conditions).

For the IN operator, multiple search conditions for a column are joined with a
boolean OR (that is, at least one of the IN conditions must be true for the row
to match the search conditions).

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the number of the column on which a search condition is being
placed. The first column number is 1.

operator is the comparison operator and has one of the following values:

Constant Value Operator

qeFIND_LESS_THAN 1 <

qeFIND_LESS_THAN_OR_EQ 2 <=

qeFIND_GREATER_THAN 3 >

qeFIND_GREATER_THAN_OR_EQ 4 >=

Go To
Chapter 10 DTK Functions

qeRecSetConditionFloat 392

DataDirect Developer’s Toolkit Programmer’s Guide

value points to the single-precision floating-point comparison value.

res_code is the result code returned by qeRecSetConditionFloat, which
returns the same set of result codes as qeErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeRecSetConditionFloat (hstmt, 5 ,

qeFIND_GREATER_THAN, 20000.00) ;
new_hstmt = qeQBEPrepare (hstmt) ;
res_code = qeSQLExecute (new_hstmt) ;
while (qeFetchNext (new_hstmt) == qeSUCCESS)

...
/* Get values matching condition. * /

...
res_code = qeEndSQL (new_hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

qeFIND_EQUAL 5 =

qeFIND_NOT_EQUAL 6 <>

qeFIND_IN 9 IN

Constant Value Operator

Go To
Chapter 10 DTK Functions

qeRecSetConditionInt 393

DataDirect Developer’s Toolkit Programmer’s Guide

qeRecSetConditionInt

qeRecSetConditionInt adds a search condition to the statement having a 2-
byte integer value to compare.

Syntax int16 res_code qeRecSetConditionInt (
int16 hstmt,
int16 col_num,
int16 operator,
int16 value)

Description qeRecSetConditionInt adds a search condition to the statement having a 2-
byte integer value to compare.

For all operators except the IN operator, multiple search conditions for a
column are joined with a boolean AND (that is, all conditions must be true for
the row to match the search conditions).

For the IN operator, multiple search conditions for a column are joined with a
boolean OR (that is, at least one of the IN conditions must be true for the row
to match the search conditions).

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the number of the column on which a search condition is being
placed. The first column number is 1.

operator is the comparison operator and has one of the following values:

Constant Value Operator

qeFIND_LESS_THAN 1 <

qeFIND_LESS_THAN_OR_EQ 2 <=

qeFIND_GREATER_THAN 3 >

qeFIND_GREATER_THAN_OR_EQ 4 >=

Go To
Chapter 10 DTK Functions

qeRecSetConditionInt 394

DataDirect Developer’s Toolkit Programmer’s Guide

value points to the 2-byte integer comparison value.

res_code is the result code returned by qeRecSetConditionInt, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeRecSetConditionInt (hstmt, 7 ,

qeFIND_EQUAL, 1) ;
new_hstmt = qeQBEPrepare (hstmt) ;
res_code = qeSQLExecute (new_hstmt) ;
while (qeFetchNext (new_hstmt) == qeSUCCESS)

...
/* Get values matching condition. * /

...
res_code = qeEndSQL (new_hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

qeFIND_EQUAL 5 =

qeFIND_NOT_EQUAL 6 <>

qeFIND_IN 9 IN

Constant Value Operator

Go To
Chapter 10 DTK Functions

qeRecSetConditionLong 395

DataDirect Developer’s Toolkit Programmer’s Guide

qeRecSetConditionLong

qeRecSetConditionLong adds a search condition to the statement having a
4-byte integer value to compare.

Syntax int16 res_code qeRecSetConditionLong (
int16 hstmt,
int16 col_num,
int16 operator,
int32 value)

Description qeRecSetConditionLong adds a search condition to the statement having a
4-byte integer value to compare.

For all operators except the IN operator, multiple search conditions for a
column are joined with a boolean AND (that is, all conditions must be true for
the row to match the search conditions).

For the IN operator, multiple search conditions for a column are joined with a
boolean OR (that is, at least one of the IN conditions must be true for the row
to match the search conditions).

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the number of the column on which a search condition is being
placed. The first column number is 1.

operator is the comparison operator and has one of the following values:

Constant Value Operator

qeFIND_LESS_THAN 1 <

qeFIND_LESS_THAN_OR_EQ 2 <=

qeFIND_GREATER_THAN 3 >

qeFIND_GREATER_THAN_OR_EQ 4 >=

Go To
Chapter 10 DTK Functions

qeRecSetConditionLong 396

DataDirect Developer’s Toolkit Programmer’s Guide

value points to the 4-byte integer comparison value.

res_code is the result code returned by qeRecSetConditionLong, which
returns the same set of result codes as qeErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeRecSetConditionLong (hstmt, 5 ,

qeFIND_GREATER_THAN, 20000) ;
new_hstmt = qeQBEPrepare (hstmt) ;
res_code = qeSQLExecute (new_hstmt) ;
while (qeFetchNext (new_hstmt) == qeSUCCESS)

...
/* Get values matching condition. * /

...
res_code = qeEndSQL (new_hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

qeFIND_EQUAL 5 =

qeFIND_NOT_EQUAL 6 <>

qeFIND_IN 9 IN

Constant Value Operator

Go To
Chapter 10 DTK Functions

qeRecSetConditionNull 397

DataDirect Developer’s Toolkit Programmer’s Guide

qeRecSetConditionNull

qeRecSetConditionNull adds a search condition to the statement having a
value to compare of null.

Syntax int16 res_code qeRecSetConditionNull (
int16 hstmt,
int16 col_num,
int16 operator)

Description qeRecSetConditionNull adds a search condition to the statement having a
value to compare of null.

For all operators except the IN operator, multiple search conditions for a
column are joined with a boolean AND (that is, all conditions must be true for
the row to match the search conditions).

For the IN operator, multiple search conditions for a column are joined with a
boolean OR (that is, at least one of the IN conditions must be true for the row
to match the search conditions).

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the number of the column on which a search condition is being
placed. The first column number is 1.

operator is the comparison operator and has one of the following values:

Constant Value Operator

qeFIND_EQUAL 5 =

qeFIND_NOT_EQUAL 6 <>

qeFIND_IN 9 IN

Go To
Chapter 10 DTK Functions

qeRecSetConditionNull 398

DataDirect Developer’s Toolkit Programmer’s Guide

res_code is the result code returned by qeRecSetConditionNull, which
returns the same set of result codes as qeErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeRecSetConditionNull (hstmt, 3,

qeFIND_NOT_EQUAL) ;
new_hstmt = qeQBEPrepare (hstmt) ;
res_code = qeSQLExecute (new_hstmt) ;
while (qeFetchNext (new_hstmt) == qeSUCCESS)

...
/* Get values matching condition. * /

...
res_code = qeEndSQL (new_hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeRecSetKey 399

DataDirect Developer’s Toolkit Programmer’s Guide

qeRecSetKey

qeRecSetKey determines which columns DTK uses to uniquely identify a
row.

Syntax int16 res_code qeRecSetKey (
int16 hstmt,
int16 col_num,
int16 value)

Description A column that helps uniquely identify records in the database is part of a
primary key for the database. When qeRecDelete, qeRecUpdate, and
qeRecLock are called, the columns specified by qeRecSetKey are used to
help identify the record within the result set to be operated on. DTK uses
these columns in a Where clause that uniquely identifies the current record in
the buffer in the statement it generate for the database operation.

If no columns are flagged as being part of the unique key when qeRecDelete,
qeRecUpdate, qeRecLock, or qeUniqueWhereClause is called, DTK chooses
a set of columns as the key. These columns are set as the unique key until
the user changes them. A call to qeRecGetKey reports an individual column’s
presence in the key. To return the complete set of columns that DTK will
choose for the key, call qeUniqueWhereClause.

See “Unique Keys” on page 78 for more information on DTK’s use of unique
keys.

An error is issued if the column is not valid for use in a primary key.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the column number that is to be included in the primary key. The
first column number is 1.

value is TRUE (1) to set the column as a key, and FALSE (0) to exclude the
column from the primary key.

Go To
Chapter 10 DTK Functions

qeRecSetKey 400

DataDirect Developer’s Toolkit Programmer’s Guide

res_code is the result code returned by qeRecSetKey, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
/* Make 4th column part of the key * /
res_code = qeRecSetKey (hstmt, 4, 1) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeRecGetKey, qeSetLockOptions, qeUniqueWhereClause and
qeUniqueWhereClauseBuf.

Go To
Chapter 10 DTK Functions

qeRecState 401

DataDirect Developer’s Toolkit Programmer’s Guide

qeRecState

qeRecState returns the state of the current record.

Syntax int16 rec_state qeRecState (int16 hstmt)

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

rec_state is the returned state of the record. It has one of the following
values:

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeFetchNext (hstmt) ;
state = qeRecState (hstmt) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Constant Value Description

qeSTATE_NEW 1 The record is a new record that has
not been sent to the database and
contains no fields that have been
updated.

qeSTATE_UNCHANGED 2 The record has no changes waiting
to be sent to the database.

qeSTATE_CHANGED 3 The record has changes waiting to
be sent to the database.

qeSTATE_NOREC 4 The hstmt is not currently
positioned on a record.

qeSTATE_NEW_
CHANGED

5 The record is new and has not
been sent to the database but has
had one or more columns modified
by calls to qePut functions.

Go To
Chapter 10 DTK Functions

qeRecUndo 402

DataDirect Developer’s Toolkit Programmer’s Guide

qeRecUndo

qeRecUndo discards changes to the current record that have not been sent
to the database.

Syntax int16 res_code qeRecUndo (int16 hstmt)

Description qeRecUndo discards all changes that have been performed on the current
record but have not been sent to the database.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

res_code is the result code returned by qeRecUndo, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
res_code = qeBeginTran (hdbc) ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeFetchNext (hstmt) ;
res_code = qePutChar (hstmt, 1, "", "Mike") ;
res_code = qePutChar (hstmt, 2, "", "McGarrah") ;
res_code = qeRecUndo (hstmt) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeCommit (hdbc) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeRecUpdate 403

DataDirect Developer’s Toolkit Programmer’s Guide

qeRecUpdate

qeRecUpdate updates the current record with the new values set using qePut
functions.

Syntax int16 res_code qeRecUpdate (int16 hstmt)

Description qeRecUpdate updates the current record with new values that were set using
qePut functions. It also inserts a record that was created by qeRecNew.

You can call qeNumModRecs to determine the number of records affected by
a call to qeRecUpdate.

Calling this function causes DTK to generate a unique key if you have not
already defined one with qeRecSetKey.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

res_code is the result code returned by qeRecUpdate, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeFetchNext (hstmt) ;
res_code = qePutChar (hstmt, 1, "", "Mike") ;
res_code = qePutChar (hstmt, 2, "", "McGarrah") ;
res_code = qeRecUpdate (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Notes If you call qeRecUpdate without having called a qeFetch function or
qeRecNew, DTK returns an error. For example, if you call qeExecSQL and
then immediately call qeRecUpdate on the new hstmt, DTK cannot update a

Go To
Chapter 10 DTK Functions

qeRecUpdate 404

DataDirect Developer’s Toolkit Programmer’s Guide

record because the hstmt is still positioned on record 0 (no record). In order
to update a record, you must first call qeFetchNext to position on the first
record in the buffer (record 1).

Important: To update the current record, qeRecUpdate generates a SQL
Update statement that uses a Where clause to uniquely identify that record. If
this Where clause matches multiple records, qeRecUpdate updates all
matching records. You can recover from such invalid modifications by using
transactions and calling qeNumModRecs after each call to qeRecUpdate to
verify that multiple records were not affected. Calling qeRecLock before calls
to qeRecUpdate can also help prevent multiple modifications, since
qeRecLock uses the same Where clause as qeRecUpdate and returns a
warning if it locks multiple records.

See Also qeRecSetKey.

Go To
Chapter 10 DTK Functions

qeRollback 405

DataDirect Developer’s Toolkit Programmer’s Guide

qeRollback

qeRollback ends a database transaction and cancels all changes to the
database made during the transaction.

Syntax int16 res_code qeRollback (int16 hdbc)

Description qeRollback discards all changes made on the connection since qeBeginTran
was called and removes all locks held in the database system.

The discarded changes include any saved changes on records other than the
current record, any records created by calling qeRecNew, and any new
values placed in the current record by calls to qePut functions.

After a rollback, DTK is positioned between what was the last current record
in the transaction and the next record in the hstmt. Before you perform any
operations against the records, call one of the qeFetch functions to position
on a valid record.

You must call qeBeginTran to start a transaction before you can call
qeRollback to undo all changes.

Parameters hdbc is the handle to the database connection returned by qeConnect.

res_code is the result code returned by qeRollback, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeRollback 406

DataDirect Developer’s Toolkit Programmer’s Guide

Example To roll back changes made to a SQL Server database:

hdbc=qeConnect ("DSN=QESS;UID=sa;SRVR=PION1") ;
...
res_code = qeBeginTran (hdbc) ;
hstmt = qeExecSQL (hdbc ,

"UPDATE emp SET salary=salary*1.1") ;
res_code = qeEndSQL (hstmt) ;
res_code = qeRollback (hdbc) ;
res_code = qeDisconnect (hdbc) ;

See Also qeBeginTran, qeCommit.

Go To
Chapter 10 DTK Functions

qeSetAutoUpdate 407

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetAutoUpdate

qeSetAutoUpdate determines what happens when the hstmt is moved to a
new record before changed values have been updated or inserted.

Syntax int16 res_code qeSetAutoUpdate (int16 hdbc, int16 option)

Description qeSetAutoUpdate determines what happens when the hstmt is moved to a
new record before changed values have been updated or inserted by a call to
qeRecUpdate. When option is set to qeAUTOUP_UPDATE (3), a call to
qeFetchNext or any other command that changes the current record number
causes DTK to automatically update the current record if any changes have
been made to it. When option is set to qeAUTOUP_DEFER (2), changes can
be deferred—saved but not updated in the database—until a call to
qeApplyAll, qeUndoAll, qeRecUndo, or qeRollback updates the database or
discards the changes. The default is qeAUTOUPD_DISCARD (1), which
causes DTK to discard changes or insertions.

Parameters hdbc is the handle to the database connection returned by qeConnect.

option determines whether DTK automatically generates Update or Insert
statements when you move off a changed or inserted row. It has one of the
following values:

Constant Value Action

qeAUTOUPD_
DISCARD

1 DTK discards changes or insertions. This is
the default.

qeAUTOUPD_
DEFER

2 DTK saves the changes but does not update
the database. This option enables you to use
the qeApplyAll and qeUndoAll functions.

qeAUTOUPD_
UPDATE

3 DTK updates the changed or inserted record.

Go To
Chapter 10 DTK Functions

qeSetAutoUpdate 408

DataDirect Developer’s Toolkit Programmer’s Guide

res_code is the result code returned by qeSetAutoUpdate, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
res_code = qeSetAutoUpdate (hdbc, qeAUTOUPD_DEFER) ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeFetchNext (hstmt) ;
res_code = qePutLong (hstmt, 5, 32000) ;
res_code = qeFetchNext (hstmt) ;
/* At this point, the change to the previous record * /
/* has not been sent to the database, but if the user * /
/* were to position back to the first record, and issue
*/
/* a qeRecUpdate, the modification would be made. * /
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeGetAutoUpdate, qeApplyAll, qeUndoAll, qeRecUndo, qeRollback.

Go To
Chapter 10 DTK Functions

qeSetCacheFileName 409

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetCacheFileName

qeSetCacheFileName sets the file name to be used when caching table
names.

Syntax int16 res_code qeSetCacheFileName (
int16 hdbc,
ptrstr file_name)

Description You can call this function to set the file name to be used when caching of
table names is enabled.

The qeSetTableCaching function determines whether the results of qeTables
calls are cached. You can call qeGetTableCaching to determine the level of
caching enabled. If table caching is set to qeCACHE_PERMANENT (1), you
can reuse an existing cache file by specifying it in a call to this function.

A cache file is maintained for each connection.

Important: If session caching is in progress when you call
qeSetCacheFileName, the existing cache file is deleted.

Parameters hdbc is the handle to the connection returned by qeConnect.

file_name is the name of the file to use for caching. It must be a valid name
for the operating system you are using. A null value results in a system-
generated temporary file being used.

res_code is the result code returned by qeSetCacheFileName, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeSetCacheFileName 410

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
res_code = qeSetCacheFileName (hdbc, "CacheF") ;
...
res_code = qeDisconnect (hdbc) ;

See Also qeSetTableCaching.

Go To
Chapter 10 DTK Functions

qeSetDB 411

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetDB

qeSetDB sets the default database in database systems that allow tables to
be stored in separate databases.

Syntax int16 res_code qeSetDB (int16 hdbc, ptrstr database)

Description When using a database system that lets you store tables in separate
databases, you can set the default database for your application with a call to
qeSetDB. All subsequent SQL statements are sent to this database.

This function is supported by a limited number of database systems.

Parameters hdbc is the handle to the database connection returned by qeConnect.

database is the name of the database to become the default.

res_code is the result code returned by qeSetDB, which returns the same set
of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example To change the SQL Server default database:

hdbc = qeConnect ("DSN=QESS;UID=sa;SRVR=PION1") ;
...
res_code = qeSetDB (hdbc, "pubs") ;
hstmt = qeExecSQL (hdbc ,

"SELECT * FROM authors") ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeSetDriverTracefile 412

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetDriverTracefile

qeSetDriverTracefile specifies a driver trace file.

Syntax int16 res_code qeSetDriverTracefile (
int16 hdbc,
ptrstr file_name)

Description qeSetDriverTracefile lets you specify a file to which driver tracing is written.
This file traces the ODBC calls made by DTK, and so is not the same as the
standard DTK trace file.

This function is useful only when ODBC tracing is enabled by a call to
qeSetTraceOptions.

Parameters hdbc is a handle to a database connection obtained from qeConnect.

file_name points to the name of the file to which trace information should be
written. It must be a valid name for the operating system you are using. If null,
trace information is written to SQL.LOG.

res_code is the result code returned by qeSetDriverTracefile, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example res_code = qeTraceOn ("\\trace.txt") ;
res_code = qeSetTraceOptions (qeTRACE_ODBC) ;
res_code = qeSetDriverTracefile (hdbc, "\\odbctrc.txt") ;
hdbc = qeConnect ("DSN=QEDBF") ;
...
res_code = qeDisconnect (hdbc) ;
res_code = qeTraceOff () ;

See Also qeSetTraceOptions.

Go To
Chapter 10 DTK Functions

qeSetIsolationLevel 413

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetIsolationLevel

qeSetIsolationLevel sets the isolation level for the connection.

Syntax int16 res_code qeSetIsolationLevel(int16 hdbc, int16
level)

Description qeSetIsolationLevel sets the isolation level for the database to which you are
connected. An isolation level represents a particular locking strategy
employed in the database to improve data consistency. The higher the
isolation level, the more complex the locking strategy behind it. The following
table shows what data consistency behaviors can occur at each isolation
level:

These behaviors are described along with other information on isolation
levels in “Isolation Levels” on page 85.

The isolation levels supported and default isolation level are database-
dependent. Many databases support only a subset of these isolation levels.
Call qeGetSupportedIsolationLevels, which returns the set of isolation levels
the database supports, before calling qeSetIsolationLevel.

Level Dirty
reads

Non-repeatable
reads

Phantom
reads

0, Read uncommitted Yes Yes Yes

1, Read committed No Yes Yes

2, Repeatable read No No Yes

3, Serializable
(4, Versioning)

No No No

Go To
Chapter 10 DTK Functions

qeSetIsolationLevel 414

DataDirect Developer’s Toolkit Programmer’s Guide

Parameters hdbc is the handle to the database connection returned by qeConnect.

level is the isolation level that is to be set in the database. It is one of the
following values:

res_code is the result code returned by qeSetIsolationLevel, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Constant Value Description

qeISO_READ_
UNCOMMITTED

0x0001 Read uncommitted (0) isolation level.
Locks are obtained on modifications to
the database and held until end of
transaction (EOT). Reading from the
database does not involve any locking.

qeISO_READ_
COMMITTED

0x0002 Read committed (1) isolation level. Locks
are acquired for reading and modifying
the database. Locks are released after
reading but locks on modified objects are
held until EOT.

qeISO_REPEATABLE_
READ

0x0004 Repeatable read (2) isolation level. Locks
are obtained for reading and modifying
the database. Locks on all modified
objects are held until EOT. Locks
obtained for reading data are held until
EOT. Locks on non-modified access
structures (indexes, hashing structures,
etc.) are released after reading.

qeISO_SERIALIZABLE 0x0008 Serializable (3) isolation level. All data
read or modified is locked until EOT. All
access structures that are modified are
locked until EOT. Access structures used
by the query are locked until EOT.

qeISO_VERSIONING 0x0010 Versioning (4) isolation level. Similar to
isolation level 3, serializable, but provides
greater concurrence through the use of
non-locking “record versioning” protocols.

Go To
Chapter 10 DTK Functions

qeSetIsolationLevel 415

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QESS") ;
levels = qeGetSupportedIsolationLevels (hdbc) ;
cur_level = qeGetIsolationLevel (hdbc) ;
if (levels & qeISO_READ_COMMITTED)

res_code = qeSetIsolationLevel (hdbc,
qeISO_READ_COMMITTED) ;

res_code = qeDisconnect (hdbc) ;

See Also qeGetIsolationLevel, qeGetSupportedIsolationLevels.

Go To
Chapter 10 DTK Functions

qeSetLockOptions 416

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetLockOptions

qeSetLockOptions controls the behavior of qeRecLock in regard to records
that may have changed in the database since they were initially read.

Syntax int16 res_code qeSetLockOptions (int16 hdbc, int16
option)

Description qeSetLockOptions sets the behavior of the qeRecLock function, providing
options that help you avoid locking and updating records in the log file that
have changed in the database since they were first read. By default, you can
lock and update such records. However, by setting the qeLOCK_COMPARE
or qeLOCK_REFRESH options, you can have DTK either warn you when the
locked record has changed or automatically refresh the copy in the log file
with the corresponding values from the database so that the values you see
are always current.

Calls to qeSetLockOptions are not cumulative; the options it sets are valid for
the entire connection or until you change them by calling this function.

Parameters hdbc is the handle to the database connection returned by qeConnect.

option lets you control DTK’s optional locking behavior. You can specify one
of the following values:

Constant Value Description

qeLOCK_NO_OPTIONS 0 Default; DTK neither compares nor
refreshes the record in the log file.

qeLOCK_COMPARE 1 When locking, DTK compares the
record in the log file to the
corresponding record in the database,
and raises a warning if they are
different.

qeLOCK_REFRESH 2 When locking, DTK automatically
refreshes the record in the log file with
new column values.

Go To
Chapter 10 DTK Functions

qeSetLockOptions 417

DataDirect Developer’s Toolkit Programmer’s Guide

res_code is the result code returned by qeSetLockOptions, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
res_code = qeSetLockOptions (hdbc, qeLOCK_COMPARE) ;
/* Set locking to compare and raise a * /
/* warning if buffer differs for log file.* /
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
/* Statement has lock options set to qeLOCK_COMPARE. * /
res_code = qeDisconnect (hdbc) ;

See Also qeRecLock, qeGetLockOptions.

Go To
Chapter 10 DTK Functions

qeSetLoginTimeout 418

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetLoginTimeout

qeSetLoginTimeout sets the number of seconds to wait for a login request to
complete before returning.

Syntax int16 res_code qeSetLoginTimeout (int32 seconds)

Description qeSetLoginTimeout sets the login timeout, in seconds.

This function has no effect if the driver does not support timeouts.

Parameters seconds is the number of seconds to wait for a login to complete. The default
is 15. If seconds is 0, a connection attempt waits indefinitely.

res_code is the result code returned by qeSetLoginTimeout, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example To have SQL Server wait indefinitely:

res_code = qeSetLoginTimeout (0) ;
hdbc = qeConnect ("DSN=qess") ;
...
res_code = qeDisconnect (hdbc) ;

See Also qeGetLoginTimeout.

Go To
Chapter 10 DTK Functions

qeSetMaxRows 419

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetMaxRows

qeSetMaxRows sets the maximum number of rows that a statement returns.
You can call this function to limit the amount of records that a Select
statement will return.

Syntax int16 res_code qeSetMaxRows (int16 hdbc, int32 max_rows)

Parameters hdbc is the handle to the database connection returned by qeConnect.

max_rows is the maximum number of rows that should be returned for the
query. 0, the default, indicates that all rows are to be returned.

res_code is the result code returned by qeSetMaxRows, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QESS") ;
res_code = qeSetMaxRows (hdbc, 10) ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeGetMaxRows.

Go To
Chapter 10 DTK Functions

qeSetODBCHdbc 420

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetODBCHdbc

qeSetODBCHdbc creates a DTK hdbc from the ODBC hdbc.

Syntax int16 hdbc qeSetODBCHdbc (ptrstr ODBCHdbc)

Description qeSetODBCHdbc creates a DTK hdbc from the ODBC hdbc. This function is
useful when you want to connect to a database using the ODBC
SQLDriverConnect or SQLBrowseConnect functions. After establishing a
connection via the ODBC function, you can call qeSetODBCHdbc to convert
the ODBC connection handle to a handle usable by DTK functions.

Important: This function is potentially dangerous. Using the ODBC hdbc to
change the state of the ODBC connection may create situations that trap.
There is no guarantee of proper behavior when you call qeSetODBCHdbc,
because DTK cannot know any information about the hstmt or hdbc involved.
Use at your own risk.

Parameters hdbc is the handle to the connection returned by qeSetODBCHdbc.

ODBCHdbc is a pointer to the hdbc returned by the ODBC SQLConnect,
SQLBrowseConnect, or SQLDriverConnect function.

res_code is the result code returned by qeSetODBCHdbc, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example ...
/* Previous code retrieved an ODBC hdbc * /
hdbc = qeSetODBCHdbc (odbc_hdbc) ;
...
/* Use as a normal hdbc. * /
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeSetOneHstmtPerHdbcOptions 421

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetOneHstmtPerHdbcOptions

qeSetOneHstmtPerHdbcOptions sets options that determine which fetching
commands and statement behaviors are allowed by DTK.

Note: If the data source to which you are connected supports more than one
hstmt per hdbc, this function has no effect.

Syntax int16 res_code qeSetOneHstmtPerHdbcOptions (
int16 hdbc,
int32 flags)

Parameters hdbc is the handle to the database connection returned by qeConnect.

flags is a set of option flags that controls read-ahead activity, statement
routing, and hstmt behavior when DTK uses multiple connections to
databases that support only one statement per connection. You can set one
read-ahead, routing, and hstmt option from among the following:

Constant Value Description

qeREADAHEAD_AT_
EXEC

0x0001 DTK reads the statement’s entire result
set into the log file when the statement
executes. Reading result sets at this
time will often free handles for users of
databases who have licenses
restricting open handles.

qeREADAHEAD_AT_
UPDATE

0x0002 DTK reads the remainder of the result
set into the log file whenever a record
is locked, updated, or deleted. This is
the default read-ahead option.

qeREADAHEAD_
COMMIT_UPDATES

0x0003 DTK avoids all read-ahead activity by
requiring you to commit all updates
before fetching any more records.

qeROUTING_READ 0x0008 DTK routes this statement through a
connection used for read-only
statements.

Go To
Chapter 10 DTK Functions

qeSetOneHstmtPerHdbcOptions 422

DataDirect Developer’s Toolkit Programmer’s Guide

These values can be combined by adding them together or joining them with
an OR clause. For example, the default is qeREADAHEAD_AT_UPDATE +
qeROUTING_DEFAULT + qeHSTMT_NONLOCAL.

res_code is the result code returned by qeSetOneHstmtPerHdbc-Options,
which returns the same set of result codes as qeErr. See Appendix D, “Result
and Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QESS") ;
res_code = qeSetOneHstmtPerHdbcOptions (hdbc,
qeREADAHEAD_AT_UPDATE +qeHSTMT_LOCAL) ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
...
/* Options will affect what happens if records * /
/* are modified on this hstmt. * /
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also For more information on using this function, see Appendix C, “Coding for
Single Statement Database Systems,” on page 529.

qeROUTING_UPDATE 0x0010 DTK routes this statement through a
connection used for statements that
modify the database.

qeROUTING_DEFAULT 0x0018 This option lets DTK decide which
connection to send the statement to.
This is the default routing option.

qeHSTMT_LOCAL 0x0020 Tells DTK that this hstmt cannot affect
any other active hstmt in the same
application.

qeHSTMT_NONLOCAL 0x0040 Tells DTK that this hstmt may affect
other hstmts in the same application.
This is the default hstmt behavior.

Constant Value Description

Go To
Chapter 10 DTK Functions

qeSetParamBinary 423

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetParamBinary

qeSetParamBinary sets the value of a binary parameter.

Syntax int16 res_code qeSetParamBinary (
int16 hstmt,
int16 param_num,
ptrstr param_val,
int32 param_len)

Description qeSetParamBinary assigns the value of a parameter in a SQL statement to a
binary value.

DTK copies the assigned value, so the pointer need not remain valid after this
call. This parameter has this value until qeClearParam or a qeSetParam or
qeBindParam function is called again for this parameter. All parameters with
the same name as the one identified by param_num are affected.

Before calling qeSetParamBinary, you must call qeSQLPrepare. You must
give values to all parameters before calling qeSQLExecute.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare,
qeQryPrepare, or qeQBEPrepare.

param_num is the position of the parameter to be set. The first parameter
number is 1.

param_val is the value to be assigned to the parameter.

param_len is the number of valid bytes in param_val.

res_code is the result code returned by qeSetParamBinary, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeSetParamBinary 424

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc,

"INSERT INTO emp (MEMO) VALUES (?)") ;
/* bindata contains binary information. * /
res_code = qeSetParamBinary (hstmt, 1, bindata, 10) ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeSetParamChar 425

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetParamChar

qeSetParamChar sets the value of a character parameter.

Syntax int16 res_code qeSetParamChar (
int16 hstmt,
int16 param_num,
ptrstr param_val,
int32 max_len)

Description qeSetParamChar assigns the value of a parameter in a SQL statement to a
character value.

DTK copies the assigned value, so the pointer need not remain valid after this
call. This parameter has this value until qeClearParam or a qeSetParam or
qeBindParam function is called again for this parameter. All parameters with
the same name as the one identified by param_num are affected.

Before calling qeSetParamChar, you must call qeSQLPrepare. You must give
values to all parameters before calling qeSQLExecute.

qeSetParamChar may be called multiple times before executing, resulting in
the parameter value being set to the concatenation of all values sent. Lengths
of zero are ignored.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be set.

param_val is the character value to be assigned to the parameter.

max_len is the size of the column with which this parameter is associated.
This setting determines whether the parameter is of varying character or long
varying character type. If max_len is less than or equal to the largest
character string allowed by the database, then the parameter is varying
character type. If greater, it is long varying character type.

Go To
Chapter 10 DTK Functions

qeSetParamChar 426

DataDirect Developer’s Toolkit Programmer’s Guide

Important: A mismatch between the parameter type and the database
column type (varying character versus long varying character) may cause
unusual problems for some database drivers, for which no errors are
returned.

res_code is the result code returned by qeSetParamChar, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM emp WHERE
last_name = ?") ;
res_code = qeSetParamChar (hstmt, 1, "Joe", 10) ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeSetParamDataType 427

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetParamDataType

qeSetParamDataType sets the data type of a stored procedure’s output
parameters.

Syntax int16 res_code qeSetParamDataType (
int16 hstmt,
int16 param_num,
int16 param_type,
int32 precision,
int16 scale)

Description When the qeSetParam and qeGetParam functions are being used in place of
the qeBindParam functions, you should call qeSetParamDataType for every
output parameter.

This function is used only with output parameters. Thus, before
qeSetParamDataType can be called for a parameter, qeSetParamIOType
must be called for that parameter to set it as an output parameter.

When binding parameters, you must call a qeBindParam function for each
parameter to create a buffer to pull the input value from or put the output
value into; since the qeBindParam functions set the data type for all
parameters, you do not need to call qeSetParamDataType when you bind
parameters.

When using the qeSetParam and qeGetParam functions instead of binding,
you must call qeSetParam for all input and all input/output parameters.
Because the qeSetParam functions cannot set the data type for output
parameters, you must use qeSetParamDataType for output parameters.

Calling both qeSetParamDataType and a qeBindParam/qeSetParam function
for the same parameter does not result in an error as long as the data type
and data size passed for the parameter are the same in both calls; if the
parameter’s data type or data size conflicts between the two calls, an error is
issued.

Go To
Chapter 10 DTK Functions

qeSetParamDataType 428

DataDirect Developer’s Toolkit Programmer’s Guide

Calling this function on an input or an input/output parameter results in an
error.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be set.

param_type is the data type of the specified parameter. It can have one of the
following values:

precision varies by data type. For a decimal value, it is the total number of
digits returned. For a character string or binary value, it is the maximum
number of characters returned. For a date-time value, it is the number of

Constant Value Description

qeCHAR 1 Blank-padded, fixed-length string.

qeVARCHAR 2 Variable-length string.

qeDECIMAL 3 BCD number.

qeINTEGER 4 4-byte signed integer.

qeSMALLINT 5 2-byte signed integer.

qeFLOAT 6 4-byte floating-point number.

qeDOUBLEPRECISION 7 8-byte floating-point number.

qeDATETIME 8 26-byte date time value. Example:
YYYY-MM-DD HH:MM:SS:FFFFFF

qeBINARY 101 Binary string.

qeVARBINARY 102 Variable-length binary string.

qeBIT 110 Bit value.

qeDATE 111 26-byte date value.

qeTIME 112 26-byte time value.

qeNO_DATA_TYPE 0 No data type.

Go To
Chapter 10 DTK Functions

qeSetParamDataType 429

DataDirect Developer’s Toolkit Programmer’s Guide

characters from the returned value to actually use (16, 19, 23, or 26). This
value is required only if applicable to the parameter whose data type is being
set.

scale is a decimal value’s scale. This value is required only if applicable to the
parameter whose data type is being set.

res_code is the result code returned by the qeSetParamIOType function,
which returns the same set of result codes as qeErr. See Appendix D, “Result
and Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect (“DSN=QEORA;DLG=2”) ;
hstmt = qeSQLPrepare (hdbc, “{call = GetDeptName(?)}”) ;
res_code = qeSetParamIOType (hstmt, 1, qePARAM_OUTPUT) ;
res_code = qeSetParamDataType (hstmt, 1, qeCHAR, 10, 0) ;
res_code = qeSQLExecute (hstmt) ;
dept_name = qeGetParamChar (hstmt, 1, “”, 10)
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hstmt) ;

Go To
Chapter 10 DTK Functions

qeSetParamDate 430

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetParamDate

qeSetParamDate sets the value of a date parameter.

Syntax int16 res_code qeSetParamDate (
int16 hstmt,
int16 param_num,
ptrstr param_val)

Description qeSetParamDate assigns the value of a parameter in a SQL statement to a
date value.

DTK copies the assigned value, so the pointer need not remain valid after this
call. This parameter has this value until qeClearParam or a qeSetParam or
qeBindParam function is called again for this parameter. All parameters with
the same name as the one identified by param_num are affected.

Before calling qeSetParamDate, you must call qeSQLPrepare. You must give
values to all parameters before calling qeSQLExecute.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be set.

param_val is the 26-byte date value to be assigned to the parameter.

res_code is the result code returned by qeSetParamDate, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM emp WHERE

hire_date = ?") ;
res_code = qeSetParamDate (hstmt, 1,

"1983-06-01 00:00:00:000000") ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeSetParamDateTime 431

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetParamDateTime

qeSetParamDateTime sets the value of a date-time parameter.

Syntax int16 res_code qeSetParamDateTime (
int16 hstmt,
int16 param_num,
ptrstr param_val,
int16 precision)

Description qeSetParamDateTime assigns the value of a parameter in a SQL statement
to a date-time value. DTK copies the assigned value, so the pointer need not
remain valid after this call. This parameter has this value until qeClearParam
or a qeSetParam or qeBindParam function is called again for this parameter.
All parameters with the same name as the one identified by param_num are
affected.

Before calling qeSetParamDateTime, you must call qeSQLPrepare. You must
give values to all parameters before calling qeSQLExecute.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be set.

param_val is the 26-byte date-time value to be assigned.

precision is the length of the date-time value to be assigned. It is a 2-byte
integer giving the number of characters in param_val to use: 16, 19, 23, or
26.

res_code is the result code returned by qeSetParamDateTime, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeSetParamDateTime 432

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc,"SELECT * FROM emp WHERE
hire_date = ?") ;
res_code = qeSetParamDateTime (hstmt, 1,

"1983-06-01 12:00:00:000000", 26) ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeSetParamDecimal 433

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetParamDecimal

qeSetParamDecimal sets the value of a decimal parameter.

Syntax int16 res_code qeSetParamDecimal (
int16 hstmt,
int16 param_num,
ptrstr param_val,
int16 precision,
int16 scale)

Description qeSetParamDecimal assigns the value of a parameter in a SQL statement to
a decimal value. The value is formatted based on the values of precision and
scale.

DTK copies the assigned value, so the pointer need not remain valid after this
call. This parameter has this value until qeClearParam or a qeSetParam or
qeBindParam function is called again for this parameter. All parameters with
the same name as the one identified by param_num are affected.

Before calling qeSetParamDecimal, you must call qeSQLPrepare. You must
give values to all parameters before calling qeSQLExecute.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be set.

param_val is the value to be assigned to the parameter.

precision is the number of digits in the value.

scale is the number of digits to the right of the decimal point.

res_code is the result code returned by qeSetParamDecimal, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeSetParamDecimal 434

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM emp

WHERE salary = ?") ;
res_code = qeSetParamDecimal (hstmt, 5, dec_val, 9, 2) ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeSetParamDouble 435

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetParamDouble

qeSetParamDouble sets the value of a double-precision floating-point
parameter.

Syntax int16 res_code qeSetParamDouble (
int16 hstmt,
int16 param_num,
float64 param_val)

Description qeSetParamDouble assigns the value of a parameter in a SQL statement to a
double-precision floating-point value.

DTK copies the assigned value, so the pointer need not remain valid after this
call. This parameter has this value until qeClearParam or a qeSetParam or
qeBindParam function is called again for this parameter. All parameters with
the same name as the one identified by param_num are affected.

Before calling qeSetParamDouble, you must call qeSQLPrepare. You must
give values to all parameters before calling qeSQLExecute.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be set.

param_val is the double-precision floating-point value to be assigned.

res_code is the result code returned by qeSetParamDouble, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM emp

WHERE salary = ?") ;
res_code = qeSetParamDouble (hstmt, 1, 32000.00) ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeSetParamFloat 436

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetParamFloat

qeSetParamFloat sets the value of a single-precision floating-point
parameter.

Syntax int16 res_code qeSetParamFloat (
int16 hstmt,
int16 param_num,
float32 param_val)

Description qeSetParamFloat assigns the value of a parameter in a SQL statement to a
single-precision floating-point value.

DTK copies the assigned value, so the pointer need not remain valid after this
call. This parameter has this value until qeClearParam or a qeSetParam or
qeBindParam function is called again for this parameter. All parameters with
the same name as the one identified by param_num are affected.

Before calling qeSetParamFloat, you must call qeSQLPrepare. You must give
values to all parameters before calling qeSQLExecute.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be set.

param_val is the single-precision floating-point value to be assigned to the
parameter.

res_code is the result code returned by qeSetParamFloat, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeSetParamFloat 437

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM emp

WHERE salary = ?") ;
res_code = qeSetParamFloat (hstmt, 1, 32000.00) ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeSetParamInt 438

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetParamInt

qeSetParamInt sets the value of a 2-byte integer parameter.

Syntax int16 res_code qeSetParamInt (
int16 hstmt,
int16 param_num,
int16 param_val)

Description qeSetParamInt assigns the value of a parameter in a SQL statement to a 2-
byte integer value.

DTK copies the assigned value, so the pointer need not remain valid after this
call. This parameter has this value until qeClearParam or a qeSetParam or
qeBindParam function is called again for this parameter. All parameters with
the same name as the one identified by param_num are affected.

Before calling qeSetParamInt, you must call qeSQLPrepare. You must give
values to all parameters before calling qeSQLExecute.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be set.

param_val is the 2-byte integer value to be assigned to the parameter.

res_code is the result code returned by qeSetParamInt, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM emp

WHERE salary = ?") ;
res_code = qeSetParamInt (hstmt, 1, 32000) ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeSetParamIOType 439

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetParamIOType

qeSetParamIOType sets a parameter’s input/output (I/O) type.

Syntax int16 res_code qeSetParamIOType (
int16 hstmt,
int16 param_num,
int16 type_flag)

Description DTK applications should call qeSetParamIOType along with one of the
qeBindParam or qeSetParam functions for each parameter in a SQL
statement or stored procedure.

If qeSetParamIOType is not called for a parameter, the parameter is
assumed to be an input parameter. An error is issued if the application tries to
retrieve the output value from a parameter that has not been defined as either
qePARAM_INOUT or qePARAM_OUTPUT with qeSetParamIOType.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be set.

type_flag is a flag to indicate the parameter’s IO type. The type flags are:

res_code is the result code returned by the qeSetParamIOType function,
which returns the same set of result codes as qeErr. See Appendix D, “Result
and Error Message Codes,” on page 537 for a list of these result codes.

Constant Value Description

qePARAM_INPUT 2 Input parameter.

qePARAM_INOUT 3 Input/Output parameter.

qePARAM_OUTPUT 5 Output parameter.

Go To
Chapter 10 DTK Functions

qeSetParamIOType 440

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect (“DSN=QEORA;DLG=2”) ;
hstmt = qeSQLPrepare (hdbc, “{call GetDeptName(?)}”) ;
char_len = 10 ;
res_code = qeBindParamChar (hstmt, 1, dept, &char_len) ;
res_code = qeSetParamIOType (hstmt, 1, qePARAM_OUTPUT) ;
res_code = qeSQLExecute (hstmt) ;

/* The value of ?DEPT_NAME is in the dept buffer* /
res_code = qeEndSQL(hstmt) ;
res_code = qeDisconnect (hstmt) ;

Go To
Chapter 10 DTK Functions

qeSetParamLong 441

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetParamLong

qeSetParamLong sets the value of a 4-byte integer parameter.

Syntax int16 res_code qeSetParamLong (
int16 hstmt,
int16 param_num,
int32 param_val)

Description qeSetParamLong assigns the value of a parameter in a SQL statement to a
4-byte integer value.

DTK copies the assigned value, so the pointer need not remain valid after this
call. This parameter has this value until qeClearParam or a qeSetParam or
qeBindParam function is called again for this parameter. All parameters with
the same name as the one identified by param_num are affected.

Before calling qeSetParamLong, you must call qeSQLPrepare. You must give
values to all parameters before calling qeSQLExecute.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be set.

param_val is the 4-byte integer value to be assigned to the parameter.

res_code is the result code returned by qeSetParamLong, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM emp

WHERE salary = ?") ;
res_code = qeSetParamLong (hstmt, 1, 32000) ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeSetParamNull 442

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetParamNull

qeSetParamNull sets the value of a parameter in a SQL statement to null.

Syntax int16 res_code qeSetParamNull (
int16 hstmt,
int16 param_num,
int16 param_type,
int32 precision,
int16 scale)

Description qeSetParamNull assigns a null value to a parameter in a SQL statement.

Before calling qeSetParamNull, you must call qeSQLPrepare. You must give
values to all parameters before calling qeSQLExecute.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be set.

param_type is the data type of the specified parameter. It can have one of the
following values:

Constant Value Description

qeCHAR 1 Blank-padded, fixed-length string.

qeVARCHAR 2 Variable-length string.

qeDECIMAL 3 BCD number.

qeINTEGER 4 4-byte signed integer.

qeSMALLINT 5 2-byte signed integer.

qeFLOAT 6 4-byte floating-point number.

qeDOUBLEPRECISION 7 8-byte floating-point number.

qeDATETIME 8 26-byte date time value. Example:
YYYY-MM-DD HH:MM:SS.FFFFFF

Go To
Chapter 10 DTK Functions

qeSetParamNull 443

DataDirect Developer’s Toolkit Programmer’s Guide

You can specify qeNO_DATA_TYPE only if the specified parameter has
already been assigned a data type by a previous call to a qeSetParam or
qeBindParam function.

precision is a decimal value’s precision, the maximum size of a character, or
the length (in bytes) of a date-time value. This value is required only if
applicable to the parameter being set to null.

scale is a decimal value’s scale. This value is required only if applicable to the
parameter being set to null.

res_code is the result code returned by qeSetParamNull, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM emp

WHERE first_name = ?") ;
res_code = qeSetParamNull (hstmt, 1, qeVARCHAR, 10, 0) ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

qeDATE 111 26-byte date value.

qeTIME 112 26-byte time value.

qeNO_DATA_TYPE 0 No data type.

Constant Value Description

Go To
Chapter 10 DTK Functions

qeSetParamTime 444

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetParamTime

qeSetParamTime sets the value of a time parameter.

Syntax int16 res_code qeSetParamTime (
int16 hstmt,
int16 param_num,
ptrstr param_val)

Description qeSetParamTime assigns the value of a parameter in a SQL statement to a
26-byte time value.

DTK copies the assigned value, so the pointer need not remain valid after this
call. This parameter has this value until qeClearParam or a qeSetParam or
qeBindParam function is called again for this parameter. All parameters with
the same name as the one identified by param_num are affected.

Before calling qeSetParamTime, you must call qeSQLPrepare. You must give
values to all parameters before calling qeSQLExecute.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare.

param_num is the position of the parameter to be set.

param_val is the 26-byte time value to be assigned to the parameter.

res_code is the result code returned by qeSetParamTime, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM emp

WHERE hire_date = ?") ;
res_code = qeSetParamTime (hstmt, 1,

"0000-00-00 03:14:12:000000") ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeSetQueryTimeout 445

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetQueryTimeout

qeSetQueryTimeout sets the time to wait for a SQL statement to execute
before aborting the query and returning to the application.

Syntax int16 res_code qeSetQueryTimeout (int16 hdbc, int32
seconds)

Description qeSetQueryTimeout sets the timeout for SQL statement execution.

This function depends on driver support, and has no effect if the driver does
not support timeouts.

Parameters hdbc is the handle to the connection returned by qeConnect.

seconds is how many seconds to wait. 0, the default, indicates that no
timeout is to occur.

res_code is the result code returned by qeSetQueryTimeout, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QESS") ;
res_code = qeSetQueryTimeout (hdbc, 20) ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
/* Query will fail if no response within 20 seconds. * /
res_code = qeEndSQL (hstmt) ;

See Also qeGetQueryTimeout.

Go To
Chapter 10 DTK Functions

qeSetSelectOptions 446

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetSelectOptions

qeSetSelectOptions sets options that determine which fetch commands and
positioning behaviors are allowed.

Syntax int16 res_code qeSetSelectOptions (int16 hdbc, int32
flags)

Description qeSetSelectOptions lets you set options that affect fetching behavior during
the current database connection. These options affect the level of fetching
allowed in the current connection, whether logging is used when not made
necessary by the database system, and the extent to which the result set
persists after a transaction ends.

Parameters hdbc is the handle to the database connection returned by qeConnect.

flags is a set of option flags that controls fetching and statement persistence
behavior for the current connection. These values can be combined by
adding them together or joining them with an OR clause. Possible values
include the following:

Constant Value Description

qeFETCH_FORWARD_DIR 0x0001 Only forward fetching is allowed.
This is the default fetching behavior
option.

qeFETCH_ANY_DIR 0x0002 Random and previous fetching is
enabled.

qeLOG_IF_NEEDED 0x0008 Use log file only as needed to
enable previous and random
fetching. This is the default logging
behavior.

qeLOG_ALWAYS 0x0010 Force use of log file when it is not
required. (This does not activate
random fetching if it is not explicitly
set with qeFETCH_ANY_DIR).

Go To
Chapter 10 DTK Functions

qeSetSelectOptions 447

DataDirect Developer’s Toolkit Programmer’s Guide

res_code is the result code returned by qeSetSelectOptions, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QESS") ;
res_code = qeSetSelectOptions (hdbc, qeFETCH_ANY_DIR +
qeSELECT_PERSIST) ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
...
/* Options affect behavior of this and future hstmts. * /
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

qeSELECT_INVALIDATE 0x0020 Disable fetching at the end of
transaction (EOT). Calls made after
a commit or rollback to any function
except qeEndSQL cause an error.

qeSELECT_TRUNCATE 0x0040 Truncate the result set at EOT. This
option lets you continue fetching
only those records already read
from the database (if
qeFETCH_ANY_DIR is set).

qeSELECT_PERSIST 0x0060 The result set persists at EOT. This
is the default behavior, which lets
you continue fetching from the
entire set of records returned by the
Select statement. To enable this
behavior for databases that
invalidate the hstmt at commit or
rollback, the records in the result
set that have not been fetched by
EOT are written to a log file.

Constant Value Description

Go To
Chapter 10 DTK Functions

qeSetSQL 448

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetSQL

qeSetSQL places a partial statement in the SQL buffer.

Syntax int16 res_code qeSetSQL (int16 hdbc, ptrstr partial_stmt)

Description Some macro languages cannot send an entire SQL statement to qeExecSQL
due to limits in the lengths of strings they support. For example, Excel strings
are limited to 255 characters. Since many Select statements are longer than
255 characters, Excel cannot send long Select statements to qeExecSQL.

Internally, DTK maintains one SQL buffer per hdbc. qeSetSQL replaces the
contents of the SQL buffer with the partial statement sent as a parameter.
Each subsequent call to qeAppendSQL appends text to the SQL buffer. Once
the complete SQL statement has been sent to the DTK API, you can call
qeSQLPrepare (with “” as the sql_stmt value) or qeExecSQL to use the SQL
statement saved in the SQL buffer.

Parameters hdbc is the handle to the database connection returned by qeConnect.

partial_stmt is the character string that is to replace the contents of the SQL
buffer. It must contain the first part of a SQL statement.

res_code is the result code returned by qeSetSQL, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Go To
Chapter 10 DTK Functions

qeSetSQL 449

DataDirect Developer’s Toolkit Programmer’s Guide

Example To send a Select statement in pieces and execute it:

hdbc = qeConnect ("DSN=QESS;UID=sa;SRVR=PION1") ;
...
res_code = qeSetSQL (hdbc, "SELECT *") ;
res_code = qeAppendSQL (hdbc, " FROM emp") ;
res_code = qeAppendSQL (hdbc, " ORDER BY last_name")
hstmt = qeExecSQL (hdbc, "") ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeAppendSQL, qeExecSQL.

Go To
Chapter 10 DTK Functions

qeSetTableCaching 450

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetTableCaching

qeSetTableCaching controls whether table information is cached after calls to
qeTables.

Syntax int16 res_code qeSetTableCaching (int16 hdbc, int16
setting)

Description qeSetTableCaching controls whether the results of qeTables calls are
cached. It can take a noticeable amount of time to retrieve the names of all
available tables via qeTables, so caching the table names in a file is a good
idea if your application uses them repeatedly. Call qeSetCacheFileName to
specifically name a file for table caching. If you do not, DTK stores the table
names in a temporary file.

When caching is enabled, only the first call to qeTables returns table names
from the database. All subsequent calls to qeTables read table names from
the cache file. To reread tables from the database, either turn caching off or
delete the cache file before calling qeTables.

You can call qeSetTableCaching to turn caching on for the current session, on
for all sessions, or off for all sessions. If enabled for all sessions, the cache
file is saved when the connection terminates so that it can be used again
when needed. The first time you call this function to set caching to
qeCACHE_PERMANENT (1), you must call qeSetCacheFileName to assign
a name to the cache file. To reuse the cache file in another session, call
qeSetCacheFileName to specify the existing file.

Important: Calling this function to turn caching off deletes the cache file.

Go To
Chapter 10 DTK Functions

qeSetTableCaching 451

DataDirect Developer’s Toolkit Programmer’s Guide

Parameters hdbc is the handle to the connection returned by qeConnect.

setting is one of the following:

res_code is the result code returned by qeSetTableCaching, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example /* Cache_Session * /
hdbc = qeConnect ("DSN=QEDBF") ;
res_code = qeSetTableCaching (hdbc, qeCACHE_SESSION) ;
hstmt = qeTables (hdbc, "*", "*", qeTBL_TABLE) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

See Also qeTables, qeSetCacheFileName, qeGetTableCaching.

Constant Value Description

qeCACHE_PERMANENT 1 Turn caching on, and have the cache
file remain after the connection
terminates. You must specify a file
name with the qeSetCacheFileName
function when using this option.

qeCACHE_SESSION 2 Turn caching on for this session. The
cache file is deleted when the
connection terminates. This is the
default.

qeCACHE_OFF 3 Turn caching off.

Go To
Chapter 10 DTK Functions

qeSetTraceOptions 452

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetTraceOptions

qeSetTraceOptions sets the type of information that is sent to the trace file.

Syntax int16 res_code qeSetTraceOptions (int16 flags)

Parameters flags is a set of option flags that defines which tracing options are enabled/
disabled. These values can be combined by adding them together or joining
them with an OR clause. flags can be:

The default when qeTraceOn is called is qeTRACE_NON_VAL_CALLS +
qeTRACE_USER (0x0001 and 0x0002), unless the Trace section of the
QELIB.INI file contains an Options entry.

Constant Value Description

qeTRACE_NON_
VAL_CALLS

0x0001 Trace all non-qeVal calls.

qeTRACE_USER 0x0002 Trace strings sent via qeTraceUser.

qeTRACE_VAL_
CALLS

0x0004 Trace qeVal calls and bound data at
fetch time.

qeTRACE_WINDOW 0x0008 Write all trace information (except
ODBC calls) to a trace window.

qeTRACE_ODBC 0x0010 Trace ODBC calls. Tracing is written to
either SQL.LOG or another file that
you have specified via the
qeSetDriverTracefile function.

qeTRACE_NO_
FLUSH

0x0020 Allows faster tracing by writing trace
strings to disk in blocks instead of one
at a time. Choosing this method can
cause some loss of trace information if
your program terminates abnormally—
use it only when your application is
reasonably stable.

Go To
Chapter 10 DTK Functions

qeSetTraceOptions 453

DataDirect Developer’s Toolkit Programmer’s Guide

res_code is the result code returned by qeSetTraceOptions, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example res_code = qeTraceOn ("\\trace.txt") ;
res_code = qeSetTraceOptions (qeTRACE_NON_VAL_CALL S

+ qeTRACE_VAL_CALLS) ;
hdbc = qeConnect ("DSN=QEDBF") ;
...
res_code = qeDisconnect (hdbc) ;
res_code = qeTraceOff () ;

Notes Calls to this function are not cumulative; only the options set in the last call
are valid.

See Also qeSetDriverTracefile, qeTraceUser.

Go To
Chapter 10 DTK Functions

qeSetupInfo and qeSetupInfoBuf 454

DataDirect Developer’s Toolkit Programmer’s Guide

qeSetupInfo and qeSetupInfoBuf

These functions return the information entered when DTK was installed.

Syntax ptrstr info qeSetupInfo ()

int16 res_code qeSetupInfoBuf (ptrstr info)

Description qeSetupInfo and qeSetupInfoBuf return the user name, company name, and
serial number entered the first time DTK was installed. The first time you run
the DTK Setup program, you are prompted for this information.

When you use qeSetupInfo, the function returns a pointer to the string. The
string is stored in a buffer maintained by DTK. Copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

When you use qeSetupInfoBuf, you pass in a pointer to a buffer you have
allocated. The string is put in the buffer. Make sure the buffer is large enough
to hold the returned string.

Parameters info is the character string containing the user name, company name, and
serial number. A Tab character (9) separates the three values and a zero-
terminator ends the string. The string may contain up to 128 characters of
information.

res_code is the result code returned by qeSetupInfoBuf, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example To retrieve DTK setup information:

setup_info = qeSetupInfo () ;

Go To
Chapter 10 DTK Functions

qeSources 455

DataDirect Developer’s Toolkit Programmer’s Guide

qeSources

qeSources returns information on the database sources (systems) that can
be accessed.

Syntax int16 hstmt qeSources (int16 option)

Description qeSources creates a statement execution (hstmt) that returns information on
the database sources (systems) that can be accessed. qeSources returns
one record per source. Each record contains the following columns:

You retrieve this information like you would other database values—using the
qeVal, qeBindCol, and qeFetch functions.

Parameters option determines which sources are returned by the hstmt returned by
qeSources. There is no default; option must contain one of the following
values:

hstmt is the handle to the statement returned by qeSources.

Column Type Description

Name Char(32) Source name.

Extension Char(32) File extension. May be null.

DTK hdbc Int16 If qeConnect has been used to connect to
this source, the DTK hdbc. This is 0 if not
currently connected.

Remarks Char(256) Comments (if available).

Constant Value Description

qeSRC_AVAIL_LOGON 1 All sources

qeSRC_CONN_LOGON 2 All connected sources

Go To
Chapter 10 DTK Functions

qeSources 456

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEGUP;DLG=1") ;
hstmt = qeSources (qeSRC_CONN_LOGON) ;
while (qeFetchNext (hstmt) == qeSUCCESS) {

...
/* Get info about available sources. * /

...
}
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeSQLExecute 457

DataDirect Developer’s Toolkit Programmer’s Guide

qeSQLExecute

qeSQLExecute executes a statement previously prepared with
qeSQLPrepare, qeQBEPrepare, or qeQryPrepare.

Syntax int16 res_code qeSQLExecute (int16 hstmt)

Description qeSQLExecute executes a statement previously prepared with
qeSQLPrepare, qeQBEPrepare, or qeQryPrepare.

This function is also useful for re-executing the active statement without re-
parsing.

If the statement contains any parameters that have not been assigned
values, qeSQLExecute prompts you for the values.

Parameters hstmt is the handle to the statement returned by qeSQLPrepare,
qeQBEPrepare, or qeQryPrepare.

res_code is the result code returned by qeSQLExecute, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM emp

WHERE first_name = ?") ;
res_code = qeSetParamChar (hstmt, 1, "Ed", 10) ;
res_code = qeSQLExecute (hstmt) ;
res_code = qeFetchNext (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeSQLPrepare 458

DataDirect Developer’s Toolkit Programmer’s Guide

qeSQLPrepare

qeSQLPrepare prepares a SQL statement for execution.

Syntax int16 hstmt qeSQLPrepare (int16 hdbc, ptrstr stmt)

Description qeSQLPrepare returns an hstmt for a statement and places it in the
statement buffer, but does not execute it. Call this function to get a handle for
a statement on which you want to do additional processing before you
execute it.

qeSQLPrepare is most useful for preparing statements that use parameters,
although parameters do not have to be present to use it.

Routines that call this function must call qeSQLExecute to execute.

Parameters hdbc is the handle to the connection returned from qeConnect.

stmt is a null-terminated character string representing a SQL statement. If
stmt is null, then the routine uses the statement passed using qeSetSQL and
qeAppendSQL.

hstmt is the handle to the statement returned by qeSQLPrepare.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeSQLPrepare (hdbc, "SELECT * FROM emp

WHERE first_name = ?") ;
res_code = qeSetParamChar (hstmt, 1, "Ed", 10) ;
hstmt = qeSQLExecute (hstmt) ;
res_code = qeFetchNext (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeTables 459

DataDirect Developer’s Toolkit Programmer’s Guide

qeTables

qeTables returns information on the available database tables.

Syntax int16 hstmt qeTables (
int16 hdbc,
ptrstr qualifier_pattern,
ptrstr user_pattern,
ptrstr table_pattern,
int16 flags)

Description qeTables creates a statement execution (hstmt) that returns information on
the available database tables. qeTables returns one record per table. Each
record contains the following columns:

You retrieve this information like you would other database values—using the
qeVal, qeBindCol, and qeFetch functions.

It can take a noticeable amount of time to retrieve the names of all available
tables via qeTables, so caching the table names in a file is a good idea if your
application uses them repeatedly. You can call qeSetTableCaching to turn
caching on for the current session, on for all sessions, or off for all sessions.
You can specifically name a file to use for table caching by calling
qeSetCacheFileName. If you do not, DTK stores them in a temporary file.

Column Type Description

Table Qualifier Char(128) Qualifier for returned table.

Table User Char(128) A user name (for table-based sources) or
directory name (for file-based sources).

Table Name Char(128) A table name (for table-based sources) or file
name (for file-based sources).

Table Type Int16 Type of table: qeTBL_TABLE, qeTBL_VIEW,
qeTBL_SYNONYM, qeTBL_PROCEDURE,
or qeTBL_SYSTABLE.

Remarks Char(256) Comments (if available).

Go To
Chapter 10 DTK Functions

qeTables 460

DataDirect Developer’s Toolkit Programmer’s Guide

When caching is enabled, only the first call to qeTables returns table names
from the database. All subsequent calls to qeTables read table names from
the cache file. To reread tables from the database, either turn caching off or
delete the cache file before calling qeTables.

Parameters hdbc is a handle to a database connection obtained from qeConnect.

qualifier_pattern is a pointer to a string containing a qualifier or path for the
set of tables to be selected.

user_pattern is the pattern used for selecting users. If the pattern is null, the
current user is assumed. If the pattern is “%” or “*”, all users are selected.
This parameter is ignored for file-based databases, where the current
working directory is assumed.

table_pattern is the pattern used for selecting tables or files. If the pattern is
“%” or “*”, all tables are selected.

flags is a set of option flags that specifies the types of tables to be returned.
The value sent determines the types of items to be returned by the hstmt.
These are also the values returned in the Type column.

flags has no default value; you must specify at least one of the following
values:

Note: qeTBL_DATABASE cannot be combined with the other values. All
other values can be combined by adding them together or joining them with
an OR clause.

Constant Value Description

qeTBL_TABLE 0x0001 Get table names.

qeTBL_VIEW 0x0002 Get view names.

qeTBL_PROCEDURE 0x0004 Get stored procedure names.

qeTBL_SYSTABLE 0x0008 Get system table names.

qeTBL_SYNONYM 0x0010 Get synonym names.

qeTBL_DATABASE 0x0080 Get database names.

Go To
Chapter 10 DTK Functions

qeTables 461

DataDirect Developer’s Toolkit Programmer’s Guide

hstmt is the handle to the statement returned by qeTables.

Example hdbc = qeConnect ("DSN=QEINF;DLG=1") ;
hstmt = qeTables (hdbc, "%", "SYS%", "%", qeTBL_TABLE |
qeTBL_SYSTABLE) ;
while (qeFetchNext (hstmt) == qeSUCCESS) {

...
/* Get info about tables. * /

...
}
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeTraceOff 462

DataDirect Developer’s Toolkit Programmer’s Guide

qeTraceOff

qeTraceOff closes the trace file opened by qeTraceOn and discontinues the
tracing of calls to the DTK API.

Syntax int16 res_code qeTraceOff ()

Parameters res_code is the result code returned by qeTraceOff, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example res_code = qeTraceOn ("\\trace.txt") ;
hdbc = qeConnect ("DSN=QEDBF") ;
...
res_code = qeDisconnect (hdbc) ;
res_code = qeTraceOff () ;

See Also qeTraceOn.

Go To
Chapter 10 DTK Functions

qeTraceOn 463

DataDirect Developer’s Toolkit Programmer’s Guide

qeTraceOn

qeTraceOn initiates tracing of DTK functions.

Syntax int16 res_code qeTraceOn (ptrstr file_pathname)

Description qeTraceOn starts tracing calls to the DTK API by writing debugging
information to a trace file. Tracing helps you debug programs that call the
DTK API by writing a log of the function calls to the DTK API, as well as the
parameters to each call, and the returned value.

The trace file is an ASCII text file that can be edited with Notepad or any other
text editor.

DTK continues to write to the Trace file until you call qeTraceOff.

Parameters file_pathname is the pathname to the trace file you want DTK to write to. It
must be a valid pathname for the operating system you are using.

res_code is the result code returned by qeTraceOn, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example res_code = qeTraceOn ("\\trace.txt") ;
hdbc = qeConnect ("DSN=QEDBF") ;
...
res_code = qeDisconnect (hdbc) ;
res_code = qeTraceOff () ;

Notes Tracing can also be enabled by the QELIB.INI file. See Appendix F, “The
QELIB.INI File,” on page 565 for more information.

See Also qeTraceOff, qeSetTraceOptions.

Go To
Chapter 10 DTK Functions

qeTraceUser 464

DataDirect Developer’s Toolkit Programmer’s Guide

qeTraceUser

qeTraceUser sends a user-defined string to the tracefile.

Syntax int16 res_code qeTraceUser (ptrstr tracestring)

Parameters tracestring is a string written to the trace file if qeSetTraceOptions is not
called to disable such writing.

res_code is the result code returned by qeTraceUser, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example res_code = qeTraceOn ("\\trace.txt") ;
res_code = qeSetTraceOptions (qeTRACE_NON_VAL_CALL S

+ qeTRACE_USER) ;
res_code = qeTraceUser ("This is the beginnin g

of the trace file.") ;
hdbc = qeConnect ("DSN=QEDBF") ;
...
res_code = qeDisconnect (hdbc) ;
res_code = qeTraceUser ("This is the end of the

trace file.") ;
res_code = qeTraceOff () ;

Notes This function is useful only when tracing is on and user string tracing (the
default) is enabled by a call to qeSetTraceOptions.

Go To
Chapter 10 DTK Functions

qeTypeInfo 465

DataDirect Developer’s Toolkit Programmer’s Guide

qeTypeInfo

qeTypeInfo returns information about the data types supported by a
database.

Syntax int16 hstmt qeTypeInfo (int16 hdbc)

Description qeTypeInfo creates a statement execution (hstmt) that returns information
about the types supported on a particular database. The resulting records
contain the following columns:

Column Type Description

Type Name Char(128) Data source-dependent data type name.

Type Int16 DTK type.

DB Type Int16 Database type.

Width Int32 Size of type in bytes.

Attr1 Int16 Precision for decimal types, date start
position for dates, null otherwise.

Attr2 Int16 Scale for decimal types, date end position
for dates, null otherwise.

Literal Prefix Char(128) Characters used to prefix a literal. Null if
not applicable.

Literal Suffix Char(128) Characters used to terminate a literal. Null
if not applicable.

Create Params Char(128) The parameters necessary to use the type
in a Create Table statement (for Decimal,
this would be “precision,scale”).

Nullable Int16 Whether type can be null. Values:
qeCOL_NULLABLE,
qeCOL_NOT_NULLABLE,
qeCOL_UNKNOWN.

Go To
Chapter 10 DTK Functions

qeTypeInfo 466

DataDirect Developer’s Toolkit Programmer’s Guide

You retrieve this information like you would other database values—using the
qeVal, qeBindCol, and qeFetch functions.

Parameters hdbc is a handle to a database connection obtained from qeConnect.

hstmt is the handle to the statement returned by qeTypeInfo.

Example hdbc = qeConnect ("DSN=QEINF;DLG=1") ;
hstmt = qeTypeInfo (hdbc) ;
while (qeFetchNext (hstmt) == qeSUCCESS) {

...
/* Get info about types. * /

...
}
res_code = qeDisconnect (hdbc) ;

Case Sensitive Int16 Whether type can be treated as case
sensitive for sorting (T/F).

Searchable Int16 How the type can be used in a WHERE
clause. Values:
qeCOL_UNSEARCHABLE,
qeCOL_LIKE_ONLY,
qeCOL_ALL_EXCEPT_LIKE,
qeCOL_SEARCHABLE.

Unsigned Int16 Whether type is unsigned (T/F). Null if not
applicable.

Money Int16 Whether type is a money data type (T/F).

Auto Increment Int16 Whether type is auto incrementing. Null if
not applicable (T/F).

Local Type Name Char(128) Localized version of the data source-
dependent name of the data type. Null if
not supported by the data source.

Column Type Description

Go To
Chapter 10 DTK Functions

qeUndoAll 467

DataDirect Developer’s Toolkit Programmer’s Guide

qeUndoAll

qeUndoAll discards all changes to a statement that have not been sent to the
database.

Syntax int16 res_code qeUndoAll (int16 hstmt)

Description When qeSetAutoUpdate is set to qeAUTOUPD_DEFER(2) to cause record
changes to be deferred (that is, saved but not updated in the database),
qeUndoAll discards all record changes performed on the statement but not
applied to the database. The changes discarded include any saved changes
on records other than the current record, any unsaved records created by
calling qeRecNew, and any new values placed in the current record by calls
to qePut functions.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

res_code is the result code returned by qeUndoAll, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
res_code = qeSetAutoUpdate (hdbc, qeAUTOUPD_DEFER) ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;

res_code = qeFetchNext (hstmt) ;
res_code = qePutChar (hstmt, 1, "", "Rachel") ;
res_code = qeFetchNext (hstmt) ;
res_code = qePutChar (hstmt, 1, "", "Eddie") ;
res_code = qeFetchNext (hstmt) ;

res_code = qeUndoAll (hstmt) ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeUniqueWhereClause and qeUniqueWhereClauseBuf 468

DataDirect Developer’s Toolkit Programmer’s Guide

qeUniqueWhereClause and qeUniqueWhereClauseBuf

These functions return a Where clause that attempts to uniquely identify the
current record in an active Select statement.

Syntax ptrstr where_clause qeUniqueWhereClause (int16 hstmt)

int16 res_code qeUniqueWhereClauseBuf (
int16 hstmt,
ptrstr clause_buf)

Description qeUniqueWhereClause and qeUniqueWhereClauseBuf return the Where
clause being used to identify the current record in an active Select statement.
The Where clause attempts to uniquely identify the current record on calls to
qeRecUpdate, qeRecDelete, and qeRecLock.

These functions use the columns specified by qeRecSetKey if that function is
called. If no columns are specified as a primary key, DTK chooses a key that
includes all appropriate columns. For most databases, this includes all
searchable, non-character columns and character columns that are not over
256 bytes long.

qeUniqueWhereClause returns a pointer to the Where clause string. This
string is stored in a buffer maintained by DTK. You must copy the string out of
this buffer before you call another DTK function, because the next function
may use the same buffer.

With qeUniqueWhereClauseBuf, you pass in a pointer to a buffer you have
allocated. The Where clause string is put in the buffer. You must make sure
that the buffer is large enough to hold the returned string.

If you are not currently positioned on a record, these functions return null.

Calling these functions causes DTK to generate a unique key if you have not
already defined one with qeRecSetKey.

Go To
Chapter 10 DTK Functions

qeUniqueWhereClause and qeUniqueWhereClauseBuf 469

DataDirect Developer’s Toolkit Programmer’s Guide

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

clause_buf points to an allocated buffer for the resulting clause.

res_code is the result code returned by qeUniqueWhereClauseBuf, which
returns the same set of result codes as qeErr. See Appendix D, “Result and
Error Message Codes,” on page 537 for a list of these result codes.

Example hdbc = qeConnect ("DSN=QEDBF") ;
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeFetchNext (hstmt) ;
...
unique = qeUniqueWhereClause (hstmt) ;
...
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeValChar and qeValCharBuf 470

DataDirect Developer’s Toolkit Programmer’s Guide

qeValChar and qeValCharBuf

These functions return a column value as a character string.

Syntax ptrstr char_val qeValChar (
int16 hstmt,
int16 col_num,
ptrstr fmt_string,
int16 max_len)

int16 res_code qeValCharBuf (
int16 hstmt,
ptrstr char_val,
int16 col_num,
ptrstr fmt_string,
int16 max_len)

Description qeValChar and qeValCharBuf return the value of a column in the current
record as a character string. If the data type of the column is not a character
string, the value is converted to a character string.

When you use qeValChar, the function returns a pointer to the string. The
string is stored in a buffer maintained by DTK. Copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

When you use qeValCharBuf, you pass a pointer to a buffer you have
allocated. The string is put in the buffer. Make sure the buffer is large enough
to hold the returned string.

Format number and date values by providing a format string (see “Format
Strings” on page 59).

If the data type of the column is a character string (type 1 or 2), you may
specify the maximum length of data to be returned.

Go To
Chapter 10 DTK Functions

qeValChar and qeValCharBuf 471

DataDirect Developer’s Toolkit Programmer’s Guide

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the column number whose value is to be returned. The first
column number is 1.

fmt_string is the format string. If the column’s data type is numeric or a date-
time type (types other than 1 or 2), the format string specifies how to format
the value when converting it to a character string. If no format string is given,
“GN” is used for numbers and “GD” is used for date-time values.

max_len is the maximum number of characters that are to be returned if the
column’s data type is character string (type 1 or 2). If max_len is zero, the
entire string is returned (up to 1000 characters). If max_len is not zero and
the column’s data type is not 1 or 2, an error is returned.

max_len is typically used either because your macro language limits the size
of a character string that is less than the size of the values in the database, or
because the database values are very large and you want to retrieve only
part of the value.

For max_len values greater than zero, the actual limit is a little less than 64K
(65280 bytes or characters, to be exact). However, if this is not sufficient for
your needs, you can make multiple calls to qeValChar and retrieve the value
in pieces.

If you use a non-zero max_len value to retrieve part of a value, you can call
qeValChar again on the same column to retrieve more of the value. For
example, you can retrieve a 4000-character value 500 characters at a time by
calling qeValChar 8 times, each time setting max_len to 500. See “Blobs and
Memos” on page 57 for more information.

If you specify a max_len of zero, qeValChar returns the entire value with an
upper limit of 1000 characters. If the value is longer than 1000 characters,
you receive only the first 1000 characters. Call qeValChar again to get the
second 1000 characters.

char_val is the returned character value.

Go To
Chapter 10 DTK Functions

qeValChar and qeValCharBuf 472

DataDirect Developer’s Toolkit Programmer’s Guide

res_code is the result code returned by qeValCharBuf, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example To get the values of the first column for every record in the dBASE employee
file:

hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
while (qeFetchNext (hstmt) == 0) {

value = qeValChar (hstmt,1,"",0) ;
val_len = qeDataLen (hstmt) ;

...
}
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Notes Column values must be retrieved starting with the first column and stepping
through the columns in order (column 1, 2, 3, etc.). You can skip columns, but
you cannot get a previous column’s value. You cannot retrieve the same
column’s value more than once unless max_len is used to retrieve part of a
value.

These functions add a zero byte to the end of each character string value.
This is the C convention and is supported by most macro languages.
Following a call to a qeVal function, qeDataLen returns the actual number of
characters returned (not counting the zero byte). If the column value is null,
qeDataLen returns qeNULL_DATA (-2). If the entire column value is not
returned by qeValChar, qeDataLen indicates that the value was truncated by
returning qeTRUNCATION (-1). This occurs if a non-zero max_len is
specified and the length of the column value is greater than max_len, or if a
zero max_len is specified and the length of the column value is greater than
1000 characters.

Following a call to a qeVal function, qeWarning also returns qeNULL_DATA (-
2) if the column value is null, or qeTRUNCATION (-1) if the column value is
truncated.

Go To
Chapter 10 DTK Functions

qeValChar and qeValCharBuf 473

DataDirect Developer’s Toolkit Programmer’s Guide

See Also qeDataLen, qeWarning, qeValMultiChar and qeValMultiCharBuf,
qeGetParamChar and qeGetParamCharBuf.

Go To
Chapter 10 DTK Functions

qeValDecimal and qeValDecimalBuf 474

DataDirect Developer’s Toolkit Programmer’s Guide

qeValDecimal and qeValDecimalBuf

These functions return a column value as a decimal number.

Syntax ptrstr dec_val qeValDecimal (
int16 hstmt,
int16 col_num,
int16 precision,
int16 scale)

int16 res_code qeValDecimalBuf (
int16 hstmt,
ptrstr dec_val,
int16 col_num,
int16 precision,
int16 scale)

Description When you use qeValDecimal, the function returns a pointer to the value. The
value is stored in a buffer maintained by DTK. Copy the value out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

When you use qeValDecimalBuf, you pass in a pointer to a buffer you have
allocated. The value is put in the buffer. Make sure the buffer is large enough
to hold the returned value.

qeValDecimal and qeValDecimalBuf return the value of a column in the
current record as a decimal number. If the data type of the column is not
decimal number, the value is converted to a decimal number (type 3).

If the column’s data type is character string (type 1 or 2) and the column’s
value is not a number, the value 0 is returned.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

Go To
Chapter 10 DTK Functions

qeValDecimal and qeValDecimalBuf 475

DataDirect Developer’s Toolkit Programmer’s Guide

col_num is the column number whose value is to be returned. The first
column number is 1.

precision is the total number of digits to be returned in the decimal value.

scale is the number of digits right of the decimal point to be returned in the
decimal value.

dec_val is the returned decimal value.

res_code is the result code returned by qeValDecimalBuf, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example To get the values of the SALARY column for every record in the dBASE
employee file:

hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT salary FROM emp") ;
while (qeFetchNext (hstmt) == 0) {

value = qeValDecimal (hstmt,1,10,2) ;
...
}
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Notes Column values must be retrieved starting with the first column and stepping
through the columns in order (column 1, 2, 3, etc.). You can skip columns, but
you cannot get a previous column’s value. You cannot retrieve the same
column’s value more than once.

Values are formatted using the Binary Coded Decimal (BCD) format. This
format is described in “Decimal Number Format” on page 55.

Since most macro languages do not support the BCD format, you may find it
more convenient to retrieve decimal columns as floating-point numbers using
qeValFloat or qeValDouble, or as character strings using qeValChar or
qeValCharBuf.

Go To
Chapter 10 DTK Functions

qeValDecimal and qeValDecimalBuf 476

DataDirect Developer’s Toolkit Programmer’s Guide

Following a call to a qeVal function, qeDataLen returns the actual number of
bytes returned. If the column value is null, qeDataLen returns qeNULL_DATA
(-2).

Following a call to a qeVal function, qeWarning also returns qeNULL_DATA (-
2) if the column value is null.

See Also qeDataLen, qeWarning, qeGetParamDecimal and qeGetParamDecimalBuf.

Go To
Chapter 10 DTK Functions

qeValDouble 477

DataDirect Developer’s Toolkit Programmer’s Guide

qeValDouble

qeValDouble returns a column’s value as a double-precision floating-point
number.

Syntax float64 dbl_val qeValDouble (int16 hstmt, int16 col_num)

Description qeValDouble returns the value of a column in the current record as double-
precision floating-point. If the data type of the column is not double-precision
floating-point (type 7), the value is converted to this data type.

If the column’s data type is character string (type 1 or 2) and the column’s
value is not a number, the value 0 is returned.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the column number whose value is to be returned. The first
column number is 1.

dbl_val is the returned value.

Example To get the values of the SALARY column for every record in the dBASE
employee file:

hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT salary FROM emp") ;
while (qeFetchNext (hstmt) == 0) {

value = qeValDouble (hstmt,1) ;
...
}
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeValDouble 478

DataDirect Developer’s Toolkit Programmer’s Guide

Notes Column values must be retrieved starting with the first column and stepping
through the columns in order (column 1, 2, 3, etc.). You can skip columns, but
you cannot get a previous column’s value. You cannot retrieve the same
column’s value more than once.

Following a call to a qeVal function, qeDataLen returns the actual number of
bytes returned. If the column value is null, qeDataLen returns qeNULL_DATA
(-2).

Following a call to a qeVal function, qeWarning also returns qeNULL_DATA (-
2) if the column value is null.

See Also qeDataLen, qeWarning, qeGetParamDouble.

Go To
Chapter 10 DTK Functions

qeValFloat 479

DataDirect Developer’s Toolkit Programmer’s Guide

qeValFloat

qeValFloat returns a column’s value as a floating-point number.

Syntax float32 flt_val qeValFloat (int16 hstmt, int16 col_num)

Description qeValFloat returns the value of a column in the current record as floating-
point. If the data type of the column is not floating-point (type 6), the value is
converted to this data type.

If the column’s data type is character string (type 1 or 2) and the column’s
value is not a number, the value 0 is returned.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the column number whose value is to be returned. The first
column number is 1.

flt_val is the returned value.

Example To get the values of the SALARY column for every record in the dBASE
employee file:

hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT salary FROM emp") ;
while (qeFetchNext (hstmt) == 0) {

value = qeValFloat (hstmt,1) ;
...
}
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeValFloat 480

DataDirect Developer’s Toolkit Programmer’s Guide

Notes Column values must be retrieved starting with the first column and stepping
through the columns in order (column 1, 2, 3, etc.). You can skip columns, but
you cannot get a previous column’s value. You cannot retrieve the same
column’s value more than once.

Following a call to a qeVal function, qeDataLen returns the actual number of
bytes returned. If the column value is null, qeDataLen returns qeNULL_DATA
(-2).

Following a call to a qeVal function, qeWarning also returns qeNULL_DATA (-
2) if the column value is null.

See Also qeDataLen, qeWarning, qeGetParamFloat.

Go To
Chapter 10 DTK Functions

qeValInt 481

DataDirect Developer’s Toolkit Programmer’s Guide

qeValInt

qeValInt returns a column’s value as a 2-byte integer.

Syntax int16 int_val qeValInt (int16 hstmt, int16 col_num)

Description qeValInt returns the value of a column in the current record as a 2-byte
integer. If the data type of the column is not 2-byte integer (type 5), the value
is converted to this data type.

If the column’s data type is character string (type 1 or 2) and the column’s
value is not a number, the value 0 is returned.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the column number whose value is to be returned. The first
column number is 1.

int_val is the returned value.

Example To get the values of the SALARY column for every record in the dBASE
employee file:

hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT salary FROM emp") ;
while (qeFetchNext (hstmt) == 0) {

value = qeValInt (hstmt,1) ;
...
}
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeValInt 482

DataDirect Developer’s Toolkit Programmer’s Guide

Notes Column values must be retrieved starting with the first column and stepping
through the columns in order (column 1, 2, 3, etc.). You can skip columns, but
you cannot get a previous column’s value. You cannot retrieve the same
column’s value more than once.

Following a call to a qeVal function, qeDataLen returns the actual number of
bytes returned. If the column value is null, qeDataLen returns qeNULL_DATA
(-2).

Following a call to a qeVal function, qeWarning also returns qeNULL_DATA (-
2) if the column value is null.

See Also qeDataLen, qeWarning, qeGetParamInt.

Go To
Chapter 10 DTK Functions

qeValLong 483

DataDirect Developer’s Toolkit Programmer’s Guide

qeValLong

qeValLong returns a column’s value as a 4-byte integer.

Syntax int32 long_val qeValLong (int16 hstmt, int16 col_num)

Description qeValLong returns the value of a column in the current record as a 4-byte
integer. If the data type of the column is not a 4-byte integer (type 4), the
value is converted to this data type.

If the column’s data type is character string (type 1 or 2) and the column’s
value is not a number, the value 0 is returned.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

col_num is the column number whose value is to be returned. The first
column number is 1.

long_val is the returned value.

Example To get the values of the SALARY column for every record in the dBASE
employee file:

hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT salary FROM emp") ;
while (qeFetchNext (hstmt) == 0) {

value = qeValLong (hstmt,1) ;
...
}
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Go To
Chapter 10 DTK Functions

qeValLong 484

DataDirect Developer’s Toolkit Programmer’s Guide

Notes Column values must be retrieved starting with the first column and stepping
through the columns in order (column 1, 2, 3, etc.). You can skip columns, but
you cannot get a previous column’s value. You cannot retrieve the same
column’s value more than once.

Following a call to a qeVal function, qeDataLen returns the actual number of
bytes returned. If the column value is null, qeDataLen returns qeNULL_DATA
(-2).

Following a call to a qeVal function, qeWarning also returns qeNULL_DATA (-
2) if the column value is null.

See Also qeDataLen, qeWarning, qeGetParamLong.

Go To
Chapter 10 DTK Functions

qeValMultiChar and qeValMultiCharBuf 485

DataDirect Developer’s Toolkit Programmer’s Guide

qeValMultiChar and qeValMultiCharBuf

These functions return the values of multiple columns as a single character
string.

Syntax ptrstr val qeValMultiChar (
int16 hstmt,
int16 start_col_num,
int16 end_col_num,
ptrstr num_fmt_string,
ptrstr date_fmt_string,
ptrstr separator)

int16 res_code qeValMultiCharBuf (
int16 hstmt,
ptrstr val,
int16 start_col_num,
int16 end_col_num,
ptrstr num_fmt_string,
ptrstr date_fmt_string,
ptrstr separator)

Description qeValMultiChar and qeValMultiCharBuf return the values of several columns
in the current record as a single character string. Each column value is
separated by a character you specify, typically either Tab (9) or comma (,).

If the data type of the column is not character string, the value is converted to
a character string. Number and date values are formatted by providing a
format string (see “Format Strings” on page 59).

When you use qeValMultiChar, the function returns a pointer to the string.
The string is stored in a buffer maintained by DTK. Copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

Go To
Chapter 10 DTK Functions

qeValMultiChar and qeValMultiCharBuf 486

DataDirect Developer’s Toolkit Programmer’s Guide

When you use qeValMultiCharBuf, you pass in a pointer to a buffer you have
allocated. The string is put in the buffer. Make sure the buffer is large enough
to hold the returned string.

You can combine the use of qeValChar and qeValMultiChar to retrieve the
values in a record. For example, you can call qeValChar to get the value of
column 1, then call qeValMultiChar to retrieve the values of columns 2–4. You
should mix calls to qeValChar and qeValMultiChar in the following situations:

• Two or more numeric (or date) columns are in the record and you want to
use different format strings for each column. You can specify only one
numeric (or date) format for each call to qeValMultiChar.

• One or more columns may contain character strings whose length is
greater than 1000 characters. qeValMultiChar truncates column values to
1000 characters. To retrieve larger character strings, use qeValChar with
a non-zero max_len parameter.

• Your macro language has a limit on the size of character strings, and the
sum of the sizes of the columns in the record exceeds this limit.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

start_col_num is the column number of the first column whose value is to be
returned. Column 1 is the first column.

end_col_num is the column number of the last column whose value is to be
returned. Column 1 is the first column.

num_fmt_string is the format string to be used to convert all numeric columns
to character strings. If no format string is given, “GN” is used.

date_fmt_string is the format string to be used to convert all date-time
columns to character strings. If no format string is given, “GD” is used.

separator is the character to be used to separate the column values in the
resulting string.

Go To
Chapter 10 DTK Functions

qeValMultiChar and qeValMultiCharBuf 487

DataDirect Developer’s Toolkit Programmer’s Guide

val is the returned character string containing the values of the specified
columns. The last value is followed by a zero rather than a separator
character.

res_code is the result code returned by qeValMultiCharBuf, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example To get the FIRST_NAME, LAST_NAME, HIRE_DATE, and SALARY values,
separated by Tab characters, for every record in the EMP file:

hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT first_name, last_name,
hire_date, salary FROM emp") ;
while (qeFetchNext (hstmt) == 0) {

value = qeValMultiChar (hstmt, 1, 4, "", "" ,
"\x09") ;

/* value points to the string * /
/* containing four values * /
/* separated by Tabs and zero- * /
/* terminated. */
val_len = qeDataLen (hstmt) ;
/* val_len is the length of the * /
/* entire string. * /
...

}
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Notes Column values must be retrieved starting with the first column and stepping
through the columns in order (column 1, 2, 3, etc.). You can skip columns, but
you cannot get a previous column’s value. You cannot retrieve the same
column’s value more than once.

Go To
Chapter 10 DTK Functions

qeValMultiChar and qeValMultiCharBuf 488

DataDirect Developer’s Toolkit Programmer’s Guide

These functions add a zero byte to the end of the string. This is the C
convention and is supported by most macro languages. Following a call to a
qeVal function, qeDataLen returns the actual number of characters returned
(including the separator characters but not counting the zero byte).

Unlike qeValChar, you cannot determine if an individual column value was
null or truncated by checking if qeDataLen returns qeNULL_DATA (-2) or
qeTRUNCATION (-1). qeDataLen never returns these values when calling
qeValMultiChar since multiple values are returned in the string.

These functions are very similar to qeValChar and qeValCharBuf. They
functions provide better performance if the records you are retrieving contain
many columns.

See Also qeDataLen, qeErr, qeValChar and qeValCharBuf.

Go To
Chapter 10 DTK Functions

qeVerNum and qeVerNumBuf 489

DataDirect Developer’s Toolkit Programmer’s Guide

qeVerNum and qeVerNumBuf

qeVerNum and qeVerNumBuf return the DTK version number that you are
using.

Syntax ptrstr ver_num qeVerNum ()

int16 res_code qeVerNumBuf (ptrstr ver_num)

Description When you use qeVerNum, the function returns a pointer to the string. The
string is stored in a buffer maintained by DTK. Copy the string out of this
buffer before you call another DTK function, because the next function may
use the same buffer.

When you use qeVerNumBuf, you pass in a pointer to a buffer you have
allocated. The string is put in the buffer. Make sure the buffer is large enough
to hold the returned string.

Parameters ver_num is the DTK version number returned as a zero-terminated character
string.

res_code is the result code returned by qeVerNumBuf, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example To retrieve the DTK version number:

ver_num = qeVerNum () ;

Go To
Chapter 10 DTK Functions

qeWarning 490

DataDirect Developer’s Toolkit Programmer’s Guide

qeWarning

qeWarning returns the warning generated by the last DTK function you
called. It is usually called after qeErr to determine if the database system or
the last function called returned any warnings.

Syntax int16 res_code qeWarning ()

Parameters res_code is the result code returned by qeWarning. It is either a warning code
returned by the database system or one of the following values:

Constant Value Description

qeLOCK_CHANGE_REC -8 A lock was obtained, but the record has
been changed since it was originally
read. (This can occur only for database
systems that require a log file.)

qeLOCK_MULTI_REC -7 A lock was obtained, but more than one
record was locked. This occurred
because the primary key fields caused
more than one record to be selected.

qeNULL_DATA -2 A qeVal function returned a null value.
Also returned as the length from a
qeDataLen call.

qeTRUNCATION -1 A qeVal function truncated the returned
value because the value’s size
exceeded the buffer.

Go To
Chapter 10 DTK Functions

qeWarning 491

DataDirect Developer’s Toolkit Programmer’s Guide

Example hdbc = qeConnect ("DSN=QEDBF") ;
if ((qeErr() == qeSUCCESS) && (qeWarning() == qeSUCCESS))
{

hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

}

See Also qeErr, qeDBErr.

Go To
Chapter 10 DTK Functions

qeWarning 492

DataDirect Developer’s Toolkit Programmer’s Guide

DataDirect Developer’s Toolkit Programmer’s Guide

Go To

Part 3: Appendixes

Go To
Appendix A Data Conversion Functions

Converting Hexadecimal Values to Binary 494

DataDirect Developer’s Toolkit Programmer’s Guide

A Data Conversion Functions

Data conversion functions let you convert values from any data type that DTK
supports to any other data type. For example, you can convert long integers
to floating-point values. These functions are not tied to a database
connection or SQL statement execution. You can call these functions even if
you are not using the Database functions described in the previous section.

When converting values to or from character strings, you may specify a
format string. When converting to character strings, the format string controls
the format of the resulting string. When converting from character strings, the
format string gives the format of the character string value to be converted.

Errors may be detected when converting values. Use the qeErr, qeErrMsg,
and qeErrMsgBuf functions to determine if any errors have occurred.

Converting Hexadecimal Values to Binary

qeHexToBin and qeHexToBinBuf convert a hexadecimal value into a binary
value and place the result in a buffer.

Go To
Appendix A Data Conversion Functions

Converting Hexadecimal Values to Binary 495

DataDirect Developer’s Toolkit Programmer’s Guide

Syntax ptrstr bin_value qeHexToBin (
ptrstr hex_value,
int32 length)

int16 res_code qeHexToBinBuf (
ptrstr bin_value,
ptrstr hex_value,
int32 length)

Description qeHexToBin and qeHexToBinBuf convert a hexadecimal value into a binary
value, and place the result in a buffer. The buffer must be at least half the size
of the hexadecimal value.

qeHexToBin returns a pointer to the binary value. This value is stored in a
buffer maintained by DTK. You must copy the value out of this buffer before
you call another DTK function, because the next function may use the same
buffer.

With qeHexToBinBuf, you pass in a pointer to a buffer you have allocated.
The binary value is put in the buffer. You must make sure that the buffer is
large enough to hold the returned value.

Parameters bin_value points to a buffer allocated by the user to accept the converted
hexadecimal value. It must be at least length/2 bytes long.

hex_value points to a string of length bytes of hexadecimal data. It is not a
null-terminated string.

length is the length of the binary string that hex_value points to.

res_code is the result code returned by qeHexToBinBuf, which returns the
same set of result codes as qeErr. See Appendix D for a list of these result
codes.

Example bin_val = qeHexToBin ("0A32B16F1A1A", 12) ;

Go To
Appendix A Data Conversion Functions

Converting to Character Strings 496

DataDirect Developer’s Toolkit Programmer’s Guide

Converting to Character Strings

These functions convert a value from any of DTK’s data types to a character
string. You can specify a format string to control the string formatting. The
format of decimal numbers is described in “Format Strings” on page 59.

Because these functions return a pointer, they have two forms (see
“Parameter Conventions” on page 151). The names are identical, except one
is appended with “Buf.” In the first form listed, the function returns a pointer to
the string. The string is stored in a buffer maintained by DTK. You must copy
the string out of this buffer before you call another DTK function, because the
next function may use the same buffer.

In the second form listed, appended with “Buf”, you pass in a pointer to a
buffer you have allocated. The string is put in the buffer. You must make sure
that the buffer is large enough to hold the returned string.

Syntax Converting from Date:

ptrstr char_val qeDateToChar (
ptrstr date_val,
ptrstr fmt_string)

int16 res_code qeDateToCharBuf (
ptrstr char_val,
ptrstr date_val,
ptrstr fmt_string)

Converting from Decimal:

ptrstr char_val qeDecimalToChar (
ptrstr dec_val,
int16 precision,
int16 scale,
ptrstr fmt_string)

Go To
Appendix A Data Conversion Functions

Converting to Character Strings 497

DataDirect Developer’s Toolkit Programmer’s Guide

int16 res_code qeDecimalToCharBuf (
ptrstr char_val,
ptrstr dec_val,
int16 precision,
int16 scale,
ptrstr fmt_string)

Converting from Double:

ptrstr char_val qeDoubleToChar (
float64 dbl_val,
ptrstr fmt_string)

int16 res_code qeDoubleToCharBuf (
ptrstr char_val,
float64 dbl_val,
ptrstr fmt_string)

Converting from Float:

ptrstr char_val qeFloatToChar (
float32 flt_val,
ptrstr fmt_string)

int16 res_code qeFloatToCharBuf (
ptrstr char_val,
float32 flt_val,
ptrstr fmt_string)

Converting from Int:

ptrstr char_val qeIntToChar (
int16 int_val,
ptrstr fmt_string)

int16 res_code qeIntToCharBuf (
ptrstr char_val,
int16 int_val,
ptrstr fmt_string)

Go To
Appendix A Data Conversion Functions

Converting to Character Strings 498

DataDirect Developer’s Toolkit Programmer’s Guide

Converting from Long:

ptrstr char_val qeLongToChar (
int32 long_val,
ptrstr fmt_string)

int16 res_code qeLongToCharBuf (
ptrstr char_val,
int32 long_val,
ptrstr fmt_string)

Parameters char_val is the returned character string value.

fmt_string is the format string (see “Format Strings” on page 59). If no format
string is given, numbers are formatted using GN, and dates are formatted
using GD.

date_val, dec_val, dbl_val, flt_val, int_val, and long_val are the values to be
converted.

res_code is the result code returned by the function, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

precision is the number of significant digits when converting from a decimal
number.

scale specifies the location of the decimal point when converting from a
decimal number.

Example To convert 125.3 to a character string formatted as money:

string1 = qeDoubleToChar (125.3, "$#,##0.00") ;

To convert a Julian date value to a formatted date:

string1 = qeDateToChar (jul, "mm/dd/yyyy") ;

Go To
Appendix A Data Conversion Functions

Converting Character Strings to Date Values 499

DataDirect Developer’s Toolkit Programmer’s Guide

Converting Character Strings to Date Values

These functions convert a character string into a standard date value using
format strings that you specify.

Syntax ptrstr date_value qeCharToDate (
ptrstr char_value,
ptrstr fmt_string)

int16 res_code qeCharToDateBuf (
ptrstr date_value,
ptrstr char_value,
ptrstr fmt_string)

Description qeCharToDate and qeCharToDateBuf convert a character string formatted
using the format string into a standard date value using the specified format
string.

qeCharToDate returns a pointer to the date value. This value is stored in a
buffer maintained by DTK. You must copy the value out of this buffer before
you call another DTK function, because the next function may use the same
buffer.

With qeCharToDateBuf, you pass in a pointer to a buffer you have allocated.
The date value is put in the buffer. You must make sure that the buffer is large
enough to hold the returned value.

Parameters date_value points to a buffer allocated by the user to accept the converted
character value.

char_value points to the formatted character value to convert. If this character
value is null, the function returns a date value of “01/01/94.”

fmt_string is the string used to format the value pointed to by char_val.

Go To
Appendix A Data Conversion Functions

Converting to Decimal Numbers 500

DataDirect Developer’s Toolkit Programmer’s Guide

res_code is the result code returned by qeCharToDateBuf, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example date_val = qeCharToDate (date_string, "mm/dd/yyyy") ;

Converting to Decimal Numbers

These functions convert a value from any of DTK’s data types to a decimal
number. When converting from a character string, you can specify a format
string to give the format of the character string.

Because these functions return a pointer, they have two forms (see
“Parameter Conventions” on page 151). The names are identical, except one
is appended with “Buf.” In the first form listed, the function returns a pointer to
the string. The string is stored in a buffer maintained by DTK. You must copy
the string out of this buffer before you call another DTK function, because the
next function may use the same buffer.

In the second form listed, appended with “Buf”, you pass in a pointer to a
buffer you have allocated. The string is put in the buffer. You must make sure
that the buffer is large enough to hold the returned string.

Syntax Converting from Char:

ptrstr dec_val qeCharToDecimal (
int16 precision,
int16 scale,
ptrstr char_val,
ptrstr fmt_string)

Go To
Appendix A Data Conversion Functions

Converting to Decimal Numbers 501

DataDirect Developer’s Toolkit Programmer’s Guide

int16 res_code qeCharToDecimalBuf (
ptrstr dec_val,
int16 precision,
int16 scale,
ptrstr char_val,
ptrstr fmt_string)

Converting from Double:

ptrstr dec_val qeDoubleToDecimal (
int16 precision,
int16 scale,
float64 dbl_val)

int16 res_code qeDoubleToDecimalBuf (
ptrstr dec_val,
int16 precision,
int16 scale,
float64 dbl_val)

Converting from Float:

ptrstr dec_val qeFloatToDecimal (
int16 precision,
int16 scale,
float32 flt_val)

int16 res_code qeFloatToDecimalBuf (
ptrstr dec_val,
int16 precision,
int16 scale,
float32 flt_val)

Converting from Int:

ptrstr dec_val qeIntToDecimal (
int16 precision,
int16 scale,
int16 int_val)

Go To
Appendix A Data Conversion Functions

Converting to Decimal Numbers 502

DataDirect Developer’s Toolkit Programmer’s Guide

int16 res_code qeIntToDecimalBuf (
ptrstr dec_val,
int16 precision,
int16 scale,
int16 int_val)

Converting from Long:

ptrstr dec_val qeLongToDecimal (
int16 precision,
int16 scale,
int32 long_val)

int16 res_code qeLongToDecimalBuf (
ptrstr dec_val,
int16 precision,
int16 scale,
int32 long_val)

Parameters dec_val is the returned decimal number value.

precision is the number of significant digits in the result.

scale specifies the location of the decimal point in the result.

char_val, dbl_val, flt_val, int_val, and long_val are the values to be converted
to a decimal number.

fmt_string is the format string (see “Format Strings” on page 59). If no format
string is given, DTK assumes that the character string contains a number
formatted as GN. If the character string contains a date-time value, fmt_string
can be used to give its format, and the result will be the Julian value
represented by the date-time.

res_code is the result code returned by the function, which returns the same
set of result codes as qeErr. See Appendix D, “Result and Error Message
Codes,” on page 537 for a list of these result codes.

Go To
Appendix A Data Conversion Functions

Converting to Double-Precision Floating-Point Numbers 503

DataDirect Developer’s Toolkit Programmer’s Guide

Example To convert a character string to a decimal number with 8 digits of precision
and 2 digits right of the decimal point:

string1 = qeCharToDecimal (8, 2, "1500", "") ;

To convert a character string containing a date-time value to a Julian decimal
number with 12 digits of precision and 2 digits right of the decimal point:

string1 = qeCharToDecimal (12, 2, "04/07/53", "mm/dd/
yy") ;

Converting to Double-Precision Floating-Point Numbers

These functions convert a value from any of DTK’s data types to an 8-byte
double-precision floating-point number (type 7).

When converting from a character string, you can specify a format string to
give the format of the character string.

Syntax float64 dbl_val qeCharToDouble (
ptrstr char_val,
ptrstr fmt_string)

float64 dbl_val qeDateToDouble (ptrstr date_val)

float64 dbl_val qeDecimalToDouble (
ptrstr dec_val,
int16 precision,
int16 scale)

float64 dbl_val qeFloatToDouble (float32 flt_val)

float64 dbl_val qeIntToDouble (int16 int_val)

float64 dbl_val qeLongToDouble (int32 long_val)

Go To
Appendix A Data Conversion Functions

Converting to Floating-Point Numbers 504

DataDirect Developer’s Toolkit Programmer’s Guide

Parameters dbl_val is the returned double float value.

char_val, flt_val, long_val, dec_val, int_val, and date_val are the values to be
converted to a double float.

fmt_string is the format string (see“Format Strings” on page 59). If no format
string is given, DTK assumes that the character string contains a number
formatted as “GN.” If the character string contains a date-time value,
fmt_string can be used to give its format, and the result will be the Julian
value represented by the date-time.

precision is the number of significant digits when converting from a decimal
number.

scale specifies the location of the decimal point when converting from a
decimal number.

Example To convert a character string to a double float:

dbl_val = qeCharToDouble ("1500", "") ;

To convert a character string containing a date-time value to a Julian double
float:

dbl_val = qeCharToDouble ("04/07/53", "mm/dd/yy") ;

Converting to Floating-Point Numbers

These functions convert a value from any of DTK’s data types to a 4-byte
floating-point number (type 6).

When converting from a character string, you can specify a format string to
give the format of the character string.

Go To
Appendix A Data Conversion Functions

Converting to Floating-Point Numbers 505

DataDirect Developer’s Toolkit Programmer’s Guide

Syntax float32 flt_val qeCharToFloat (
ptrstr char_val, ptrstr fmt_string)

float32 flt_val qeDecimalToFloat (
ptrstr dec_val,
int16 precision,
int16 scale)

float32 flt_val qeDoubleToFloat (float64 dbl_val)

float32 flt_val qeIntToFloat (int16 int_val)

float32 flt_val qeLongToFloat (int32 long_val)

Parameters flt_val is the returned floating-point value.

char_val, dbl_val, long_val, dec_val, and int_val are the values to be
converted to a floating-point number.

fmt_string is the format string (see “Format Strings” on page 59). If no format
string is given, DTK assumes that the character string contains a number
formatted as GN. If the character string contains a date-time value, fmt_string
can be used to give its format, and the result will be the Julian value
represented by the date-time.

precision is the number of significant digits when converting from a decimal
number.

scale specifies the location of the decimal point when converting from a
decimal number.

Example To convert a character string to a floating-point number:

flt_val = qeCharToFloat ("1500", "") ;

To convert a character string containing a date-time value to a Julian floating-
point number:

flt_val = qeCharToFloat ("04/07/53", "mm/dd/yy") ;

Go To
Appendix A Data Conversion Functions

Converting Binary Values to Hexadecimal 506

DataDirect Developer’s Toolkit Programmer’s Guide

Converting Binary Values to Hexadecimal

qeBinToHex and qeBinToHexBuf convert a binary value into a hexadecimal
value.

Syntax ptrstr hex_value qeBinToHex (ptrstr bin_value, int16
length)

int16 res_code qeBinToHexBuf (
ptrstr hex_value,
ptrstr bin_value,
int16 length)

Description qeBinToHex and qeBinToHexBuf convert a binary value into a hexadecimal
value and place the result in a buffer. The buffer must be twice the size of the
binary value.

Because this function returns a pointer, it has two forms (see “Parameter
Conventions” on page 151).

qeBinToHex returns a pointer to the hexadecimal value. This value is stored
in a buffer maintained by DTK. You must copy the value out of this buffer
before you call another DTK function, because the next function may use the
same buffer.

With qeBinToHexBuf, you pass in a pointer to a buffer you have allocated.
The hexadecimal value is put in the buffer. You must make sure that the
buffer is large enough to hold the returned value.

Parameters hex_value points to a buffer allocated by the user to accept the converted
binary value. It must be at least 2 * length bytes long.

bin_value points to a string of length bytes of binary data. It is not a null-
terminated string.

length is the length of the binary string pointed to by bin_value.

Go To
Appendix A Data Conversion Functions

Converting to Integers 507

DataDirect Developer’s Toolkit Programmer’s Guide

res_code is the result code returned by qeBinToHexBuf, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example hex_value = qeBinToHex (bin_value, bin_length) ;

Converting to Integers

These functions convert a value from any of DTK’s data types to a 2-byte
integer (type 5). When converting from a character string, you can specify a
format string to give the format of the character string.

Syntax int16 int_val qeCharToInt (ptrstr char_val, ptrstr
fmt_string)

int16 int_val qeDecimalToInt (
ptrstr dec_val,
int16 precision,
int16 scale)

int16 int_val qeDoubleToInt (float64 dbl_val)

int16 int_val qeFloatToInt (float32 flt_val)

int16 int_val qeLongToInt (int32 long_val)

Parameters int_val is the returned integer value.

char_val, dbl_val, flt_val, dec_val, and long_val are the values to be
converted to an integer.

fmt_string is the format string (see Chapter 4, “Retrieving and Converting
Data,” on page 37). If no format string is given, DTK assumes that the
character string contains a number formatted as GN.

precision is the number of significant digits when converting from a decimal
number.

Go To
Appendix A Data Conversion Functions

Converting to Long Integers 508

DataDirect Developer’s Toolkit Programmer’s Guide

scale specifies the location of the decimal point when converting from a
decimal number.

Example To convert a character string to an integer:

int_val = qeCharToInt ("1500", "") ;

Notes You should not attempt to convert date-time values to integers because the
resulting Julian value is too large for a 2-byte integer.

The format of decimal numbers is described in “Format Strings” on page 59.

Converting to Long Integers

These functions convert a value from any of DTK’s data types to a 4-byte
integer (type 4).

When converting from a character string, you can specify a format string to
give the format of the character string.

Syntax int32 long_val qeCharToLong (

ptrstr char_val, ptrstr fmt_string)

int32 long_val qeDecimalToLong (
ptrstr dec_val,
int16 precision,
int16 scale)

int32 long_val qeDoubleToLong (float64 dbl_val)

int32 long_val qeFloatToLong (float32 flt_val)

int32 long_val qeIntToLong (int16 int_val)

int32 long_val qeDateToLong (ptrstr date_val)

Go To
Appendix A Data Conversion Functions

Converting to Long Integers 509

DataDirect Developer’s Toolkit Programmer’s Guide

Parameters long_val is the returned long integer value.

char_val, dbl_val, flt_val, dec_val, int_val, and date_val are the values to be
converted to a long integer.

fmt_string is the format string (see“Format Strings” on page 59). If no format
string is given, DTK assumes that the character string contains a number
formatted as GN. If the character string contains a date-time value, fmt_string
can be used to give its format, and the result will be the Julian value
represented by the date-time.

precision is the number of significant digits when converting from a decimal
number.

scale specifies the location of the decimal point when converting from a
decimal number.

Example To convert a character string to a long integer:

long_val = qeCharToLong ("1500", "") ;

To convert a character string containing a date-time value to a Julian long
integer:

long_val = qeCharToLong ("04/07/53", "mm/dd/yy") ;

Go To
Appendix A Data Conversion Functions

Converting to Long Integers 510

DataDirect Developer’s Toolkit Programmer’s Guide

DataDirect Developer’s Toolkit Programmer’s Guide

Go To

B For Microsoft Visual Basic
Users

This appendix explains how to use DTK with Visual Basic (VB), version 2.0 or
higher, to develop VB applications that access data from the databases DTK
supports.

Using DTK with Visual Basic

You can call DTK’s DLL functions directly from VB. For background
information, please read Chapter 22, “Calling Procedures in DLLs,” in the
Visual Basic Programmer’s Guide.

DTK comes with sample VB applications that can be used as template for
developing other VB applications. By default, these examples are installed in
subdirectories of the EXAMPLES directory under your install directory.

Every DTK function that can be called from VB is declared in the code
module file, QEDEMO.BAS. You can copy these declarations into the code
module of your application so that you do not have to enter them by hand.

This appendix contains the following sections:

• “A VB Example” on page 510 shows the code for a sample VB application
that calls DTK functions.

• “DTK Functions for Visual Basic Users” on page 512 introduces the three
kinds of functions VB can use.

Go To
Appendix B For Microsoft Visual Basic Users

A VB Example 510

DataDirect Developer’s Toolkit Programmer’s Guide

• “Standard DTK Functions” on page 513 explains how to call the majority
of DTK functions.

• “VB-Specific Functions” on page 513 covers the four DTK functions
designed for VB users only.

• ““Buf” Functions” on page 524 lists the functions VB users use as
alternatives to those functions that return a pointer to a value.

• “Data Types” on page 527 gives the VB equivalents for DTK’s data types.

A VB Example

The following sample code shows how to use Visual Basic to connect and
disconnect from the dBASE database system, use the VB-specific functions
to fetch and update a record, and check for errors. The VB-specific functions
pass current record information into arrays. The line-continuation arrow
(➤) denotes wrapped lines that must be entered as one line of code in the
Code window.

'Declare arrays to hold current record, format strings, and errors
Dim RecordArray() As Varian t
Dim FormatStringsArray() As Strin g
Dim ErrorsArray() As Intege r
Dim hdbc As Integer, hstmt As Integer, res_code As Integer

'Call qeConnect to connect to a data source. Check to see if hdbc == 0,
'which indicates that the connection failed.
 hdbc = qeConnect("DRV=QEDBF")
 'Error-handling routin e
 If hdbc = 0 The n
 MsgBox "qeConnect failed, error = " + Str$(qeErr())
 Exit Su b
 End I f

 'Call qeExecSQL to select dept and salary values from Tim Grove's recor d
 hstmt = qeExecSQL(hdbc, "SELECT dept, salary FROM c:\qelib\emp
 ➤WHERE first_name = 'Timothy' AND last_name = 'Grove'")

'Error-handling routin e

Go To
Appendix B For Microsoft Visual Basic Users

A VB Example 511

DataDirect Developer’s Toolkit Programmer’s Guide

 If hstmt = 0 The n
 err_qe% = qeErr()
 If err_qe% = 4 Then err_db& = qeDBErr()
 MsgBox "qeExecSQL failed, error = " + Str$(err_qe%) + "dberr = " +
Str$(err_db&)
 res_code = qeDisconnect(hdbc)
 Exit Su b
 End I f

'Get the number of columns in the SQL statemen t
 NumCols% = qeNumCols(hstmt)
 ReDim RecordArray(1 To NumCols%)
 ReDim FormatStringsArray(1 To NumCols%)
 ReDim ErrorsArray(1 To NumCols%)
 'Call qeVBFetchNext to retrieve the record indicated by the SQ L
 'statemen t
 'This function stores the record's values and other info in th e
 'array s
 res_code = qeVBFetchNext(hstmt, RecordArray(), FormatStringsArray(),
 ➤ErrorsArray())
'Error-handling routin e
 If res_code <> 0 The n
 MsgBox "qeVBFetchNext failed, error = " + Str$(res_code)
 Els e
 'Check whether errors occurred while fetching in a colum n
 For n = 1 To NumCols %
 If ErrorsArray(n) <> 0 The n
 MsgBox "qeVBFetchNext column " + Str$(n) + " error = " +
 ➤Str$(ErrorsArray(n))
 End I f
 Next n
 End I f

 'Set new dept and salary values for the current recor d
 If res_code = 0 The n
 RecordArray(1) = "D101 "
 RecordArray(2) = "$42000 "
 'Call qeVBPutRecord to put the new values into the current recor d
 res_code = qeVBPutRecord(hstmt, RecordArray(), FormatStringsArray(),
 ➤ErrorsArray())
 If res_code <> 0 The n
 MsgBox "qeVBPutRecord failed, error = " + Str$(res_code)
 Els e
 For n = 1 To NumCols %
 If ErrorsArray(n) <> 0 The n

Go To
Appendix B For Microsoft Visual Basic Users

DTK Functions for Visual Basic Users 512

DataDirect Developer’s Toolkit Programmer’s Guide

 MsgBox "qeVBPutRecord column " + Str$(n) + " error = " +
 ➤Str$(ErrorsArray(n))
 End I f
 Next n
 End I f
 'Call qeRecUpdate to update the current record in the databas e
 res_code = qeRecUpdate(hstmt)
 If res_code <> 0 The n
 MsgBox "qeRecUpdate failed, error = " + Str$(res_code)
 End I f
 'Call qeEndSQL to end the SQL statemen t
 res_code = qeEndSQL(hstmt)
 If res_code <> 0 The n
 MsgBox "qeEndSQL failed, error = " + Str$(res_code)
 End I f
 'Call qeDisconnect to disconnect from a data source .
 res_code = qeDisconnect(hdbc)
 If res_code <> 0 The n
 MsgBox "qeDisconnect failed, error = " + Str$(res_code)
 End I f

DTK Functions for Visual Basic Users

To Visual Basic users, DTK has three kinds of functions:

• Standard DTK functions. Most of DTK’s functions are standard functions
that can be called in VB just as they are in other development
environments.

• VB-specific functions. For VB users, DTK 2.x provides four functions to
simplify and speed up fetching and putting records: qeVBFetchNext,
qeVBFetchPrev, qeVBFetchRandom, and qeVBPutRecord.

• “Buf” functions. Because VB does not allow functions to return pointers to
values, DTK provides a set of alternate, “Buf” functions that fill memory
buffers that you must allocate.

The following sections tell you more about these functions.

Go To
Appendix B For Microsoft Visual Basic Users

Standard DTK Functions 513

DataDirect Developer’s Toolkit Programmer’s Guide

Standard DTK Functions

The vast majority of DTK functions work the same in VB as they do in other
development environments. For example, you can insert, update, or delete
records in VB just as you do from Microsoft C++, by issuing a SQL Insert,
Update, or Delete statement using qeExecSQL, or by calling qeRecNew,
qeRecUpdate, or qeRecDelete. The previous chapters of this manual explain
how to call the standard DTK functions.

VB users cannot use the qeBindCol function, nor any of those functions that
return a pointer to a value, such as qeValChar. DTK provides the “Buf”
functions as alternatives.

VB-Specific Functions

Only VB users can call the four functions described in this section,
qeVBFetchNext, qeVBFetchPrev, qeVBFetchRandom, and qeVBPutRecord.
These functions provide a much faster and easier way to retrieve database
records than the qeValBuf functions. The VB-specific functions treat records
as arrays of Variants, which are easier to manipulate than the data returned
from qeValMultiCharBuf.

qeVBFetchNext

qeVBFetchNext is used in VB applications to retrieve the next record from the
database.

Syntax int16 res_code qeVBFetchNext (int16 hstmt, varian t
RecordArray(), string FormatStringsArray(), int16
ErrorsArray())

Go To
Appendix B For Microsoft Visual Basic Users

qeVBFetchNext 514

DataDirect Developer’s Toolkit Programmer’s Guide

Description qeVBFetchNext retrieves the next record from the database and passes
record values into the record array. If this is the first call to qeVBFetchNext
following qeExecSQL, this function retrieves the first record. The retrieved
record becomes the current record.

qeVBFetchNext passes the current record’s values into the record array as
Variants. If a column’s data type is numeric or date-time, the corresponding
element in the format string array can be set to a format string to format the
data. If an error occurs while fetching a particular column, the corresponding
element in the error array is set to the error returned.

The arrays passed to the function must be declared to contain at least as
many field values as there are in the current record, or in other words, the
number of columns present in the SQL Select statement.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

RecordArray() is a handle to a dynamic array of type Variant. Each element in
the array corresponds to a column in the Select statement and therefore a
value in the current record. If a column is of type numeric or date-time and a
format string is specified for the column, the column value is formatted and
converted into a character string.

FormatStringsArray() is a handle to a dynamic array of format strings, one for
each column returned. Each array element can be either a format string,
which formats date or number data, or a null or empty string value, in which
case the corresponding data is returned with no formatting. Numeric and
date-time columns with format strings are formatted and converted into
character strings. Format strings are ignored for columns of other data types.

ErrorsArray() is a handle to a dynamic array of errors that occur as the
function retrieves the current record. If an error occurs as the function fetches
the value of a column, the corresponding element contains error values such
as those returned by the qeErr function.

res_code is the result code returned by qeVBFetchNext, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Appendix B For Microsoft Visual Basic Users

qeVBFetchNext 515

DataDirect Developer’s Toolkit Programmer’s Guide

Example To fetch all records from the employee database file:

Dim RecordArray() As Varian t
Dim FormatStringsArray() As Strin g
Dim ErrorsArray() As Intege r
...
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;

ReDim RecordArray(1 To NumCols%)
ReDim FormatStringsArray(1 To NumCols%)
ReDim ErrorsArray(1 To NumCols%)

while (qeVBFetchNext(hstmt, RecordArray(),
➤FormatStringsArray(), ErrorsArray() = 0)

...
Wend

Notes Whenever you acquire a new hstmt, you must call qeVBFetchNext to move
the cursor to the first record before you can perform any other operations on
the data.

If qeSetAutoUpdate has been called to enable auto-updating, and changes
have been made to the current record via calls to qeVBPutRecord, a call to
qeVBFetchNext updates the current record.

When qeVBFetchNext reaches the last record returned by the Select
statement, it returns a result of qeEOF (-5).

Sometimes, calling the appropriate qeValBuf function is a more efficient way
to get the values in the current buffer. For example, when you want to retrieve
one value of a character field in the Select statement, call qeFetchNext and
qeValCharBuf instead of qeVBFetchNext.

qeVBFetchNext returns values of DTK data type 2 (variable length character
string) as strings. Note that Visual Basic strings may have null characters in
them.

qeVBFetchNext trims any trailing blanks on data returned as strings, unless
the data is of DTK type 2.

Go To
Appendix B For Microsoft Visual Basic Users

qeVBFetchPrev 516

DataDirect Developer’s Toolkit Programmer’s Guide

Null database values are returned as an empty string for string and date
types, or as 0 for numeric types. When qeVBFetchNext returns a null value,
the corresponding entry in the error array will be set to qeNULL_DATA
(-2).

See Also qeFetchNext, qeSetSelectOptions, qeVal functions, qeVBFetchPrev,
qeVBFetchRandom.

qeVBFetchPrev

qeVBFetchPrev retrieves the previous record from the database in VB
applications.

Syntax int16 res_code qeVBFetchPrev (int16 hstmt, varian t
RecordArray(), string FormatStringsArray(), int16
ErrorsArray())

Description qeVBFetchPrev retrieves the previous record from the database and passes
record values into the record array. qeVBFetchPrev cannot be called unless
qeSetSelectOptions has been called to enable backwards scrolling.

qeVBFetchPrev passes the current record’s values into the record array as
Variants. If a column’s data type is numeric or date-time, the corresponding
element in the format array can be set to a format string that formats the data.
If an error occurs while fetching a particular column, the corresponding
element in the error array is set to the error returned.

The arrays passed to the function must be declared to contain at least as
many field values as there are in the current record, or in other words, the
number of columns present in the SQL Select statement.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

Go To
Appendix B For Microsoft Visual Basic Users

qeVBFetchPrev 517

DataDirect Developer’s Toolkit Programmer’s Guide

RecordArray() is a handle to a dynamic array of type Variant. Each element in
the array corresponds to a column in the Select statement and therefore a
value in the current record. If a column is of type numeric or date-time and a
format string is specified for the column, the column value is formatted and
converted into a character string.

FormatStringsArray() is a handle to a dynamic array of format strings, one for
each column returned. Each array element can be either a format string,
which formats date or number data, or a null or empty string value, in which
case the corresponding data is returned with no formatting. Numeric and
date-time columns with format strings are formatted and converted into
character strings. Format strings are ignored for columns of other data types.

ErrorsArray() is a handle to a dynamic array of errors that occur as the
function retrieves the current record. If an error occurs as the function fetches
the value of a column, the corresponding element contains error values such
as those returned by the qeErr function.

res_code is the result code returned by qeVBFetchPrev, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example To fetch the previous record from the employee database file:

Dim RecordArray() As Varian t
Dim FormatStringsArray() As Strin g
Dim ErrorsArray() As Intege r
...
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeSetSelectOptions (hstmt, 1)

ReDim RecordArray(1 To NumCols%)
ReDim FormatStringsArray(1 To NumCols%)
ReDim ErrorsArray(1 To NumCols%)

qeVBFetchPrev(hstmt, RecordArray(),
FormatStringsArray(),
➤ErrorsArray()

Go To
Appendix B For Microsoft Visual Basic Users

qeVBFetchRandom 518

DataDirect Developer’s Toolkit Programmer’s Guide

Notes If qeSetAutoUpdate has been called to enable auto-updating, and changes
have been made to the current record via calls to qeVBPutRecord, a call to
qeVBFetchPrev updates the current record.

Sometimes, calling the appropriate qeValBuf function is a more efficient way
to get the values in the current buffer. For example, when you want to retrieve
one value of a character field in the Select statement, call qeFetchPrev and
qeValCharBuf instead of qeVBFetchPrev.

qeVBFetchPrev returns values of DTK data type 2 (variable length character
string) as strings. Note that Visual Basic strings may have null characters in
them.

qeVBFetchPrev trims any trailing blanks on data returned as strings, unless
the data is of DTK type 2.

Null database values are returned as an empty string for string and date
types, or as 0 for numeric types. When qeVBFetchPrev returns a null value,
the corresponding entry in the error array will be set to qeNULL_DATA
(-2).

See Also qeFetchPrev, qeVal functions, qeSetQueryTimeout, qeVBFetchNext,
qeVBFetchRandom.

qeVBFetchRandom

qeVBFetchRandom retrieves a specific record from the database in VB
applications.

Syntax int16 res_code qeVBFetchRandom (int16 hstmt, int32
rec_num, varian t RecordArray(), string
FormatStringsArray(), int16 ErrorsArray())

Go To
Appendix B For Microsoft Visual Basic Users

qeVBFetchRandom 519

DataDirect Developer’s Toolkit Programmer’s Guide

Description qeVBFetchRandom retrieves a specified record from the database and
passes record values into the record array. qeVBFetchRandom cannot be
called unless qeSetSelectOptions has been called to enable backwards
scrolling.

qeVBFetchRandom passes the current record’s values into the record array
as Variants. If a column’s data type is numeric or date-time, the
corresponding element in the format array can be set to a format string that
formats the data. If an error occurs while fetching a particular column, the
corresponding element in the error array is set to the error returned.

The arrays passed to the function must be declared to contain at least as
many field values as there are in the current record, or in other words, the
number of columns present in the SQL Select statement.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

rec_num is the record number to be read. The first record is 1.

RecordArray() is a handle to a dynamic array of type Variant. Each element in
the array corresponds to a column in the Select statement and therefore a
value in the current record. If a column is of type numeric or date-time and a
format string is specified for the column, the column value is formatted and
converted into a character string.

FormatStringsArray() is a handle to a dynamic array of format strings, one for
each column returned. Each array element can be either a format string,
which formats date or number data, or a null or empty string value, in which
case the corresponding data is returned with no formatting. Numeric and
date-time columns with format strings are formatted and converted into
character strings. Format strings are ignored for columns of other data types.

ErrorsArray() is a handle to a dynamic array of errors that occur as the
function retrieves the current record. If an error occurs as the function fetches
the value of a column, the corresponding element contains error values such
as those returned by the qeErr function.

Go To
Appendix B For Microsoft Visual Basic Users

qeVBFetchRandom 520

DataDirect Developer’s Toolkit Programmer’s Guide

res_code is the result code returned by qeVBFetchRandom, which returns
the same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Example To fetch the last record from the employee database file:

Dim RecordArray() As Varian t
Dim FormatStringsArray() As Strin g
Dim ErrorsArray() As Intege r
...
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp")
res_code = qeSetSelectOptions (hstmt, 1)

num_recs% = qeFetchNumRecs (hstmt)

ReDim RecordArray(1 To NumCols%)
ReDim FormatStringsArray(1 To NumCols%)
ReDim ErrorsArray(1 To NumCols%)

qeVBFetchRandom (hstmt, RecordArray(),
➤FormatStringsArray(), ErrorsArray())

Notes If qeSetAutoUpdate has been called to enable auto-updating, and changes
have been made to the current record via calls to qeVBPutRecord functions,
a call to qeVBFetchRandom updates the current record.

Sometimes, calling the appropriate qeValBuf function is a more efficient way
to set the values in the current buffer. For example, when you want to retrieve
one value of a character field in the Select statement, call qeFetchRandom
and qeValCharBuf instead of qeVBFetchRandom.

qeVBFetchRandom returns values of DTK data type 2 (variable length
character string) as strings. Note that Visual Basic strings may have null
characters in them.

qeVBFetchRandom trims any trailing blanks on data returned as strings,
unless the data is of DTK type 2.

Go To
Appendix B For Microsoft Visual Basic Users

qeVBPutRecord 521

DataDirect Developer’s Toolkit Programmer’s Guide

Null database values are returned as an empty string for string and date
types, or as 0 for numeric types. When qeVBFetchRandom returns a null
value, the corresponding entry in the error array is set to qeNULL_DATA
(-2).

See Also qeVal functions, qeVBFetchPrev, qeVBFetchRandom.

qeVBPutRecord

qeVBPutRecord is used to set values in the current record buffer.

Syntax int16 res_code qeVBPutRecord (int16 hstmt, varian t
RecordArray(), string FormatStringsArray(), int16
ErrorsArray())

Description qeVBPutRecord updates the current record buffer with new values passed in
from the record array. Note that qeVBPutRecord does not change the values
in the database. To actually modify the database, you must call
qeRecUpdate.

If you are putting a value into a date-time column, you must also pass a
format string in the corresponding element in the format string array. If you do
not know the value’s format, you can use the Format$ function to convert the
date to a known format. Then you can set the corresponding element in the
format string array to match this format, for example,

RecordArray(2) = Format$(Text2.text, "m/d/yy")
FormatStringsArray(2) = "m/d/yy "

Similarly, if you are putting a string value into a numeric column, you can use
VB’s conversion functions to convert it to a numeric value. For example, the
following code converts the value in the Text1 control to a Variant that is
internally represented as an Integer.

RecordArray(3) = CVar (CInt (Text1.text))

Go To
Appendix B For Microsoft Visual Basic Users

qeVBPutRecord 522

DataDirect Developer’s Toolkit Programmer’s Guide

Refer to Visual Basic’s Language Reference for more information on these
VB functions.

If an error occurs while putting a value into a particular column, the
corresponding element in the error array is set to the error returned.

The arrays passed to the function must be declared to contain at least as
many elements as there are columns in the SQL Select statement.

If any element of the record array contains a null value or an empty string,
qeVBPutRecord puts a null value into the current record buffer. To avoid
overwriting values in the database, be sure to pass values in all elements of
the record array, even if they do not differ from the original database values.

Parameters hstmt is the handle to the statement returned by qeExecSQL or
qeSQLPrepare.

RecordArray() is a handle to a dynamic array of type Variant. Each element in
the array corresponds to a column in the Select statement and therefore a
value in the current record. If a column is of type numeric or date-time and a
format string is specified for the column, the column value is formatted and
converted into a character string.

FormatStringsArray() is a handle to a dynamic array of format strings, one for
each column returned. Each array element can be either a format string,
which formats date or number data, or a null or empty string value, in which
case the corresponding data is returned with no formatting. Numeric and
date-time columns with format strings are formatted and converted into
character strings. Format strings are ignored for columns of other data types.

ErrorsArray() is a handle to a dynamic array of errors that occur as the
function retrieves the current record. If an error occurs as the function fetches
the value of a column, the corresponding element contains error values such
as those returned by the qeErr function.

res_code is the result code returned by qeVBPutRecord, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Go To
Appendix B For Microsoft Visual Basic Users

qeVBPutRecord 523

DataDirect Developer’s Toolkit Programmer’s Guide

Example To put a record into the current record buffer and update the employee
database file:

Dim RecordArray() As Varian t
Dim FormatStringsArray() As Strin g
Dim ErrorsArray() As Intege r
...
hstmt = qeExecSQL (hdbc, "SELECT dept, salary FROM
➤d:\qelib\emp WHERE first_name = 'Timothy' AND last_name
➤= 'Grove'") ;

ReDim RecordArray(1 To NumCols%)
ReDim FormatStringsArray(1 To NumCols%)
ReDim ErrorsArray(1 To NumCols%)

res_code = qeVBFetchNext(hstmt, RecordArray(),
FormatStringsArray(), ErrorsArray()
...

If res_code = 0 The n
RecordArray(1) = "D101 "
RecordArray(2) = "$42,000.00 "
FormatStringsArray(2) = "$###,###.00 "
res_code = qeVBPutRecord(hstmt, RecordArray(),
➤FormatStringsArray(), ErrorsArray())

Notes Sometimes it is more efficient to set values in the current buffer by calling the
appropriate qePut functions. For example, when updating only one column in
each record when several columns have been selected, calling a qePut
function is faster than calling qeVBPutRecord.

qeVBPutRecord returns values in DTK data type 2 (variable length character
string) columns as strings. Note that Visual Basic strings may have null
characters in them. To put a value into a of DTK type 2 column, set the
Variant to a string containing the value you wish to put.

Go To
Appendix B For Microsoft Visual Basic Users

“Buf” Functions 524

DataDirect Developer’s Toolkit Programmer’s Guide

Null database values are returned as an empty string for string and date
types, or as 0 for numeric types. When qeVBFetchNext returns a null value,
the corresponding entry in the error array is set to qeNULL_DATA
(-2).

See Also qePut functions, qeRecUpdate, qeVal functions, qeVBFetchNext,
qeVBFetchPrev, qeVBFetchRandom.

“Buf” Functions

Visual Basic does not support DLL functions that return a pointer to a value.
Because of this limitation, DTK provides alternative forms of these functions.
These forms have the same name as the standard forms and end with “Buf,”
for example, qeErrMsgBuf.

When using the Buf functions, your VB program must allocate a buffer to hold
the value returned by the function. Also, you must pass the pointer to the
buffer as an additional parameter to the Buf functions. Make sure that the size
of the buffer you allocate is large enough to hold the returned value.

The following table lists the DTK functions not supported and the alternative
function that you must use.

Don’t Use Use Instead

qeBindCol functions the qeVBFetch functions or the qeValBuf
functions

qeClauseGet qeClauseGetBuf

qeColAlias qeColAliasBuf

qeColDBTypeName qeColDBTypeNameBuf

qeColExpr qeColExprBuf

qeColName qeColNameBuf

qeErrMsg qeErrMsgBuf

Go To
Appendix B For Microsoft Visual Basic Users

“Buf” Functions 525

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetODBCInfoChar qeGetODBCInfoCharBuf

qeNativeSQL qeNativeSQLBuf

qeQryGetFileName qeQryGetFileNameBuf

qeQryGetParamDefault qeQryGetParamDefaultBuf

qeQryGetParamFormat qeQryGetParamFormatBuf

qeQryGetParamName qeQryGetParamNameBuf

qeQryGetParamPrompt qeQryGetParamPromptBuf

qeQryGetSource qeQryGetSourceBuf

qeQryGetStmt qeQryGetStmtBuf

qeSetupInfo qeSetupInfoBuf

qeUniqueWhereClause qeUniqueWhereClauseBuf

qeValChar the qeVBFetch functions or qeValCharBuf

qeValDecimal the qeVBFetch functions or
qeValDecimalBuf

qeValMultiChar the qeVBFetch functions or
qeValMultiCharBuf

qeVerNum qeVerNumBuf

qeBinToHex qeBinToHexBuf

qeHexToBin qeHexToBinBuf

qeDateToChar qeDateToCharBuf

qeDecimalToChar qeDecimalToCharBuf

qeDoubleToChar qeDoubleToCharBuf

qeFloatToChar qeFloatToCharBuf

Don’t Use Use Instead

Go To
Appendix B For Microsoft Visual Basic Users

“Buf” Functions 526

DataDirect Developer’s Toolkit Programmer’s Guide

Allocating Buffers

When you call qeValCharBuf, or any other Buf function, it is critical that you
allocate a buffer to hold the value returned by the function. In other words, the
string variable you pass as the second parameter must be long enough to
hold the column value returned from the database.

There are two ways you can set the size of a string variable. You can declare
the variable as a fixed-length string using the Dim statement:

Dim value As String * 25 5

Or you can use variable-length strings by either not declaring them at all—
just assign to value$—or declaring them as:

Dim value As Strin g

If you use variable-length strings, you must immediately precede each call to
qeValCharBuf with:

value = String$(255,0)

qeIntToChar qeIntToCharBuf

qeLongToChar qeLongToCharBuf

qeCharToDate qeCharToDateBuf

qeCharToDecimal qeCharToDecimalBuf

qeDoubleToDecimal qeDoubleToDecimalBuf

qeFloatToDecimal qeFloatToDecimalBuf

qeIntToDecimal qeIntToDecimalBuf

qeLongToDecimal qeLongToDecimalBuf

Don’t Use Use Instead

Go To
Appendix B For Microsoft Visual Basic Users

Data Types 527

DataDirect Developer’s Toolkit Programmer’s Guide

Both techniques allocate a string variable of the specified size, 255 in these
examples. The required length of your string variables depends on the size of
column values that you are retrieving. You can call qeColWidth to get the
maximum size of a column.

If your application has a General Protection Fault on a call to a qeVal
function, chances are the string variable you sent was not large enough to
hold the column value.

Data Types

Each column in a table has a data type. The data type determines the type of
information that can be stored in the column. See “Data Types in DTK” on
page 53 for more information.

With the exception of Decimal numbers, DTK’s data types can be mapped
directly to VB data types. The following table shows the DTK data types and
the corresponding VB data types.

Identifier DTK Data Type
VB Data
Type

1 Fixed length character string String

2 Variable length character string String

3 Decimal number (BCD) N/A

4 Long integer (4-byte) Long

5 Integer (2-byte) Integer

6 Floating-point numbers (4-byte) Single

7 Double-precision floating-point
numbers (8-byte)

Double

8 Date-Time (26-byte character
string)

String

Go To
Appendix B For Microsoft Visual Basic Users

Data Types 528

DataDirect Developer’s Toolkit Programmer’s Guide

DTK automatically converts data when you use the qeVal functions. For
example, you can use the qeValCharBuf function to retrieve any database
column value, and DTK will convert all values to character strings.

For your convenience, DTK also provides data type conversion functions,
listed in Appendix A, “Data Conversion Functions,” on page 493.

If your database contains Decimal numbers, you should use either
qeValCharBuf or qeValDouble to convert the numbers to double-precision
floating-point numbers.

DataDirect Developer’s Toolkit Programmer’s Guide

Go To

C Coding for Single Statement
Database Systems

Most database systems allow more than one active statement on a
connection. For example, you could read records from Oracle with one
statement and update records using a second statement, with both
statements sharing a single connection to the database.

Some database systems, however, have the limitation that for each database
connection, you can execute only one SQL statement at a time. For
convenience, such database systems are called single-statement systems in
this book. Refer to the DataDirect ODBC Drivers Reference for information on
whether specific database systems support single or multiple active
statements on a connection.

This appendix describes the issues that create special considerations for
DTK applications that support single-statement systems, as well as
techniques for achieving the best performance possible when writing such
applications.

Why Is This an Issue?

The single-statement limitation greatly affects the way that DTK handles the
execution of SQL statements, because when your program connects to a
single-statement database and issues a Select statement, you cannot issue
any other Select, Insert, Update, or Delete statements until you terminate the
first Select statement. So if you issue the first Select statement, read a few

Go To
Appendix C Coding for Single Statement Database Systems

Why Is This an Issue? 530

DataDirect Developer’s Toolkit Programmer’s Guide

records, and then want to update a record, you have a problem—you can’t
update a record until you terminate the Select statement, but if you terminate
the Select statement to do the update, then you won’t be able to read the rest
of the records returned by the Select statement (because you terminated it).

Fortunately, DTK avoids this problem by automatically creating a second
connection to the database system whenever it’s necessary to execute a
SQL statement and the original connection is “busy.” This technique is called
cloning connections.

Suppose your application issues a Select statement, then reads a few
records, and then issues an Update (or any other SQL) statement. In this
case, DTK detects that your program is trying to issue a second SQL
statement while the first one is still active, so it clones the first connection to
get a second one, and then executes the Update statement on that second
connection.

Note: Many DTK functions create SQL statements as part of their
execution—and therefore cause DTK to clone connections to single-
statement database systems—so this behavior is not limited to the SQL
execution functions. Any DTK function that changes the database can issue
SQL statements.

When a statement terminates, the corresponding connection is no longer
busy so DTK retains this connection to ensure that it will have one ready
when another SQL statement is issued. DTK never retains more than one
inactive connection; if an application terminates two statements, it closes one
connection and retains the other one for future use.

DTK keeps the number of open connections to a minimum by automatically
terminating the Select statement when your application reads the last record.
From the viewpoint of your application, its “statement” has not been
terminated, because it can still scroll through the records (when random
fetching is enabled). But from the viewpoint of the database system, the
statement has been closed, so the associated connection can be used again.

DTK is able to continue scrolling through the records after the statement has
been terminated because it saves all records in a log file as it reads them.
These log files are stored in temporary files on the user’s computer.

Go To
Appendix C Coding for Single Statement Database Systems

Locking Considerations 531

DataDirect Developer’s Toolkit Programmer’s Guide

DTK’s use of cloned connections for single statement database systems
creates special considerations relative to locking behavior and performance.
The following sections describe these considerations, as well as the options
that DTK provides for handling them.

Locking Considerations

Database systems generally allow you to have one transaction per
connection, and do not let you have one transaction that spans more than
one connection. For single-statement systems, two SQL statements running
at the same time in separate connections are in separate transactions. So for
these database systems, connections and transactions are equivalent.

When a statement causes the database system to lock a record, the lock is
acquired in the context of the connection’s transaction. If a second statement
executing in a second connection attempts to lock the same record, the
database system will not let the second lock succeed, because it treats the
two transactions as if they were two different users—even though the two
transactions were started by the same application. Two transactions cannot
lock the same record at the same time, even if the transactions were started
by the same application.

Some single-statement databases, when you issue a Select statement, will
acquire locks on the pages as they read records from the page. As soon as a
such a database reads a record from a different page, it removes the shared
lock it had on the first page and acquires a shared lock on the new page.
Thus, as an application is reading records from a Select statement, the
database system is acquiring and releasing shared locks on the pages as the
records are being read. As a result, DTK doesn’t know which record’s page is
currently locked when an application is reading records.

If you issue an Update, Delete, or Insert statement in a single-statement
database, it will acquire an exclusive lock on the page containing the
changed record. These locks are held until the current transaction ends.

Go To
Appendix C Coding for Single Statement Database Systems

Performance Considerations 532

DataDirect Developer’s Toolkit Programmer’s Guide

Here is an example of the type of locking problems that may occur. An
application issues a Select statement and reads the first record, then
attempts to update that record. The Select statement is being executed on
one connection, and the Update statement is being executed on a second
connection. The first connection has a lock on the page containing the first
record, and the Update statement attempts to acquire an exclusive lock on
the same page. If these happen to be the same page, the Update statement’s
attempt to acquire a lock will fail.

DTK avoids this potential problem by reading all of the records from all active
Select statements into the log file. This activity is called read-ahead in DTK.
By default, this read-ahead activity occurs whenever an application attempts
to update, delete, or insert a record. When the application attempts to update
the first record, DTK will first read all of the records from the Select statement
(putting them into the log file), terminate the Select statement, and then
execute the Update statement. By doing the read-ahead, DTK guarantees
that the Select statement is no longer holding any shared locks, so the
Update statement’s attempt to get an exclusive lock will not fail because of a
conflict with a Select statement in the same application. However, read-
ahead cannot prevent a lock conflict between one user’s exclusive lock and
some other user on a different computer who has a shared or exclusive lock
on the same page.

The following sections contain more information on read-ahead behavior and
the DTK options you can use to control it.

Performance Considerations

Depending on your network and your server computer, you may notice some
delay when connecting to a database; so every time your application issues
an SQL statement that causes the database driver to clone a connection,
there may be a noticeable delay.

Go To
Appendix C Coding for Single Statement Database Systems

Performance Considerations 533

DataDirect Developer’s Toolkit Programmer’s Guide

Depending on the installation of your database system, your server may have
a limit on the total number of active connections. (For example, you could
have only 5 or 10 connections that are shared by all users.) In such a case,
you want DTK to use as few connections as possible, and to close them as
soon as possible.

One way that you can affect how soon DTK can reuse a connection is to have
DTK read all of the records from a Select statement as soon as possible.
(This is the same read-ahead activity described in the previous section.) After
reading the statement’s entire result set into the log file, DTK no longer needs
to keep the statement open for you to continue reading, inserting, updating,
and deleting records. Once the entire result set is read into the log file, DTK
closes the statement and frees the connection it used. So the sooner DTK
reads the entire result set returned by the Select statement, the sooner the
connection is freed.

Certain events cause DTK to automatically read the entire result set. To
optimize the performance and effect of this read-ahead activity, DTK allows
you to specify which events trigger it. The following section describes how.

Go To
Appendix C Coding for Single Statement Database Systems

Controlling Read-ahead Activity 534

DataDirect Developer’s Toolkit Programmer’s Guide

Controlling Read-ahead Activity

The qeSetOneHstmtPerHdbcOptions function lets you specify when DTK will
perform read-ahead activity. In addition to other behavior that this function
controls, it provides the following read-ahead options:

The qeREADAHEAD_AT_EXEC option uses the fewest database system
resources because it frees the Select statement’s connection earliest. It also
controls when the read-ahead occurs—any performance lags that the read-
ahead may cause occur when the application starts, and not while users are
trying to work with the data.

If you know that your users will rarely be updating the database, choose the
qeREADAHEAD_AT_UPDATE option to prevent unnecessary read-ahead
activity. If your users will be updating the database, choosing this option
makes any performance penalty caused by read-ahead concurrent with the
events that make it necessary—the first time you lock, update, or delete a
record. DTK will free the Select statement’s connection at that time.

Constant Value Description

qeREADAHEAD_AT_
EXEC

0x0001 DTK reads the statement’s entire result
set into the log file when the statement
executes. Reading result sets at this
time will often free handles for users of
databases who have licenses restricting
open handles.

qeREADAHEAD_AT_
UPDATE

0x0002 DTK reads the remainder of the result
set into the log file whenever a record is
locked, updated, or deleted. This is the
default read-ahead option.

qeREADAHEAD_
COMMIT_UPDATES

0x0003 DTK avoids all read-ahead activity by
requiring you to commit all updates
before fetching any more records.

Go To
Appendix C Coding for Single Statement Database Systems

Controlling Read-ahead Activity 535

DataDirect Developer’s Toolkit Programmer’s Guide

The qeREADAHEAD_COMMIT_UPDATES option allows you to avoid read-
ahead activity entirely when using transactions by agreeing to commit all
database changes before fetching additional records from the result set.
When using this option, your application must not fetch any records from this
result set from the time you first update a record until you commit all updates.
Note that when you choose this option, DTK uses a different locking protocol
to eliminate the need for read-ahead activity—fetching at the wrong time can
cause you to hang the database as well as your application. Because it does
not read-ahead, DTK cannot free the Select statement’s connection until
qeEndSQL is called.

Another way to avoid unnecessary read-ahead activity is to tell DTK when the
statement you are issuing will not affect other active statements. For
example, suppose your application has an active Select statement like

SELECT * FROM em p

and you want to issue another statement like

SELECT * FROM dep t

Because these two statements read data from separate tables, updates to
the result set from one of these statements cannot affect records in the result
set of the other. This means that when you update a record returned by one
statement, DTK does not need to read-ahead to free shared locks on both
Select statements—only the one that is getting updated. If the two statements
read data from the same table, DTK would have to read-ahead on both
statements in order to free all shared locks and perform the update.

By default, DTK will always assume that a statement can affect other active
statements, and will read-ahead on all active statements when performing an
update. However, by calling the qeSetOneHstmtPerHdbcOptions function
and setting the qeHSTMT_LOCAL flag (0x0020), you can inform DTK
whenever the next statement issued will not affect other active statements,
and thereby prevent unnecessary read-ahead activity on those statements.

Preventing Statement Conflicts

When sending multiple statements through cloned connections, it is
important to send all statements that modify the database through the same
connection. Doing so prevents the locking conflicts that can otherwise occur.

DTK can usually determine whether a statement will modify the database. To
do so, it examines the first word of the statement. If that word is any other
than “Select,” DTK sends the statement through the connection used for
statements that modify the database. However, some statements, such as
those that invoke stored procedures, may cause DTK to guess incorrectly. If
your application uses such statements, then before issuing them you should
call the qeSetOneHstmtPerHdbcOptions function and set one of the
following flags:

Constant Value Description

qeROUTING_READ 0x0008 DTK will route this statement through a
connection used for read-only
statements.

qeROUTING_UPDATE 0x0010 DTK will route this statement through a
connection used for statements that
modify the database.

qeROUTING_DEFAULT 0x0018 This option allows DTK to decide which
connection to send the statement to.
This is the default routing option.

DataDirect Developer’s Toolkit Programmer’s Guide

Go To

D Result and Error Message
Codes

This appendix lists the result and error codes returned by qeErr and the error
messages returned by qeErrMsg and qeErrMsgBuf.

Result Codes

The following table lists the result codes returned by qeErr and other
functions that return result codes.

Constant Value Description

qeLOCK_NO_REC -6 A lock was attempted, but either no
record was selected by the primary
key, the record has been deleted by
another user, or another user has
changed the value of a key field.

qeEOF -5 EOF. Returned by qeFetchNext,
qeFetchPrev, or qeFetchRandom
when there is no record to return.

qeUSER_CANCELED -4 User canceled out of the logon
dialog box.

qeOUT_OF_MEMORY -3 Windows or OS/2 is out of memory.
This is usually fatal.

Go To
Appendix D Result and Error Message Codes

Error Codes and Messages 538

DataDirect Developer’s Toolkit Programmer’s Guide

Error Codes and Messages

The following error codes are returned by qeErr or any other function that
returns a result code. The corresponding messages can be retrieved with a
call to qeErrMsg or qeErrMsgBuf.

qeSUCCESS 0 Success.

qeSUCCESS_WITH_INFO 1 Success with information (warning).

qeNO_DATA_WITH_INFO 2 EOF with additional information
(usually ESC during a fetch).

qeDBSYS_ERROR 4 Database system error. Call
qeDBErr to retrieve the database
system’s error number.

qeLIBSYS_ERROR 5 Returned when the system cannot
locate the DTK Dynamic Link
Library.

Code # Error Message Text

1100 Error on menu operation. Resources may be getting low.

1500 Not enough memory for data transfer--message truncated.

1501 Cannot create file 'file_name'.

1502 Cannot delete file: 'file_name'.

1503 Not enough memory for this command.

1504 Cannot set current working directory to 'dir_name'.

Constant Value Description

Go To
Appendix D Result and Error Message Codes

Error Codes and Messages 539

DataDirect Developer’s Toolkit Programmer’s Guide

1506 Insufficient disk space.

1507 Invalid file handle.

1508 Access to file denied 'file_name'.

1509 File not found 'file_name'.

1510 Path not found 'path_name'.

1511 You must run SHARE when locking is enabled or you must set
Locking=NONE in your ODBC.INI file.

1512 Whole or part of the region has already been locked.

1513 Unable to unlock record.

1514 Lock failed! SHARE buffers have been exceeded.

1515 Unable to load help file.

1516 Not a DOS disk.

1517 Invalid Parameter.

1518 File read locks not supported

1519 Not owner of resource access has been denied.

1520 File currently exist.

1521 File dead lock has been detected.

1522 No file lock resource exist.

1523 Unable to load DLL ‘dll_name’ because of ‘reason’.

1524 File name is too long: 'file_name'.

2100 You can only logon to this database once.

2105 Unable to load dynamic link library: 'file_name'

2106 Connection string must contain a DSN=<driver_name>:
'incorrect_string'

2108 Transaction processing is not supported for this database driver.

2700 Token too big: 'token_name'

Code # Error Message Text

Go To
Appendix D Result and Error Message Codes

Error Codes and Messages 540

DataDirect Developer’s Toolkit Programmer’s Guide

2701 Number too large: 'number_string'

2702 Number contains an invalid character: 'invalid_char'

2703 Unmatched quote character: 'character'

2704 Error parsing connect string at offset 'offset'.

2705 Error parsing 'string' at offset 'offset'.

2706 Attribute 'attribute' specified more than once.

2707 Attribute specified twice using keywords 'keyword1' and 'keyword2'.

2708 Invalid hexadecimal character found during conversion.

2709 Quicksort stack overflow.

2710 Too many sort keys.

2711 Invalid license file: 'file_name'

2712 The Beta period for this product has expired. Please contact
INTERSOLV to obtain a production version of this product.

2713 The evaluation period for this product has expired. Please contact
INTERSOLV to obtain a production version of this driver.

2714 The Beta period for this product will expire in less than 15 days.
Please contact INTERSOLV to obtain a production version of this
product.

2715 The evaluation period for this product will expire in less than 15
days. Please contact INTERSOLV to obtain a production version of
this driver.

2716 Cannot handle strings larger than 65500 bytes.

2717 Initialization file is not open.

2718 This is a not-for-resale version of a INTERSOLV product. You can
order INTERSOLV products by calling 800-547-4000.

2719 Could not create trace window.

2720 Error parsing first line of query file: ‘file_name’.

2721 Could not get needed access to 'problem'.

Code # Error Message Text

Go To
Appendix D Result and Error Message Codes

Error Codes and Messages 541

DataDirect Developer’s Toolkit Programmer’s Guide

2722 Can not increase internal array size past 16000.

2723 You are now using the INTERSOLV ODBC Drivers from the
Database Library product. These drivers may only be used for
developing and testing applications. They may not be distributed for
commercial use.

2724 To use or distribute this ODBC-enabled application with drivers
from INTERSOLV, you must purchase the appropriate driver
distribution license. Please contact INTERSOLV at 800-547-4000
for more information and assistance.

2725 The license file, ‘file_name’, does not authorize you to use this
ODBC driver. Please contact INTERSOLV at 800-547-4000 to
purchase a license.

2726 The license has expired. Please call INTERSOLV to obtain a
production version of this product.

2727 The license will expire in less than 15 days. Please call
INTERSOLV to obtain a production version of this product.

2728 USA and Canada: 800-547-4000 Asia Pacific: 301-838-5241
United Kingdom: +44 1727 812812 Australia: +61 (3) 9816 9977
France: +33 (1) 49.03.09.99 Germany: +49 (89)962 71-152 Other
countries: +44 1727 812812.

3501 Your format mask is too long, the limit is 79 characters.

3502 The E format character must be followed by a sign character; + or -
. For Example, '0.00E+00'.

3503 The E format character must be followed by one or more digits to
display the exponent. For Example, '0.00E+00'.

3504 The quoted string in your format mask is missing the second
quotation mark.

3505 The scale command must be followed by '*' for multiply or by '/' for
divide. For Example, '[S*1000]'.

3506 The scale operator must be followed by a number that is a power of
ten; 10, 100, 1000, etc. For Example, '[S*1000]'.

Code # Error Message Text

Go To
Appendix D Result and Error Message Codes

Error Codes and Messages 542

DataDirect Developer’s Toolkit Programmer’s Guide

3507 A command in your format mask is missing the ']' end command
character. For Example, '[S*1000]'.

3508 Partial values cannot be formatted or converted.

3509 You attempted to format or convert a date value that is not a valid
date.

3510 Overflow resulted when converting a value to single-precision
floating-point.

3511 Overflow resulted when converting a value to short integer.

3512 Overflow resulted when converting a value to decimal format.

3513 The value being converted has an exponent that is too large.

3514 Overflow resulted when converting a value to long integer.

3515 The date contains an invalid year.

3516 The date contains an invalid month.

3517 The date contains an invalid day.

3518 The date contains an invalid hour.

3519 The date contains an invalid minute.

3520 The date contains an invalid second.

3521 The date contains invalid fractional seconds.

3522 This character cannot appear in a date format string: 'character'

3523 This character cannot appear in a number format string: 'character'

3524 This character cannot appear in a general format string: 'character'

3525 This string cannot be converted to a number: 'character'

3526 Could not convert to a date value: 'unconverted_value'

3527 Overflow resulted when converting a value to double-precision
floating-point.

3528 Invalid decimal (BCD) digit in nibble 'number'.

3529 Invalid decimal (BCD) sign.

Code # Error Message Text

Go To
Appendix D Result and Error Message Codes

Error Codes and Messages 543

DataDirect Developer’s Toolkit Programmer’s Guide

3530 The number 'number' cannot be converted to a date.

4100 You have exceeded the limit on the number of connection and
statement handles.

4101 The connection, statement, or query handle you provided is not
valid.

4102 LIKE or NOT LIKE requested for a non-character data type.

4103 You provided an invalid column number. Column numbers must be
between 1 and the number of columns returned by the SELECT
statement.

4104 The information you requested for a column is not relevant given its
data type.

4105 You have exceeded the limit on the number of active programs that
can use DTK.

4106 You must retrieve the values for columns in increasing column
number order, e.g. column 1, then 2, then 3, etc. You cannot
retrieve the value for a column more than once.

4110 The last parameter to qeValChar or qeValCharBuf must be zero if
the underlying data type is not a character string.

4111 You cannot call qeBindCol after you have called qeFetchNext,
qeFetchPrev, qeFetchRandom, or qeFetchNumRecs.

4112 You did not call qeBindCol for every column in the Select
statement.

4114 The database system you are connected to does not support
transactions.

4117 You must call qeBeginTran to begin a transaction before you can
call qeCommit or qeRollback.

4118 You already have an active transaction. Call qeCommit or
qeRollback to end the active transaction.

4119 You have not given an SQL statement to be executed.

4120 Tracing has already been turned on.

Code # Error Message Text

Go To
Appendix D Result and Error Message Codes

Error Codes and Messages 544

DataDirect Developer’s Toolkit Programmer’s Guide

4121 The trace file name is not valid.

4122 Tracing is not turned on.

4123 You must call qeFetchSetOptions before calling a qeBindCol or
qeFetch function.

4125 You cannot use qeFetchPrev, qeFetchRandom, or
qeFetchNumRecs without first calling qeSetSelectOptions to
enable random fetching.

4127 You can only call this function if the current statement is a Select
statement.

4128 This evaluation copy of DTK has expired. Call INTERSOLV at (800)
547-4000 to purchase the product.

4129 You can only call this function if there is an active record.

4130 This evaluation copy of DTK will expire within the next two weeks.
Call INTERSOLV at (800) 547-4000 to purchase the product.

4131 You cannot change this column's value. 'reason'

4132 Attempt to get column attribute that does not exist for this table.

4133 Dictionary query is not allowed for this function.

4134 Invalid option specified: 'invalid_option'.

4135 Statement has not been executed or is not positioned on a row.

4136 Row to be locked has changed.

4137 Multiple rows locked.

4138 No rows locked.

4139 The specified column is not searchable.

4140 No database source has been specified.

4141 The parameter number supplied 'number' is invalid.

4142 Field number supplied ('number') is invalid.

4143 Missing keyword: 'keyword'

Code # Error Message Text

Go To
Appendix D Result and Error Message Codes

Error Codes and Messages 545

DataDirect Developer’s Toolkit Programmer’s Guide

4144 This statement hasn't been executed. Execution required for this
operation.

4145 You must call qeBeginTran to begin a transaction before you can
call qeRecLock.

4146 No query save file specified.

4147 Cannot insert row 'row_num' because it isn't within the rows you
have fetched ('num_fetched_rows') or immediately following the
last row you have fetched.

4148 Parameter type ('param_type') not in range of 1 to 6.

4149 error_text

4150 warning_text

4151 HSTMT was invalidated at end of transaction.

4152 Not currently positioned on a row.

4153 Fetching on this statement cannot occur until the transaction has
been committed or rolled back.

4154 Query does not have a valid hdbc.

4155 Operation only allowed with deferred auto-update.

4156 Parameter 'param' in the SQL statement is un-named.

4157 DTK parameter 'param' doesn't have a name.

4158 No DTK parameter for 'param'.

4159 DTK parameter 'param' not found in SQL statement.

4160 qeFetchSetOptions is an obsolete function and is not supported for
statements with parameters that haven't been bound or set.

4161 The specified column may not yield an exact match because of the
database's internal data representation.

4162 Locking is not supported. This is due to either a driver limitation or
your current isolation level.

4163 Query Builder was canceled.

Code # Error Message Text

Go To
Appendix D Result and Error Message Codes

Error Codes and Messages 546

DataDirect Developer’s Toolkit Programmer’s Guide

4164 Unable to grow database greater than 30 records using a demo
version.

4165 The handle ('handle') is being used by another task.

4166 qeVal functions may not be used with this hstmt because
qeBindCol has been used on this hstmt.

4167 Unable to create a new handle because handle ('handle') is still
active.

4168 Parameter ('param') not found.

4169 Unable to allocate buffer as large as the max_len passed to
qeValChar or qeValCharBuf.

4170 Unable to exit after first dialog of the Query Builder for an hqry
without a SQL statement.

4171 Unable to qeSetParamDataType parameter ('param') because it is
not of IO type qePARAM_OUTPUT.

4172 qeGetParam functions may not be used with parameter ('param')
because qeBindParam has been used on this parameter.

4173 The last parameter to qeGetParamChar or qeGetParamCharBuf
must be zero if the underlying data type is not a character string.

4174 Unable to qeGetParam parameter ('param') because it is of IO type
qePARAM_INPUT

4175 Unable to set use the ODBC connection or statement handle.

4500 Missing keyword: 'keyword'

4501 Unexpected text at end of SQL query: 'text'

4502 Empty SQL clause found.

4503 Missing matching */ in comment.

4504 Improper select list in SELECT statement: 'bad_list'

4505 You did not give a SQL statement to execute.

4506 Cannot update or delete record, no primary key available.

Code # Error Message Text

Go To
Appendix D Result and Error Message Codes

Error Codes and Messages 547

DataDirect Developer’s Toolkit Programmer’s Guide

4507 Operation aborted!

4508 Duplicate table names not allowed in FROM clause:
'dup_table_names'

4510 Unable to lock this record. It has been modified or deleted by
another user.

4511 Unable to insert record into database.

4513 The number of parameters supplied does not match the number of
parameter markers in the statement.

4514 The declared parameter names don't match the statement
parameters.

4515 You cannot delete the current record from a query containing a join.

4516 You cannot insert a record into a query containing a join.

4517 You cannot add another break to this field: 'field_name'

4518 You cannot read backwards without a logfile.

4519 Unable to build select list.

4520 You cannot modify a read-only query.

4522 Field number supplied ('field_num') is too large.

4523 Case-insensitive search requested on a non-character column.

4524 This statement hasn't been executed. Execution required for this
operation.

4525 Invalid ODBC handle --- internal error.

4526 A table or table alias name exceeds 'max_chars' characters.

4527 The parameter number supplied 'param_num' is too large.

4528 At least one parameter has not been supplied a value.

4529 Fixing bind and set is not allowed for multiple value parameters.

4530 End of results.

Code # Error Message Text

Go To
Appendix D Result and Error Message Codes

Error Codes and Messages 548

DataDirect Developer’s Toolkit Programmer’s Guide

4531 The value of a field is longer than the maximum length that can be
stored in the database or generation of a SQL statement has run
out of space (> 65000 bytes).

4532 Fetching no longer allowed on this statement, probably due to a
previous update or delete. Enabling logging will probably fix the
error.

4533 Parameter 'param_num' hasn't been given a data type.

4534 Attempt to change the data type of parameter 'param_num'.

4537 Inserting row 'row_num' is illegal with current row ('row_num').

4538 Attempt to insert 'num' characters into a column that allows 'num'
characters.

4539 'statement' is invalid in a select statement.

4540 Database does not support an uppercase function.

4541 Internal error 00 -- contact INTERSOLV Technical Support.

4542 Parameter input was canceled--statement was not executed.

4543 Internal error 01 -- contact INTERSOLV Technical Support.

4544 You have exceeded the limit on SQL statements allowed by this
demo version. To reset the SQL statement counter, exit and then
restart your application.

 4545 You may not modify this column because we were unable to
determine the table for this column.

 4546 The column's ('p1') precision of 'p2' exceeds the limit of 'p3'.

4547 The parameter 'param' does not appear in the SQL statement.

9000 Attempted linkout from empty list.

9001 Attempted get from empty list.

9002 Attempted update of empty list.

9003 Seek to item not on list.

9004 Not enough memory for List.

Code # Error Message Text

Go To
Appendix D Result and Error Message Codes

Error Codes and Messages 549

DataDirect Developer’s Toolkit Programmer’s Guide

9006 Unable to complete operation--out of memory!!

9007 The Query you entered is either incorrect or too complex to be
understood by the Query Builder. Click the Error Check icon to
check for errors.

9009 Expression has changed--save?

9010 Memory allocation error in Query parser.

9011 An unterminated comment was found.

9012 SQL statement must begin with SELECT.

9013 No select list in Query.

9014 No from clause in Query.

9015 The BY was missing from GROUP BY clause.

9016 The BY was missing from ORDER BY clause.

9017 A empty clause was found.

9019 An unsupported feature(e.g. UNION) was found.

9020 A wildcard had incorrect format in select list.

9021 Unmatched parens found in ORDER BY clause.

9022 Unmatched parens found in GROUP BY clause.

9023 Format of BETWEEN incorrect in WHERE clause.

9024 Format of BETWEEN incorrect in HAVING clause.

9025 No value found after operator in WHERE clause.

9026 No value found after operator in HAVING clause.

9027 Unmatched parens found in WHERE clause.

9028 Unmatched parens found in HAVING clause.

9029 Warning--no fields found for:

9030 Joins only valid with two or more tables.

9031 Must specify grouping before you can edit grouping conditions.

Code # Error Message Text

Go To
Appendix D Result and Error Message Codes

Error Codes and Messages 550

DataDirect Developer’s Toolkit Programmer’s Guide

9032 Error--incompatible data types.

9033 Error--unmatched quote found in string.

9034 When comparing against NULL, use 'Is' or 'Is not'.

9035 Missing = after CHARSET, DELIMITER, or PARSE.

9036 Missing val after headerline.

9037 Missing = after HEADERLINE.

9038 Data type syntax error.

9039 Syntax error in stmt.

9040 Missing right paren.

9041 Missing paren or comma.

9042 Bad parse string.

9043 Unknown data type.

9044 Number width invalid.

9045 Character width invalid.

9046 Decimal greater than width.

9047 File options missing paren or too large (> 1024).

9048 There are currently no parameters to edit.

9049 Parameter markers are only valid in the WHERE and HAVING
clauses.

9050 Parameter name must begin with a letter, be alphanumeric, and
have no blanks.

9051 No fields have been chosen.

9052 Field aliases are not allowed.

9053 Grouping change requires select list to change.

9054 Operator is required.

9056 Parameter name already used.

Code # Error Message Text

Go To
Appendix D Result and Error Message Codes

Error Codes and Messages 551

DataDirect Developer’s Toolkit Programmer’s Guide

9057 Parameter must have a name.

9058 To compare against NULL, enter 'NULL' for the value.

9059 Queries containing parameters must be validated by executing the
statement.

9060 A NULL value is not allowed.

9061 Unable to parse SQL. Database currently unknown to query
builder.

9062 Expression is too long.

9063 Query Builder error #

9064 Query Builder warning #

9065 Database error #

9066 Invalid logical value.

9067 Only one table is allowed to be entered at a time.

9068 Invalid table entry. There are too many spaces.

9069 The alias you specified conflicts with a previously used table. Use
another alias.

9070 The table name you specified conflicts with a previously used alias.
Use an alias for this table.

9071 The alias you specified has already been used.

9072 The table name is too large.

9073 No functions have been defined for this data source.

9074 Alias name is invalid.

9075 Warning--the left hand column is ambiguous. First table found was
selected.

9076 Warning--the right hand column is ambiguous. First table found was
selected.

9077 Warning--the left hand column wasn't found in any table.

Code # Error Message Text

Go To
Appendix D Result and Error Message Codes

Error Codes and Messages 552

DataDirect Developer’s Toolkit Programmer’s Guide

9078 Warning--the right hand column wasn't found in any table.

9080 Unmatched parens found in FOR UPDATE OF clause.

9081 Invalid number - must be integer between 0 and 65535

9082 Save Failed.

9083 Multi-table queries (joins) are not allowed.

9084 This datasource does not support GROUP BYs.

10028 Cannot access drive.

30040 Cannot open file 'file_name'.

30041 Error on input or output to a file.

30042 Cannot rename 'file_name1' to 'file_name2'.

30043 Not enough memory for this command.

30045 The maximum number of files are already open.

30047 Reserved file name cannot be opened 'file_name'.

 30049 File system is Read Only.

 30050 Need Additional Information.

 30051 Out of file handles. Cannot open file ‘file_name’.

30190 Out of memory.

Code # Error Message Text

DataDirect Developer’s Toolkit Programmer’s Guide

Go To

E Compatibility Issues

This appendix contains information about the compatibility of DTK Version 2.x
with QELIB 1.0, with future versions of DTK, and with ODBC database
drivers. It contains the following sections:

• “QELIB 1.0 Compatibility,” describes the differences between DTK Version
2.x functionality and the functionality provided for applications developed
using QELIB Version 1.0.

• “Obsolete QELIB Functions” on page 556 describes the
qeFetchGetOptions and qeFetchSetOptions functions, which have been
replaced by the new qeSetSelectOptions and qeGetSelectOptions
functions. These functions will not be supported in future versions of DTK.

• “ODBC Compatibility” on page 560 lists the ODBC functions that must be
supported by database drivers used with DTK and specific DTK functions.

QELIB 1.0 Compatibility

With DTK, applications developed using QELIB 1.0 can be run using version
2.x. However, because certain changes made for version 2.x create
incompatibilities with version 1.0 applications, you must specify when you
want to take advantage of version 1.0 compatibility by setting Revision = 1 in
the QELIB.INI file. For information on the QELIB.INI file, see Appendix F,
“The QELIB.INI File,” on page 565.

Go To
Appendix E Compatibility Issues

QELIB 1.0 Compatibility 554

DataDirect Developer’s Toolkit Programmer’s Guide

When you specify Revision 1 compatibility in the QELIB.INI file, DTK 2.x
functions differently to support QELIB 1.0 behavior in the following areas:

• Native column type support
• Column width support
• Error checking
• SQL compatibility
• Issuing multiple SQL statements
• Character string values returned from SQL Server

The following sections describe each of these differences.

Note to OS/2 users: In order to run your existing DTK applications using
DTK 2.x, you must first recompile them as 32-bit applications.

Native Column Type Support

In DTK 2.x, the qeColDBType function does not support the data type values
of 1000 or greater that were returned by qeDBColType in QELIB version 1.0.
However, DTK will support these values when you specify Revision 1
compatibility.

Column Width Support

In QELIB 1.0, the qeColWidth function could not return column width values
greater than 32K (32,760 bytes). This column width restriction continues to
apply when you specify Revision 1 compatibility. In DTK 2.x, the qeColWidth
function can return column widths up to 231 bytes.

You should note this change if upgrading QELIB 1.0 applications that use the
qeColWidth function to allocate memory, since this function can now return
width values that exceed the operating system’s ability to allocate memory.

Go To
Appendix E Compatibility Issues

QELIB 1.0 Compatibility 555

DataDirect Developer’s Toolkit Programmer’s Guide

Error Checking

Because the qeWarning function returns the values qeTRUNCATION
(-1) and qeNULL_DATA (-2), qeErr does not return them in DTK 2.x. When
you choose Revision 1 compatibility, the qeErr function returns these values
as errors.

SQL Compatibility

The ODBC-compliant drivers used with Version 2.x of DTK support ANSI-
standard SQL, which they modify into the SQL dialect used in the database
system. This makes DTK 2.x applications portable among ODBC database
drivers. In QELIB 1.0, however, database system-specific SQL statements
are passed to the underlying database system without modification.
Therefore, SQL statements issued in QELIB 1.0 applications may be
incompatible with the ODBC drivers when you specify Revision 2
compatibility. When you specify Revision 1 compatibility, however, DTK adds
a connection string setting, MODIFYSQL=0, that allows database-specific
SQL to be passed unmodified through the ODBC drivers.

Issuing Multiple SQL Statements

DTK 2.x provides the qeMoreResults function for moving to the next set of
results from multiple SQL statements and stored procedures. When using a
Revision 2 compatibility setting, you must call qeMoreResults to retrieve the
results of each statement executed, regardless of whether it was a Select,
Update, Delete, or other type of statement. Use the Revision 1 setting to
enable the QELIB 1.0 behavior for multiple statement results—where DTK
continues to execute SQL statements until it returns a result set from a Select
statement.

Go To
Appendix E Compatibility Issues

Obsolete QELIB Functions 556

DataDirect Developer’s Toolkit Programmer’s Guide

SQL Server Character Strings

In QELIB 1.0, fixed length character string values were returned from SQL
Server as varying length character strings with the blanks removed. DTK
continues this behavior when you specify Revision 1 compatibility. In DTK
2.x, these fixed-length character strings are returned as fixed length, blank-
padded.

Obsolete QELIB Functions

The qeFetchSetOptions and qeFetchGetOptions functions are still supported
for compatibility with QELIB 1.0 applications, but will not be supported in
future versions of DTK. It is not recommended that you use these functions.
Instead, use the qeSetSelectOptions and qeGetSelectOptions functions,
which operate on the current hdbc instead of the current hstmt.

Go To
Appendix E Compatibility Issues

qeFetchGetOptions 557

DataDirect Developer’s Toolkit Programmer’s Guide

qeFetchGetOptions

qeFetchGetOptions returns the fetch options that were set with the previous
call to qeFetchSetOptions.

Syntax int32 options qeFetchGetOptions (int16 hstmt)

Parameters hstmt is the handle to the statement returned by qeExecSQL.

options are the returned option flag values.

Example To set the fetch options and then retrieve them:

hdbc = qeConnect ("DSN=QEDBF") ;
...
hstmt = qeExecSQL (hdbc, "SELECT * FROM emp") ;
res_code = qeFetchSetOptions (hstmt,1) ;
...
options = qeFetchGetOptions (hstmt) ;
/* Returns 1 in this case * /
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

qeFetchSetOptions

qeFetchSetOptions sets options that determine which functions you can use
to retrieve records.

Syntax int16 res_code qeFetchSetOptions (int16 hstmt, int32
options)

Go To
Appendix E Compatibility Issues

qeFetchSetOptions 558

DataDirect Developer’s Toolkit Programmer’s Guide

Description qeFetchSetOptions sets options that determine which qeFetch functions can
be used to retrieve records. If qeFetchSetOptions is not called, only
qeFetchNext can be used to retrieve records. If you wish to use qeFetchPrev,
qeFetchRandom, or qeFetchNumRecs, you must call this function to enable
their use.

qeFetchSetOptions must be called immediately after calling qeExecSQL or
qeSQLExecute and before calling qeBindCol or any other qeFetch function.

You can call qeFetchSetOptions only once for a given hstmt.

Calling qeFetchSetOptions on data dictionary queries returns an error.

Parameters hstmt is the handle to the statement returned by qeExecSQL.

options is the set of options to be enabled. The separate options have a value
associated with them. To set more than one option, add the values together.
The individual option values are as follows:

res_code is the result code returned by qeFetchSetOptions, which returns the
same set of result codes as qeErr. See Appendix D, “Result and Error
Message Codes,” on page 537 for a list of these result codes.

Constant Value Description

qeFETCH_FORWARD 0x0000 The default; only forward fetching
allowed.

qeFETCH_RANDOM 0x0001 Allows the use of qeFetchPrev,
qeFetchRandom, and qeFetchNumRecs.

qeFORCE_LOG 0x0002 Forces the use of temporary log files for
database systems that do not require
them.

Go To
Appendix E Compatibility Issues

qeFetchSetOptions 559

DataDirect Developer’s Toolkit Programmer’s Guide

Example To set the fetch options to enable the use of qeFetchPrev, qeFetchRandom,
and qeFetchNumRecs, and to retrieve the last record selected:

hdbc = qeConnect("DSN=QEDBF") ;
...
hstmt = qeExecSQL(hdbc, "SELECT * FROM emp") ;
res_code = qeFetchSetOptions(hstmt,1) ;
num_recs = qeFetchNumRecs(hstmt) ;
res_code = qeFetchRandom(hstmt, num_recs) ;
/* Code to use the values in the record * /
res_code = qeEndSQL (hstmt) ;
res_code = qeDisconnect (hdbc) ;

Notes Most of the database systems DTK supports provide only a fetch next
function, neither previous nor random fetches are permitted. Also, the
database systems do not provide a function that returns the number of
records selected. If you call qeFetchSetOptions to enable these functions,
DTK creates a temporary log file in your TEMP directory (specified by the
'SET TEMP=' line in your DOS AUTOEXEC.BAT or OS/2 CONFIG.SYS file).
Every record read from the database is saved in the temporary file so that
DTK can support the qeFetchPrev, qeFetchRandom, and qeFetchNumRecs
functions. The temporary log file is deleted when qeEndSQL is called.

If you call qeFetchSetOptions to enable the functions, you must have
sufficient disk space available to hold copies of the records selected from the
database.

If you call qeFetchNumRecs, DTK retrieves every record chosen by your
Select statement and copies it to the temporary log files. DTK determines the
number of records by counting the number of records retrieved. This
operation can be slow for queries that return a large number of records.

Since there are a limited number of files that an application can have open at
any time (20 is the DOS/Windows default), you may exceed the limit if your
application has other files open or if you have several Select statements
active at the same time. You can call qeFetchLogClose to close the
temporary log file used by a statement. DTK automatically re-opens the files
when you call a qeFetch function.

Go To
Appendix E Compatibility Issues

ODBC Compatibility 560

DataDirect Developer’s Toolkit Programmer’s Guide

To increase the number of files that DTK can have open at one time, DTK
sets the limit to 200 by calling the Windows SetHandleCount function or the
OS/2 DosSetMaxFH function. If your application may exceed the default
number of file opens, it is recommended that your application also call these
system functions.

DTK’s Btrieve, dBASE, Paradox, text, and Excel file database drivers do not
require temporary log files to support the qeFetchPrev, qeFetchRandom, and
qeFetchNumRecs functions. If you enable the functions by calling
qeFetchSetOptions, DTK does not create temporary log files for these
database systems. If you want to force the use of temporary files for these
database systems, set the options parameter to 3 (1 to enable the functions +
2 to force the log file).

For all other database systems, you only need to set the options parameter to
1, since DTK must create the temporary log files for these systems.

ODBC Compatibility

DTK uses the ODBC API to communicate with database drivers. This section
lists the ODBC functions that DTK uses. You should be aware of these
compatibility issues when using ODBC database drivers other than those
supplied by INTERSOLV.

Required Functions

DTK will not run if the database driver does not implement the following
ODBC functions:

Go To
Appendix E Compatibility Issues

Optional Functions 561

DataDirect Developer’s Toolkit Programmer’s Guide

Core Compliance

The following are required Core functions:

Level 1 Compliance

The following are required Level 1 functions:

Optional Functions

These functions are used by DTK, but can be absent in a driver. If a driver
does not support these functions, pieces of DTK functionality will not work.
This information is listed by function.

SQLAllocConnect
SQLAllocEnv
SQLAllocStmt
SQLBindCol
SQLColAttributes
SQLDescribeCol
SQLDisconnect
SQLError
SQLExecDirect

SQLExecute
SQLFetch
SQLFreeStmt
SQLGetCursorName
SQLNumResultCols
SQLPrepare
SQLRowCount
SQLSetParam

SQLColumns
SQLDriverConnect
SQLGetData
SQLGetFunctions
SQLGetInfo

SQLGetTypeInfo
SQLParamData
SQLPutData
SQLSetConnectOption
SQLSetStmtOption

Go To
Appendix E Compatibility Issues

Optional Functions 562

DataDirect Developer’s Toolkit Programmer’s Guide

Core Compliance

There is one optional Core function, as follows:

Level 1 Compliance

The following level 1 functions are optional:

Level 2 Compliance

The following level 2 functions are optional:

SQLTransact Failure to implement this function will cause
qeBeginTran, qeCommit and qeRollback to be
unsupported.

SQLSpecialColumns DTK will use this function if it is available, but no
functions are disabled if it is not.

SQLTables Failure to implement this function will cause
qeTables to fail, and will make the Query Builder
unable to populate the table name list box.

SQLDataSources The driver does not have to implement this
function, it is provided by ODBC.

SQLExtendedFetch Failure to implement these functions will result
in DTK being unable to take advantage of the
native database's ability to fetch records at
random.

SQLSetScrollOptions Failure to implement these functions will result
in DTK being unable to take advantage of the
native database’s ability to fetch records at
random.

SQLMoreResults Failure to implement this function will cause
qeMoreResults to fail.

Go To
Appendix E Compatibility Issues

Optional Functions 563

DataDirect Developer’s Toolkit Programmer’s Guide

SQLNativeSql Failure to implement this function will cause
qeNativeSQL to fail.

SQLProcedureColumns Failure to implement this function will cause
qeProcedureColumns to fail.

Go To
Appendix E Compatibility Issues

Optional Functions 564

DataDirect Developer’s Toolkit Programmer’s Guide

DataDirect Developer’s Toolkit Programmer’s Guide

Go To

F The QELIB.INI File

The QELIB.INI file contains a [QELIB] section containing global tracing and
revision level information. It can also contain a section corresponding to each
DTK application that runs on your system. The values in these application-
specific sections take precedence over the global settings in the [QELIB]
section. The application-specific sections also let you specify default
connection string values for the corresponding application.

The following sections describe the global and application-specific sections
that this file contains.

[QELIB]

In this section, you can specify the following default values for all DTK
applications:

TraceOptions = flags

The default tracing options for all DTK applications. This takes the same set
of flags as the parameter to the qeSetTraceOptions function:

0x0001 Trace all non-qeVal calls (qeTRACE_NON_VAL_CALLS).

0x0002 Trace strings sent via qeTraceUser (qeTRACE_USER).

0x0004 Trace qeVal calls and bound data at fetch time
(qeTRACE_VAL_CALLS).

0x0008 Write all info (except ODBC calls) to a trace window
(qeTRACE_WINDOW).

Go To Appendix F The QELIB.INI File 566

DataDirect Developer’s Toolkit Programmer’s Guide

If you don’t specify a different one here, the default when qeTraceOn is called
will be 0x0003 (qeTRACE_NON_VAL_CALLS + qeTRACE_USER).

TraceFile = filename

The default file name for DTK trace files. This file name is equivalent to the
one passed as a parameter to the qeTraceOn function. Any file name passed
to qeTraceOn overrides this setting, but this file name will be used when
tracing is enabled by this section of the QELIB.INI file.

Revision = {1|2}

The default revision level support provided by DTK. If you do not specify this
setting, DTK defaults to Revision level 2 support. See Appendix E,
“Compatibility Issues,” on page 553 for information on how this setting affects
DTK functionality.

[program]

The QELIB.INI file can contain a section for each DTK application that runs
on your system. This section’s name is the same as that of the application’s
executable (.EXE) file, without the .EXE extension. It can specify the
following values:

TraceOptions = flags

The default tracing options for this application. This setting takes precedence
over any TraceOptions setting in the [QELIB] section, and takes the same set
of flags as that setting.

0x0010 Trace ODBC calls (qeTRACE_ODBC).

0x0020 Allows faster tracing by writing trace strings to disk in blocks
instead of one at a time (qeTRACE_NO_FLUSH). Choosing
this method can cause some loss of trace information if your
program terminates abnormally—use it only when your
application is reasonably stable.

Go To Appendix F The QELIB.INI File 567

DataDirect Developer’s Toolkit Programmer’s Guide

TraceFile = filename

For this application, the default file name for DTK trace files. Any file name
passed to the qeTraceOn function in this application overrides this setting,
but this file name will be used when tracing is enabled by this section of the
QELIB.INI file.

Revision = {1|2}

The Revision level support provided by DTK for this application. See
Appendix E, “Compatibility Issues,” on page 553 for information on how this
setting affects DTK functionality.

ConnectString = connection_string

Specifies a string that is added to the connection string passed to the
qeConnect function. Any connection option passed to qeConnect that
contradicts a value in this string takes precedence over the value specified
here.

Go To Appendix F The QELIB.INI File 568

DataDirect Developer’s Toolkit Programmer’s Guide

DataDirect Developer’s Toolkit Programmer’s Guide

Go To

Index

A

Aliases, retrieving 200
Appending SQL statements 157
Applications

building with DTK 4
sample 9

Applying deferred database changes 159
Attributes, retrieving for columns 217
Auto-incremented columns, reporting 218
Auto-update mode, setting 77, 407
Auto-updating records 407
Available databases, reporting 228

B

BCD data type format 55
Begin transaction 84, 160
Binary data type constants, specifying 56
Binary-Coded Decimal format 55
Binding column values to variables

associated functions 41, 162, 175
sample program 38

Blob data, reading and writing 57
Buf functions 152
Building a DTK application 4

C

Caching tables
controlling 450
file, naming 409

related functions 147
reporting 298

Character string data type 53, 54, 470, 485,
495

Clearing statement parameters 199
Code samples 9
Column aliases, retrieving 200
Column attributes, retrieving 217
Column binding functions 162, 175

advantages of using 46
allocating variables for 43
listed 41

Column data types 53
Column definitions, retrieving 220
Column expressions, retrieving 209
Column information functions 200, 219, 222

listed 49
sample program 47

Column names, retrieving 211
Column width, retrieving 222
Columns

reporting attributes of 217
reporting number of 308

Commit transaction 84, 224
Compatibility issues 553

obsolete functions 556
ODBC compatibility 560
QELIB 1.0 compatibility 553

Concurrency provided by isolation levels 88
Connecting to databases 225, 233

associated functions 20
connection strings 225
disconnecting 233
sample program 19

Connection errors, tracing 124
Connection handle 21

conversion functions 149
Connection strings 225

tracing invalid 124

Go To Index 570

DataDirect Developer’s Toolkit Programmer’s Guide

Consistency provided by isolation levels 87
Constants, date-time and binary 56
Current-record functions

column (qePut) functions 74
record (qeRec) functions 74
sample program 71
writing binary data with 58

D

Data conversion functions 50, 493
Data dictionary functions

listed 145
sample program 143

Data fetching functions 41
data sources, reporting available 455
Data type

binary constants, specifying 56
blob 57
character 53, 54, 470, 485, 495
column 53, 215
conversion 50
date-time 53, 54, 202, 204
date-time constants, specifying 56
decimal 53, 55, 213, 214, 474, 499
double-precision floating-point

(float64) 53, 152, 477, 502
float32 53
float64 53
floating-point (float32) 53, 151, 479,

503
int16 151
int32 151
integer (int16) 53, 151, 481, 506
logical 59
long integer (int32) 53, 151, 483, 507
memo 57
native, retrieving 206, 207
parameter and return value 151
pointer 152
ptrflt32 152
ptrflt64 152
ptrint16 152

ptrint32 152
ptrstr 152
retrieving supported 465
single-precision floating-point (float32)

53, 151, 479, 503
true/false 59
variable length character 53
Visual Basic 527

Database connection functions 20
Database drivers, distributing 2
Database errors, reporting 231
Database joins, DTK support for 35
Database system error 231, 236, 538
Databases, reporting available 228
Date-time data type 53, 54, 202, 204

constants, specifying 56
Date-time format strings 64
Debugging 117
Decimal number data type 53, 55, 213, 214,

474, 499
Default database 411
Default unique key, when generated 79
Deferred database changes 407

applying 159
undoing 467

Deferring (saving) record modifications 77,
407

Deleting records 372
Dirty reads 86
Disconnecting from a database 233
Double-precision floating-point data type

(float64) 53, 152, 477, 502
Driver trace file, naming 412
Drivers, distributing 2
DTK

compatibility with Version 1.0 553
distributing drivers 2
features of

listed 4
initializing 22, 303
terminating 22, 304

Go To Index 571

DataDirect Developer’s Toolkit Programmer’s Guide

E

Emulated transactions 92
EOF 235, 537

record state following 77
Error codes 235, 537

returning from underlying databases
231

Error handling
associated functions 119
sample program 117

Error messages
reporting 237
returned by DTK 537

Excel 157, 448
Exclusive database locks 88
Executing SQL statements

associated functions 26
sample program 25

Explicit locking with qeRecLock 89
Expressions, retrieving 209

F

Features
listed 4

Fetching options
reporting 294
setting 446

Fetching records
associated functions 40, 241
methods compared 46
qeBindCol method 37

associated functions 41, 162, 175
sample program 38

qeVal method
associated functions 45, 470, 488
sample program 43

Finding records 374
Fixed-length character data type 53, 54
Float32 data type 151

Float64 data type 152
Floating-point data type (float32) 53, 151,

479, 503
Foreign keys

defined 146
returning information on 250

Format strings 59
date-time 64
examples 59
numeric 60

G

General Protection Fault (GPF), avoiding
120

Granularity of database locking 88

H

Handle
database connection 21
ODBC connection 258, 420
ODBC conversion functions 149
ODBC environment 259
ODBC statement 260
query object 135
SQL statement 28

hdbc 21, 226
hqry 135
hstmt 28, 239

I

Indexes
defined 145
returning information on 300

Initializing DTK 22, 303

Go To Index 572

DataDirect Developer’s Toolkit Programmer’s Guide

Input parameters
defined 32
setting I/O type 32, 439

Input/output parameters
defined 32
setting I/O type 32, 439

Inserting records 379
Int16 data type 151
Int32 data type 151
Integer data type (int16) 53, 151, 481, 506
Invalid connection string, tracing 124
Isolation levels 85

concurrency provided by 88
consistency provided by 87
getting current 88, 253
log file considerations 90
reporting support for 87, 296
setting 88, 413

J

Joining tables 35
Julian date value 68

K

Keys
default 79
foreign 250
generating 78, 399, 468
joined tables, using in 36
primary 314
reporting 376

L

Length of retrieved data, reporting 229

Library system error 236, 538
Locking

definition 85
granularity of 88
shared versus exclusive 88

Locking options
returning current 255
setting 416

Locking records 377
getting options 255
in joined tables 36
setting options 416

Log files 89
closing 241
consistency and qeRecLock 91
controlling use of 446
isolation level considerations 90
reporting use of 294

Logical data type 59
Login timeout

reporting 256
setting 418

Long integer data type (int32) 53, 151, 483,
507

M

Maximum number of rows returned
reporting 257
setting 419

Memo data, reading and writing 57
Money columns, reporting 218
Multiple SQL statements, getting results

from 305

N

Native data types, retrieving 206, 207
Native SQL, retrieving from driver 307
New record, inserting 379

Go To Index 573

DataDirect Developer’s Toolkit Programmer’s Guide

Non-repeatable reads 86
Null value 58, 229, 472
Nullable columns, reporting 218
Number of columns, reporting 308
Number of parameters, reporting 310

from the Query Builder 338
Number of records modified, reporting 309
Number of records retrieved, reporting 245

O

Obsolete QELIB functions 556
ODBC compatibility 560
ODBC connection information, reporting

261, 268
ODBC drivers, distributing 2
ODBC handle conversion functions 149
Out of memory 235, 537
Output parameters

defined 32
setting I/O type 32, 439

P

Page-level locking 88
Parameter conventions 151
Parameter data types 34, 151
Parameterized queries 31
Parameters in SQL statements

associated functions 30
binding functi 176, 196
setting functi 423, 444

clearing 199
counting 310
identifying 311
input 32
input/output 32
output 32
sample program 28
setting data type 427

setting I/O type 32, 439
setting versus binding values 32
writing binary data with 58

Parsing SQL statements
associated functions 149
sample program 147

Parsing statement clauses 197
Persistence of Select statements, control-

ling 92, 294, 446
Phantom reads 86
Pointer 152
Precision 55, 282, 475

retrieving for column values 213
Prepared statements, executing 457
Previous fetching function 41
Primary keys

default 79
defined 145
generating 78, 399, 468
joined tables, using in 36
reporting 376
returning information on 314

Q

QBE 127
qeAppendSQL 27, 28, 157
qeApplyAll 76, 78, 159
qeBeginTran 83, 84, 160
qeBindCol 42, 162
qeBindCol functions 162, 175

listed 41
sample program 38

qeBindColChar 42, 164
reading binary data with 58

qeBindColDecimal 42, 166
qeBindColDouble 42, 168
qeBindColFloat 42, 170
qeBindColInt 42, 172
qeBindColLong 42, 174
qeBindParamBinary 30, 176

writing binary data with 58
qeBindParamChar 30, 178

Go To Index 574

DataDirect Developer’s Toolkit Programmer’s Guide

qeBindParamDate 30, 181
qeBindParamDateTime 30, 183
qeBindParamDecimal 30, 185
qeBindParamDouble 30, 187
qeBindParamFloat 30, 189
qeBindParamInt 30, 191
qeBindParamLong 30, 193
qeBindParamTime 31, 195
qeBinToHex and qeBinToHexBuf 50, 505
qeCharToDate and qeCharToDateBuf 50,

498
qeCharToDecimal and qeCharToDecimal-

Buf 50, 499
qeCharToDouble 51, 502
qeCharToFloat 51, 504
qeCharToInt 51, 506
qeCharToLong 51, 507
qeClauseGet and qeClauseGetBuf 149, 197
qeClearParam 31, 32, 199
qeColAlias and qeColAliasBuf 49, 200
qeColDateEnd 49, 54, 202
qeColDateStart 49, 54, 204
qeColDBType 49, 54, 206
qeColDBTypeName and qeColDBType-

NameBuf 49, 54, 207
qeColExpr and qeColExprBuf 49, 209
qeColName and qeColNameBuf 49, 211
qeColPrecision 49, 56, 213
qeColScale 49, 56, 214
qeColType 49, 53, 215
qeColTypeAttr 49, 217
qeColumns 146, 220
qeColWidth 42, 49, 222
qeCommit 83, 84, 224
qeConnect 21, 225
qeDatabases 146, 228
qeDataLen 45, 46, 59, 229
qeDateToChar and qeDateToCharBuf 51
qeDateToDouble 51, 502
qeDateToLong 51, 507
qeDBErr 119, 120, 231
qeDecimalToChar and qeDecimalToChar-

Buf 51
qeDecimalToDouble 51, 502
qeDecimalToFloat 51, 504

qeDecimalToInt 51, 506
qeDecimalToLong 51, 507
QEDEMO.BAS 509
qeDisconnect 21, 233
qeDoubleToChar and qeDoubleToCharBuf

51, 496
qeDoubleToDecimal and qeDoubleToDeci-

malBuf 51, 500
qeDoubleToFloat 51, 504
qeDoubleToInt 51, 506
qeDoubleToLong 51, 507
qeEndSQL 27, 28, 234
qeErr 119, 235
qeErrMsg and qeErrMsgBuf 119, 120, 237
qeExecSQL 27, 239
qeFetchGetOptions 557
qeFetchLogClose 40, 41, 90, 241, 560
qeFetchNext 40, 41, 243
qeFetchNumRecs 40, 41, 245, 559
qeFetchPrev 40, 41, 246
qeFetchRandom 40, 41, 248
qeFetchSetOptions 557
qeFloatToChar and qeFloatToCharBuf 51,

496
qeFloatToDecimal and qeFloatToDecimal-

Buf 51, 500
qeFloatToDouble 52, 502
qeFloatToInt 52, 506
qeFloatToLong 52, 507
qeForeignKeys 146, 250
qeGetAutoUpdate 76, 78, 252
qeGetIsolationLevel 83, 253
qeGetLockOptions 75, 255
qeGetLoginTimeout 21, 256
qeGetMaxRows 40, 257
qeGetODBCHdbc 150, 258
qeGetODBCHenv 150, 259
qeGetODBCHstmt 150, 260
qeGetODBCInfoChar and qeGetODBCInfo-

CharBuf 150, 261
qeGetODBCInfoLong 150, 264
qeGetOneHstmtPerHdbcOptions 27, 269
qeGetParamBinary 34, 271
qeGetParamBinaryBuf 34, 271
qeGetParamBit 34, 273

Go To Index 575

DataDirect Developer’s Toolkit Programmer’s Guide

qeGetParamChar 34, 274
qeGetParamCharBuf 34, 274
qeGetParamDate 34, 277
qeGetParamDateBuf 34, 277
qeGetParamDateTime 34, 279
qeGetParamDateTimeBuf 34, 279
qeGetParamDecimal 35, 281
qeGetParamDecimalBuf 35, 281
qeGetParamDouble 35, 283
qeGetParamFloat 35, 285
qeGetParamInt 35, 287
qeGetParamLong 35, 289
qeGetParamTime 35, 291
qeGetParamTimeBuf 35, 291
qeGetQueryTimeout 27, 293
qeGetSelectOptions 40, 83, 294
qeGetSupportedIsolationLevels 83, 296
qeGetTableCaching 146, 298
qeGetTraceOptions 122, 299
qeHexToBin and qeHexToBinBuf 494
qeHextoBin and qeHexToBinBuf 52
qeIndexes 145, 146, 300
qeIntToChar and qeIntToCharBuf 52, 496
qeIntToDecimal and qeIntToDecimalBuf 52,

500
qeIntToDouble 52, 502
qeIntToFloat 52, 504
qeIntToLong 507
qeLibInit 22, 303
qeLibTerm 22, 304
qeLongToChar and qeLongToCharBuf 52,

497
qeLongToDecimal and qeLongToDecimal-

Buf 52, 501
qeLongToDouble 52, 502
qeLongToFloat 52, 504
qeLongToInt 52, 506
qeMoreResults 27, 305
qeNativeSQL and qeNativeSQLBuf 149,

307
qeNumCols 49, 308
qeNumModRecs 27, 79, 309
qeNumParams 31, 32, 310
qeParamNum 31, 32, 311
qePrimaryKeys 145, 146, 314

qeProcedureColumns 146, 312
qePutBinary 74, 316

writing Blob or Memo data with 58
qePutChar 317
qePutDecimal 74, 319
qePutDouble 74, 321
qePutFloat 74, 322
qePutInt 74, 323
qePutLong 74, 324
qePutNull 74, 325
qePutUsingBindColumns 74, 326
qeQBEPrepare 130, 131, 328
qeQryAllocate 134, 329
qeQryBuilder 135, 136, 137, 330
qeQryFree 134, 333
qeQryGetFileName and qeQryGetFileNa-

meBuf 134, 334
qeQryGetFileOffset 134, 336
qeQryGetHdbc 134, 337
qeQryGetNumParams 134, 136, 338
qeQryGetParamDefault and qeQryGet-

ParamDefaultBuf 134, 339
qeQryGetParamFormat and qeQryGet-

ParamFormatBuf 134, 341
qeQryGetParamName and qeQryGet-

ParamNameBuf 134, 343
qeQryGetParamPrompt and qeQryGet-

ParamPromptBuf 134, 345
qeQryGetParamType 134, 347
qeQryGetSource and qeQryGetSourceBuf

135, 349
qeQryGetStmt and qeQryGetStmtBuf 134,

351
qeQryOpenQueryFile 134, 352
qeQryPrepare 135, 136, 353
qeQrySaveQueryFile 135, 136, 354
qeQrySetFileName 135, 355
qeQrySetHdbc 135, 356
qeQrySetNumParams 135, 357
qeQrySetParamDefault 135, 358
qeQrySetParamFormat 135, 360
qeQrySetParamName 135, 362
qeQrySetParamPrompt 135, 364
qeQrySetParamType 135, 366
qeQrySetSource 135, 369

Go To Index 576

DataDirect Developer’s Toolkit Programmer’s Guide

qeQrySetStmt 135, 368
qeRecClearConditions 130, 131, 370
qeRecDelete 75, 76, 372
qeRecFind 131, 132, 374
qeRecGetKey 75, 77, 78, 376
qeRecLock 75, 77, 89, 377

log file considerations 91
qeRecNew 75, 76, 379
qeRecNum 75, 77, 381
qeRecSetConditionBinary 130, 382
qeRecSetConditionChar 130, 384
qeRecSetConditionDecimal 130, 387
qeRecSetConditionDouble 131, 389
qeRecSetConditionFloat 131, 391
qeRecSetConditionInt 131, 393
qeRecSetConditionLong 131, 395
qeRecSetConditionNull 131, 397
qeRecSetKey 75, 77, 78, 399
qeRecState 75, 77

using with deferred record changes 78
qeRecUndo 75, 76, 402
qeRecUpdate 75, 76, 403
qeRollback 83, 84, 405

record state following 77
qeSetAutoUpdate 75, 77, 407
qeSetCacheFileName 147, 409
qeSetDB 21, 411
qeSetDriverTraceFile 122
qeSetIsolationLevel 83, 413
qeSetLockOptions 75
qeSetLoginTimeout 21, 418
qeSetMaxRows 40, 41, 419
qeSetODBCHdbc 150, 420
qeSetOneHstmtPerHdbcOptions 27, 421
qeSetParamBinary 31, 423

writing binary data with 58
qeSetParamChar 31, 425
qeSetParamDataType 34, 427
qeSetParamDate 31, 430
qeSetParamDateTime 31, 431
qeSetParamDecimal 31, 433
qeSetParamDouble 31, 435
qeSetParamFloat 31, 436
qeSetParamInt 31, 438
qeSetParamIOType 31, 32, 33, 34, 439

qeSetParamLong 31, 441
qeSetParamNull 31, 442
qeSetParamTime 31, 444
qeSetQueryTimeout 27, 445
qeSetSelectOptions 40, 41, 83, 446

controlling statement persistence with
92

enabling logging with 89
qeSetSQL 27, 28, 448
qeSetTableCaching 147, 450
qeSetTraceOptions 122, 452
qeSetupInfo and qeSetupInfoBuf 23, 454
qeSources 146, 455
qeSQLExecute 27, 28, 32, 457
qeSQLPrepare 27, 28, 32, 458
qeTables 146, 459
qeTraceOff 122, 462
qeTraceOn 122, 463
qeTraceUser 122, 464
qeTypeInfo 146, 465
qeUndoAll 76, 78, 467
qeUniqueWhereClause and qeUnique-

WhereClauseBuf 149, 468
qeVal functions 152, 470, 488

advantages of using 46
listed 45
sample program 43

qeValChar and qeValCharBuf 45, 470
reading binary data with 57

qeValDecimal and qeValDecimalBuf 45,
474

qeValDouble 45, 477
qeValFloat 45, 479
qeValInt 45, 481
qeValLong 45, 483
qeValMultiChar and qeValMultiCharBuf 45,

46, 485
qeVBFetchNext 513
qeVBFetchPrev 516
qeVBFetchRandom 518
qeVBPutRecord 521
qeVerNum and qeVerNumBuf 23, 489
qeWarning 119, 490
Query Builder 136

associated functions 134, 329

Go To Index 577

DataDirect Developer’s Toolkit Programmer’s Guide

Edit Query Text screen 139
icons 138
parameters 140
preferences 140
sample program 132

Query By Example
associated functions 130, 328, 370,

374, 382, 397
description 127
sample program 129

Query file
assigning name to 355
getting name of 334
offset 336
opening 352
saving 354

Query object, handling 135
Query timeout

reporting 293
setting 445

R

Random fetching function 41
Read commited isolation level 86
Read uncommited isolation level 86
Read-ahead activity, controlling 534
Reading records 37
Record number, getting 77, 381
Record state, getting 77, 401
Record-level locking 88
Records

deleting 372
finding 374, 382, 399
inserting 379
locking 85, 377
number modified, reporting 309
number retrieved, reporting 245
updating 403

Result codes 235, 537
description 119
returning 235

Revision 1 compatibility 553
Rollback transaction 84, 405

S

Sample programs
column information functions, using 47
connecting to databases 19
copying 12
current-record functions, using 71
data dictionary functions 143
descriptions 12
executing SQL statements 25
fetching records using qeBindCol 38
fetching records using qeVal 43
finding other samples 14
handling and tracing errors 117
listed by chapter 8
parameters in SQL statements 28
parsing SQL statements 147
Query Builder 132
Query By Example 129
running 9
transactions, using 81
Visual Basic 510

Sample trace files 120
SAMPLE.EXE program 9
Saving (deferring) record modifications 77,

407
Scale 55, 282, 475

retrieving for column values 214
Search condition functions 130
Searchable columns, reporting 219
Select statement persistence, controlling 92,

294, 446
Serializable isolation level 87
Setup

getting information about 23, 454
Shared database locks 88
Single-precision floating-point data type

(float32) 53, 151, 479, 503
Single-statement database systems, coding

for 269, 421, 529

Go To Index 578

DataDirect Developer’s Toolkit Programmer’s Guide

SQL statements
appending 157
ending execution 234
executing 27, 239

associated functions 26
sample program 25

multiple, getting results from 305
parameters on 28
partial, sending 448
preparing 458

SQLGetInfo function, using 262, 264
Statement clauses, parsing 197
Statement conflicts, preventing 536
Statement execution errors, tracing 123
Statement handle 28
Statement persistence, controlling 92, 294,

446
Status constants 119
Stored procedures

calling 33
defined 33
getting results from 305
parameters on 33
retrieving information about 312

Supported isolation levels, getting 87, 296

T

Table caching
controlling 450
file, naming 409
reporting 298

Table-level locking 88
Tables

joining 35
retrieving available 459

Technical support 15
Temporary files 89
Terminating DTK 22, 304
Timeout

login
reporting 256
setting 418

query
reporting 293
setting 445

Tracing errors
associated functions 122
driver trace file name, setting 412
getting options 299
passing strings 464
sample program 117
sample trace files 120
setting options 452, 565
starting 463
stopping 462

Tracing statement and connection errors
122

Transactions
beginning 160
committing 224
definition 84
emulated 92
functions for using 83
rolling back 405
sample program 81

True/false data type 59
Truncated value 229, 472

U

Undoing current record changes 402
Undoing deferred database changes 467
Unique keys

default 79
generating 78, 399, 468
joined tables, using in 36
reporting 376

Unsigned columns, reporting 217
Updatable columns, reporting 217
Updating records 403

automatically 77, 407
in joined tables 36
with deferred database changes 159

Go To Index 579

DataDirect Developer’s Toolkit Programmer’s Guide

V

Variable-length character data type 53, 54
Version number, getting 23, 489
Visual Basic

Buf functions 524
data types 527
decimal numbers 528
DTK declarations for 509
fixed-length string 526
special functions for 513
using DTK with 509
variable-length string 526

W

Warnings, handling 490

Go To Index 580

DataDirect Developer’s Toolkit Programmer’s Guide

